linux/mm/vmscan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>  /* for try_to_release_page(),
  32                                        buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
  52#include <linux/psi.h>
  53
  54#include <asm/tlbflush.h>
  55#include <asm/div64.h>
  56
  57#include <linux/swapops.h>
  58#include <linux/balloon_compaction.h>
  59
  60#include "internal.h"
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/vmscan.h>
  64
  65struct scan_control {
  66        /* How many pages shrink_list() should reclaim */
  67        unsigned long nr_to_reclaim;
  68
  69        /*
  70         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  71         * are scanned.
  72         */
  73        nodemask_t      *nodemask;
  74
  75        /*
  76         * The memory cgroup that hit its limit and as a result is the
  77         * primary target of this reclaim invocation.
  78         */
  79        struct mem_cgroup *target_mem_cgroup;
  80
  81        /* Writepage batching in laptop mode; RECLAIM_WRITE */
  82        unsigned int may_writepage:1;
  83
  84        /* Can mapped pages be reclaimed? */
  85        unsigned int may_unmap:1;
  86
  87        /* Can pages be swapped as part of reclaim? */
  88        unsigned int may_swap:1;
  89
  90        /*
  91         * Cgroups are not reclaimed below their configured memory.low,
  92         * unless we threaten to OOM. If any cgroups are skipped due to
  93         * memory.low and nothing was reclaimed, go back for memory.low.
  94         */
  95        unsigned int memcg_low_reclaim:1;
  96        unsigned int memcg_low_skipped:1;
  97
  98        unsigned int hibernation_mode:1;
  99
 100        /* One of the zones is ready for compaction */
 101        unsigned int compaction_ready:1;
 102
 103        /* Allocation order */
 104        s8 order;
 105
 106        /* Scan (total_size >> priority) pages at once */
 107        s8 priority;
 108
 109        /* The highest zone to isolate pages for reclaim from */
 110        s8 reclaim_idx;
 111
 112        /* This context's GFP mask */
 113        gfp_t gfp_mask;
 114
 115        /* Incremented by the number of inactive pages that were scanned */
 116        unsigned long nr_scanned;
 117
 118        /* Number of pages freed so far during a call to shrink_zones() */
 119        unsigned long nr_reclaimed;
 120
 121        struct {
 122                unsigned int dirty;
 123                unsigned int unqueued_dirty;
 124                unsigned int congested;
 125                unsigned int writeback;
 126                unsigned int immediate;
 127                unsigned int file_taken;
 128                unsigned int taken;
 129        } nr;
 130};
 131
 132#ifdef ARCH_HAS_PREFETCH
 133#define prefetch_prev_lru_page(_page, _base, _field)                    \
 134        do {                                                            \
 135                if ((_page)->lru.prev != _base) {                       \
 136                        struct page *prev;                              \
 137                                                                        \
 138                        prev = lru_to_page(&(_page->lru));              \
 139                        prefetch(&prev->_field);                        \
 140                }                                                       \
 141        } while (0)
 142#else
 143#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 144#endif
 145
 146#ifdef ARCH_HAS_PREFETCHW
 147#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 148        do {                                                            \
 149                if ((_page)->lru.prev != _base) {                       \
 150                        struct page *prev;                              \
 151                                                                        \
 152                        prev = lru_to_page(&(_page->lru));              \
 153                        prefetchw(&prev->_field);                       \
 154                }                                                       \
 155        } while (0)
 156#else
 157#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 158#endif
 159
 160/*
 161 * From 0 .. 100.  Higher means more swappy.
 162 */
 163int vm_swappiness = 60;
 164/*
 165 * The total number of pages which are beyond the high watermark within all
 166 * zones.
 167 */
 168unsigned long vm_total_pages;
 169
 170static LIST_HEAD(shrinker_list);
 171static DECLARE_RWSEM(shrinker_rwsem);
 172
 173#ifdef CONFIG_MEMCG_KMEM
 174
 175/*
 176 * We allow subsystems to populate their shrinker-related
 177 * LRU lists before register_shrinker_prepared() is called
 178 * for the shrinker, since we don't want to impose
 179 * restrictions on their internal registration order.
 180 * In this case shrink_slab_memcg() may find corresponding
 181 * bit is set in the shrinkers map.
 182 *
 183 * This value is used by the function to detect registering
 184 * shrinkers and to skip do_shrink_slab() calls for them.
 185 */
 186#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 187
 188static DEFINE_IDR(shrinker_idr);
 189static int shrinker_nr_max;
 190
 191static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 192{
 193        int id, ret = -ENOMEM;
 194
 195        down_write(&shrinker_rwsem);
 196        /* This may call shrinker, so it must use down_read_trylock() */
 197        id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 198        if (id < 0)
 199                goto unlock;
 200
 201        if (id >= shrinker_nr_max) {
 202                if (memcg_expand_shrinker_maps(id)) {
 203                        idr_remove(&shrinker_idr, id);
 204                        goto unlock;
 205                }
 206
 207                shrinker_nr_max = id + 1;
 208        }
 209        shrinker->id = id;
 210        ret = 0;
 211unlock:
 212        up_write(&shrinker_rwsem);
 213        return ret;
 214}
 215
 216static void unregister_memcg_shrinker(struct shrinker *shrinker)
 217{
 218        int id = shrinker->id;
 219
 220        BUG_ON(id < 0);
 221
 222        down_write(&shrinker_rwsem);
 223        idr_remove(&shrinker_idr, id);
 224        up_write(&shrinker_rwsem);
 225}
 226#else /* CONFIG_MEMCG_KMEM */
 227static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 228{
 229        return 0;
 230}
 231
 232static void unregister_memcg_shrinker(struct shrinker *shrinker)
 233{
 234}
 235#endif /* CONFIG_MEMCG_KMEM */
 236
 237#ifdef CONFIG_MEMCG
 238static bool global_reclaim(struct scan_control *sc)
 239{
 240        return !sc->target_mem_cgroup;
 241}
 242
 243/**
 244 * sane_reclaim - is the usual dirty throttling mechanism operational?
 245 * @sc: scan_control in question
 246 *
 247 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 248 * completely broken with the legacy memcg and direct stalling in
 249 * shrink_page_list() is used for throttling instead, which lacks all the
 250 * niceties such as fairness, adaptive pausing, bandwidth proportional
 251 * allocation and configurability.
 252 *
 253 * This function tests whether the vmscan currently in progress can assume
 254 * that the normal dirty throttling mechanism is operational.
 255 */
 256static bool sane_reclaim(struct scan_control *sc)
 257{
 258        struct mem_cgroup *memcg = sc->target_mem_cgroup;
 259
 260        if (!memcg)
 261                return true;
 262#ifdef CONFIG_CGROUP_WRITEBACK
 263        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 264                return true;
 265#endif
 266        return false;
 267}
 268
 269static void set_memcg_congestion(pg_data_t *pgdat,
 270                                struct mem_cgroup *memcg,
 271                                bool congested)
 272{
 273        struct mem_cgroup_per_node *mn;
 274
 275        if (!memcg)
 276                return;
 277
 278        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 279        WRITE_ONCE(mn->congested, congested);
 280}
 281
 282static bool memcg_congested(pg_data_t *pgdat,
 283                        struct mem_cgroup *memcg)
 284{
 285        struct mem_cgroup_per_node *mn;
 286
 287        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 288        return READ_ONCE(mn->congested);
 289
 290}
 291#else
 292static bool global_reclaim(struct scan_control *sc)
 293{
 294        return true;
 295}
 296
 297static bool sane_reclaim(struct scan_control *sc)
 298{
 299        return true;
 300}
 301
 302static inline void set_memcg_congestion(struct pglist_data *pgdat,
 303                                struct mem_cgroup *memcg, bool congested)
 304{
 305}
 306
 307static inline bool memcg_congested(struct pglist_data *pgdat,
 308                        struct mem_cgroup *memcg)
 309{
 310        return false;
 311
 312}
 313#endif
 314
 315/*
 316 * This misses isolated pages which are not accounted for to save counters.
 317 * As the data only determines if reclaim or compaction continues, it is
 318 * not expected that isolated pages will be a dominating factor.
 319 */
 320unsigned long zone_reclaimable_pages(struct zone *zone)
 321{
 322        unsigned long nr;
 323
 324        nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 325                zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 326        if (get_nr_swap_pages() > 0)
 327                nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 328                        zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 329
 330        return nr;
 331}
 332
 333/**
 334 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 335 * @lruvec: lru vector
 336 * @lru: lru to use
 337 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 338 */
 339unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 340{
 341        unsigned long lru_size;
 342        int zid;
 343
 344        if (!mem_cgroup_disabled())
 345                lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 346        else
 347                lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 348
 349        for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 350                struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 351                unsigned long size;
 352
 353                if (!managed_zone(zone))
 354                        continue;
 355
 356                if (!mem_cgroup_disabled())
 357                        size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 358                else
 359                        size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 360                                       NR_ZONE_LRU_BASE + lru);
 361                lru_size -= min(size, lru_size);
 362        }
 363
 364        return lru_size;
 365
 366}
 367
 368/*
 369 * Add a shrinker callback to be called from the vm.
 370 */
 371int prealloc_shrinker(struct shrinker *shrinker)
 372{
 373        size_t size = sizeof(*shrinker->nr_deferred);
 374
 375        if (shrinker->flags & SHRINKER_NUMA_AWARE)
 376                size *= nr_node_ids;
 377
 378        shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 379        if (!shrinker->nr_deferred)
 380                return -ENOMEM;
 381
 382        if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 383                if (prealloc_memcg_shrinker(shrinker))
 384                        goto free_deferred;
 385        }
 386
 387        return 0;
 388
 389free_deferred:
 390        kfree(shrinker->nr_deferred);
 391        shrinker->nr_deferred = NULL;
 392        return -ENOMEM;
 393}
 394
 395void free_prealloced_shrinker(struct shrinker *shrinker)
 396{
 397        if (!shrinker->nr_deferred)
 398                return;
 399
 400        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 401                unregister_memcg_shrinker(shrinker);
 402
 403        kfree(shrinker->nr_deferred);
 404        shrinker->nr_deferred = NULL;
 405}
 406
 407void register_shrinker_prepared(struct shrinker *shrinker)
 408{
 409        down_write(&shrinker_rwsem);
 410        list_add_tail(&shrinker->list, &shrinker_list);
 411#ifdef CONFIG_MEMCG_KMEM
 412        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 413                idr_replace(&shrinker_idr, shrinker, shrinker->id);
 414#endif
 415        up_write(&shrinker_rwsem);
 416}
 417
 418int register_shrinker(struct shrinker *shrinker)
 419{
 420        int err = prealloc_shrinker(shrinker);
 421
 422        if (err)
 423                return err;
 424        register_shrinker_prepared(shrinker);
 425        return 0;
 426}
 427EXPORT_SYMBOL(register_shrinker);
 428
 429/*
 430 * Remove one
 431 */
 432void unregister_shrinker(struct shrinker *shrinker)
 433{
 434        if (!shrinker->nr_deferred)
 435                return;
 436        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 437                unregister_memcg_shrinker(shrinker);
 438        down_write(&shrinker_rwsem);
 439        list_del(&shrinker->list);
 440        up_write(&shrinker_rwsem);
 441        kfree(shrinker->nr_deferred);
 442        shrinker->nr_deferred = NULL;
 443}
 444EXPORT_SYMBOL(unregister_shrinker);
 445
 446#define SHRINK_BATCH 128
 447
 448static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 449                                    struct shrinker *shrinker, int priority)
 450{
 451        unsigned long freed = 0;
 452        unsigned long long delta;
 453        long total_scan;
 454        long freeable;
 455        long nr;
 456        long new_nr;
 457        int nid = shrinkctl->nid;
 458        long batch_size = shrinker->batch ? shrinker->batch
 459                                          : SHRINK_BATCH;
 460        long scanned = 0, next_deferred;
 461
 462        if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 463                nid = 0;
 464
 465        freeable = shrinker->count_objects(shrinker, shrinkctl);
 466        if (freeable == 0 || freeable == SHRINK_EMPTY)
 467                return freeable;
 468
 469        /*
 470         * copy the current shrinker scan count into a local variable
 471         * and zero it so that other concurrent shrinker invocations
 472         * don't also do this scanning work.
 473         */
 474        nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 475
 476        total_scan = nr;
 477        if (shrinker->seeks) {
 478                delta = freeable >> priority;
 479                delta *= 4;
 480                do_div(delta, shrinker->seeks);
 481        } else {
 482                /*
 483                 * These objects don't require any IO to create. Trim
 484                 * them aggressively under memory pressure to keep
 485                 * them from causing refetches in the IO caches.
 486                 */
 487                delta = freeable / 2;
 488        }
 489
 490        /*
 491         * Make sure we apply some minimal pressure on default priority
 492         * even on small cgroups. Stale objects are not only consuming memory
 493         * by themselves, but can also hold a reference to a dying cgroup,
 494         * preventing it from being reclaimed. A dying cgroup with all
 495         * corresponding structures like per-cpu stats and kmem caches
 496         * can be really big, so it may lead to a significant waste of memory.
 497         */
 498        delta = max_t(unsigned long long, delta, min(freeable, batch_size));
 499
 500        total_scan += delta;
 501        if (total_scan < 0) {
 502                pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 503                       shrinker->scan_objects, total_scan);
 504                total_scan = freeable;
 505                next_deferred = nr;
 506        } else
 507                next_deferred = total_scan;
 508
 509        /*
 510         * We need to avoid excessive windup on filesystem shrinkers
 511         * due to large numbers of GFP_NOFS allocations causing the
 512         * shrinkers to return -1 all the time. This results in a large
 513         * nr being built up so when a shrink that can do some work
 514         * comes along it empties the entire cache due to nr >>>
 515         * freeable. This is bad for sustaining a working set in
 516         * memory.
 517         *
 518         * Hence only allow the shrinker to scan the entire cache when
 519         * a large delta change is calculated directly.
 520         */
 521        if (delta < freeable / 4)
 522                total_scan = min(total_scan, freeable / 2);
 523
 524        /*
 525         * Avoid risking looping forever due to too large nr value:
 526         * never try to free more than twice the estimate number of
 527         * freeable entries.
 528         */
 529        if (total_scan > freeable * 2)
 530                total_scan = freeable * 2;
 531
 532        trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 533                                   freeable, delta, total_scan, priority);
 534
 535        /*
 536         * Normally, we should not scan less than batch_size objects in one
 537         * pass to avoid too frequent shrinker calls, but if the slab has less
 538         * than batch_size objects in total and we are really tight on memory,
 539         * we will try to reclaim all available objects, otherwise we can end
 540         * up failing allocations although there are plenty of reclaimable
 541         * objects spread over several slabs with usage less than the
 542         * batch_size.
 543         *
 544         * We detect the "tight on memory" situations by looking at the total
 545         * number of objects we want to scan (total_scan). If it is greater
 546         * than the total number of objects on slab (freeable), we must be
 547         * scanning at high prio and therefore should try to reclaim as much as
 548         * possible.
 549         */
 550        while (total_scan >= batch_size ||
 551               total_scan >= freeable) {
 552                unsigned long ret;
 553                unsigned long nr_to_scan = min(batch_size, total_scan);
 554
 555                shrinkctl->nr_to_scan = nr_to_scan;
 556                shrinkctl->nr_scanned = nr_to_scan;
 557                ret = shrinker->scan_objects(shrinker, shrinkctl);
 558                if (ret == SHRINK_STOP)
 559                        break;
 560                freed += ret;
 561
 562                count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 563                total_scan -= shrinkctl->nr_scanned;
 564                scanned += shrinkctl->nr_scanned;
 565
 566                cond_resched();
 567        }
 568
 569        if (next_deferred >= scanned)
 570                next_deferred -= scanned;
 571        else
 572                next_deferred = 0;
 573        /*
 574         * move the unused scan count back into the shrinker in a
 575         * manner that handles concurrent updates. If we exhausted the
 576         * scan, there is no need to do an update.
 577         */
 578        if (next_deferred > 0)
 579                new_nr = atomic_long_add_return(next_deferred,
 580                                                &shrinker->nr_deferred[nid]);
 581        else
 582                new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 583
 584        trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 585        return freed;
 586}
 587
 588#ifdef CONFIG_MEMCG_KMEM
 589static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 590                        struct mem_cgroup *memcg, int priority)
 591{
 592        struct memcg_shrinker_map *map;
 593        unsigned long ret, freed = 0;
 594        int i;
 595
 596        if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
 597                return 0;
 598
 599        if (!down_read_trylock(&shrinker_rwsem))
 600                return 0;
 601
 602        map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 603                                        true);
 604        if (unlikely(!map))
 605                goto unlock;
 606
 607        for_each_set_bit(i, map->map, shrinker_nr_max) {
 608                struct shrink_control sc = {
 609                        .gfp_mask = gfp_mask,
 610                        .nid = nid,
 611                        .memcg = memcg,
 612                };
 613                struct shrinker *shrinker;
 614
 615                shrinker = idr_find(&shrinker_idr, i);
 616                if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 617                        if (!shrinker)
 618                                clear_bit(i, map->map);
 619                        continue;
 620                }
 621
 622                ret = do_shrink_slab(&sc, shrinker, priority);
 623                if (ret == SHRINK_EMPTY) {
 624                        clear_bit(i, map->map);
 625                        /*
 626                         * After the shrinker reported that it had no objects to
 627                         * free, but before we cleared the corresponding bit in
 628                         * the memcg shrinker map, a new object might have been
 629                         * added. To make sure, we have the bit set in this
 630                         * case, we invoke the shrinker one more time and reset
 631                         * the bit if it reports that it is not empty anymore.
