linux/mm/util.c
<<
>>
Prefs
   1#include <linux/mm.h>
   2#include <linux/slab.h>
   3#include <linux/string.h>
   4#include <linux/compiler.h>
   5#include <linux/export.h>
   6#include <linux/err.h>
   7#include <linux/sched.h>
   8#include <linux/sched/mm.h>
   9#include <linux/sched/task_stack.h>
  10#include <linux/security.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/mman.h>
  14#include <linux/hugetlb.h>
  15#include <linux/vmalloc.h>
  16#include <linux/userfaultfd_k.h>
  17
  18#include <linux/uaccess.h>
  19
  20#include "internal.h"
  21
  22/**
  23 * kfree_const - conditionally free memory
  24 * @x: pointer to the memory
  25 *
  26 * Function calls kfree only if @x is not in .rodata section.
  27 */
  28void kfree_const(const void *x)
  29{
  30        if (!is_kernel_rodata((unsigned long)x))
  31                kfree(x);
  32}
  33EXPORT_SYMBOL(kfree_const);
  34
  35/**
  36 * kstrdup - allocate space for and copy an existing string
  37 * @s: the string to duplicate
  38 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  39 */
  40char *kstrdup(const char *s, gfp_t gfp)
  41{
  42        size_t len;
  43        char *buf;
  44
  45        if (!s)
  46                return NULL;
  47
  48        len = strlen(s) + 1;
  49        buf = kmalloc_track_caller(len, gfp);
  50        if (buf)
  51                memcpy(buf, s, len);
  52        return buf;
  53}
  54EXPORT_SYMBOL(kstrdup);
  55
  56/**
  57 * kstrdup_const - conditionally duplicate an existing const string
  58 * @s: the string to duplicate
  59 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  60 *
  61 * Function returns source string if it is in .rodata section otherwise it
  62 * fallbacks to kstrdup.
  63 * Strings allocated by kstrdup_const should be freed by kfree_const.
  64 */
  65const char *kstrdup_const(const char *s, gfp_t gfp)
  66{
  67        if (is_kernel_rodata((unsigned long)s))
  68                return s;
  69
  70        return kstrdup(s, gfp);
  71}
  72EXPORT_SYMBOL(kstrdup_const);
  73
  74/**
  75 * kstrndup - allocate space for and copy an existing string
  76 * @s: the string to duplicate
  77 * @max: read at most @max chars from @s
  78 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
  79 *
  80 * Note: Use kmemdup_nul() instead if the size is known exactly.
  81 */
  82char *kstrndup(const char *s, size_t max, gfp_t gfp)
  83{
  84        size_t len;
  85        char *buf;
  86
  87        if (!s)
  88                return NULL;
  89
  90        len = strnlen(s, max);
  91        buf = kmalloc_track_caller(len+1, gfp);
  92        if (buf) {
  93                memcpy(buf, s, len);
  94                buf[len] = '\0';
  95        }
  96        return buf;
  97}
  98EXPORT_SYMBOL(kstrndup);
  99
 100/**
 101 * kmemdup - duplicate region of memory
 102 *
 103 * @src: memory region to duplicate
 104 * @len: memory region length
 105 * @gfp: GFP mask to use
 106 */
 107void *kmemdup(const void *src, size_t len, gfp_t gfp)
 108{
 109        void *p;
 110
 111        p = kmalloc_track_caller(len, gfp);
 112        if (p)
 113                memcpy(p, src, len);
 114        return p;
 115}
 116EXPORT_SYMBOL(kmemdup);
 117
 118/**
 119 * kmemdup_nul - Create a NUL-terminated string from unterminated data
 120 * @s: The data to stringify
 121 * @len: The size of the data
 122 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 123 */
 124char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
 125{
 126        char *buf;
 127
 128        if (!s)
 129                return NULL;
 130
 131        buf = kmalloc_track_caller(len + 1, gfp);
 132        if (buf) {
 133                memcpy(buf, s, len);
 134                buf[len] = '\0';
 135        }
 136        return buf;
 137}
 138EXPORT_SYMBOL(kmemdup_nul);
 139
 140/**
 141 * memdup_user - duplicate memory region from user space
 142 *
 143 * @src: source address in user space
 144 * @len: number of bytes to copy
 145 *
 146 * Returns an ERR_PTR() on failure.  Result is physically
 147 * contiguous, to be freed by kfree().
