linux/mm/truncate.c
<<
>>
Prefs
   1/*
   2 * mm/truncate.c - code for taking down pages from address_spaces
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 10Sep2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/backing-dev.h>
  12#include <linux/dax.h>
  13#include <linux/gfp.h>
  14#include <linux/mm.h>
  15#include <linux/swap.h>
  16#include <linux/export.h>
  17#include <linux/pagemap.h>
  18#include <linux/highmem.h>
  19#include <linux/pagevec.h>
  20#include <linux/task_io_accounting_ops.h>
  21#include <linux/buffer_head.h>  /* grr. try_to_release_page,
  22                                   do_invalidatepage */
  23#include <linux/shmem_fs.h>
  24#include <linux/cleancache.h>
  25#include <linux/rmap.h>
  26#include "internal.h"
  27
  28/*
  29 * Regular page slots are stabilized by the page lock even without the tree
  30 * itself locked.  These unlocked entries need verification under the tree
  31 * lock.
  32 */
  33static inline void __clear_shadow_entry(struct address_space *mapping,
  34                                pgoff_t index, void *entry)
  35{
  36        XA_STATE(xas, &mapping->i_pages, index);
  37
  38        xas_set_update(&xas, workingset_update_node);
  39        if (xas_load(&xas) != entry)
  40                return;
  41        xas_store(&xas, NULL);
  42        mapping->nrexceptional--;
  43}
  44
  45static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
  46                               void *entry)
  47{
  48        xa_lock_irq(&mapping->i_pages);
  49        __clear_shadow_entry(mapping, index, entry);
  50        xa_unlock_irq(&mapping->i_pages);
  51}
  52
  53/*
  54 * Unconditionally remove exceptional entries. Usually called from truncate
  55 * path. Note that the pagevec may be altered by this function by removing
  56 * exceptional entries similar to what pagevec_remove_exceptionals does.
  57 */
  58static void truncate_exceptional_pvec_entries(struct address_space *mapping,
  59                                struct pagevec *pvec, pgoff_t *indices,
  60                                pgoff_t end)
  61{
  62        int i, j;
  63        bool dax, lock;
  64
  65        /* Handled by shmem itself */
  66        if (shmem_mapping(mapping))
  67                return;
  68
  69        for (j = 0; j < pagevec_count(pvec); j++)
  70                if (xa_is_value(pvec->pages[j]))
  71                        break;
  72
  73        if (j == pagevec_count(pvec))
  74                return;
  75
  76        dax = dax_mapping(mapping);
  77        lock = !dax && indices[j] < end;
  78        if (lock)
  79                xa_lock_irq(&mapping->i_pages);
  80
  81        for (i = j; i < pagevec_count(pvec); i++) {
  82                struct page *page = pvec->pages[i];
  83                pgoff_t index = indices[i];
  84
  85                if (!xa_is_value(page)) {
  86                        pvec->pages[j++] = page;
  87                        continue;
  88                }
  89
  90                if (index >= end)
  91                        continue;
  92
  93                if (unlikely(dax)) {
  94                        dax_delete_mapping_entry(mapping, index);
  95                        continue;
  96                }
  97
  98                __clear_shadow_entry(mapping, index, page);
  99        }
 100
 101        if (lock)
 102                xa_unlock_irq(&mapping->i_pages);
 103        pvec->nr = j;
 104}
 105
 106/*
 107 * Invalidate exceptional entry if easily possible. This handles exceptional
 108 * entries for invalidate_inode_pages().