 632                         * The memory barrier here pairs with the barrier in
 633                         * memcg_set_shrinker_bit():
 634                         *
 635                         * list_lru_add()     shrink_slab_memcg()
 636                         *   list_add_tail()    clear_bit()
 637                         *   <MB>               <MB>
 638                         *   set_bit()          do_shrink_slab()
 639                         */
 640                        smp_mb__after_atomic();
 641                        ret = do_shrink_slab(&sc, shrinker, priority);
 642                        if (ret == SHRINK_EMPTY)
 643                                ret = 0;
 644                        else
 645                                memcg_set_shrinker_bit(memcg, nid, i);
 646                }
 647                freed += ret;
 648
 649                if (rwsem_is_contended(&shrinker_rwsem)) {
 650                        freed = freed ? : 1;
 651                        break;
 652                }
 653        }
 654unlock:
 655        up_read(&shrinker_rwsem);
 656        return freed;
 657}
 658#else /* CONFIG_MEMCG_KMEM */
 659static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 660                        struct mem_cgroup *memcg, int priority)
 661{
 662        return 0;
 663}
 664#endif /* CONFIG_MEMCG_KMEM */
 665
 666/**
 667 * shrink_slab - shrink slab caches
 668 * @gfp_mask: allocation context
 669 * @nid: node whose slab caches to target
 670 * @memcg: memory cgroup whose slab caches to target
 671 * @priority: the reclaim priority
 672 *
 673 * Call the shrink functions to age shrinkable caches.
 674 *
 675 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 676 * unaware shrinkers will receive a node id of 0 instead.
 677 *
 678 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 679 * are called only if it is the root cgroup.
 680 *
 681 * @priority is sc->priority, we take the number of objects and >> by priority
 682 * in order to get the scan target.
 683 *
 684 * Returns the number of reclaimed slab objects.
 685 */
 686static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 687                                 struct mem_cgroup *memcg,
 688                                 int priority)
 689{
 690        unsigned long ret, freed = 0;
 691        struct shrinker *shrinker;
 692
 693        if (!mem_cgroup_is_root(memcg))
 694                return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 695
 696        if (!down_read_trylock(&shrinker_rwsem))
 697                goto out;
 698
 699        list_for_each_entry(shrinker, &shrinker_list, list) {
 700                struct shrink_control sc = {
 701                        .gfp_mask = gfp_mask,
 702                        .nid = nid,
 703                        .memcg = memcg,
 704                };
 705
 706                ret = do_shrink_slab(&sc, shrinker, priority);
 707                if (ret == SHRINK_EMPTY)
 708                        ret = 0;
 709                freed += ret;
 710                /*
 711                 * Bail out if someone want to register a new shrinker to
 712                 * prevent the regsitration from being stalled for long periods
 713                 * by parallel ongoing shrinking.
 714                 */
 715                if (rwsem_is_contended(&shrinker_rwsem)) {
 716                        freed = freed ? : 1;
 717                        break;
 718                }
 719        }
 720
 721        up_read(&shrinker_rwsem);
 722out:
 723        cond_resched();
 724        return freed;
 725}
 726
 727void drop_slab_node(int nid)
 728{
 729        unsigned long freed;
 730
 731        do {
 732                struct mem_cgroup *memcg = NULL;
 733
 734                freed = 0;
 735                memcg = mem_cgroup_iter(NULL, NULL, NULL);
 736                do {
 737                        freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 738                } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 739        } while (freed > 10);
 740}
 741
 742void drop_slab(void)
 743{
 744        int nid;
 745
 746        for_each_online_node(nid)
 747                drop_slab_node(nid);
 748}
 749
 750static inline int is_page_cache_freeable(struct page *page)
 751{
 752        /*
 753         * A freeable page cache page is referenced only by the caller
 754         * that isolated the page, the page cache and optional buffer
 755         * heads at page->private.
 756         */
 757        int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 758                HPAGE_PMD_NR : 1;
 759        return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 760}
 761
 762static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 763{
 764        if (current->flags & PF_SWAPWRITE)
 765                return 1;
 766        if (!inode_write_congested(inode))
 767                return 1;
 768        if (inode_to_bdi(inode) == current->backing_dev_info)
 769                return 1;
 770        return 0;
 771}
 772
 773/*
 774 * We detected a synchronous write error writing a page out.  Probably
 775 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 776 * fsync(), msync() or close().
 777 *
 778 * The tricky part is that after writepage we cannot touch the mapping: nothing
 779 * prevents it from being freed up.  But we have a ref on the page and once
 780 * that page is locked, the mapping is pinned.
 781 *
 782 * We're allowed to run sleeping lock_page() here because we know the caller has
 783 * __GFP_FS.
 784 */
 785static void handle_write_error(struct address_space *mapping,
 786                                struct page *page, int error)
 787{
 788        lock_page(page);
 789        if (page_mapping(page) == mapping)
 790                mapping_set_error(mapping, error);
 791        unlock_page(page);
 792}
 793
 794/* possible outcome of pageout() */
 795typedef enum {
 796        /* failed to write page out, page is locked */
 797        PAGE_KEEP,
 798        /* move page to the active list, page is locked */
 799        PAGE_ACTIVATE,
 800        /* page has been sent to the disk successfully, page is unlocked */
 801        PAGE_SUCCESS,
 802        /* page is clean and locked */
 803        PAGE_CLEAN,
 804} pageout_t;
 805
 806/*
 807 * pageout is called by shrink_page_list() for each dirty page.
 808 * Calls ->writepage().
 809 */
 810static pageout_t pageout(struct page *page, struct address_space *mapping,
 811                         struct scan_control *sc)
 812{
 813        /*
 814         * If the page is dirty, only perform writeback if that write
 815         * will be non-blocking.  To prevent this allocation from being
 816         * stalled by pagecache activity.  But note that there may be
 817         * stalls if we need to run get_block().  We could test
 818         * PagePrivate for that.
 819         *
 820         * If this process is currently in __generic_file_write_iter() against
 821         * this page's queue, we can perform writeback even if that
 822         * will block.
 823         *
 824         * If the page is swapcache, write it back even if that would
 825         * block, for some throttling. This happens by accident, because
 826         * swap_backing_dev_info is bust: it doesn't reflect the
 827         * congestion state of the swapdevs.  Easy to fix, if needed.
 828         */
 829        if (!is_page_cache_freeable(page))
 830                return PAGE_KEEP;
 831        if (!mapping) {
 832                /*
 833                 * Some data journaling orphaned pages can have
 834                 * page->mapping == NULL while being dirty with clean buffers.
 835                 */
 836                if (page_has_private(page)) {
 837                        if (try_to_free_buffers(page)) {
 838                                ClearPageDirty(page);
 839                                pr_info("%s: orphaned page\n", __func__);
 840                                return PAGE_CLEAN;
 841                        }
 842                }
 843                return PAGE_KEEP;
 844        }
 845        if (mapping->a_ops->writepage == NULL)
 846                return PAGE_ACTIVATE;
 847        if (!may_write_to_inode(mapping->host, sc))
 848                return PAGE_KEEP;
 849
 850        if (clear_page_dirty_for_io(page)) {
 851                int res;
 852                struct writeback_control wbc = {
 853                        .sync_mode = WB_SYNC_NONE,
 854                        .nr_to_write = SWAP_CLUSTER_MAX,
 855                        .range_start = 0,
 856                        .range_end = LLONG_MAX,
 857                        .for_reclaim = 1,
 858                };
 859
 860                SetPageReclaim(page);
 861                res = mapping->a_ops->writepage(page, &wbc);
 862                if (res < 0)
 863                        handle_write_error(mapping, page, res);
 864                if (res == AOP_WRITEPAGE_ACTIVATE) {
 865                        ClearPageReclaim(page);
 866                        return PAGE_ACTIVATE;
 867                }
 868
 869                if (!PageWriteback(page)) {
 870                        /* synchronous write or broken a_ops? */
 871                        ClearPageReclaim(page);
 872                }
 873                trace_mm_vmscan_writepage(page);
 874                inc_node_page_state(page, NR_VMSCAN_WRITE);
 875                return PAGE_SUCCESS;
 876        }
 877
 878        return PAGE_CLEAN;
 879}
 880
 881/*
 882 * Same as remove_mapping, but if the page is removed from the mapping, it
 883 * gets returned with a refcount of 0.
 884 */
 885static int __remove_mapping(struct address_space *mapping, struct page *page,
 886                            bool reclaimed)
 887{
 888        unsigned long flags;
 889        int refcount;
 890
 891        BUG_ON(!PageLocked(page));
 892        BUG_ON(mapping != page_mapping(page));
 893
 894        xa_lock_irqsave(&mapping->i_pages, flags);
 895        /*
 896         * The non racy check for a busy page.
 897         *
 898         * Must be careful with the order of the tests. When someone has
 899         * a ref to the page, it may be possible that they dirty it then
 900         * drop the reference. So if PageDirty is tested before page_count
 901         * here, then the following race may occur:
 902         *
 903         * get_user_pages(&page);
 904         * [user mapping goes away]
 905         * write_to(page);
 906         *                              !PageDirty(page)    [good]
 907         * SetPageDirty(page);
 908         * put_page(page);
 909         *                              !page_count(page)   [good, discard it]
 910         *
 911         * [oops, our write_to data is lost]
 912         *
 913         * Reversing the order of the tests ensures such a situation cannot
 914         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 915         * load is not satisfied before that of page->_refcount.
 916         *
 917         * Note that if SetPageDirty is always performed via set_page_dirty,
 918         * and thus under the i_pages lock, then this ordering is not required.
 919         */
 920        if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 921                refcount = 1 + HPAGE_PMD_NR;
 922        else
 923                refcount = 2;
 924        if (!page_ref_freeze(page, refcount))
 925                goto cannot_free;
 926        /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 927        if (unlikely(PageDirty(page))) {
 928                page_ref_unfreeze(page, refcount);
 929                goto cannot_free;
 930        }
 931
 932        if (PageSwapCache(page)) {
 933                swp_entry_t swap = { .val = page_private(page) };
 934                mem_cgroup_swapout(page, swap);
 935                __delete_from_swap_cache(page, swap);
 936                xa_unlock_irqrestore(&mapping->i_pages, flags);
 937                put_swap_page(page, swap);
 938        } else {
 939                void (*freepage)(struct page *);
 940                void *shadow = NULL;
 941
 942                freepage = mapping->a_ops->freepage;
 943                /*
 944                 * Remember a shadow entry for reclaimed file cache in
 945                 * order to detect refaults, thus thrashing, later on.
 946                 *
 947                 * But don't store shadows in an address space that is
 948                 * already exiting.  This is not just an optizimation,
 949                 * inode reclaim needs to empty out the radix tree or
 950                 * the nodes are lost.  Don't plant shadows behind its
 951                 * back.
 952                 *
 953                 * We also don't store shadows for DAX mappings because the
 954                 * only page cache pages found in these are zero pages
 955                 * covering holes, and because we don't want to mix DAX
 956                 * exceptional entries and shadow exceptional entries in the
 957                 * same address_space.
 958                 */
 959                if (reclaimed && page_is_file_cache(page) &&
 960                    !mapping_exiting(mapping) && !dax_mapping(mapping))
 961                        shadow = workingset_eviction(mapping, page);
 962                __delete_from_page_cache(page, shadow);
 963                xa_unlock_irqrestore(&mapping->i_pages, flags);
 964
 965                if (freepage != NULL)
 966                        freepage(page);
 967        }
 968
 969        return 1;
 970
 971cannot_free:
 972        xa_unlock_irqrestore(&mapping->i_pages, flags);
 973        return 0;
 974}
 975
 976/*
 977 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 978 * someone else has a ref on the page, abort and return 0.  If it was
 979 * successfully detached, return 1.  Assumes the caller has a single ref on
 980 * this page.
 981 */
 982int remove_mapping(struct address_space *mapping, struct page *page)
 983{
 984        if (__remove_mapping(mapping, page, false)) {
 985                /*
 986                 * Unfreezing the refcount with 1 rather than 2 effectively
 987                 * drops the pagecache ref for us without requiring another
 988                 * atomic operation.
 989                 */
 990                page_ref_unfreeze(page, 1);
 991                return 1;
 992        }
 993        return 0;
 994}
 995
 996/**
 997 * putback_lru_page - put previously isolated page onto appropriate LRU list
 998 * @page: page to be put back to appropriate lru list
 999 *
1000 * Add previously isolated @page to appropriate LRU list.
1001 * Page may still be unevictable for other reasons.
1002 *
1003 * lru_lock must not be held, interrupts must be enabled.
1004 */
1005void putback_lru_page(struct page *page)
1006{
1007        lru_cache_add(page);
1008        put_page(page);         /* drop ref from isolate */
1009}
1010
1011enum page_references {
1012        PAGEREF_RECLAIM,
1013        PAGEREF_RECLAIM_CLEAN,
1014        PAGEREF_KEEP,
1015        PAGEREF_ACTIVATE,
1016};
1017
1018static enum page_references page_check_references(struct page *page,
1019                                                  struct scan_control *sc)
1020{
1021        int referenced_ptes, referenced_page;
1022        unsigned long vm_flags;
1023
1024        referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1025                                          &vm_flags);
1026        referenced_page = TestClearPageReferenced(page);
1027
1028        /*
1029         * Mlock lost the isolation race with us.  Let try_to_unmap()
1030         * move the page to the unevictable list.
1031         */
1032        if (vm_flags & VM_LOCKED)
1033                return PAGEREF_RECLAIM;
1034
1035        if (referenced_ptes) {
1036                if (PageSwapBacked(page))
1037                        return PAGEREF_ACTIVATE;
1038                /*
1039                 * All mapped pages start out with page table
1040                 * references from the instantiating fault, so we need
1041                 * to look twice if a mapped file page is used more
1042                 * than once.
1043                 *
1044                 * Mark it and spare it for another trip around the
1045                 * inactive list.  Another page table reference will
1046                 * lead to its activation.
1047                 *
1048                 * Note: the mark is set for activated pages as well
1049                 * so that recently deactivated but used pages are
1050                 * quickly recovered.
1051                 */
1052                SetPageReferenced(page);
1053
1054                if (referenced_page || referenced_ptes > 1)
1055                        return PAGEREF_ACTIVATE;
1056
1057                /*
1058                 * Activate file-backed executable pages after first usage.
1059                 */
1060                if (vm_flags & VM_EXEC)
1061                        return PAGEREF_ACTIVATE;
1062
1063                return PAGEREF_KEEP;
1064        }
1065
1066        /* Reclaim if clean, defer dirty pages to writeback */
1067        if (referenced_page && !PageSwapBacked(page))
1068                return PAGEREF_RECLAIM_CLEAN;
1069
1070        return PAGEREF_RECLAIM;
1071}
1072
1073/* Check if a page is dirty or under writeback */
1074static void page_check_dirty_writeback(struct page *page,
1075                                       bool *dirty, bool *writeback)
1076{
1077        struct address_space *mapping;
1078
1079        /*
1080         * Anonymous pages are not handled by flushers and must be written
1081         * from reclaim context. Do not stall reclaim based on them
1082         */
1083        if (!page_is_file_cache(page) ||
1084            (PageAnon(page) && !PageSwapBacked(page))) {
1085                *dirty = false;
1086                *writeback = false;
1087                return;
1088        }
1089
1090        /* By default assume that the page flags are accurate */
1091        *dirty = PageDirty(page);
1092        *writeback = PageWriteback(page);
1093
1094        /* Verify dirty/writeback state if the filesystem supports it */
1095        if (!page_has_private(page))
1096                return;
1097
1098        mapping = page_mapping(page);
1099        if (mapping && mapping->a_ops->is_dirty_writeback)
1100                mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1101}
1102
1103/*
1104 * shrink_page_list() returns the number of reclaimed pages
1105 */
1106static unsigned long shrink_page_list(struct list_head *page_list,
1107                                      struct pglist_data *pgdat,
1108                                      struct scan_control *sc,
1109                                      enum ttu_flags ttu_flags,
1110                                      struct reclaim_stat *stat,
1111                                      bool force_reclaim)
1112{
1113        LIST_HEAD(ret_pages);
1114        LIST_HEAD(free_pages);
1115        int pgactivate = 0;
1116        unsigned nr_unqueued_dirty = 0;
1117        unsigned nr_dirty = 0;
1118        unsigned nr_congested = 0;
1119        unsigned nr_reclaimed = 0;
1120        unsigned nr_writeback = 0;
1121        unsigned nr_immediate = 0;
1122        unsigned nr_ref_keep = 0;
1123        unsigned nr_unmap_fail = 0;
1124
1125        cond_resched();
1126
1127        while (!list_empty(page_list)) {
1128                struct address_space *mapping;
1129                struct page *page;
1130                int may_enter_fs;
1131                enum page_references references = PAGEREF_RECLAIM_CLEAN;
1132                bool dirty, writeback;
1133
1134                cond_resched();
1135
1136                page = lru_to_page(page_list);
1137                list_del(&page->lru);
1138
1139                if (!trylock_page(page))
1140                        goto keep;
1141
1142                VM_BUG_ON_PAGE(PageActive(page), page);
1143
1144                sc->nr_scanned++;
1145
1146                if (unlikely(!page_evictable(page)))
1147                        goto activate_locked;
1148
1149                if (!sc->may_unmap && page_mapped(page))
1150                        goto keep_locked;
1151
1152                /* Double the slab pressure for mapped and swapcache pages */
1153                if ((page_mapped(page) || PageSwapCache(page)) &&
1154                    !(PageAnon(page) && !PageSwapBacked(page)))
1155                        sc->nr_scanned++;
1156
1157                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1158                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1159
1160                /*
1161                 * The number of dirty pages determines if a node is marked
1162                 * reclaim_congested which affects wait_iff_congested. kswapd
1163                 * will stall and start writing pages if the tail of the LRU
1164                 * is all dirty unqueued pages.