 148 */
 149void *memdup_user(const void __user *src, size_t len)
 150{
 151        void *p;
 152
 153        p = kmalloc_track_caller(len, GFP_USER);
 154        if (!p)
 155                return ERR_PTR(-ENOMEM);
 156
 157        if (copy_from_user(p, src, len)) {
 158                kfree(p);
 159                return ERR_PTR(-EFAULT);
 160        }
 161
 162        return p;
 163}
 164EXPORT_SYMBOL(memdup_user);
 165
 166/**
 167 * vmemdup_user - duplicate memory region from user space
 168 *
 169 * @src: source address in user space
 170 * @len: number of bytes to copy
 171 *
 172 * Returns an ERR_PTR() on failure.  Result may be not
 173 * physically contiguous.  Use kvfree() to free.
 174 */
 175void *vmemdup_user(const void __user *src, size_t len)
 176{
 177        void *p;
 178
 179        p = kvmalloc(len, GFP_USER);
 180        if (!p)
 181                return ERR_PTR(-ENOMEM);
 182
 183        if (copy_from_user(p, src, len)) {
 184                kvfree(p);
 185                return ERR_PTR(-EFAULT);
 186        }
 187
 188        return p;
 189}
 190EXPORT_SYMBOL(vmemdup_user);
 191
 192/**
 193 * strndup_user - duplicate an existing string from user space
 194 * @s: The string to duplicate
 195 * @n: Maximum number of bytes to copy, including the trailing NUL.
 196 */
 197char *strndup_user(const char __user *s, long n)
 198{
 199        char *p;
 200        long length;
 201
 202        length = strnlen_user(s, n);
 203
 204        if (!length)
 205                return ERR_PTR(-EFAULT);
 206
 207        if (length > n)
 208                return ERR_PTR(-EINVAL);
 209
 210        p = memdup_user(s, length);
 211
 212        if (IS_ERR(p))
 213                return p;
 214
 215        p[length - 1] = '\0';
 216
 217        return p;
 218}
 219EXPORT_SYMBOL(strndup_user);
 220
 221/**
 222 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
 223 *
 224 * @src: source address in user space
 225 * @len: number of bytes to copy
 226 *
 227 * Returns an ERR_PTR() on failure.
 228 */
 229void *memdup_user_nul(const void __user *src, size_t len)
 230{
 231        char *p;
 232
 233        /*
 234         * Always use GFP_KERNEL, since copy_from_user() can sleep and
 235         * cause pagefault, which makes it pointless to use GFP_NOFS
 236         * or GFP_ATOMIC.
 237         */
 238        p = kmalloc_track_caller(len + 1, GFP_KERNEL);
 239        if (!p)
 240                return ERR_PTR(-ENOMEM);
 241
 242        if (copy_from_user(p, src, len)) {
 243                kfree(p);
 244                return ERR_PTR(-EFAULT);
 245        }
 246        p[len] = '\0';
 247
 248        return p;
 249}
 250EXPORT_SYMBOL(memdup_user_nul);
 251
 252void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
 253                struct vm_area_struct *prev, struct rb_node *rb_parent)
 254{
 255        struct vm_area_struct *next;
 256
 257        vma->vm_prev = prev;
 258        if (prev) {
 259                next = prev->vm_next;
 260                prev->vm_next = vma;
 261        } else {
 262                mm->mmap = vma;
 263                if (rb_parent)
 264                        next = rb_entry(rb_parent,
 265                                        struct vm_area_struct, vm_rb);
 266                else
 267                        next = NULL;
 268        }
 269        vma->vm_next = next;
 270        if (next)
 271                next->vm_prev = vma;
 272}
 273
 274/* Check if the vma is being used as a stack by this task */
 275int vma_is_stack_for_current(struct vm_area_struct *vma)
 276{
 277        struct task_struct * __maybe_unused t = current;
 278
 279        return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
 280}
 281
 282#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
 283void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
 284{
 285        mm->mmap_base = TASK_UNMAPPED_BASE;
 286        mm->get_unmapped_area = arch_get_unmapped_area;
 287}
 288#endif
 289
 290/*
 291 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 292 * back to the regular GUP.