 109 */
 110static int invalidate_exceptional_entry(struct address_space *mapping,
 111                                        pgoff_t index, void *entry)
 112{
 113        /* Handled by shmem itself, or for DAX we do nothing. */
 114        if (shmem_mapping(mapping) || dax_mapping(mapping))
 115                return 1;
 116        clear_shadow_entry(mapping, index, entry);
 117        return 1;
 118}
 119
 120/*
 121 * Invalidate exceptional entry if clean. This handles exceptional entries for
 122 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 123 */
 124static int invalidate_exceptional_entry2(struct address_space *mapping,
 125                                         pgoff_t index, void *entry)
 126{
 127        /* Handled by shmem itself */
 128        if (shmem_mapping(mapping))
 129                return 1;
 130        if (dax_mapping(mapping))
 131                return dax_invalidate_mapping_entry_sync(mapping, index);
 132        clear_shadow_entry(mapping, index, entry);
 133        return 1;
 134}
 135
 136/**
 137 * do_invalidatepage - invalidate part or all of a page
 138 * @page: the page which is affected
 139 * @offset: start of the range to invalidate
 140 * @length: length of the range to invalidate
 141 *
 142 * do_invalidatepage() is called when all or part of the page has become
 143 * invalidated by a truncate operation.
 144 *
 145 * do_invalidatepage() does not have to release all buffers, but it must
 146 * ensure that no dirty buffer is left outside @offset and that no I/O
 147 * is underway against any of the blocks which are outside the truncation
 148 * point.  Because the caller is about to free (and possibly reuse) those
 149 * blocks on-disk.
 150 */
 151void do_invalidatepage(struct page *page, unsigned int offset,
 152                       unsigned int length)
 153{
 154        void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 155
 156        invalidatepage = page->mapping->a_ops->invalidatepage;
 157#ifdef CONFIG_BLOCK
 158        if (!invalidatepage)
 159                invalidatepage = block_invalidatepage;
 160#endif
 161        if (invalidatepage)
 162                (*invalidatepage)(page, offset, length);
 163}
 164
 165/*
 166 * If truncate cannot remove the fs-private metadata from the page, the page
 167 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 168 * user pagetables if we're racing with filemap_fault().
 169 *
 170 * We need to bale out if page->mapping is no longer equal to the original
 171 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 172 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 173 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 174 */
 175static void
 176truncate_cleanup_page(struct address_space *mapping, struct page *page)
 177{
 178        if (page_mapped(page)) {
 179                pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
 180                unmap_mapping_pages(mapping, page->index, nr, false);
 181        }
 182
 183        if (page_has_private(page))
 184                do_invalidatepage(page, 0, PAGE_SIZE);
 185
 186        /*
 187         * Some filesystems seem to re-dirty the page even after
 188         * the VM has canceled the dirty bit (eg ext3 journaling).
 189         * Hence dirty accounting check is placed after invalidation.
 190         */
 191        cancel_dirty_page(page);
 192        ClearPageMappedToDisk(page);
 193}
 194
 195/*
 196 * This is for invalidate_mapping_pages().  That function can be called at
 197 * any time, and is not supposed to throw away dirty pages.  But pages can
 198 * be marked dirty at any time too, so use remove_mapping which safely
 199 * discards clean, unused pages.
 200 *
 201 * Returns non-zero if the page was successfully invalidated.
 202 */
 203static int
 204invalidate_complete_page(struct address_space *mapping, struct page *page)
 205{
 206        int ret;
 207
 208        if (page->mapping != mapping)
 209                return 0;
 210
 211        if (page_has_private(page) && !try_to_release_page(page, 0))
 212                return 0;
 213
 214        ret = remove_mapping(mapping, page);
 215
 216        return ret;
 217}
 218
 219int truncate_inode_page(struct address_space *mapping, struct page *page)
 220{
 221        VM_BUG_ON_PAGE(PageTail(page), page);
 222
 223        if (page->mapping != mapping)
 224                return -EIO;
 225
 226        truncate_cleanup_page(mapping, page);
 227        delete_from_page_cache(page);
 228        return 0;
 229}
 230
 231/*
 232 * Used to get rid of pages on hardware memory corruption.
 233 */
 234int generic_error_remove_page(struct address_space *mapping, struct page *page)
 235{
 236        if (!mapping)
 237                return -EINVAL;
 238        /*
 239         * Only punch for normal data pages for now.
 240         * Handling other types like directories would need more auditing.