1165                 */
1166                page_check_dirty_writeback(page, &dirty, &writeback);
1167                if (dirty || writeback)
1168                        nr_dirty++;
1169
1170                if (dirty && !writeback)
1171                        nr_unqueued_dirty++;
1172
1173                /*
1174                 * Treat this page as congested if the underlying BDI is or if
1175                 * pages are cycling through the LRU so quickly that the
1176                 * pages marked for immediate reclaim are making it to the
1177                 * end of the LRU a second time.
1178                 */
1179                mapping = page_mapping(page);
1180                if (((dirty || writeback) && mapping &&
1181                     inode_write_congested(mapping->host)) ||
1182                    (writeback && PageReclaim(page)))
1183                        nr_congested++;
1184
1185                /*
1186                 * If a page at the tail of the LRU is under writeback, there
1187                 * are three cases to consider.
1188                 *
1189                 * 1) If reclaim is encountering an excessive number of pages
1190                 *    under writeback and this page is both under writeback and
1191                 *    PageReclaim then it indicates that pages are being queued
1192                 *    for IO but are being recycled through the LRU before the
1193                 *    IO can complete. Waiting on the page itself risks an
1194                 *    indefinite stall if it is impossible to writeback the
1195                 *    page due to IO error or disconnected storage so instead
1196                 *    note that the LRU is being scanned too quickly and the
1197                 *    caller can stall after page list has been processed.
1198                 *
1199                 * 2) Global or new memcg reclaim encounters a page that is
1200                 *    not marked for immediate reclaim, or the caller does not
1201                 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1202                 *    not to fs). In this case mark the page for immediate
1203                 *    reclaim and continue scanning.
1204                 *
1205                 *    Require may_enter_fs because we would wait on fs, which
1206                 *    may not have submitted IO yet. And the loop driver might
1207                 *    enter reclaim, and deadlock if it waits on a page for
1208                 *    which it is needed to do the write (loop masks off
1209                 *    __GFP_IO|__GFP_FS for this reason); but more thought
1210                 *    would probably show more reasons.
1211                 *
1212                 * 3) Legacy memcg encounters a page that is already marked
1213                 *    PageReclaim. memcg does not have any dirty pages
1214                 *    throttling so we could easily OOM just because too many
1215                 *    pages are in writeback and there is nothing else to
1216                 *    reclaim. Wait for the writeback to complete.
1217                 *
1218                 * In cases 1) and 2) we activate the pages to get them out of
1219                 * the way while we continue scanning for clean pages on the
1220                 * inactive list and refilling from the active list. The
1221                 * observation here is that waiting for disk writes is more
1222                 * expensive than potentially causing reloads down the line.
1223                 * Since they're marked for immediate reclaim, they won't put
1224                 * memory pressure on the cache working set any longer than it
1225                 * takes to write them to disk.
1226                 */
1227                if (PageWriteback(page)) {
1228                        /* Case 1 above */
1229                        if (current_is_kswapd() &&
1230                            PageReclaim(page) &&
1231                            test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1232                                nr_immediate++;
1233                                goto activate_locked;
1234
1235                        /* Case 2 above */
1236                        } else if (sane_reclaim(sc) ||
1237                            !PageReclaim(page) || !may_enter_fs) {
1238                                /*
1239                                 * This is slightly racy - end_page_writeback()
1240                                 * might have just cleared PageReclaim, then
1241                                 * setting PageReclaim here end up interpreted
1242                                 * as PageReadahead - but that does not matter
1243                                 * enough to care.  What we do want is for this
1244                                 * page to have PageReclaim set next time memcg
1245                                 * reclaim reaches the tests above, so it will
1246                                 * then wait_on_page_writeback() to avoid OOM;
1247                                 * and it's also appropriate in global reclaim.
1248                                 */
1249                                SetPageReclaim(page);
1250                                nr_writeback++;
1251                                goto activate_locked;
1252
1253                        /* Case 3 above */
1254                        } else {
1255                                unlock_page(page);
1256                                wait_on_page_writeback(page);
1257                                /* then go back and try same page again */
1258                                list_add_tail(&page->lru, page_list);
1259                                continue;
1260                        }
1261                }
1262
1263                if (!force_reclaim)
1264                        references = page_check_references(page, sc);
1265
1266                switch (references) {
1267                case PAGEREF_ACTIVATE:
1268                        goto activate_locked;
1269                case PAGEREF_KEEP:
1270                        nr_ref_keep++;
1271                        goto keep_locked;
1272                case PAGEREF_RECLAIM:
1273                case PAGEREF_RECLAIM_CLEAN:
1274                        ; /* try to reclaim the page below */
1275                }
1276
1277                /*
1278                 * Anonymous process memory has backing store?
1279                 * Try to allocate it some swap space here.
1280                 * Lazyfree page could be freed directly
1281                 */
1282                if (PageAnon(page) && PageSwapBacked(page)) {
1283                        if (!PageSwapCache(page)) {
1284                                if (!(sc->gfp_mask & __GFP_IO))
1285                                        goto keep_locked;
1286                                if (PageTransHuge(page)) {
1287                                        /* cannot split THP, skip it */
1288                                        if (!can_split_huge_page(page, NULL))
1289                                                goto activate_locked;
1290                                        /*
1291                                         * Split pages without a PMD map right
1292                                         * away. Chances are some or all of the
1293                                         * tail pages can be freed without IO.
1294                                         */
1295                                        if (!compound_mapcount(page) &&
1296                                            split_huge_page_to_list(page,
1297                                                                    page_list))
1298                                                goto activate_locked;
1299                                }
1300                                if (!add_to_swap(page)) {
1301                                        if (!PageTransHuge(page))
1302                                                goto activate_locked;
1303                                        /* Fallback to swap normal pages */
1304                                        if (split_huge_page_to_list(page,
1305                                                                    page_list))
1306                                                goto activate_locked;
1307#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308                                        count_vm_event(THP_SWPOUT_FALLBACK);
1309#endif
1310                                        if (!add_to_swap(page))
1311                                                goto activate_locked;
1312                                }
1313
1314                                may_enter_fs = 1;
1315
1316                                /* Adding to swap updated mapping */
1317                                mapping = page_mapping(page);
1318                        }
1319                } else if (unlikely(PageTransHuge(page))) {
1320                        /* Split file THP */
1321                        if (split_huge_page_to_list(page, page_list))
1322                                goto keep_locked;
1323                }
1324
1325                /*
1326                 * The page is mapped into the page tables of one or more
1327                 * processes. Try to unmap it here.
1328                 */
1329                if (page_mapped(page)) {
1330                        enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1331
1332                        if (unlikely(PageTransHuge(page)))
1333                                flags |= TTU_SPLIT_HUGE_PMD;
1334                        if (!try_to_unmap(page, flags)) {
1335                                nr_unmap_fail++;
1336                                goto activate_locked;
1337                        }
1338                }
1339
1340                if (PageDirty(page)) {
1341                        /*
1342                         * Only kswapd can writeback filesystem pages
1343                         * to avoid risk of stack overflow. But avoid
1344                         * injecting inefficient single-page IO into
1345                         * flusher writeback as much as possible: only
1346                         * write pages when we've encountered many
1347                         * dirty pages, and when we've already scanned
1348                         * the rest of the LRU for clean pages and see
1349                         * the same dirty pages again (PageReclaim).
1350                         */
1351                        if (page_is_file_cache(page) &&
1352                            (!current_is_kswapd() || !PageReclaim(page) ||
1353                             !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1354                                /*
1355                                 * Immediately reclaim when written back.
1356                                 * Similar in principal to deactivate_page()
1357                                 * except we already have the page isolated
1358                                 * and know it's dirty
1359                                 */
1360                                inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1361                                SetPageReclaim(page);
1362
1363                                goto activate_locked;
1364                        }
1365
1366                        if (references == PAGEREF_RECLAIM_CLEAN)
1367                                goto keep_locked;
1368                        if (!may_enter_fs)
1369                                goto keep_locked;
1370                        if (!sc->may_writepage)
1371                                goto keep_locked;
1372
1373                        /*
1374                         * Page is dirty. Flush the TLB if a writable entry
1375                         * potentially exists to avoid CPU writes after IO
1376                         * starts and then write it out here.
1377                         */
1378                        try_to_unmap_flush_dirty();
1379                        switch (pageout(page, mapping, sc)) {
1380                        case PAGE_KEEP:
1381                                goto keep_locked;
1382                        case PAGE_ACTIVATE:
1383                                goto activate_locked;
1384                        case PAGE_SUCCESS:
1385                                if (PageWriteback(page))
1386                                        goto keep;
1387                                if (PageDirty(page))
1388                                        goto keep;
1389
1390                                /*
1391                                 * A synchronous write - probably a ramdisk.  Go
1392                                 * ahead and try to reclaim the page.
1393                                 */
1394                                if (!trylock_page(page))
1395                                        goto keep;
1396                                if (PageDirty(page) || PageWriteback(page))
1397                                        goto keep_locked;
1398                                mapping = page_mapping(page);
1399                        case PAGE_CLEAN:
1400                                ; /* try to free the page below */
1401                        }
1402                }
1403
1404                /*
1405                 * If the page has buffers, try to free the buffer mappings
1406                 * associated with this page. If we succeed we try to free
1407                 * the page as well.
1408                 *
1409                 * We do this even if the page is PageDirty().
1410                 * try_to_release_page() does not perform I/O, but it is
1411                 * possible for a page to have PageDirty set, but it is actually
1412                 * clean (all its buffers are clean).  This happens if the
1413                 * buffers were written out directly, with submit_bh(). ext3
1414                 * will do this, as well as the blockdev mapping.
1415                 * try_to_release_page() will discover that cleanness and will
1416                 * drop the buffers and mark the page clean - it can be freed.
1417                 *
1418                 * Rarely, pages can have buffers and no ->mapping.  These are
1419                 * the pages which were not successfully invalidated in
1420                 * truncate_complete_page().  We try to drop those buffers here
1421                 * and if that worked, and the page is no longer mapped into
1422                 * process address space (page_count == 1) it can be freed.
1423                 * Otherwise, leave the page on the LRU so it is swappable.
1424                 */
1425                if (page_has_private(page)) {
1426                        if (!try_to_release_page(page, sc->gfp_mask))
1427                                goto activate_locked;
1428                        if (!mapping && page_count(page) == 1) {
1429                                unlock_page(page);
1430                                if (put_page_testzero(page))
1431                                        goto free_it;
1432                                else {
1433                                        /*
1434                                         * rare race with speculative reference.
1435                                         * the speculative reference will free
1436                                         * this page shortly, so we may
1437                                         * increment nr_reclaimed here (and
1438                                         * leave it off the LRU).
1439                                         */
1440                                        nr_reclaimed++;
1441                                        continue;
1442                                }
1443                        }
1444                }
1445
1446                if (PageAnon(page) && !PageSwapBacked(page)) {
1447                        /* follow __remove_mapping for reference */
1448                        if (!page_ref_freeze(page, 1))
1449                                goto keep_locked;
1450                        if (PageDirty(page)) {
1451                                page_ref_unfreeze(page, 1);
1452                                goto keep_locked;
1453                        }
1454
1455                        count_vm_event(PGLAZYFREED);
1456                        count_memcg_page_event(page, PGLAZYFREED);
1457                } else if (!mapping || !__remove_mapping(mapping, page, true))
1458                        goto keep_locked;
1459                /*
1460                 * At this point, we have no other references and there is
1461                 * no way to pick any more up (removed from LRU, removed
1462                 * from pagecache). Can use non-atomic bitops now (and
1463                 * we obviously don't have to worry about waking up a process
1464                 * waiting on the page lock, because there are no references.
1465                 */
1466                __ClearPageLocked(page);
1467free_it:
1468                nr_reclaimed++;
1469
1470                /*
1471                 * Is there need to periodically free_page_list? It would
1472                 * appear not as the counts should be low
1473                 */
1474                if (unlikely(PageTransHuge(page))) {
1475                        mem_cgroup_uncharge(page);
1476                        (*get_compound_page_dtor(page))(page);
1477                } else
1478                        list_add(&page->lru, &free_pages);
1479                continue;
1480
1481activate_locked:
1482                /* Not a candidate for swapping, so reclaim swap space. */
1483                if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1484                                                PageMlocked(page)))
1485                        try_to_free_swap(page);
1486                VM_BUG_ON_PAGE(PageActive(page), page);
1487                if (!PageMlocked(page)) {
1488                        SetPageActive(page);
1489                        pgactivate++;
1490                        count_memcg_page_event(page, PGACTIVATE);
1491                }
1492keep_locked:
1493                unlock_page(page);
1494keep:
1495                list_add(&page->lru, &ret_pages);
1496                VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1497        }
1498
1499        mem_cgroup_uncharge_list(&free_pages);
1500        try_to_unmap_flush();
1501        free_unref_page_list(&free_pages);
1502
1503        list_splice(&ret_pages, page_list);
1504        count_vm_events(PGACTIVATE, pgactivate);
1505
1506        if (stat) {
1507                stat->nr_dirty = nr_dirty;
1508                stat->nr_congested = nr_congested;
1509                stat->nr_unqueued_dirty = nr_unqueued_dirty;
1510                stat->nr_writeback = nr_writeback;
1511                stat->nr_immediate = nr_immediate;
1512                stat->nr_activate = pgactivate;
1513                stat->nr_ref_keep = nr_ref_keep;
1514                stat->nr_unmap_fail = nr_unmap_fail;
1515        }
1516        return nr_reclaimed;
1517}
1518
1519unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1520                                            struct list_head *page_list)
1521{
1522        struct scan_control sc = {
1523                .gfp_mask = GFP_KERNEL,
1524                .priority = DEF_PRIORITY,
1525                .may_unmap = 1,
1526        };
1527        unsigned long ret;
1528        struct page *page, *next;
1529        LIST_HEAD(clean_pages);
1530
1531        list_for_each_entry_safe(page, next, page_list, lru) {
1532                if (page_is_file_cache(page) && !PageDirty(page) &&
1533                    !__PageMovable(page)) {
1534                        ClearPageActive(page);
1535                        list_move(&page->lru, &clean_pages);
1536                }
1537        }
1538
1539        ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1540                        TTU_IGNORE_ACCESS, NULL, true);
1541        list_splice(&clean_pages, page_list);
1542        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1543        return ret;
1544}
1545
1546/*
1547 * Attempt to remove the specified page from its LRU.  Only take this page
1548 * if it is of the appropriate PageActive status.  Pages which are being
1549 * freed elsewhere are also ignored.
1550 *
1551 * page:        page to consider
1552 * mode:        one of the LRU isolation modes defined above
1553 *
1554 * returns 0 on success, -ve errno on failure.
1555 */
1556int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1557{
1558        int ret = -EINVAL;
1559
1560        /* Only take pages on the LRU. */
1561        if (!PageLRU(page))
1562                return ret;
1563
1564        /* Compaction should not handle unevictable pages but CMA can do so */
1565        if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1566                return ret;
1567
1568        ret = -EBUSY;
1569
1570        /*
1571         * To minimise LRU disruption, the caller can indicate that it only
1572         * wants to isolate pages it will be able to operate on without
1573         * blocking - clean pages for the most part.