 293 * Note a difference with get_user_pages_fast: this always returns the
 294 * number of pages pinned, 0 if no pages were pinned.
 295 * If the architecture does not support this function, simply return with no
 296 * pages pinned.
 297 */
 298int __weak __get_user_pages_fast(unsigned long start,
 299                                 int nr_pages, int write, struct page **pages)
 300{
 301        return 0;
 302}
 303EXPORT_SYMBOL_GPL(__get_user_pages_fast);
 304
 305/**
 306 * get_user_pages_fast() - pin user pages in memory
 307 * @start:      starting user address
 308 * @nr_pages:   number of pages from start to pin
 309 * @write:      whether pages will be written to
 310 * @pages:      array that receives pointers to the pages pinned.
 311 *              Should be at least nr_pages long.
 312 *
 313 * Returns number of pages pinned. This may be fewer than the number
 314 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 315 * were pinned, returns -errno.
 316 *
 317 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 318 * operating on current and current->mm, with force=0 and vma=NULL. However
 319 * unlike get_user_pages, it must be called without mmap_sem held.
 320 *
 321 * get_user_pages_fast may take mmap_sem and page table locks, so no
 322 * assumptions can be made about lack of locking. get_user_pages_fast is to be
 323 * implemented in a way that is advantageous (vs get_user_pages()) when the
 324 * user memory area is already faulted in and present in ptes. However if the
 325 * pages have to be faulted in, it may turn out to be slightly slower so
 326 * callers need to carefully consider what to use. On many architectures,
 327 * get_user_pages_fast simply falls back to get_user_pages.
 328 */
 329int __weak get_user_pages_fast(unsigned long start,
 330                                int nr_pages, int write, struct page **pages)
 331{
 332        return get_user_pages_unlocked(start, nr_pages, pages,
 333                                       write ? FOLL_WRITE : 0);
 334}
 335EXPORT_SYMBOL_GPL(get_user_pages_fast);
 336
 337unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
 338        unsigned long len, unsigned long prot,
 339        unsigned long flag, unsigned long pgoff)
 340{
 341        unsigned long ret;
 342        struct mm_struct *mm = current->mm;
 343        unsigned long populate;
 344        LIST_HEAD(uf);
 345
 346        ret = security_mmap_file(file, prot, flag);
 347        if (!ret) {
 348                if (down_write_killable(&mm->mmap_sem))
 349                        return -EINTR;
 350                ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
 351                                    &populate, &uf);
 352                up_write(&mm->mmap_sem);
 353                userfaultfd_unmap_complete(mm, &uf);
 354                if (populate)
 355                        mm_populate(ret, populate);
 356        }
 357        return ret;
 358}
 359
 360unsigned long vm_mmap(struct file *file, unsigned long addr,
 361        unsigned long len, unsigned long prot,
 362        unsigned long flag, unsigned long offset)
 363{
 364        if (unlikely(offset + PAGE_ALIGN(len) < offset))
 365                return -EINVAL;
 366        if (unlikely(offset_in_page(offset)))
 367                return -EINVAL;
 368
 369        return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
 370}
 371EXPORT_SYMBOL(vm_mmap);
 372
 373/**
 374 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
 375 * failure, fall back to non-contiguous (vmalloc) allocation.
 376 * @size: size of the request.
 377 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
 378 * @node: numa node to allocate from
 379 *
 380 * Uses kmalloc to get the memory but if the allocation fails then falls back
 381 * to the vmalloc allocator. Use kvfree for freeing the memory.
 382 *
 383 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
 384 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
 385 * preferable to the vmalloc fallback, due to visible performance drawbacks.