 241         */
 242        if (!S_ISREG(mapping->host->i_mode))
 243                return -EIO;
 244        return truncate_inode_page(mapping, page);
 245}
 246EXPORT_SYMBOL(generic_error_remove_page);
 247
 248/*
 249 * Safely invalidate one page from its pagecache mapping.
 250 * It only drops clean, unused pages. The page must be locked.
 251 *
 252 * Returns 1 if the page is successfully invalidated, otherwise 0.
 253 */
 254int invalidate_inode_page(struct page *page)
 255{
 256        struct address_space *mapping = page_mapping(page);
 257        if (!mapping)
 258                return 0;
 259        if (PageDirty(page) || PageWriteback(page))
 260                return 0;
 261        if (page_mapped(page))
 262                return 0;
 263        return invalidate_complete_page(mapping, page);
 264}
 265
 266/**
 267 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 268 * @mapping: mapping to truncate
 269 * @lstart: offset from which to truncate
 270 * @lend: offset to which to truncate (inclusive)
 271 *
 272 * Truncate the page cache, removing the pages that are between
 273 * specified offsets (and zeroing out partial pages
 274 * if lstart or lend + 1 is not page aligned).
 275 *
 276 * Truncate takes two passes - the first pass is nonblocking.  It will not
 277 * block on page locks and it will not block on writeback.  The second pass
 278 * will wait.  This is to prevent as much IO as possible in the affected region.
 279 * The first pass will remove most pages, so the search cost of the second pass
 280 * is low.
 281 *
 282 * We pass down the cache-hot hint to the page freeing code.  Even if the
 283 * mapping is large, it is probably the case that the final pages are the most
 284 * recently touched, and freeing happens in ascending file offset order.
 285 *
 286 * Note that since ->invalidatepage() accepts range to invalidate
 287 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 288 * page aligned properly.
 289 */
 290void truncate_inode_pages_range(struct address_space *mapping,
 291                                loff_t lstart, loff_t lend)
 292{
 293        pgoff_t         start;          /* inclusive */
 294        pgoff_t         end;            /* exclusive */
 295        unsigned int    partial_start;  /* inclusive */
 296        unsigned int    partial_end;    /* exclusive */
 297        struct pagevec  pvec;
 298        pgoff_t         indices[PAGEVEC_SIZE];
 299        pgoff_t         index;
 300        int             i;
 301
 302        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 303                goto out;
 304
 305        /* Offsets within partial pages */
 306        partial_start = lstart & (PAGE_SIZE - 1);
 307        partial_end = (lend + 1) & (PAGE_SIZE - 1);
 308
 309        /*
 310         * 'start' and 'end' always covers the range of pages to be fully
 311         * truncated. Partial pages are covered with 'partial_start' at the
 312         * start of the range and 'partial_end' at the end of the range.
 313         * Note that 'end' is exclusive while 'lend' is inclusive.
 314         */
 315        start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 316        if (lend == -1)
 317                /*
 318                 * lend == -1 indicates end-of-file so we have to set 'end'
 319                 * to the highest possible pgoff_t and since the type is
 320                 * unsigned we're using -1.
 321                 */
 322                end = -1;
 323        else
 324                end = (lend + 1) >> PAGE_SHIFT;
 325
 326        pagevec_init(&pvec);
 327        index = start;
 328        while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 329                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 330                        indices)) {
 331                /*
 332                 * Pagevec array has exceptional entries and we may also fail
 333                 * to lock some pages. So we store pages that can be deleted
 334                 * in a new pagevec.