1574         *
1575         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1576         * that it is possible to migrate without blocking
1577         */
1578        if (mode & ISOLATE_ASYNC_MIGRATE) {
1579                /* All the caller can do on PageWriteback is block */
1580                if (PageWriteback(page))
1581                        return ret;
1582
1583                if (PageDirty(page)) {
1584                        struct address_space *mapping;
1585                        bool migrate_dirty;
1586
1587                        /*
1588                         * Only pages without mappings or that have a
1589                         * ->migratepage callback are possible to migrate
1590                         * without blocking. However, we can be racing with
1591                         * truncation so it's necessary to lock the page
1592                         * to stabilise the mapping as truncation holds
1593                         * the page lock until after the page is removed
1594                         * from the page cache.
1595                         */
1596                        if (!trylock_page(page))
1597                                return ret;
1598
1599                        mapping = page_mapping(page);
1600                        migrate_dirty = !mapping || mapping->a_ops->migratepage;
1601                        unlock_page(page);
1602                        if (!migrate_dirty)
1603                                return ret;
1604                }
1605        }
1606
1607        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1608                return ret;
1609
1610        if (likely(get_page_unless_zero(page))) {
1611                /*
1612                 * Be careful not to clear PageLRU until after we're
1613                 * sure the page is not being freed elsewhere -- the
1614                 * page release code relies on it.
1615                 */
1616                ClearPageLRU(page);
1617                ret = 0;
1618        }
1619
1620        return ret;
1621}
1622
1623
1624/*
1625 * Update LRU sizes after isolating pages. The LRU size updates must
1626 * be complete before mem_cgroup_update_lru_size due to a santity check.
1627 */
1628static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1629                        enum lru_list lru, unsigned long *nr_zone_taken)
1630{
1631        int zid;
1632
1633        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1634                if (!nr_zone_taken[zid])
1635                        continue;
1636
1637                __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1638#ifdef CONFIG_MEMCG
1639                mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1640#endif
1641        }
1642
1643}
1644
1645/*
1646 * zone_lru_lock is heavily contended.  Some of the functions that
1647 * shrink the lists perform better by taking out a batch of pages
1648 * and working on them outside the LRU lock.
1649 *
1650 * For pagecache intensive workloads, this function is the hottest
1651 * spot in the kernel (apart from copy_*_user functions).
1652 *
1653 * Appropriate locks must be held before calling this function.
1654 *
1655 * @nr_to_scan: The number of eligible pages to look through on the list.
1656 * @lruvec:     The LRU vector to pull pages from.
1657 * @dst:        The temp list to put pages on to.
1658 * @nr_scanned: The number of pages that were scanned.
1659 * @sc:         The scan_control struct for this reclaim session
1660 * @mode:       One of the LRU isolation modes
1661 * @lru:        LRU list id for isolating
1662 *
1663 * returns how many pages were moved onto *@dst.
1664 */
1665static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1666                struct lruvec *lruvec, struct list_head *dst,
1667                unsigned long *nr_scanned, struct scan_control *sc,
1668                isolate_mode_t mode, enum lru_list lru)
1669{
1670        struct list_head *src = &lruvec->lists[lru];
1671        unsigned long nr_taken = 0;
1672        unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1673        unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1674        unsigned long skipped = 0;
1675        unsigned long scan, total_scan, nr_pages;
1676        LIST_HEAD(pages_skipped);
1677
1678        scan = 0;
1679        for (total_scan = 0;
1680             scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1681             total_scan++) {
1682                struct page *page;
1683
1684                page = lru_to_page(src);
1685                prefetchw_prev_lru_page(page, src, flags);
1686
1687                VM_BUG_ON_PAGE(!PageLRU(page), page);
1688
1689                if (page_zonenum(page) > sc->reclaim_idx) {
1690                        list_move(&page->lru, &pages_skipped);
1691                        nr_skipped[page_zonenum(page)]++;
1692                        continue;
1693                }
1694
1695                /*
1696                 * Do not count skipped pages because that makes the function
1697                 * return with no isolated pages if the LRU mostly contains
1698                 * ineligible pages.  This causes the VM to not reclaim any
1699                 * pages, triggering a premature OOM.
1700                 */
1701                scan++;
1702                switch (__isolate_lru_page(page, mode)) {
1703                case 0:
1704                        nr_pages = hpage_nr_pages(page);
1705                        nr_taken += nr_pages;
1706                        nr_zone_taken[page_zonenum(page)] += nr_pages;
1707                        list_move(&page->lru, dst);
1708                        break;
1709
1710                case -EBUSY:
1711                        /* else it is being freed elsewhere */
1712                        list_move(&page->lru, src);
1713                        continue;
1714
1715                default:
1716                        BUG();
1717                }
1718        }
1719
1720        /*
1721         * Splice any skipped pages to the start of the LRU list. Note that
1722         * this disrupts the LRU order when reclaiming for lower zones but
1723         * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1724         * scanning would soon rescan the same pages to skip and put the
1725         * system at risk of premature OOM.
1726         */
1727        if (!list_empty(&pages_skipped)) {
1728                int zid;
1729
1730                list_splice(&pages_skipped, src);
1731                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1732                        if (!nr_skipped[zid])
1733                                continue;
1734
1735                        __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1736                        skipped += nr_skipped[zid];
1737                }
1738        }
1739        *nr_scanned = total_scan;
1740        trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1741                                    total_scan, skipped, nr_taken, mode, lru);
1742        update_lru_sizes(lruvec, lru, nr_zone_taken);
1743        return nr_taken;
1744}
1745
1746/**
1747 * isolate_lru_page - tries to isolate a page from its LRU list
1748 * @page: page to isolate from its LRU list
1749 *
1750 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1751 * vmstat statistic corresponding to whatever LRU list the page was on.
1752 *
1753 * Returns 0 if the page was removed from an LRU list.
1754 * Returns -EBUSY if the page was not on an LRU list.
1755 *
1756 * The returned page will have PageLRU() cleared.  If it was found on
1757 * the active list, it will have PageActive set.  If it was found on
1758 * the unevictable list, it will have the PageUnevictable bit set. That flag
1759 * may need to be cleared by the caller before letting the page go.
1760 *
1761 * The vmstat statistic corresponding to the list on which the page was
1762 * found will be decremented.
1763 *
1764 * Restrictions:
1765 *
1766 * (1) Must be called with an elevated refcount on the page. This is a
1767 *     fundamentnal difference from isolate_lru_pages (which is called
1768 *     without a stable reference).
1769 * (2) the lru_lock must not be held.
1770 * (3) interrupts must be enabled.
1771 */
1772int isolate_lru_page(struct page *page)
1773{
1774        int ret = -EBUSY;
1775
1776        VM_BUG_ON_PAGE(!page_count(page), page);
1777        WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1778
1779        if (PageLRU(page)) {
1780                struct zone *zone = page_zone(page);
1781                struct lruvec *lruvec;
1782
1783                spin_lock_irq(zone_lru_lock(zone));
1784                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1785                if (PageLRU(page)) {
1786                        int lru = page_lru(page);
1787                        get_page(page);
1788                        ClearPageLRU(page);
1789                        del_page_from_lru_list(page, lruvec, lru);
1790                        ret = 0;
1791                }
1792                spin_unlock_irq(zone_lru_lock(zone));
1793        }
1794        return ret;
1795}
1796
1797/*
1798 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1799 * then get resheduled. When there are massive number of tasks doing page
1800 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1801 * the LRU list will go small and be scanned faster than necessary, leading to
1802 * unnecessary swapping, thrashing and OOM.
1803 */
1804static int too_many_isolated(struct pglist_data *pgdat, int file,
1805                struct scan_control *sc)
1806{
1807        unsigned long inactive, isolated;
1808
1809        if (current_is_kswapd())
1810                return 0;
1811
1812        if (!sane_reclaim(sc))
1813                return 0;
1814
1815        if (file) {
1816                inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1817                isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1818        } else {
1819                inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1820                isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1821        }
1822
1823        /*
1824         * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1825         * won't get blocked by normal direct-reclaimers, forming a circular
1826         * deadlock.
1827         */
1828        if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1829                inactive >>= 3;
1830
1831        return isolated > inactive;
1832}
1833
1834static noinline_for_stack void
1835putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1836{
1837        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1838        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1839        LIST_HEAD(pages_to_free);
1840
1841        /*
1842         * Put back any unfreeable pages.
1843         */
1844        while (!list_empty(page_list)) {
1845                struct page *page = lru_to_page(page_list);
1846                int lru;
1847
1848                VM_BUG_ON_PAGE(PageLRU(page), page);
1849                list_del(&page->lru);
1850                if (unlikely(!page_evictable(page))) {
1851                        spin_unlock_irq(&pgdat->lru_lock);
1852                        putback_lru_page(page);
1853                        spin_lock_irq(&pgdat->lru_lock);
1854                        continue;
1855                }
1856
1857                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1858
1859                SetPageLRU(page);
1860                lru = page_lru(page);
1861                add_page_to_lru_list(page, lruvec, lru);
1862
1863                if (is_active_lru(lru)) {
1864                        int file = is_file_lru(lru);
1865                        int numpages = hpage_nr_pages(page);
1866                        reclaim_stat->recent_rotated[file] += numpages;
1867                }
1868                if (put_page_testzero(page)) {
1869                        __ClearPageLRU(page);
1870                        __ClearPageActive(page);
1871                        del_page_from_lru_list(page, lruvec, lru);
1872
1873                        if (unlikely(PageCompound(page))) {
1874                                spin_unlock_irq(&pgdat->lru_lock);
1875                                mem_cgroup_uncharge(page);
1876                                (*get_compound_page_dtor(page))(page);
1877                                spin_lock_irq(&pgdat->lru_lock);
1878                        } else
1879                                list_add(&page->lru, &pages_to_free);
1880                }
1881        }
1882
1883        /*
1884         * To save our caller's stack, now use input list for pages to free.
1885         */
1886        list_splice(&pages_to_free, page_list);
1887}
1888
1889/*
1890 * If a kernel thread (such as nfsd for loop-back mounts) services
1891 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1892 * In that case we should only throttle if the backing device it is
1893 * writing to is congested.  In other cases it is safe to throttle.
1894 */
1895static int current_may_throttle(void)
1896{
1897        return !(current->flags & PF_LESS_THROTTLE) ||
1898                current->backing_dev_info == NULL ||
1899                bdi_write_congested(current->backing_dev_info);
1900}
1901
1902/*
1903 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1904 * of reclaimed pages
1905 */
1906static noinline_for_stack unsigned long
1907shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1908                     struct scan_control *sc, enum lru_list lru)
1909{
1910        LIST_HEAD(page_list);
1911        unsigned long nr_scanned;
1912        unsigned long nr_reclaimed = 0;
1913        unsigned long nr_taken;
1914        struct reclaim_stat stat = {};
1915        isolate_mode_t isolate_mode = 0;
1916        int file = is_file_lru(lru);
1917        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1918        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1919        bool stalled = false;
1920
1921        while (unlikely(too_many_isolated(pgdat, file, sc))) {
1922                if (stalled)
1923                        return 0;
1924
1925                /* wait a bit for the reclaimer. */
1926                msleep(100);
1927                stalled = true;
1928
1929                /* We are about to die and free our memory. Return now. */
1930                if (fatal_signal_pending(current))
1931                        return SWAP_CLUSTER_MAX;
1932        }
1933
1934        lru_add_drain();
1935
1936        if (!sc->may_unmap)
1937                isolate_mode |= ISOLATE_UNMAPPED;
1938
1939        spin_lock_irq(&pgdat->lru_lock);
1940
1941        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1942                                     &nr_scanned, sc, isolate_mode, lru);
1943
1944        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1945        reclaim_stat->recent_scanned[file] += nr_taken;
1946
1947        if (current_is_kswapd()) {
1948                if (global_reclaim(sc))
1949                        __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1950                count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1951                                   nr_scanned);
1952        } else {
1953                if (global_reclaim(sc))
1954                        __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1955                count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1956                                   nr_scanned);
1957        }
1958        spin_unlock_irq(&pgdat->lru_lock);
1959
1960        if (nr_taken == 0)
1961                return 0;
1962
1963        nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1964                                &stat, false);
1965
1966        spin_lock_irq(&pgdat->lru_lock);
1967
1968        if (current_is_kswapd()) {
1969                if (global_reclaim(sc))
1970                        __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1971                count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1972                                   nr_reclaimed);
1973        } else {
1974                if (global_reclaim(sc))
1975                        __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1976                count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1977                                   nr_reclaimed);
1978        }
1979
1980        putback_inactive_pages(lruvec, &page_list);
1981
1982        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1983
1984        spin_unlock_irq(&pgdat->lru_lock);
1985
1986        mem_cgroup_uncharge_list(&page_list);
1987        free_unref_page_list(&page_list);
1988
1989        /*
1990         * If dirty pages are scanned that are not queued for IO, it
1991         * implies that flushers are not doing their job. This can
1992         * happen when memory pressure pushes dirty pages to the end of
1993         * the LRU before the dirty limits are breached and the dirty
1994         * data has expired. It can also happen when the proportion of
1995         * dirty pages grows not through writes but through memory
1996         * pressure reclaiming all the clean cache. And in some cases,
1997         * the flushers simply cannot keep up with the allocation
1998         * rate. Nudge the flusher threads in case they are asleep.
1999         */
2000        if (stat.nr_unqueued_dirty == nr_taken)
2001                wakeup_flusher_threads(WB_REASON_VMSCAN);
2002
2003        sc->nr.dirty += stat.nr_dirty;
2004        sc->nr.congested += stat.nr_congested;
2005        sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2006        sc->nr.writeback += stat.nr_writeback;
2007        sc->nr.immediate += stat.nr_immediate;
2008        sc->nr.taken += nr_taken;
2009        if (file)
2010                sc->nr.file_taken += nr_taken;
2011
2012        trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2013                        nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2014        return nr_reclaimed;
2015}
2016
2017/*
2018 * This moves pages from the active list to the inactive list.
2019 *
2020 * We move them the other way if the page is referenced by one or more
2021 * processes, from rmap.
2022 *
2023 * If the pages are mostly unmapped, the processing is fast and it is
2024 * appropriate to hold zone_lru_lock across the whole operation.  But if
2025 * the pages are mapped, the processing is slow (page_referenced()) so we
2026 * should drop zone_lru_lock around each page.  It's impossible to balance
2027 * this, so instead we remove the pages from the LRU while processing them.
2028 * It is safe to rely on PG_active against the non-LRU pages in here because
2029 * nobody will play with that bit on a non-LRU page.
2030 *
2031 * The downside is that we have to touch page->_refcount against each page.
2032 * But we had to alter page->flags anyway.
2033 *
2034 * Returns the number of pages moved to the given lru.
2035 */
2036
2037static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2038                                     struct list_head *list,
2039                                     struct list_head *pages_to_free,
2040                                     enum lru_list lru)
2041{
2042        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2043        struct page *page;
2044        int nr_pages;
2045        int nr_moved = 0;
2046
2047        while (!list_empty(list)) {
2048                page = lru_to_page(list);
2049                lruvec = mem_cgroup_page_lruvec(page, pgdat);
2050
2051                VM_BUG_ON_PAGE(PageLRU(page), page);
2052                SetPageLRU(page);
2053
2054                nr_pages = hpage_nr_pages(page);
2055                update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2056                list_move(&page->lru, &lruvec->lists[lru]);
2057
2058                if (put_page_testzero(page)) {
2059                        __ClearPageLRU(page);
2060                        __ClearPageActive(page);
2061                        del_page_from_lru_list(page, lruvec, lru);
2062
2063                        if (unlikely(PageCompound(page))) {
2064                                spin_unlock_irq(&pgdat->lru_lock);
2065                                mem_cgroup_uncharge(page);
2066                                (*get_compound_page_dtor(page))(page);
2067                                spin_lock_irq(&pgdat->lru_lock);
2068                        } else
2069                                list_add(&page->lru, pages_to_free);
2070                } else {
2071                        nr_moved += nr_pages;
2072                }
2073        }
2074
2075        if (!is_active_lru(lru)) {
2076                __count_vm_events(PGDEACTIVATE, nr_moved);
2077                count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2078                                   nr_moved);
2079        }
2080
2081        return nr_moved;
2082}
2083
2084static void shrink_active_list(unsigned long nr_to_scan,
2085                               struct lruvec *lruvec,
2086                               struct scan_control *sc,
2087                               enum lru_list lru)
2088{
2089        unsigned long nr_taken;
2090        unsigned long nr_scanned;
2091        unsigned long vm_flags;
2092        LIST_HEAD(l_hold);      /* The pages which were snipped off */
2093        LIST_HEAD(l_active);
2094        LIST_HEAD(l_inactive);
2095        struct page *page;
2096        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2097        unsigned nr_deactivate, nr_activate;
2098        unsigned nr_rotated = 0;
2099        isolate_mode_t isolate_mode = 0;
2100        int file = is_file_lru(lru);
2101        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2102
2103        lru_add_drain();
2104
2105        if (!sc->may_unmap)
2106                isolate_mode |= ISOLATE_UNMAPPED;
2107
2108        spin_lock_irq(&pgdat->lru_lock);
2109
2110        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2111                                     &nr_scanned, sc, isolate_mode, lru);
2112
2113        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2114        reclaim_stat->recent_scanned[file] += nr_taken;
2115
2116        __count_vm_events(PGREFILL, nr_scanned);
2117        count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2118
2119        spin_unlock_irq(&pgdat->lru_lock);
2120
2121        while (!list_empty(&l_hold)) {
2122                cond_resched();
2123                page = lru_to_page(&l_hold);
2124                list_del(&page->lru);
2125
2126                if (unlikely(!page_evictable(page))) {
2127                        putback_lru_page(page);
2128                        continue;
2129                }
2130
2131                if (unlikely(buffer_heads_over_limit)) {
2132                        if (page_has_private(page) && trylock_page(page)) {
2133                                if (page_has_private(page))
2134                                        try_to_release_page(page, 0);
2135                                unlock_page(page);
2136                        }
2137                }
2138
2139                if (page_referenced(page, 0, sc->target_mem_cgroup,
2140                                    &vm_flags)) {
2141                        nr_rotated += hpage_nr_pages(page);
2142                        /*
2143                         * Identify referenced, file-backed active pages and
2144                         * give them one more trip around the active list. So
2145                         * that executable code get better chances to stay in
2146                         * memory under moderate memory pressure.  Anon pages
2147                         * are not likely to be evicted by use-once streaming
2148                         * IO, plus JVM can create lots of anon VM_EXEC pages,
2149                         * so we ignore them here.