 386 *
 387 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
 388 * fall back to vmalloc.
 389 */
 390void *kvmalloc_node(size_t size, gfp_t flags, int node)
 391{
 392        gfp_t kmalloc_flags = flags;
 393        void *ret;
 394
 395        /*
 396         * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
 397         * so the given set of flags has to be compatible.
 398         */
 399        if ((flags & GFP_KERNEL) != GFP_KERNEL)
 400                return kmalloc_node(size, flags, node);
 401
 402        /*
 403         * We want to attempt a large physically contiguous block first because
 404         * it is less likely to fragment multiple larger blocks and therefore
 405         * contribute to a long term fragmentation less than vmalloc fallback.
 406         * However make sure that larger requests are not too disruptive - no
 407         * OOM killer and no allocation failure warnings as we have a fallback.
 408         */
 409        if (size > PAGE_SIZE) {
 410                kmalloc_flags |= __GFP_NOWARN;
 411
 412                if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
 413                        kmalloc_flags |= __GFP_NORETRY;
 414        }
 415
 416        ret = kmalloc_node(size, kmalloc_flags, node);
 417
 418        /*
 419         * It doesn't really make sense to fallback to vmalloc for sub page
 420         * requests
 421         */
 422        if (ret || size <= PAGE_SIZE)
 423                return ret;
 424
 425        return __vmalloc_node_flags_caller(size, node, flags,
 426                        __builtin_return_address(0));
 427}
 428EXPORT_SYMBOL(kvmalloc_node);
 429
 430/**
 431 * kvfree() - Free memory.
 432 * @addr: Pointer to allocated memory.
 433 *
 434 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
 435 * It is slightly more efficient to use kfree() or vfree() if you are certain
 436 * that you know which one to use.
 437 *
 438 * Context: Either preemptible task context or not-NMI interrupt.
 439 */
 440void kvfree(const void *addr)
 441{
 442        if (is_vmalloc_addr(addr))
 443                vfree(addr);
 444        else
 445                kfree(addr);
 446}
 447EXPORT_SYMBOL(kvfree);
 448
 449static inline void *__page_rmapping(struct page *page)
 450{
 451        unsigned long mapping;
 452
 453        mapping = (unsigned long)page->mapping;
 454        mapping &= ~PAGE_MAPPING_FLAGS;
 455
 456        return (void *)mapping;
 457}
 458
 459/* Neutral page->mapping pointer to address_space or anon_vma or other */
 460void *page_rmapping(struct page *page)
 461{
 462        page = compound_head(page);
 463        return __page_rmapping(page);
 464}
 465
 466/*
 467 * Return true if this page is mapped into pagetables.
 468 * For compound page it returns true if any subpage of compound page is mapped.
 469 */
 470bool page_mapped(struct page *page)
 471{
 472        int i;
 473
 474        if (likely(!PageCompound(page)))
 475                return atomic_read(&page->_mapcount) >= 0;
 476        page = compound_head(page);
 477        if (atomic_read(compound_mapcount_ptr(page)) >= 0)
 478                return true;
 479        if (PageHuge(page))
 480                return false;
 481        for (i = 0; i < hpage_nr_pages(page); i++) {
 482                if (atomic_read(&page[i]._mapcount) >= 0)
 483                        return true;
 484        }
 485        return false;
 486}
 487EXPORT_SYMBOL(page_mapped);
 488
 489struct anon_vma *page_anon_vma(struct page *page)
 490{
 491        unsigned long mapping;
 492
 493        page = compound_head(page);
 494        mapping = (unsigned long)page->mapping;
 495        if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 496                return NULL;
 497        return __page_rmapping(page);
 498}
 499
 500struct address_space *page_mapping(struct page *page)
 501{
 502        struct address_space *mapping;
 503
 504        page = compound_head(page);
 505
 506        /* This happens if someone calls flush_dcache_page on slab page */
 507        if (unlikely(PageSlab(page)))
 508                return NULL;
 509
 510        if (unlikely(PageSwapCache(page))) {
 511                swp_entry_t entry;
 512
 513                entry.val = page_private(page);
 514                return swap_address_space(entry);
 515        }
 516
 517        mapping = page->mapping;
 518        if ((unsigned long)mapping & PAGE_MAPPING_ANON)
 519                return NULL;
 520
 521        return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
 522}
 523EXPORT_SYMBOL(page_mapping);
 524
 525/*
 526 * For file cache pages, return the address_space, otherwise return NULL
 527 */
 528struct address_space *page_mapping_file(struct page *page)
 529{
 530        if (unlikely(PageSwapCache(page)))
 531                return NULL;
 532        return page_mapping(page);
 533}
 534
 535/* Slow path of page_mapcount() for compound pages */
 536int __page_mapcount(struct page *page)
 537{
 538        int ret;
 539
 540        ret = atomic_read(&page->_mapcount) + 1;
 541        /*
 542         * For file THP page->_mapcount contains total number of mapping
 543         * of the page: no need to look into compound_mapcount.