 335                 */
 336                struct pagevec locked_pvec;
 337
 338                pagevec_init(&locked_pvec);
 339                for (i = 0; i < pagevec_count(&pvec); i++) {
 340                        struct page *page = pvec.pages[i];
 341
 342                        /* We rely upon deletion not changing page->index */
 343                        index = indices[i];
 344                        if (index >= end)
 345                                break;
 346
 347                        if (xa_is_value(page))
 348                                continue;
 349
 350                        if (!trylock_page(page))
 351                                continue;
 352                        WARN_ON(page_to_index(page) != index);
 353                        if (PageWriteback(page)) {
 354                                unlock_page(page);
 355                                continue;
 356                        }
 357                        if (page->mapping != mapping) {
 358                                unlock_page(page);
 359                                continue;
 360                        }
 361                        pagevec_add(&locked_pvec, page);
 362                }
 363                for (i = 0; i < pagevec_count(&locked_pvec); i++)
 364                        truncate_cleanup_page(mapping, locked_pvec.pages[i]);
 365                delete_from_page_cache_batch(mapping, &locked_pvec);
 366                for (i = 0; i < pagevec_count(&locked_pvec); i++)
 367                        unlock_page(locked_pvec.pages[i]);
 368                truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
 369                pagevec_release(&pvec);
 370                cond_resched();
 371                index++;
 372        }
 373        if (partial_start) {
 374                struct page *page = find_lock_page(mapping, start - 1);
 375                if (page) {
 376                        unsigned int top = PAGE_SIZE;
 377                        if (start > end) {
 378                                /* Truncation within a single page */
 379                                top = partial_end;
 380                                partial_end = 0;
 381                        }
 382                        wait_on_page_writeback(page);
 383                        zero_user_segment(page, partial_start, top);
 384                        cleancache_invalidate_page(mapping, page);
 385                        if (page_has_private(page))
 386                                do_invalidatepage(page, partial_start,
 387                                                  top - partial_start);
 388                        unlock_page(page);
 389                        put_page(page);
 390                }
 391        }
 392        if (partial_end) {
 393                struct page *page = find_lock_page(mapping, end);
 394                if (page) {
 395                        wait_on_page_writeback(page);
 396                        zero_user_segment(page, 0, partial_end);
 397                        cleancache_invalidate_page(mapping, page);
 398                        if (page_has_private(page))
 399                                do_invalidatepage(page, 0,
 400                                                  partial_end);
 401                        unlock_page(page);
 402                        put_page(page);
 403                }
 404        }
 405        /*
 406         * If the truncation happened within a single page no pages
 407         * will be released, just zeroed, so we can bail out now.
 408         */
 409        if (start >= end)
 410                goto out;
 411
 412        index = start;
 413        for ( ; ; ) {
 414                cond_resched();
 415                if (!pagevec_lookup_entries(&pvec, mapping, index,
 416                        min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
 417                        /* If all gone from start onwards, we're done */
 418                        if (index == start)
 419                                break;
 420                        /* Otherwise restart to make sure all gone */
 421                        index = start;
 422                        continue;
 423                }
 424                if (index == start && indices[0] >= end) {
 425                        /* All gone out of hole to be punched, we're done */
 426                        pagevec_remove_exceptionals(&pvec);
 427                        pagevec_release(&pvec);
 428                        break;
 429                }
 430
 431                for (i = 0; i < pagevec_count(&pvec); i++) {
 432                        struct page *page = pvec.pages[i];
 433
 434                        /* We rely upon deletion not changing page->index */
 435                        index = indices[i];
 436                        if (index >= end) {
 437                                /* Restart punch to make sure all gone */
 438                                index = start - 1;
 439                                break;
 440                        }
 441
 442                        if (xa_is_value(page))
 443                                continue;
 444
 445                        lock_page(page);
 446                        WARN_ON(page_to_index(page) != index);
 447                        wait_on_page_writeback(page);
 448                        truncate_inode_page(mapping, page);
 449                        unlock_page(page);
 450                }
 451                truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
 452                pagevec_release(&pvec);
 453                index++;
 454        }
 455
 456out:
 457        cleancache_invalidate_inode(mapping);
 458}
 459EXPORT_SYMBOL(truncate_inode_pages_range);
 460
 461/**
 462 * truncate_inode_pages - truncate *all* the pages from an offset
 463 * @mapping: mapping to truncate
 464 * @lstart: offset from which to truncate
 465 *
 466 * Called under (and serialised by) inode->i_mutex.