2150                         */
2151                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2152                                list_add(&page->lru, &l_active);
2153                                continue;
2154                        }
2155                }
2156
2157                ClearPageActive(page);  /* we are de-activating */
2158                SetPageWorkingset(page);
2159                list_add(&page->lru, &l_inactive);
2160        }
2161
2162        /*
2163         * Move pages back to the lru list.
2164         */
2165        spin_lock_irq(&pgdat->lru_lock);
2166        /*
2167         * Count referenced pages from currently used mappings as rotated,
2168         * even though only some of them are actually re-activated.  This
2169         * helps balance scan pressure between file and anonymous pages in
2170         * get_scan_count.
2171         */
2172        reclaim_stat->recent_rotated[file] += nr_rotated;
2173
2174        nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2175        nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2176        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2177        spin_unlock_irq(&pgdat->lru_lock);
2178
2179        mem_cgroup_uncharge_list(&l_hold);
2180        free_unref_page_list(&l_hold);
2181        trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2182                        nr_deactivate, nr_rotated, sc->priority, file);
2183}
2184
2185/*
2186 * The inactive anon list should be small enough that the VM never has
2187 * to do too much work.
2188 *
2189 * The inactive file list should be small enough to leave most memory
2190 * to the established workingset on the scan-resistant active list,
2191 * but large enough to avoid thrashing the aggregate readahead window.
2192 *
2193 * Both inactive lists should also be large enough that each inactive
2194 * page has a chance to be referenced again before it is reclaimed.
2195 *
2196 * If that fails and refaulting is observed, the inactive list grows.
2197 *
2198 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2199 * on this LRU, maintained by the pageout code. An inactive_ratio
2200 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2201 *
2202 * total     target    max
2203 * memory    ratio     inactive
2204 * -------------------------------------
2205 *   10MB       1         5MB
2206 *  100MB       1        50MB
2207 *    1GB       3       250MB
2208 *   10GB      10       0.9GB
2209 *  100GB      31         3GB
2210 *    1TB     101        10GB
2211 *   10TB     320        32GB
2212 */
2213static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2214                                 struct mem_cgroup *memcg,
2215                                 struct scan_control *sc, bool actual_reclaim)
2216{
2217        enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2218        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2219        enum lru_list inactive_lru = file * LRU_FILE;
2220        unsigned long inactive, active;
2221        unsigned long inactive_ratio;
2222        unsigned long refaults;
2223        unsigned long gb;
2224
2225        /*
2226         * If we don't have swap space, anonymous page deactivation
2227         * is pointless.
2228         */
2229        if (!file && !total_swap_pages)
2230                return false;
2231
2232        inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2233        active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2234
2235        if (memcg)
2236                refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2237        else
2238                refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2239
2240        /*
2241         * When refaults are being observed, it means a new workingset
2242         * is being established. Disable active list protection to get
2243         * rid of the stale workingset quickly.
2244         */
2245        if (file && actual_reclaim && lruvec->refaults != refaults) {
2246                inactive_ratio = 0;
2247        } else {
2248                gb = (inactive + active) >> (30 - PAGE_SHIFT);
2249                if (gb)
2250                        inactive_ratio = int_sqrt(10 * gb);
2251                else
2252                        inactive_ratio = 1;
2253        }
2254
2255        if (actual_reclaim)
2256                trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2257                        lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2258                        lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2259                        inactive_ratio, file);
2260
2261        return inactive * inactive_ratio < active;
2262}
2263
2264static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2265                                 struct lruvec *lruvec, struct mem_cgroup *memcg,
2266                                 struct scan_control *sc)
2267{
2268        if (is_active_lru(lru)) {
2269                if (inactive_list_is_low(lruvec, is_file_lru(lru),
2270                                         memcg, sc, true))
2271                        shrink_active_list(nr_to_scan, lruvec, sc, lru);
2272                return 0;
2273        }
2274
2275        return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2276}
2277
2278enum scan_balance {
2279        SCAN_EQUAL,
2280        SCAN_FRACT,
2281        SCAN_ANON,
2282        SCAN_FILE,
2283};
2284
2285/*
2286 * Determine how aggressively the anon and file LRU lists should be
2287 * scanned.  The relative value of each set of LRU lists is determined
2288 * by looking at the fraction of the pages scanned we did rotate back
2289 * onto the active list instead of evict.
2290 *
2291 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2292 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2293 */
2294static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2295                           struct scan_control *sc, unsigned long *nr,
2296                           unsigned long *lru_pages)
2297{
2298        int swappiness = mem_cgroup_swappiness(memcg);
2299        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2300        u64 fraction[2];
2301        u64 denominator = 0;    /* gcc */
2302        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2303        unsigned long anon_prio, file_prio;
2304        enum scan_balance scan_balance;
2305        unsigned long anon, file;
2306        unsigned long ap, fp;
2307        enum lru_list lru;
2308
2309        /* If we have no swap space, do not bother scanning anon pages. */
2310        if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2311                scan_balance = SCAN_FILE;
2312                goto out;
2313        }
2314
2315        /*
2316         * Global reclaim will swap to prevent OOM even with no
2317         * swappiness, but memcg users want to use this knob to
2318         * disable swapping for individual groups completely when
2319         * using the memory controller's swap limit feature would be
2320         * too expensive.
2321         */
2322        if (!global_reclaim(sc) && !swappiness) {
2323                scan_balance = SCAN_FILE;
2324                goto out;
2325        }
2326
2327        /*
2328         * Do not apply any pressure balancing cleverness when the
2329         * system is close to OOM, scan both anon and file equally
2330         * (unless the swappiness setting disagrees with swapping).
2331         */
2332        if (!sc->priority && swappiness) {
2333                scan_balance = SCAN_EQUAL;
2334                goto out;
2335        }
2336
2337        /*
2338         * Prevent the reclaimer from falling into the cache trap: as
2339         * cache pages start out inactive, every cache fault will tip
2340         * the scan balance towards the file LRU.  And as the file LRU
2341         * shrinks, so does the window for rotation from references.
2342         * This means we have a runaway feedback loop where a tiny
2343         * thrashing file LRU becomes infinitely more attractive than
2344         * anon pages.  Try to detect this based on file LRU size.
2345         */
2346        if (global_reclaim(sc)) {
2347                unsigned long pgdatfile;
2348                unsigned long pgdatfree;
2349                int z;
2350                unsigned long total_high_wmark = 0;
2351
2352                pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2353                pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2354                           node_page_state(pgdat, NR_INACTIVE_FILE);
2355
2356                for (z = 0; z < MAX_NR_ZONES; z++) {
2357                        struct zone *zone = &pgdat->node_zones[z];
2358                        if (!managed_zone(zone))
2359                                continue;
2360
2361                        total_high_wmark += high_wmark_pages(zone);
2362                }
2363
2364                if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2365                        /*
2366                         * Force SCAN_ANON if there are enough inactive
2367                         * anonymous pages on the LRU in eligible zones.
2368                         * Otherwise, the small LRU gets thrashed.
2369                         */
2370                        if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2371                            lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2372                                        >> sc->priority) {
2373                                scan_balance = SCAN_ANON;
2374                                goto out;
2375                        }
2376                }
2377        }
2378
2379        /*
2380         * If there is enough inactive page cache, i.e. if the size of the
2381         * inactive list is greater than that of the active list *and* the
2382         * inactive list actually has some pages to scan on this priority, we
2383         * do not reclaim anything from the anonymous working set right now.
2384         * Without the second condition we could end up never scanning an
2385         * lruvec even if it has plenty of old anonymous pages unless the
2386         * system is under heavy pressure.
2387         */
2388        if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2389            lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2390                scan_balance = SCAN_FILE;
2391                goto out;
2392        }
2393
2394        scan_balance = SCAN_FRACT;
2395
2396        /*
2397         * With swappiness at 100, anonymous and file have the same priority.
2398         * This scanning priority is essentially the inverse of IO cost.
2399         */
2400        anon_prio = swappiness;
2401        file_prio = 200 - anon_prio;
2402
2403        /*
2404         * OK, so we have swap space and a fair amount of page cache
2405         * pages.  We use the recently rotated / recently scanned
2406         * ratios to determine how valuable each cache is.
2407         *
2408         * Because workloads change over time (and to avoid overflow)
2409         * we keep these statistics as a floating average, which ends
2410         * up weighing recent references more than old ones.
2411         *
2412         * anon in [0], file in [1]
2413         */
2414
2415        anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2416                lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2417        file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2418                lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2419
2420        spin_lock_irq(&pgdat->lru_lock);
2421        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2422                reclaim_stat->recent_scanned[0] /= 2;
2423                reclaim_stat->recent_rotated[0] /= 2;
2424        }
2425
2426        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2427                reclaim_stat->recent_scanned[1] /= 2;
2428                reclaim_stat->recent_rotated[1] /= 2;
2429        }
2430
2431        /*
2432         * The amount of pressure on anon vs file pages is inversely
2433         * proportional to the fraction of recently scanned pages on
2434         * each list that were recently referenced and in active use.
2435         */
2436        ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2437        ap /= reclaim_stat->recent_rotated[0] + 1;
2438
2439        fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2440        fp /= reclaim_stat->recent_rotated[1] + 1;
2441        spin_unlock_irq(&pgdat->lru_lock);
2442
2443        fraction[0] = ap;
2444        fraction[1] = fp;
2445        denominator = ap + fp + 1;
2446out:
2447        *lru_pages = 0;
2448        for_each_evictable_lru(lru) {
2449                int file = is_file_lru(lru);
2450                unsigned long size;
2451                unsigned long scan;
2452
2453                size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2454                scan = size >> sc->priority;
2455                /*
2456                 * If the cgroup's already been deleted, make sure to
2457                 * scrape out the remaining cache.
2458                 */
2459                if (!scan && !mem_cgroup_online(memcg))
2460                        scan = min(size, SWAP_CLUSTER_MAX);
2461
2462                switch (scan_balance) {
2463                case SCAN_EQUAL:
2464                        /* Scan lists relative to size */
2465                        break;
2466                case SCAN_FRACT:
2467                        /*
2468                         * Scan types proportional to swappiness and
2469                         * their relative recent reclaim efficiency.
2470                         * Make sure we don't miss the last page
2471                         * because of a round-off error.
2472                         */
2473                        scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2474                                                  denominator);
2475                        break;
2476                case SCAN_FILE:
2477                case SCAN_ANON:
2478                        /* Scan one type exclusively */
2479                        if ((scan_balance == SCAN_FILE) != file) {
2480                                size = 0;
2481                                scan = 0;
2482                        }
2483                        break;
2484                default:
2485                        /* Look ma, no brain */
2486                        BUG();
2487                }
2488
2489                *lru_pages += size;
2490                nr[lru] = scan;
2491        }
2492}
2493
2494/*
2495 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2496 */
2497static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2498                              struct scan_control *sc, unsigned long *lru_pages)
2499{
2500        struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2501        unsigned long nr[NR_LRU_LISTS];
2502        unsigned long targets[NR_LRU_LISTS];
2503        unsigned long nr_to_scan;
2504        enum lru_list lru;
2505        unsigned long nr_reclaimed = 0;
2506        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2507        struct blk_plug plug;
2508        bool scan_adjusted;
2509
2510        get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2511
2512        /* Record the original scan target for proportional adjustments later */
2513        memcpy(targets, nr, sizeof(nr));
2514
2515        /*
2516         * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2517         * event that can occur when there is little memory pressure e.g.
2518         * multiple streaming readers/writers. Hence, we do not abort scanning
2519         * when the requested number of pages are reclaimed when scanning at
2520         * DEF_PRIORITY on the assumption that the fact we are direct
2521         * reclaiming implies that kswapd is not keeping up and it is best to
2522         * do a batch of work at once. For memcg reclaim one check is made to
2523         * abort proportional reclaim if either the file or anon lru has already
2524         * dropped to zero at the first pass.
2525         */
2526        scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2527                         sc->priority == DEF_PRIORITY);
2528
2529        blk_start_plug(&plug);
2530        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2531                                        nr[LRU_INACTIVE_FILE]) {
2532                unsigned long nr_anon, nr_file, percentage;
2533                unsigned long nr_scanned;
2534
2535                for_each_evictable_lru(lru) {
2536                        if (nr[lru]) {
2537                                nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2538                                nr[lru] -= nr_to_scan;
2539
2540                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2541                                                            lruvec, memcg, sc);
2542                        }
2543                }
2544
2545                cond_resched();
2546
2547                if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2548                        continue;
2549
2550                /*
2551                 * For kswapd and memcg, reclaim at least the number of pages
2552                 * requested. Ensure that the anon and file LRUs are scanned
2553                 * proportionally what was requested by get_scan_count(). We
2554                 * stop reclaiming one LRU and reduce the amount scanning
2555                 * proportional to the original scan target.
2556                 */
2557                nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2558                nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2559
2560                /*
2561                 * It's just vindictive to attack the larger once the smaller
2562                 * has gone to zero.  And given the way we stop scanning the
2563                 * smaller below, this makes sure that we only make one nudge
2564                 * towards proportionality once we've got nr_to_reclaim.
2565                 */
2566                if (!nr_file || !nr_anon)
2567                        break;
2568
2569                if (nr_file > nr_anon) {
2570                        unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2571                                                targets[LRU_ACTIVE_ANON] + 1;
2572                        lru = LRU_BASE;
2573                        percentage = nr_anon * 100 / scan_target;
2574                } else {
2575                        unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2576                                                targets[LRU_ACTIVE_FILE] + 1;
2577                        lru = LRU_FILE;
2578                        percentage = nr_file * 100 / scan_target;
2579                }
2580
2581                /* Stop scanning the smaller of the LRU */
2582                nr[lru] = 0;
2583                nr[lru + LRU_ACTIVE] = 0;
2584
2585                /*
2586                 * Recalculate the other LRU scan count based on its original
2587                 * scan target and the percentage scanning already complete
2588                 */
2589                lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2590                nr_scanned = targets[lru] - nr[lru];
2591                nr[lru] = targets[lru] * (100 - percentage) / 100;
2592                nr[lru] -= min(nr[lru], nr_scanned);
2593
2594                lru += LRU_ACTIVE;
2595                nr_scanned = targets[lru] - nr[lru];
2596                nr[lru] = targets[lru] * (100 - percentage) / 100;
2597                nr[lru] -= min(nr[lru], nr_scanned);
2598
2599                scan_adjusted = true;
2600        }
2601        blk_finish_plug(&plug);
2602        sc->nr_reclaimed += nr_reclaimed;
2603
2604        /*
2605         * Even if we did not try to evict anon pages at all, we want to
2606         * rebalance the anon lru active/inactive ratio.
2607         */
2608        if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2609                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2610                                   sc, LRU_ACTIVE_ANON);
2611}
2612
2613/* Use reclaim/compaction for costly allocs or under memory pressure */
2614static bool in_reclaim_compaction(struct scan_control *sc)
2615{
2616        if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2617                        (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2618                         sc->priority < DEF_PRIORITY - 2))
2619                return true;
2620
2621        return false;
2622}
2623
2624/*
2625 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2626 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2627 * true if more pages should be reclaimed such that when the page allocator
2628 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2629 * It will give up earlier than that if there is difficulty reclaiming pages.