 544         */
 545        if (!PageAnon(page) && !PageHuge(page))
 546                return ret;
 547        page = compound_head(page);
 548        ret += atomic_read(compound_mapcount_ptr(page)) + 1;
 549        if (PageDoubleMap(page))
 550                ret--;
 551        return ret;
 552}
 553EXPORT_SYMBOL_GPL(__page_mapcount);
 554
 555int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
 556int sysctl_overcommit_ratio __read_mostly = 50;
 557unsigned long sysctl_overcommit_kbytes __read_mostly;
 558int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
 559unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
 560unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
 561
 562int overcommit_ratio_handler(struct ctl_table *table, int write,
 563                             void __user *buffer, size_t *lenp,
 564                             loff_t *ppos)
 565{
 566        int ret;
 567
 568        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 569        if (ret == 0 && write)
 570                sysctl_overcommit_kbytes = 0;
 571        return ret;
 572}
 573
 574int overcommit_kbytes_handler(struct ctl_table *table, int write,
 575                             void __user *buffer, size_t *lenp,
 576                             loff_t *ppos)
 577{
 578        int ret;
 579
 580        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 581        if (ret == 0 && write)
 582                sysctl_overcommit_ratio = 0;
 583        return ret;
 584}
 585
 586/*
 587 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
 588 */
 589unsigned long vm_commit_limit(void)
 590{
 591        unsigned long allowed;
 592
 593        if (sysctl_overcommit_kbytes)
 594                allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
 595        else
 596                allowed = ((totalram_pages - hugetlb_total_pages())
 597                           * sysctl_overcommit_ratio / 100);
 598        allowed += total_swap_pages;
 599
 600        return allowed;
 601}
 602
 603/*
 604 * Make sure vm_committed_as in one cacheline and not cacheline shared with
 605 * other variables. It can be updated by several CPUs frequently.
 606 */
 607struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
 608
 609/*
 610 * The global memory commitment made in the system can be a metric
 611 * that can be used to drive ballooning decisions when Linux is hosted
 612 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 613 * balancing memory across competing virtual machines that are hosted.
 614 * Several metrics drive this policy engine including the guest reported
 615 * memory commitment.
 616 */
 617unsigned long vm_memory_committed(void)
 618{
 619        return percpu_counter_read_positive(&vm_committed_as);
 620}
 621EXPORT_SYMBOL_GPL(vm_memory_committed);
 622
 623/*
 624 * Check that a process has enough memory to allocate a new virtual
 625 * mapping. 0 means there is enough memory for the allocation to
 626 * succeed and -ENOMEM implies there is not.
 627 *
 628 * We currently support three overcommit policies, which are set via the
 629 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
 630 *
 631 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 632 * Additional code 2002 Jul 20 by Robert Love.
 633 *
 634 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 635 *
 636 * Note this is a helper function intended to be used by LSMs which
 637 * wish to use this logic.