 467 *
 468 * Note: When this function returns, there can be a page in the process of
 469 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 470 * mapping->nrpages can be non-zero when this function returns even after
 471 * truncation of the whole mapping.
 472 */
 473void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 474{
 475        truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 476}
 477EXPORT_SYMBOL(truncate_inode_pages);
 478
 479/**
 480 * truncate_inode_pages_final - truncate *all* pages before inode dies
 481 * @mapping: mapping to truncate
 482 *
 483 * Called under (and serialized by) inode->i_mutex.
 484 *
 485 * Filesystems have to use this in the .evict_inode path to inform the
 486 * VM that this is the final truncate and the inode is going away.
 487 */
 488void truncate_inode_pages_final(struct address_space *mapping)
 489{
 490        unsigned long nrexceptional;
 491        unsigned long nrpages;
 492
 493        /*
 494         * Page reclaim can not participate in regular inode lifetime
 495         * management (can't call iput()) and thus can race with the
 496         * inode teardown.  Tell it when the address space is exiting,
 497         * so that it does not install eviction information after the
 498         * final truncate has begun.
 499         */
 500        mapping_set_exiting(mapping);
 501
 502        /*
 503         * When reclaim installs eviction entries, it increases
 504         * nrexceptional first, then decreases nrpages.  Make sure we see
 505         * this in the right order or we might miss an entry.
 506         */
 507        nrpages = mapping->nrpages;
 508        smp_rmb();
 509        nrexceptional = mapping->nrexceptional;
 510
 511        if (nrpages || nrexceptional) {
 512                /*
 513                 * As truncation uses a lockless tree lookup, cycle
 514                 * the tree lock to make sure any ongoing tree
 515                 * modification that does not see AS_EXITING is
 516                 * completed before starting the final truncate.
 517                 */
 518                xa_lock_irq(&mapping->i_pages);
 519                xa_unlock_irq(&mapping->i_pages);
 520        }
 521
 522        /*
 523         * Cleancache needs notification even if there are no pages or shadow
 524         * entries.
 525         */
 526        truncate_inode_pages(mapping, 0);
 527}
 528EXPORT_SYMBOL(truncate_inode_pages_final);
 529
 530/**
 531 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 532 * @mapping: the address_space which holds the pages to invalidate
 533 * @start: the offset 'from' which to invalidate
 534 * @end: the offset 'to' which to invalidate (inclusive)
 535 *
 536 * This function only removes the unlocked pages, if you want to
 537 * remove all the pages of one inode, you must call truncate_inode_pages.
 538 *
 539 * invalidate_mapping_pages() will not block on IO activity. It will not
 540 * invalidate pages which are dirty, locked, under writeback or mapped into
 541 * pagetables.
 542 */
 543unsigned long invalidate_mapping_pages(struct address_space *mapping,
 544                pgoff_t start, pgoff_t end)
 545{
 546        pgoff_t indices[PAGEVEC_SIZE];
 547        struct pagevec pvec;
 548        pgoff_t index = start;
 549        unsigned long ret;
 550        unsigned long count = 0;
 551        int i;
 552
 553        pagevec_init(&pvec);
 554        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 555                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 556                        indices)) {
 557                for (i = 0; i < pagevec_count(&pvec); i++) {
 558                        struct page *page = pvec.pages[i];
 559
 560                        /* We rely upon deletion not changing page->index */
 561                        index = indices[i];
 562                        if (index > end)
 563                                break;
 564
 565                        if (xa_is_value(page)) {
 566                                invalidate_exceptional_entry(mapping, index,
 567                                                             page);
 568                                continue;
 569                        }
 570
 571                        if (!trylock_page(page))
 572                                continue;
 573
 574                        WARN_ON(page_to_index(page) != index);
 575
 576                        /* Middle of THP: skip */
 577                        if (PageTransTail(page)) {
 578                                unlock_page(page);
 579                                continue;
 580                        } else if (PageTransHuge(page)) {
 581                                index += HPAGE_PMD_NR - 1;
 582                                i += HPAGE_PMD_NR - 1;
 583                                /*
 584                                 * 'end' is in the middle of THP. Don't
 585                                 * invalidate the page as the part outside of
 586                                 * 'end' could be still useful.