2630 */
2631static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2632                                        unsigned long nr_reclaimed,
2633                                        unsigned long nr_scanned,
2634                                        struct scan_control *sc)
2635{
2636        unsigned long pages_for_compaction;
2637        unsigned long inactive_lru_pages;
2638        int z;
2639
2640        /* If not in reclaim/compaction mode, stop */
2641        if (!in_reclaim_compaction(sc))
2642                return false;
2643
2644        /* Consider stopping depending on scan and reclaim activity */
2645        if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2646                /*
2647                 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2648                 * full LRU list has been scanned and we are still failing
2649                 * to reclaim pages. This full LRU scan is potentially
2650                 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2651                 */
2652                if (!nr_reclaimed && !nr_scanned)
2653                        return false;
2654        } else {
2655                /*
2656                 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2657                 * fail without consequence, stop if we failed to reclaim
2658                 * any pages from the last SWAP_CLUSTER_MAX number of
2659                 * pages that were scanned. This will return to the
2660                 * caller faster at the risk reclaim/compaction and
2661                 * the resulting allocation attempt fails
2662                 */
2663                if (!nr_reclaimed)
2664                        return false;
2665        }
2666
2667        /*
2668         * If we have not reclaimed enough pages for compaction and the
2669         * inactive lists are large enough, continue reclaiming
2670         */
2671        pages_for_compaction = compact_gap(sc->order);
2672        inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2673        if (get_nr_swap_pages() > 0)
2674                inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2675        if (sc->nr_reclaimed < pages_for_compaction &&
2676                        inactive_lru_pages > pages_for_compaction)
2677                return true;
2678
2679        /* If compaction would go ahead or the allocation would succeed, stop */
2680        for (z = 0; z <= sc->reclaim_idx; z++) {
2681                struct zone *zone = &pgdat->node_zones[z];
2682                if (!managed_zone(zone))
2683                        continue;
2684
2685                switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2686                case COMPACT_SUCCESS:
2687                case COMPACT_CONTINUE:
2688                        return false;
2689                default:
2690                        /* check next zone */
2691                        ;
2692                }
2693        }
2694        return true;
2695}
2696
2697static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2698{
2699        return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2700                (memcg && memcg_congested(pgdat, memcg));
2701}
2702
2703static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2704{
2705        struct reclaim_state *reclaim_state = current->reclaim_state;
2706        unsigned long nr_reclaimed, nr_scanned;
2707        bool reclaimable = false;
2708
2709        do {
2710                struct mem_cgroup *root = sc->target_mem_cgroup;
2711                struct mem_cgroup_reclaim_cookie reclaim = {
2712                        .pgdat = pgdat,
2713                        .priority = sc->priority,
2714                };
2715                unsigned long node_lru_pages = 0;
2716                struct mem_cgroup *memcg;
2717
2718                memset(&sc->nr, 0, sizeof(sc->nr));
2719
2720                nr_reclaimed = sc->nr_reclaimed;
2721                nr_scanned = sc->nr_scanned;
2722
2723                memcg = mem_cgroup_iter(root, NULL, &reclaim);
2724                do {
2725                        unsigned long lru_pages;
2726                        unsigned long reclaimed;
2727                        unsigned long scanned;
2728
2729                        switch (mem_cgroup_protected(root, memcg)) {
2730                        case MEMCG_PROT_MIN:
2731                                /*
2732                                 * Hard protection.
2733                                 * If there is no reclaimable memory, OOM.
2734                                 */
2735                                continue;
2736                        case MEMCG_PROT_LOW:
2737                                /*
2738                                 * Soft protection.
2739                                 * Respect the protection only as long as
2740                                 * there is an unprotected supply
2741                                 * of reclaimable memory from other cgroups.
2742                                 */
2743                                if (!sc->memcg_low_reclaim) {
2744                                        sc->memcg_low_skipped = 1;
2745                                        continue;
2746                                }
2747                                memcg_memory_event(memcg, MEMCG_LOW);
2748                                break;
2749                        case MEMCG_PROT_NONE:
2750                                break;
2751                        }
2752
2753                        reclaimed = sc->nr_reclaimed;
2754                        scanned = sc->nr_scanned;
2755                        shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2756                        node_lru_pages += lru_pages;
2757
2758                        shrink_slab(sc->gfp_mask, pgdat->node_id,
2759                                    memcg, sc->priority);
2760
2761                        /* Record the group's reclaim efficiency */
2762                        vmpressure(sc->gfp_mask, memcg, false,
2763                                   sc->nr_scanned - scanned,
2764                                   sc->nr_reclaimed - reclaimed);
2765
2766                        /*
2767                         * Direct reclaim and kswapd have to scan all memory
2768                         * cgroups to fulfill the overall scan target for the
2769                         * node.
2770                         *
2771                         * Limit reclaim, on the other hand, only cares about
2772                         * nr_to_reclaim pages to be reclaimed and it will
2773                         * retry with decreasing priority if one round over the
2774                         * whole hierarchy is not sufficient.
2775                         */
2776                        if (!global_reclaim(sc) &&
2777                                        sc->nr_reclaimed >= sc->nr_to_reclaim) {
2778                                mem_cgroup_iter_break(root, memcg);
2779                                break;
2780                        }
2781                } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2782
2783                if (reclaim_state) {
2784                        sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2785                        reclaim_state->reclaimed_slab = 0;
2786                }
2787
2788                /* Record the subtree's reclaim efficiency */
2789                vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2790                           sc->nr_scanned - nr_scanned,
2791                           sc->nr_reclaimed - nr_reclaimed);
2792
2793                if (sc->nr_reclaimed - nr_reclaimed)
2794                        reclaimable = true;
2795
2796                if (current_is_kswapd()) {
2797                        /*
2798                         * If reclaim is isolating dirty pages under writeback,
2799                         * it implies that the long-lived page allocation rate
2800                         * is exceeding the page laundering rate. Either the
2801                         * global limits are not being effective at throttling
2802                         * processes due to the page distribution throughout
2803                         * zones or there is heavy usage of a slow backing
2804                         * device. The only option is to throttle from reclaim
2805                         * context which is not ideal as there is no guarantee
2806                         * the dirtying process is throttled in the same way
2807                         * balance_dirty_pages() manages.
2808                         *
2809                         * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2810                         * count the number of pages under pages flagged for
2811                         * immediate reclaim and stall if any are encountered
2812                         * in the nr_immediate check below.
2813                         */
2814                        if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2815                                set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2816
2817                        /*
2818                         * Tag a node as congested if all the dirty pages
2819                         * scanned were backed by a congested BDI and
2820                         * wait_iff_congested will stall.
2821                         */
2822                        if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2823                                set_bit(PGDAT_CONGESTED, &pgdat->flags);
2824
2825                        /* Allow kswapd to start writing pages during reclaim.*/
2826                        if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2827                                set_bit(PGDAT_DIRTY, &pgdat->flags);
2828
2829                        /*
2830                         * If kswapd scans pages marked marked for immediate
2831                         * reclaim and under writeback (nr_immediate), it
2832                         * implies that pages are cycling through the LRU
2833                         * faster than they are written so also forcibly stall.
2834                         */
2835                        if (sc->nr.immediate)
2836                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2837                }
2838
2839                /*
2840                 * Legacy memcg will stall in page writeback so avoid forcibly
2841                 * stalling in wait_iff_congested().
2842                 */
2843                if (!global_reclaim(sc) && sane_reclaim(sc) &&
2844                    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2845                        set_memcg_congestion(pgdat, root, true);
2846
2847                /*
2848                 * Stall direct reclaim for IO completions if underlying BDIs
2849                 * and node is congested. Allow kswapd to continue until it
2850                 * starts encountering unqueued dirty pages or cycling through
2851                 * the LRU too quickly.
2852                 */
2853                if (!sc->hibernation_mode && !current_is_kswapd() &&
2854                   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2855                        wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2856
2857        } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2858                                         sc->nr_scanned - nr_scanned, sc));
2859
2860        /*
2861         * Kswapd gives up on balancing particular nodes after too
2862         * many failures to reclaim anything from them and goes to
2863         * sleep. On reclaim progress, reset the failure counter. A
2864         * successful direct reclaim run will revive a dormant kswapd.
2865         */
2866        if (reclaimable)
2867                pgdat->kswapd_failures = 0;
2868
2869        return reclaimable;
2870}
2871
2872/*
2873 * Returns true if compaction should go ahead for a costly-order request, or
2874 * the allocation would already succeed without compaction. Return false if we
2875 * should reclaim first.
2876 */
2877static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2878{
2879        unsigned long watermark;
2880        enum compact_result suitable;
2881
2882        suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2883        if (suitable == COMPACT_SUCCESS)
2884                /* Allocation should succeed already. Don't reclaim. */
2885                return true;
2886        if (suitable == COMPACT_SKIPPED)
2887                /* Compaction cannot yet proceed. Do reclaim. */
2888                return false;
2889
2890        /*
2891         * Compaction is already possible, but it takes time to run and there
2892         * are potentially other callers using the pages just freed. So proceed
2893         * with reclaim to make a buffer of free pages available to give
2894         * compaction a reasonable chance of completing and allocating the page.
2895         * Note that we won't actually reclaim the whole buffer in one attempt
2896         * as the target watermark in should_continue_reclaim() is lower. But if
2897         * we are already above the high+gap watermark, don't reclaim at all.
2898         */
2899        watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2900
2901        return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2902}
2903
2904/*
2905 * This is the direct reclaim path, for page-allocating processes.  We only
2906 * try to reclaim pages from zones which will satisfy the caller's allocation
2907 * request.
2908 *
2909 * If a zone is deemed to be full of pinned pages then just give it a light
2910 * scan then give up on it.
2911 */
2912static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2913{
2914        struct zoneref *z;
2915        struct zone *zone;
2916        unsigned long nr_soft_reclaimed;
2917        unsigned long nr_soft_scanned;
2918        gfp_t orig_mask;
2919        pg_data_t *last_pgdat = NULL;
2920
2921        /*
2922         * If the number of buffer_heads in the machine exceeds the maximum
2923         * allowed level, force direct reclaim to scan the highmem zone as
2924         * highmem pages could be pinning lowmem pages storing buffer_heads
2925         */
2926        orig_mask = sc->gfp_mask;
2927        if (buffer_heads_over_limit) {
2928                sc->gfp_mask |= __GFP_HIGHMEM;
2929                sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2930        }
2931
2932        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2933                                        sc->reclaim_idx, sc->nodemask) {
2934                /*
2935                 * Take care memory controller reclaiming has small influence
2936                 * to global LRU.
2937                 */
2938                if (global_reclaim(sc)) {
2939                        if (!cpuset_zone_allowed(zone,
2940                                                 GFP_KERNEL | __GFP_HARDWALL))
2941                                continue;
2942
2943                        /*
2944                         * If we already have plenty of memory free for
2945                         * compaction in this zone, don't free any more.
2946                         * Even though compaction is invoked for any
2947                         * non-zero order, only frequent costly order
2948                         * reclamation is disruptive enough to become a
2949                         * noticeable problem, like transparent huge
2950                         * page allocations.
2951                         */
2952                        if (IS_ENABLED(CONFIG_COMPACTION) &&
2953                            sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2954                            compaction_ready(zone, sc)) {
2955                                sc->compaction_ready = true;
2956                                continue;
2957                        }
2958
2959                        /*
2960                         * Shrink each node in the zonelist once. If the
2961                         * zonelist is ordered by zone (not the default) then a
2962                         * node may be shrunk multiple times but in that case
2963                         * the user prefers lower zones being preserved.
2964                         */
2965                        if (zone->zone_pgdat == last_pgdat)
2966                                continue;
2967
2968                        /*
2969                         * This steals pages from memory cgroups over softlimit
2970                         * and returns the number of reclaimed pages and
2971                         * scanned pages. This works for global memory pressure
2972                         * and balancing, not for a memcg's limit.
2973                         */
2974                        nr_soft_scanned = 0;
2975                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2976                                                sc->order, sc->gfp_mask,
2977                                                &nr_soft_scanned);
2978                        sc->nr_reclaimed += nr_soft_reclaimed;
2979                        sc->nr_scanned += nr_soft_scanned;
2980                        /* need some check for avoid more shrink_zone() */
2981                }
2982
2983                /* See comment about same check for global reclaim above */
2984                if (zone->zone_pgdat == last_pgdat)
2985                        continue;
2986                last_pgdat = zone->zone_pgdat;
2987                shrink_node(zone->zone_pgdat, sc);
2988        }
2989
2990        /*
2991         * Restore to original mask to avoid the impact on the caller if we
2992         * promoted it to __GFP_HIGHMEM.
2993         */
2994        sc->gfp_mask = orig_mask;
2995}
2996
2997static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2998{
2999        struct mem_cgroup *memcg;
3000
3001        memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3002        do {
3003                unsigned long refaults;
3004                struct lruvec *lruvec;
3005
3006                if (memcg)
3007                        refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3008                else
3009                        refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3010
3011                lruvec = mem_cgroup_lruvec(pgdat, memcg);
3012                lruvec->refaults = refaults;
3013        } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3014}
3015
3016/*
3017 * This is the main entry point to direct page reclaim.
3018 *
3019 * If a full scan of the inactive list fails to free enough memory then we
3020 * are "out of memory" and something needs to be killed.
3021 *
3022 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3023 * high - the zone may be full of dirty or under-writeback pages, which this
3024 * caller can't do much about.  We kick the writeback threads and take explicit
3025 * naps in the hope that some of these pages can be written.  But if the
3026 * allocating task holds filesystem locks which prevent writeout this might not
3027 * work, and the allocation attempt will fail.
3028 *
3029 * returns:     0, if no pages reclaimed
3030 *              else, the number of pages reclaimed
3031 */
3032static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3033                                          struct scan_control *sc)
3034{
3035        int initial_priority = sc->priority;
3036        pg_data_t *last_pgdat;
3037        struct zoneref *z;
3038        struct zone *zone;
3039retry:
3040        delayacct_freepages_start();
3041
3042        if (global_reclaim(sc))
3043                __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3044
3045        do {
3046                vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3047                                sc->priority);
3048                sc->nr_scanned = 0;
3049                shrink_zones(zonelist, sc);
3050
3051                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3052                        break;
3053
3054                if (sc->compaction_ready)
3055                        break;
3056
3057                /*
3058                 * If we're getting trouble reclaiming, start doing
3059                 * writepage even in laptop mode.
3060                 */
3061                if (sc->priority < DEF_PRIORITY - 2)
3062                        sc->may_writepage = 1;
3063        } while (--sc->priority >= 0);
3064
3065        last_pgdat = NULL;
3066        for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3067                                        sc->nodemask) {
3068                if (zone->zone_pgdat == last_pgdat)
3069                        continue;
3070                last_pgdat = zone->zone_pgdat;
3071                snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3072                set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3073        }
3074
3075        delayacct_freepages_end();
3076
3077        if (sc->nr_reclaimed)
3078                return sc->nr_reclaimed;
3079
3080        /* Aborted reclaim to try compaction? don't OOM, then */
3081        if (sc->compaction_ready)
3082                return 1;
3083
3084        /* Untapped cgroup reserves?  Don't OOM, retry. */
3085        if (sc->memcg_low_skipped) {
3086                sc->priority = initial_priority;
3087                sc->memcg_low_reclaim = 1;
3088                sc->memcg_low_skipped = 0;
3089                goto retry;
3090        }
3091
3092        return 0;
3093}
3094
3095static bool allow_direct_reclaim(pg_data_t *pgdat)
3096{
3097        struct zone *zone;
3098        unsigned long pfmemalloc_reserve = 0;
3099        unsigned long free_pages = 0;
3100        int i;
3101        bool wmark_ok;
3102
3103        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3104                return true;
3105
3106        for (i = 0; i <= ZONE_NORMAL; i++) {
3107                zone = &pgdat->node_zones[i];
3108                if (!managed_zone(zone))
3109                        continue;
3110
3111                if (!zone_reclaimable_pages(zone))
3112                        continue;
3113
3114                pfmemalloc_reserve += min_wmark_pages(zone);
3115                free_pages += zone_page_state(zone, NR_FREE_PAGES);
3116        }
3117
3118        /* If there are no reserves (unexpected config) then do not throttle */
3119        if (!pfmemalloc_reserve)
3120                return true;
3121
3122        wmark_ok = free_pages > pfmemalloc_reserve / 2;
3123
3124        /* kswapd must be awake if processes are being throttled */
3125        if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3126                pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3127                                                (enum zone_type)ZONE_NORMAL);
3128                wake_up_interruptible(&pgdat->kswapd_wait);
3129        }
3130
3131        return wmark_ok;
3132}
3133
3134/*
3135 * Throttle direct reclaimers if backing storage is backed by the network
3136 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3137 * depleted. kswapd will continue to make progress and wake the processes
3138 * when the low watermark is reached.
3139 *
3140 * Returns true if a fatal signal was delivered during throttling. If this
3141 * happens, the page allocator should not consider triggering the OOM killer.
3142 */
3143static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3144                                        nodemask_t *nodemask)
3145{
3146        struct zoneref *z;
3147        struct zone *zone;
3148        pg_data_t *pgdat = NULL;
3149
3150        /*
3151         * Kernel threads should not be throttled as they may be indirectly
3152         * responsible for cleaning pages necessary for reclaim to make forward
3153         * progress. kjournald for example may enter direct reclaim while
3154         * committing a transaction where throttling it could forcing other
3155         * processes to block on log_wait_commit().