 638 */
 639int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 640{
 641        long free, allowed, reserve;
 642
 643        VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
 644                        -(s64)vm_committed_as_batch * num_online_cpus(),
 645                        "memory commitment underflow");
 646
 647        vm_acct_memory(pages);
 648
 649        /*
 650         * Sometimes we want to use more memory than we have
 651         */
 652        if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 653                return 0;
 654
 655        if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 656                free = global_zone_page_state(NR_FREE_PAGES);
 657                free += global_node_page_state(NR_FILE_PAGES);
 658
 659                /*
 660                 * shmem pages shouldn't be counted as free in this
 661                 * case, they can't be purged, only swapped out, and
 662                 * that won't affect the overall amount of available
 663                 * memory in the system.
 664                 */
 665                free -= global_node_page_state(NR_SHMEM);
 666
 667                free += get_nr_swap_pages();
 668
 669                /*
 670                 * Any slabs which are created with the
 671                 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 672                 * which are reclaimable, under pressure.  The dentry
 673                 * cache and most inode caches should fall into this
 674                 */
 675                free += global_node_page_state(NR_SLAB_RECLAIMABLE);
 676
 677                /*
 678                 * Part of the kernel memory, which can be released
 679                 * under memory pressure.
 680                 */
 681                free += global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
 682
 683                /*
 684                 * Leave reserved pages. The pages are not for anonymous pages.
 685                 */
 686                if (free <= totalreserve_pages)
 687                        goto error;
 688                else
 689                        free -= totalreserve_pages;
 690
 691                /*
 692                 * Reserve some for root
 693                 */
 694                if (!cap_sys_admin)
 695                        free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 696
 697                if (free > pages)
 698                        return 0;
 699
 700                goto error;
 701        }
 702
 703        allowed = vm_commit_limit();
 704        /*
 705         * Reserve some for root
 706         */
 707        if (!cap_sys_admin)
 708                allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 709
 710        /*
 711         * Don't let a single process grow so big a user can't recover
 712         */
 713        if (mm) {
 714                reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 715                allowed -= min_t(long, mm->total_vm / 32, reserve);
 716        }
 717
 718        if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 719                return 0;
 720error:
 721        vm_unacct_memory(pages);
 722
 723        return -ENOMEM;
 724}
 725
 726/**
 727 * get_cmdline() - copy the cmdline value to a buffer.
 728 * @task:     the task whose cmdline value to copy.
 729 * @buffer:   the buffer to copy to.
 730 * @buflen:   the length of the buffer. Larger cmdline values are truncated
 731 *            to this length.
 732 * Returns the size of the cmdline field copied. Note that the copy does
 733 * not guarantee an ending NULL byte.
 734 */
 735int get_cmdline(struct task_struct *task, char *buffer, int buflen)
 736{
 737        int res = 0;
 738        unsigned int len;
 739        struct mm_struct *mm = get_task_mm(task);
 740        unsigned long arg_start, arg_end, env_start, env_end;
 741        if (!mm)
 742                goto out;
 743        if (!mm->arg_end)
 744                goto out_mm;    /* Shh! No looking before we're done */
 745
 746        down_read(&mm->mmap_sem);
 747        arg_start = mm->arg_start;
 748        arg_end = mm->arg_end;
 749        env_start = mm->env_start;
 750        env_end = mm->env_end;
 751        up_read(&mm->mmap_sem);
 752
 753        len = arg_end - arg_start;
 754
 755        if (len > buflen)
 756                len = buflen;
 757
 758        res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
 759
 760        /*
 761         * If the nul at the end of args has been overwritten, then
 762         * assume application is using setproctitle(3).
 763         */
 764        if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
 765                len = strnlen(buffer, res);
 766                if (len < res) {
 767                        res = len;
 768                } else {
 769                        len = env_end - env_start;
 770                        if (len > buflen - res)
 771                                len = buflen - res;
 772                        res += access_process_vm(task, env_start,
 773                                                 buffer+res, len,
 774                                                 FOLL_FORCE);
 775                        res = strnlen(buffer, res);
 776                }
 777        }
 778out_mm:
 779        mmput(mm);
 780out:
 781        return res;
 782}
 783