 587                                 */
 588                                if (index > end) {
 589                                        unlock_page(page);
 590                                        continue;
 591                                }
 592                        }
 593
 594                        ret = invalidate_inode_page(page);
 595                        unlock_page(page);
 596                        /*
 597                         * Invalidation is a hint that the page is no longer
 598                         * of interest and try to speed up its reclaim.
 599                         */
 600                        if (!ret)
 601                                deactivate_file_page(page);
 602                        count += ret;
 603                }
 604                pagevec_remove_exceptionals(&pvec);
 605                pagevec_release(&pvec);
 606                cond_resched();
 607                index++;
 608        }
 609        return count;
 610}
 611EXPORT_SYMBOL(invalidate_mapping_pages);
 612
 613/*
 614 * This is like invalidate_complete_page(), except it ignores the page's
 615 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 616 * invalidation guarantees, and cannot afford to leave pages behind because
 617 * shrink_page_list() has a temp ref on them, or because they're transiently
 618 * sitting in the lru_cache_add() pagevecs.
 619 */
 620static int
 621invalidate_complete_page2(struct address_space *mapping, struct page *page)
 622{
 623        unsigned long flags;
 624
 625        if (page->mapping != mapping)
 626                return 0;
 627
 628        if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 629                return 0;
 630
 631        xa_lock_irqsave(&mapping->i_pages, flags);
 632        if (PageDirty(page))
 633                goto failed;
 634
 635        BUG_ON(page_has_private(page));
 636        __delete_from_page_cache(page, NULL);
 637        xa_unlock_irqrestore(&mapping->i_pages, flags);
 638
 639        if (mapping->a_ops->freepage)
 640                mapping->a_ops->freepage(page);
 641
 642        put_page(page); /* pagecache ref */
 643        return 1;
 644failed:
 645        xa_unlock_irqrestore(&mapping->i_pages, flags);
 646        return 0;
 647}
 648
 649static int do_launder_page(struct address_space *mapping, struct page *page)
 650{
 651        if (!PageDirty(page))
 652                return 0;
 653        if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 654                return 0;
 655        return mapping->a_ops->launder_page(page);
 656}
 657
 658/**
 659 * invalidate_inode_pages2_range - remove range of pages from an address_space
 660 * @mapping: the address_space
 661 * @start: the page offset 'from' which to invalidate
 662 * @end: the page offset 'to' which to invalidate (inclusive)
 663 *
 664 * Any pages which are found to be mapped into pagetables are unmapped prior to
 665 * invalidation.
 666 *
 667 * Returns -EBUSY if any pages could not be invalidated.
 668 */
 669int invalidate_inode_pages2_range(struct address_space *mapping,
 670                                  pgoff_t start, pgoff_t end)
 671{
 672        pgoff_t indices[PAGEVEC_SIZE];
 673        struct pagevec pvec;
 674        pgoff_t index;
 675        int i;
 676        int ret = 0;
 677        int ret2 = 0;
 678        int did_range_unmap = 0;
 679
 680        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 681                goto out;
 682
 683        pagevec_init(&pvec);
 684        index = start;
 685        while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 686                        min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 687                        indices)) {
 688                for (i = 0; i < pagevec_count(&pvec); i++) {
 689                        struct page *page = pvec.pages[i];
 690
 691                        /* We rely upon deletion not changing page->index */
 692                        index = indices[i];
 693                        if (index > end)
 694                                break;
 695
 696                        if (xa_is_value(page)) {
 697                                if (!invalidate_exceptional_entry2(mapping,
 698                                                                   index, page))
 699                                        ret = -EBUSY;
 700                                continue;
 701                        }
 702
 703                        lock_page(page);
 704                        WARN_ON(page_to_index(page) != index);
 705                        if (page->mapping != mapping) {
 706                                unlock_page(page);
 707                                continue;
 708                        }
 709                        wait_on_page_writeback(page);
 710                        if (page_mapped(page)) {
 711                                if (!did_range_unmap) {
 712                                        /*
 713                                         * Zap the rest of the file in one hit.