3156         */
3157        if (current->flags & PF_KTHREAD)
3158                goto out;
3159
3160        /*
3161         * If a fatal signal is pending, this process should not throttle.
3162         * It should return quickly so it can exit and free its memory
3163         */
3164        if (fatal_signal_pending(current))
3165                goto out;
3166
3167        /*
3168         * Check if the pfmemalloc reserves are ok by finding the first node
3169         * with a usable ZONE_NORMAL or lower zone. The expectation is that
3170         * GFP_KERNEL will be required for allocating network buffers when
3171         * swapping over the network so ZONE_HIGHMEM is unusable.
3172         *
3173         * Throttling is based on the first usable node and throttled processes
3174         * wait on a queue until kswapd makes progress and wakes them. There
3175         * is an affinity then between processes waking up and where reclaim
3176         * progress has been made assuming the process wakes on the same node.
3177         * More importantly, processes running on remote nodes will not compete
3178         * for remote pfmemalloc reserves and processes on different nodes
3179         * should make reasonable progress.
3180         */
3181        for_each_zone_zonelist_nodemask(zone, z, zonelist,
3182                                        gfp_zone(gfp_mask), nodemask) {
3183                if (zone_idx(zone) > ZONE_NORMAL)
3184                        continue;
3185
3186                /* Throttle based on the first usable node */
3187                pgdat = zone->zone_pgdat;
3188                if (allow_direct_reclaim(pgdat))
3189                        goto out;
3190                break;
3191        }
3192
3193        /* If no zone was usable by the allocation flags then do not throttle */
3194        if (!pgdat)
3195                goto out;
3196
3197        /* Account for the throttling */
3198        count_vm_event(PGSCAN_DIRECT_THROTTLE);
3199
3200        /*
3201         * If the caller cannot enter the filesystem, it's possible that it
3202         * is due to the caller holding an FS lock or performing a journal
3203         * transaction in the case of a filesystem like ext[3|4]. In this case,
3204         * it is not safe to block on pfmemalloc_wait as kswapd could be
3205         * blocked waiting on the same lock. Instead, throttle for up to a
3206         * second before continuing.
3207         */
3208        if (!(gfp_mask & __GFP_FS)) {
3209                wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3210                        allow_direct_reclaim(pgdat), HZ);
3211
3212                goto check_pending;
3213        }
3214
3215        /* Throttle until kswapd wakes the process */
3216        wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3217                allow_direct_reclaim(pgdat));
3218
3219check_pending:
3220        if (fatal_signal_pending(current))
3221                return true;
3222
3223out:
3224        return false;
3225}
3226
3227unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3228                                gfp_t gfp_mask, nodemask_t *nodemask)
3229{
3230        unsigned long nr_reclaimed;
3231        struct scan_control sc = {
3232                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3233                .gfp_mask = current_gfp_context(gfp_mask),
3234                .reclaim_idx = gfp_zone(gfp_mask),
3235                .order = order,
3236                .nodemask = nodemask,
3237                .priority = DEF_PRIORITY,
3238                .may_writepage = !laptop_mode,
3239                .may_unmap = 1,
3240                .may_swap = 1,
3241        };
3242
3243        /*
3244         * scan_control uses s8 fields for order, priority, and reclaim_idx.
3245         * Confirm they are large enough for max values.
3246         */
3247        BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3248        BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3249        BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3250
3251        /*
3252         * Do not enter reclaim if fatal signal was delivered while throttled.
3253         * 1 is returned so that the page allocator does not OOM kill at this
3254         * point.
3255         */
3256        if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3257                return 1;
3258
3259        trace_mm_vmscan_direct_reclaim_begin(order,
3260                                sc.may_writepage,
3261                                sc.gfp_mask,
3262                                sc.reclaim_idx);
3263
3264        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3265
3266        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3267
3268        return nr_reclaimed;
3269}
3270
3271#ifdef CONFIG_MEMCG
3272
3273unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3274                                                gfp_t gfp_mask, bool noswap,
3275                                                pg_data_t *pgdat,
3276                                                unsigned long *nr_scanned)
3277{
3278        struct scan_control sc = {
3279                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3280                .target_mem_cgroup = memcg,
3281                .may_writepage = !laptop_mode,
3282                .may_unmap = 1,
3283                .reclaim_idx = MAX_NR_ZONES - 1,
3284                .may_swap = !noswap,
3285        };
3286        unsigned long lru_pages;
3287
3288        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3289                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3290
3291        trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3292                                                      sc.may_writepage,
3293                                                      sc.gfp_mask,
3294                                                      sc.reclaim_idx);
3295
3296        /*
3297         * NOTE: Although we can get the priority field, using it
3298         * here is not a good idea, since it limits the pages we can scan.
3299         * if we don't reclaim here, the shrink_node from balance_pgdat
3300         * will pick up pages from other mem cgroup's as well. We hack
3301         * the priority and make it zero.
3302         */
3303        shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3304
3305        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3306
3307        *nr_scanned = sc.nr_scanned;
3308        return sc.nr_reclaimed;
3309}
3310
3311unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3312                                           unsigned long nr_pages,
3313                                           gfp_t gfp_mask,
3314                                           bool may_swap)
3315{
3316        struct zonelist *zonelist;
3317        unsigned long nr_reclaimed;
3318        unsigned long pflags;
3319        int nid;
3320        unsigned int noreclaim_flag;
3321        struct scan_control sc = {
3322                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3323                .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3324                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3325                .reclaim_idx = MAX_NR_ZONES - 1,
3326                .target_mem_cgroup = memcg,
3327                .priority = DEF_PRIORITY,
3328                .may_writepage = !laptop_mode,
3329                .may_unmap = 1,
3330                .may_swap = may_swap,
3331        };
3332
3333        /*
3334         * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3335         * take care of from where we get pages. So the node where we start the
3336         * scan does not need to be the current node.
3337         */
3338        nid = mem_cgroup_select_victim_node(memcg);
3339
3340        zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3341
3342        trace_mm_vmscan_memcg_reclaim_begin(0,
3343                                            sc.may_writepage,
3344                                            sc.gfp_mask,
3345                                            sc.reclaim_idx);
3346
3347        psi_memstall_enter(&pflags);
3348        noreclaim_flag = memalloc_noreclaim_save();
3349
3350        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3351
3352        memalloc_noreclaim_restore(noreclaim_flag);
3353        psi_memstall_leave(&pflags);
3354
3355        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3356
3357        return nr_reclaimed;
3358}
3359#endif
3360
3361static void age_active_anon(struct pglist_data *pgdat,
3362                                struct scan_control *sc)
3363{
3364        struct mem_cgroup *memcg;
3365
3366        if (!total_swap_pages)
3367                return;
3368
3369        memcg = mem_cgroup_iter(NULL, NULL, NULL);
3370        do {
3371                struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3372
3373                if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3374                        shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3375                                           sc, LRU_ACTIVE_ANON);
3376
3377                memcg = mem_cgroup_iter(NULL, memcg, NULL);
3378        } while (memcg);
3379}
3380
3381/*
3382 * Returns true if there is an eligible zone balanced for the request order
3383 * and classzone_idx
3384 */
3385static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3386{
3387        int i;
3388        unsigned long mark = -1;
3389        struct zone *zone;
3390
3391        for (i = 0; i <= classzone_idx; i++) {
3392                zone = pgdat->node_zones + i;
3393
3394                if (!managed_zone(zone))
3395                        continue;
3396
3397                mark = high_wmark_pages(zone);
3398                if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3399                        return true;
3400        }
3401
3402        /*
3403         * If a node has no populated zone within classzone_idx, it does not
3404         * need balancing by definition. This can happen if a zone-restricted
3405         * allocation tries to wake a remote kswapd.
3406         */
3407        if (mark == -1)
3408                return true;
3409
3410        return false;
3411}
3412
3413/* Clear pgdat state for congested, dirty or under writeback. */
3414static void clear_pgdat_congested(pg_data_t *pgdat)
3415{
3416        clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3417        clear_bit(PGDAT_DIRTY, &pgdat->flags);
3418        clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3419}
3420
3421/*
3422 * Prepare kswapd for sleeping. This verifies that there are no processes
3423 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3424 *
3425 * Returns true if kswapd is ready to sleep
3426 */
3427static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3428{
3429        /*
3430         * The throttled processes are normally woken up in balance_pgdat() as
3431         * soon as allow_direct_reclaim() is true. But there is a potential
3432         * race between when kswapd checks the watermarks and a process gets
3433         * throttled. There is also a potential race if processes get
3434         * throttled, kswapd wakes, a large process exits thereby balancing the
3435         * zones, which causes kswapd to exit balance_pgdat() before reaching
3436         * the wake up checks. If kswapd is going to sleep, no process should
3437         * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3438         * the wake up is premature, processes will wake kswapd and get
3439         * throttled again. The difference from wake ups in balance_pgdat() is
3440         * that here we are under prepare_to_wait().
3441         */
3442        if (waitqueue_active(&pgdat->pfmemalloc_wait))
3443                wake_up_all(&pgdat->pfmemalloc_wait);
3444
3445        /* Hopeless node, leave it to direct reclaim */
3446        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3447                return true;
3448
3449        if (pgdat_balanced(pgdat, order, classzone_idx)) {
3450                clear_pgdat_congested(pgdat);
3451                return true;
3452        }
3453
3454        return false;
3455}
3456
3457/*
3458 * kswapd shrinks a node of pages that are at or below the highest usable
3459 * zone that is currently unbalanced.
3460 *
3461 * Returns true if kswapd scanned at least the requested number of pages to
3462 * reclaim or if the lack of progress was due to pages under writeback.
3463 * This is used to determine if the scanning priority needs to be raised.
3464 */
3465static bool kswapd_shrink_node(pg_data_t *pgdat,
3466                               struct scan_control *sc)
3467{
3468        struct zone *zone;
3469        int z;
3470
3471        /* Reclaim a number of pages proportional to the number of zones */
3472        sc->nr_to_reclaim = 0;
3473        for (z = 0; z <= sc->reclaim_idx; z++) {
3474                zone = pgdat->node_zones + z;
3475                if (!managed_zone(zone))
3476                        continue;
3477
3478                sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3479        }
3480
3481        /*
3482         * Historically care was taken to put equal pressure on all zones but
3483         * now pressure is applied based on node LRU order.
3484         */
3485        shrink_node(pgdat, sc);
3486
3487        /*
3488         * Fragmentation may mean that the system cannot be rebalanced for
3489         * high-order allocations. If twice the allocation size has been
3490         * reclaimed then recheck watermarks only at order-0 to prevent
3491         * excessive reclaim. Assume that a process requested a high-order
3492         * can direct reclaim/compact.
3493         */
3494        if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3495                sc->order = 0;
3496
3497        return sc->nr_scanned >= sc->nr_to_reclaim;
3498}
3499
3500/*
3501 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3502 * that are eligible for use by the caller until at least one zone is
3503 * balanced.
3504 *
3505 * Returns the order kswapd finished reclaiming at.
3506 *
3507 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3508 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3509 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3510 * or lower is eligible for reclaim until at least one usable zone is
3511 * balanced.
3512 */
3513static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3514{
3515        int i;
3516        unsigned long nr_soft_reclaimed;
3517        unsigned long nr_soft_scanned;
3518        unsigned long pflags;
3519        struct zone *zone;
3520        struct scan_control sc = {
3521                .gfp_mask = GFP_KERNEL,
3522                .order = order,
3523                .priority = DEF_PRIORITY,
3524                .may_writepage = !laptop_mode,
3525                .may_unmap = 1,
3526                .may_swap = 1,
3527        };
3528
3529        psi_memstall_enter(&pflags);
3530        __fs_reclaim_acquire();
3531
3532        count_vm_event(PAGEOUTRUN);
3533
3534        do {
3535                unsigned long nr_reclaimed = sc.nr_reclaimed;
3536                bool raise_priority = true;
3537                bool ret;
3538
3539                sc.reclaim_idx = classzone_idx;
3540
3541                /*
3542                 * If the number of buffer_heads exceeds the maximum allowed
3543                 * then consider reclaiming from all zones. This has a dual
3544                 * purpose -- on 64-bit systems it is expected that
3545                 * buffer_heads are stripped during active rotation. On 32-bit
3546                 * systems, highmem pages can pin lowmem memory and shrinking
3547                 * buffers can relieve lowmem pressure. Reclaim may still not
3548                 * go ahead if all eligible zones for the original allocation
3549                 * request are balanced to avoid excessive reclaim from kswapd.
3550                 */
3551                if (buffer_heads_over_limit) {
3552                        for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3553                                zone = pgdat->node_zones + i;
3554                                if (!managed_zone(zone))
3555                                        continue;
3556
3557                                sc.reclaim_idx = i;
3558                                break;
3559                        }
3560                }
3561
3562                /*
3563                 * Only reclaim if there are no eligible zones. Note that
3564                 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3565                 * have adjusted it.
3566                 */
3567                if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3568                        goto out;
3569
3570                /*
3571                 * Do some background aging of the anon list, to give
3572                 * pages a chance to be referenced before reclaiming. All
3573                 * pages are rotated regardless of classzone as this is
3574                 * about consistent aging.
3575                 */
3576                age_active_anon(pgdat, &sc);
3577
3578                /*
3579                 * If we're getting trouble reclaiming, start doing writepage
3580                 * even in laptop mode.
3581                 */
3582                if (sc.priority < DEF_PRIORITY - 2)
3583                        sc.may_writepage = 1;
3584
3585                /* Call soft limit reclaim before calling shrink_node. */
3586                sc.nr_scanned = 0;
3587                nr_soft_scanned = 0;
3588                nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3589                                                sc.gfp_mask, &nr_soft_scanned);
3590                sc.nr_reclaimed += nr_soft_reclaimed;
3591
3592                /*
3593                 * There should be no need to raise the scanning priority if
3594                 * enough pages are already being scanned that that high
3595                 * watermark would be met at 100% efficiency.
3596                 */
3597                if (kswapd_shrink_node(pgdat, &sc))
3598                        raise_priority = false;
3599
3600                /*
3601                 * If the low watermark is met there is no need for processes
3602                 * to be throttled on pfmemalloc_wait as they should not be
3603                 * able to safely make forward progress. Wake them
3604                 */
3605                if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3606                                allow_direct_reclaim(pgdat))
3607                        wake_up_all(&pgdat->pfmemalloc_wait);
3608
3609                /* Check if kswapd should be suspending */
3610                __fs_reclaim_release();
3611                ret = try_to_freeze();
3612                __fs_reclaim_acquire();
3613                if (ret || kthread_should_stop())
3614                        break;
3615
3616                /*
3617                 * Raise priority if scanning rate is too low or there was no
3618                 * progress in reclaiming pages
3619                 */
3620                nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3621                if (raise_priority || !nr_reclaimed)
3622                        sc.priority--;
3623        } while (sc.priority >= 1);
3624
3625        if (!sc.nr_reclaimed)
3626                pgdat->kswapd_failures++;
3627
3628out:
3629        snapshot_refaults(NULL, pgdat);
3630        __fs_reclaim_release();
3631        psi_memstall_leave(&pflags);
3632        /*
3633         * Return the order kswapd stopped reclaiming at as
3634         * prepare_kswapd_sleep() takes it into account. If another caller
3635         * entered the allocator slow path while kswapd was awake, order will
3636         * remain at the higher level.
3637         */
3638        return sc.order;
3639}
3640
3641/*
3642 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3643 * allocation request woke kswapd for. When kswapd has not woken recently,
3644 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3645 * given classzone and returns it or the highest classzone index kswapd
3646 * was recently woke for.
3647 */
3648static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3649                                           enum zone_type classzone_idx)
3650{
3651        if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3652                return classzone_idx;
3653
3654        return max(pgdat->kswapd_classzone_idx, classzone_idx);
3655}
3656
3657static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3658                                unsigned int classzone_idx)
3659{
3660        long remaining = 0;
3661        DEFINE_WAIT(wait);
3662
3663        if (freezing(current) || kthread_should_stop())
3664                return;
3665
3666        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3667
3668        /*
3669         * Try to sleep for a short interval. Note that kcompactd will only be
3670         * woken if it is possible to sleep for a short interval. This is
3671         * deliberate on the assumption that if reclaim cannot keep an
3672         * eligible zone balanced that it's also unlikely that compaction will
3673         * succeed.
3674         */
3675        if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3676                /*
3677                 * Compaction records what page blocks it recently failed to
3678                 * isolate pages from and skips them in the future scanning.
3679                 * When kswapd is going to sleep, it is reasonable to assume
3680                 * that pages and compaction may succeed so reset the cache.
3681                 */
3682                reset_isolation_suitable(pgdat);
3683
3684                /*
3685                 * We have freed the memory, now we should compact it to make
3686                 * allocation of the requested order possible.
3687                 */
3688                wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3689
3690                remaining = schedule_timeout(HZ/10);
3691
3692                /*
3693                 * If woken prematurely then reset kswapd_classzone_idx and
3694                 * order. The values will either be from a wakeup request or
3695                 * the previous request that slept prematurely.
3696                 */
3697                if (remaining) {
3698                        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3699                        pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3700                }
3701
3702                finish_wait(&pgdat->kswapd_wait, &wait);
3703                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3704        }
3705
3706        /*
3707         * After a short sleep, check if it was a premature sleep. If not, then
3708         * go fully to sleep until explicitly woken up.
3709         */
3710        if (!remaining &&
3711            prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3712                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3713
3714                /*
3715                 * vmstat counters are not perfectly accurate and the estimated
3716                 * value for counters such as NR_FREE_PAGES can deviate from the
3717                 * true value by nr_online_cpus * threshold. To avoid the zone
3718                 * watermarks being breached while under pressure, we reduce the
3719                 * per-cpu vmstat threshold while kswapd is awake and restore
3720                 * them before going back to sleep.
3721                 */
3722                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3723
3724                if (!kthread_should_stop())
3725                        schedule();
3726
3727                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3728        } else {
3729                if (remaining)
3730                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3731                else
3732                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3733        }
3734        finish_wait(&pgdat->kswapd_wait, &wait);
3735}
3736
3737/*
3738 * The background pageout daemon, started as a kernel thread
3739 * from the init process.
3740 *
3741 * This basically trickles out pages so that we have _some_
3742 * free memory available even if there is no other activity
3743 * that frees anything up. This is needed for things like routing
3744 * etc, where we otherwise might have all activity going on in
3745 * asynchronous contexts that cannot page things out.
3746 *
3747 * If there are applications that are active memory-allocators
3748 * (most normal use), this basically shouldn't matter.
3749 */
3750static int kswapd(void *p)
3751{
3752        unsigned int alloc_order, reclaim_order;
3753        unsigned int classzone_idx = MAX_NR_ZONES - 1;
3754        pg_data_t *pgdat = (pg_data_t*)p;
3755        struct task_struct *tsk = current;
3756
3757        struct reclaim_state reclaim_state = {
3758                .reclaimed_slab = 0,
3759        };
3760        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3761
3762        if (!cpumask_empty(cpumask))
3763                set_cpus_allowed_ptr(tsk, cpumask);
3764        current->reclaim_state = &reclaim_state;
3765
3766        /*
3767         * Tell the memory management that we're a "memory allocator",
3768         * and that if we need more memory we should get access to it
3769         * regardless (see "__alloc_pages()"). "kswapd" should
3770         * never get caught in the normal page freeing logic.
3771         *
3772         * (Kswapd normally doesn't need memory anyway, but sometimes
3773         * you need a small amount of memory in order to be able to
3774         * page out something else, and this flag essentially protects
3775         * us from recursively trying to free more memory as we're
3776         * trying to free the first piece of memory in the first place).
3777         */
3778        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3779        set_freezable();
3780
3781        pgdat->kswapd_order = 0;
3782        pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3783        for ( ; ; ) {
3784                bool ret;
3785
3786                alloc_order = reclaim_order = pgdat->kswapd_order;
3787                classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3788
3789kswapd_try_sleep:
3790                kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3791                                        classzone_idx);
3792
3793                /* Read the new order and classzone_idx */
3794                alloc_order = reclaim_order = pgdat->kswapd_order;
3795                classzone_idx = kswapd_classzone_idx(pgdat, 0);
3796                pgdat->kswapd_order = 0;
3797                pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3798
3799                ret = try_to_freeze();
3800                if (kthread_should_stop())
3801                        break;
3802
3803                /*
3804                 * We can speed up thawing tasks if we don't call balance_pgdat
3805                 * after returning from the refrigerator
3806                 */
3807                if (ret)
3808                        continue;
3809
3810                /*
3811                 * Reclaim begins at the requested order but if a high-order
3812                 * reclaim fails then kswapd falls back to reclaiming for
3813                 * order-0. If that happens, kswapd will consider sleeping
3814                 * for the order it finished reclaiming at (reclaim_order)
3815                 * but kcompactd is woken to compact for the original
3816                 * request (alloc_order).
3817                 */
3818                trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3819                                                alloc_order);
3820                reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3821                if (reclaim_order < alloc_order)
3822                        goto kswapd_try_sleep;
3823        }
3824
3825        tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3826        current->reclaim_state = NULL;
3827
3828        return 0;
3829}
3830
3831/*
3832 * A zone is low on free memory or too fragmented for high-order memory.  If
3833 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3834 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3835 * has failed or is not needed, still wake up kcompactd if only compaction is
3836 * needed.
3837 */
3838void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3839                   enum zone_type classzone_idx)
3840{
3841        pg_data_t *pgdat;
3842
3843        if (!managed_zone(zone))
3844                return;
3845
3846        if (!cpuset_zone_allowed(zone, gfp_flags))
3847                return;
3848        pgdat = zone->zone_pgdat;
3849        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3850                                                           classzone_idx);
3851        pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3852        if (!waitqueue_active(&pgdat->kswapd_wait))
3853                return;
3854
3855        /* Hopeless node, leave it to direct reclaim if possible */
3856        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3857            pgdat_balanced(pgdat, order, classzone_idx)) {
3858                /*
3859                 * There may be plenty of free memory available, but it's too
3860                 * fragmented for high-order allocations.  Wake up kcompactd
3861                 * and rely on compaction_suitable() to determine if it's
3862                 * needed.  If it fails, it will defer subsequent attempts to
3863                 * ratelimit its work.
3864                 */
3865                if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3866                        wakeup_kcompactd(pgdat, order, classzone_idx);
3867                return;
3868        }
3869
3870        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3871                                      gfp_flags);
3872        wake_up_interruptible(&pgdat->kswapd_wait);
3873}
3874
3875#ifdef CONFIG_HIBERNATION
3876/*
3877 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3878 * freed pages.
3879 *
3880 * Rather than trying to age LRUs the aim is to preserve the overall
3881 * LRU order by reclaiming preferentially
3882 * inactive > active > active referenced > active mapped
3883 */
3884unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3885{
3886        struct reclaim_state reclaim_state;
3887        struct scan_control sc = {
3888                .nr_to_reclaim = nr_to_reclaim,
3889                .gfp_mask = GFP_HIGHUSER_MOVABLE,
3890                .reclaim_idx = MAX_NR_ZONES - 1,
3891                .priority = DEF_PRIORITY,
3892                .may_writepage = 1,
3893                .may_unmap = 1,
3894                .may_swap = 1,
3895                .hibernation_mode = 1,
3896        };
3897        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3898        struct task_struct *p = current;
3899        unsigned long nr_reclaimed;
3900        unsigned int noreclaim_flag;
3901
3902        fs_reclaim_acquire(sc.gfp_mask);
3903        noreclaim_flag = memalloc_noreclaim_save();
3904        reclaim_state.reclaimed_slab = 0;
3905        p->reclaim_state = &reclaim_state;
3906
3907        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3908
3909        p->reclaim_state = NULL;
3910        memalloc_noreclaim_restore(noreclaim_flag);
3911        fs_reclaim_release(sc.gfp_mask);
3912
3913        return nr_reclaimed;
3914}
3915#endif /* CONFIG_HIBERNATION */
3916
3917/* It's optimal to keep kswapds on the same CPUs as their memory, but
3918   not required for correctness.  So if the last cpu in a node goes
3919   away, we get changed to run anywhere: as the first one comes back,
3920   restore their cpu bindings. */
3921static int kswapd_cpu_online(unsigned int cpu)
3922{
3923        int nid;
3924
3925        for_each_node_state(nid, N_MEMORY) {
3926                pg_data_t *pgdat = NODE_DATA(nid);
3927                const struct cpumask *mask;
3928
3929                mask = cpumask_of_node(pgdat->node_id);
3930
3931                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3932                        /* One of our CPUs online: restore mask */
3933                        set_cpus_allowed_ptr(pgdat->kswapd, mask);
3934        }
3935        return 0;
3936}
3937
3938/*
3939 * This kswapd start function will be called by init and node-hot-add.
3940 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3941 */
3942int kswapd_run(int nid)
3943{
3944        pg_data_t *pgdat = NODE_DATA(nid);
3945        int ret = 0;
3946
3947        if (pgdat->kswapd)
3948                return 0;
3949
3950        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3951        if (IS_ERR(pgdat->kswapd)) {
3952                /* failure at boot is fatal */
3953                BUG_ON(system_state < SYSTEM_RUNNING);
3954                pr_err("Failed to start kswapd on node %d\n", nid);
3955                ret = PTR_ERR(pgdat->kswapd);
3956                pgdat->kswapd = NULL;
3957        }
3958        return ret;
3959}
3960
3961/*
3962 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3963 * hold mem_hotplug_begin/end().
3964 */
3965void kswapd_stop(int nid)
3966{
3967        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3968
3969        if (kswapd) {
3970                kthread_stop(kswapd);
3971                NODE_DATA(nid)->kswapd = NULL;
3972        }
3973}
3974
3975static int __init kswapd_init(void)
3976{
3977        int nid, ret;
3978
3979        swap_setup();
3980        for_each_node_state(nid, N_MEMORY)
3981                kswapd_run(nid);
3982        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3983                                        "mm/vmscan:online", kswapd_cpu_online,
3984                                        NULL);
3985        WARN_ON(ret < 0);
3986        return 0;
3987}
3988
3989module_init(kswapd_init)
3990
3991#ifdef CONFIG_NUMA
3992/*
3993 * Node reclaim mode
3994 *
3995 * If non-zero call node_reclaim when the number of free pages falls below
3996 * the watermarks.
3997 */
3998int node_reclaim_mode __read_mostly;
3999
4000#define RECLAIM_OFF 0
4001#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
4002#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
4003#define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
4004
4005/*
4006 * Priority for NODE_RECLAIM. This determines the fraction of pages
4007 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4008 * a zone.
4009 */
4010#define NODE_RECLAIM_PRIORITY 4
4011
4012/*
4013 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4014 * occur.
4015 */
4016int sysctl_min_unmapped_ratio = 1;
4017
4018/*
4019 * If the number of slab pages in a zone grows beyond this percentage then
4020 * slab reclaim needs to occur.
4021 */
4022int sysctl_min_slab_ratio = 5;
4023
4024static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4025{
4026        unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4027        unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4028                node_page_state(pgdat, NR_ACTIVE_FILE);
4029
4030        /*
4031         * It's possible for there to be more file mapped pages than
4032         * accounted for by the pages on the file LRU lists because
4033         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4034         */
4035        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4036}
4037
4038/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4039static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4040{
4041        unsigned long nr_pagecache_reclaimable;
4042        unsigned long delta = 0;
4043
4044        /*
4045         * If RECLAIM_UNMAP is set, then all file pages are considered
4046         * potentially reclaimable. Otherwise, we have to worry about
4047         * pages like swapcache and node_unmapped_file_pages() provides
4048         * a better estimate
4049         */
4050        if (node_reclaim_mode & RECLAIM_UNMAP)
4051                nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4052        else
4053                nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4054
4055        /* If we can't clean pages, remove dirty pages from consideration */
4056        if (!(node_reclaim_mode & RECLAIM_WRITE))
4057                delta += node_page_state(pgdat, NR_FILE_DIRTY);
4058
4059        /* Watch for any possible underflows due to delta */
4060        if (unlikely(delta > nr_pagecache_reclaimable))
4061                delta = nr_pagecache_reclaimable;
4062
4063        return nr_pagecache_reclaimable - delta;
4064}
4065
4066/*
4067 * Try to free up some pages from this node through reclaim.
4068 */
4069static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4070{
4071        /* Minimum pages needed in order to stay on node */
4072        const unsigned long nr_pages = 1 << order;
4073        struct task_struct *p = current;
4074        struct reclaim_state reclaim_state;
4075        unsigned int noreclaim_flag;
4076        struct scan_control sc = {
4077                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4078                .gfp_mask = current_gfp_context(gfp_mask),
4079                .order = order,
4080                .priority = NODE_RECLAIM_PRIORITY,
4081                .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4082                .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4083                .may_swap = 1,
4084                .reclaim_idx = gfp_zone(gfp_mask),
4085        };
4086
4087        cond_resched();
4088        fs_reclaim_acquire(sc.gfp_mask);
4089        /*
4090         * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4091         * and we also need to be able to write out pages for RECLAIM_WRITE
4092         * and RECLAIM_UNMAP.
4093         */
4094        noreclaim_flag = memalloc_noreclaim_save();
4095        p->flags |= PF_SWAPWRITE;
4096        reclaim_state.reclaimed_slab = 0;
4097        p->reclaim_state = &reclaim_state;
4098
4099        if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4100                /*
4101                 * Free memory by calling shrink node with increasing
4102                 * priorities until we have enough memory freed.
4103                 */
4104                do {
4105                        shrink_node(pgdat, &sc);
4106                } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4107        }
4108
4109        p->reclaim_state = NULL;
4110        current->flags &= ~PF_SWAPWRITE;
4111        memalloc_noreclaim_restore(noreclaim_flag);
4112        fs_reclaim_release(sc.gfp_mask);
4113        return sc.nr_reclaimed >= nr_pages;
4114}
4115
4116int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4117{
4118        int ret;
4119
4120        /*
4121         * Node reclaim reclaims unmapped file backed pages and
4122         * slab pages if we are over the defined limits.
4123         *
4124         * A small portion of unmapped file backed pages is needed for
4125         * file I/O otherwise pages read by file I/O will be immediately
4126         * thrown out if the node is overallocated. So we do not reclaim
4127         * if less than a specified percentage of the node is used by
4128         * unmapped file backed pages.
4129         */
4130        if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4131            node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4132                return NODE_RECLAIM_FULL;
4133
4134        /*
4135         * Do not scan if the allocation should not be delayed.
4136         */
4137        if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4138                return NODE_RECLAIM_NOSCAN;
4139
4140        /*
4141         * Only run node reclaim on the local node or on nodes that do not
4142         * have associated processors. This will favor the local processor
4143         * over remote processors and spread off node memory allocations
4144         * as wide as possible.
4145         */
4146        if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4147                return NODE_RECLAIM_NOSCAN;
4148
4149        if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4150                return NODE_RECLAIM_NOSCAN;
4151
4152        ret = __node_reclaim(pgdat, gfp_mask, order);
4153        clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4154
4155        if (!ret)
4156                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4157
4158        return ret;
4159}
4160#endif
4161
4162/*
4163 * page_evictable - test whether a page is evictable
4164 * @page: the page to test
4165 *
4166 * Test whether page is evictable--i.e., should be placed on active/inactive
4167 * lists vs unevictable list.
4168 *
4169 * Reasons page might not be evictable:
4170 * (1) page's mapping marked unevictable
4171 * (2) page is part of an mlocked VMA
4172 *
4173 */
4174int page_evictable(struct page *page)
4175{
4176        int ret;
4177
4178        /* Prevent address_space of inode and swap cache from being freed */
4179        rcu_read_lock();
4180        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4181        rcu_read_unlock();
4182        return ret;
4183}
4184
4185#ifdef CONFIG_SHMEM
4186/**
4187 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4188 * @pages:      array of pages to check
4189 * @nr_pages:   number of pages to check
4190 *
4191 * Checks pages for evictability and moves them to the appropriate lru list.
4192 *
4193 * This function is only used for SysV IPC SHM_UNLOCK.
4194 */
4195void check_move_unevictable_pages(struct page **pages, int nr_pages)
4196{
4197        struct lruvec *lruvec;
4198        struct pglist_data *pgdat = NULL;
4199        int pgscanned = 0;
4200        int pgrescued = 0;
4201        int i;
4202
4203        for (i = 0; i < nr_pages; i++) {
4204                struct page *page = pages[i];
4205                struct pglist_data *pagepgdat = page_pgdat(page);
4206
4207                pgscanned++;
4208                if (pagepgdat != pgdat) {
4209                        if (pgdat)
4210                                spin_unlock_irq(&pgdat->lru_lock);
4211                        pgdat = pagepgdat;
4212                        spin_lock_irq(&pgdat->lru_lock);
4213                }
4214                lruvec = mem_cgroup_page_lruvec(page, pgdat);
4215
4216                if (!PageLRU(page) || !PageUnevictable(page))
4217                        continue;
4218
4219                if (page_evictable(page)) {
4220                        enum lru_list lru = page_lru_base_type(page);
4221
4222                        VM_BUG_ON_PAGE(PageActive(page), page);
4223                        ClearPageUnevictable(page);
4224                        del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4225                        add_page_to_lru_list(page, lruvec, lru);
4226                        pgrescued++;
4227                }
4228        }
4229
4230        if (pgdat) {
4231                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4232                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4233                spin_unlock_irq(&pgdat->lru_lock);
4234        }
4235}
4236#endif /* CONFIG_SHMEM */
4237