 714                                         */
 715                                        unmap_mapping_pages(mapping, index,
 716                                                (1 + end - index), false);
 717                                        did_range_unmap = 1;
 718                                } else {
 719                                        /*
 720                                         * Just zap this page
 721                                         */
 722                                        unmap_mapping_pages(mapping, index,
 723                                                                1, false);
 724                                }
 725                        }
 726                        BUG_ON(page_mapped(page));
 727                        ret2 = do_launder_page(mapping, page);
 728                        if (ret2 == 0) {
 729                                if (!invalidate_complete_page2(mapping, page))
 730                                        ret2 = -EBUSY;
 731                        }
 732                        if (ret2 < 0)
 733                                ret = ret2;
 734                        unlock_page(page);
 735                }
 736                pagevec_remove_exceptionals(&pvec);
 737                pagevec_release(&pvec);
 738                cond_resched();
 739                index++;
 740        }
 741        /*
 742         * For DAX we invalidate page tables after invalidating page cache.  We
 743         * could invalidate page tables while invalidating each entry however
 744         * that would be expensive. And doing range unmapping before doesn't
 745         * work as we have no cheap way to find whether page cache entry didn't
 746         * get remapped later.
 747         */
 748        if (dax_mapping(mapping)) {
 749                unmap_mapping_pages(mapping, start, end - start + 1, false);
 750        }
 751out:
 752        cleancache_invalidate_inode(mapping);
 753        return ret;
 754}
 755EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 756
 757/**
 758 * invalidate_inode_pages2 - remove all pages from an address_space
 759 * @mapping: the address_space
 760 *
 761 * Any pages which are found to be mapped into pagetables are unmapped prior to
 762 * invalidation.
 763 *
 764 * Returns -EBUSY if any pages could not be invalidated.
 765 */
 766int invalidate_inode_pages2(struct address_space *mapping)
 767{
 768        return invalidate_inode_pages2_range(mapping, 0, -1);
 769}
 770EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 771
 772/**
 773 * truncate_pagecache - unmap and remove pagecache that has been truncated
 774 * @inode: inode
 775 * @newsize: new file size
 776 *
 777 * inode's new i_size must already be written before truncate_pagecache
 778 * is called.
 779 *
 780 * This function should typically be called before the filesystem
 781 * releases resources associated with the freed range (eg. deallocates
 782 * blocks). This way, pagecache will always stay logically coherent
 783 * with on-disk format, and the filesystem would not have to deal with
 784 * situations such as writepage being called for a page that has already
 785 * had its underlying blocks deallocated.
 786 */
 787void truncate_pagecache(struct inode *inode, loff_t newsize)
 788{
 789        struct address_space *mapping = inode->i_mapping;
 790        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 791
 792        /*
 793         * unmap_mapping_range is called twice, first simply for
 794         * efficiency so that truncate_inode_pages does fewer
 795         * single-page unmaps.  However after this first call, and
 796         * before truncate_inode_pages finishes, it is possible for
 797         * private pages to be COWed, which remain after
 798         * truncate_inode_pages finishes, hence the second
 799         * unmap_mapping_range call must be made for correctness.
 800         */
 801        unmap_mapping_range(mapping, holebegin, 0, 1);
 802        truncate_inode_pages(mapping, newsize);
 803        unmap_mapping_range(mapping, holebegin, 0, 1);
 804}
 805EXPORT_SYMBOL(truncate_pagecache);
 806
 807/**
 808 * truncate_setsize - update inode and pagecache for a new file size
 809 * @inode: inode
 810 * @newsize: new file size
 811 *
 812 * truncate_setsize updates i_size and performs pagecache truncation (if
 813 * necessary) to @newsize. It will be typically be called from the filesystem's
 814 * setattr function when ATTR_SIZE is passed in.
 815 *
 816 * Must be called with a lock serializing truncates and writes (generally
 817 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
 818 * specific block truncation has been performed.
 819 */
 820void truncate_setsize(struct inode *inode, loff_t newsize)
 821{
 822        loff_t oldsize = inode->i_size;
 823
 824        i_size_write(inode, newsize);
 825        if (newsize > oldsize)
 826                pagecache_isize_extended(inode, oldsize, newsize);
 827        truncate_pagecache(inode, newsize);
 828}
 829EXPORT_SYMBOL(truncate_setsize);
 830
 831/**
 832 * pagecache_isize_extended - update pagecache after extension of i_size
 833 * @inode:      inode for which i_size was extended
 834 * @from:       original inode size
 835 * @to:         new inode size
 836 *
 837 * Handle extension of inode size either caused by extending truncate or by
 838 * write starting after current i_size. We mark the page straddling current
 839 * i_size RO so that page_mkwrite() is called on the nearest write access to
 840 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 841 * the page before user writes to the page via mmap after the i_size has been
 842 * changed.
 843 *
 844 * The function must be called after i_size is updated so that page fault
 845 * coming after we unlock the page will already see the new i_size.
 846 * The function must be called while we still hold i_mutex - this not only
 847 * makes sure i_size is stable but also that userspace cannot observe new
 848 * i_size value before we are prepared to store mmap writes at new inode size.
 849 */
 850void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 851{
 852        int bsize = i_blocksize(inode);
 853        loff_t rounded_from;
 854        struct page *page;
 855        pgoff_t index;
 856
 857        WARN_ON(to > inode->i_size);
 858
 859        if (from >= to || bsize == PAGE_SIZE)
 860                return;
 861        /* Page straddling @from will not have any hole block created? */
 862        rounded_from = round_up(from, bsize);
 863        if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
 864                return;
 865
 866        index = from >> PAGE_SHIFT;
 867        page = find_lock_page(inode->i_mapping, index);
 868        /* Page not cached? Nothing to do */
 869        if (!page)
 870                return;
 871        /*
 872         * See clear_page_dirty_for_io() for details why set_page_dirty()
 873         * is needed.
 874         */
 875        if (page_mkclean(page))
 876                set_page_dirty(page);
 877        unlock_page(page);
 878        put_page(page);
 879}
 880EXPORT_SYMBOL(pagecache_isize_extended);
 881
 882/**
 883 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 884 * @inode: inode
 885 * @lstart: offset of beginning of hole
 886 * @lend: offset of last byte of hole
 887 *
 888 * This function should typically be called before the filesystem
 889 * releases resources associated with the freed range (eg. deallocates
 890 * blocks). This way, pagecache will always stay logically coherent
 891 * with on-disk format, and the filesystem would not have to deal with
 892 * situations such as writepage being called for a page that has already
 893 * had its underlying blocks deallocated.
 894 */
 895void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 896{
 897        struct address_space *mapping = inode->i_mapping;
 898        loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 899        loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 900        /*
 901         * This rounding is currently just for example: unmap_mapping_range
 902         * expands its hole outwards, whereas we want it to contract the hole
 903         * inwards.  However, existing callers of truncate_pagecache_range are
 904         * doing their own page rounding first.  Note that unmap_mapping_range
 905         * allows holelen 0 for all, and we allow lend -1 for end of file.
 906         */
 907
 908        /*
 909         * Unlike in truncate_pagecache, unmap_mapping_range is called only
 910         * once (before truncating pagecache), and without "even_cows" flag:
 911         * hole-punching should not remove private COWed pages from the hole.
 912         */
 913        if ((u64)unmap_end > (u64)unmap_start)
 914                unmap_mapping_range(mapping, unmap_start,
 915                                    1 + unmap_end - unmap_start, 0);
 916        truncate_inode_pages_range(mapping, lstart, lend);
 917}
 918EXPORT_SYMBOL(truncate_pagecache_range);
 919