linux/net/core/dev.c
<<
>>
Prefs
   1/*
   2 *      NET3    Protocol independent device support routines.
   3 *
   4 *              This program is free software; you can redistribute it and/or
   5 *              modify it under the terms of the GNU General Public License
   6 *              as published by the Free Software Foundation; either version
   7 *              2 of the License, or (at your option) any later version.
   8 *
   9 *      Derived from the non IP parts of dev.c 1.0.19
  10 *              Authors:        Ross Biro
  11 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *      Additional Authors:
  15 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *              David Hinds <dahinds@users.sourceforge.net>
  18 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *              Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *      Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *                                      to 2 if register_netdev gets called
  25 *                                      before net_dev_init & also removed a
  26 *                                      few lines of code in the process.
  27 *              Alan Cox        :       device private ioctl copies fields back.
  28 *              Alan Cox        :       Transmit queue code does relevant
  29 *                                      stunts to keep the queue safe.
  30 *              Alan Cox        :       Fixed double lock.
  31 *              Alan Cox        :       Fixed promisc NULL pointer trap
  32 *              ????????        :       Support the full private ioctl range
  33 *              Alan Cox        :       Moved ioctl permission check into
  34 *                                      drivers
  35 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  36 *              Alan Cox        :       100 backlog just doesn't cut it when
  37 *                                      you start doing multicast video 8)
  38 *              Alan Cox        :       Rewrote net_bh and list manager.
  39 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  40 *              Alan Cox        :       Took out transmit every packet pass
  41 *                                      Saved a few bytes in the ioctl handler
  42 *              Alan Cox        :       Network driver sets packet type before
  43 *                                      calling netif_rx. Saves a function
  44 *                                      call a packet.
  45 *              Alan Cox        :       Hashed net_bh()
  46 *              Richard Kooijman:       Timestamp fixes.
  47 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  48 *              Alan Cox        :       Device lock protection.
  49 *              Alan Cox        :       Fixed nasty side effect of device close
  50 *                                      changes.
  51 *              Rudi Cilibrasi  :       Pass the right thing to
  52 *                                      set_mac_address()
  53 *              Dave Miller     :       32bit quantity for the device lock to
  54 *                                      make it work out on a Sparc.
  55 *              Bjorn Ekwall    :       Added KERNELD hack.
  56 *              Alan Cox        :       Cleaned up the backlog initialise.
  57 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  58 *                                      1 device.
  59 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  60 *                                      is no device open function.
  61 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  62 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  63 *              Cyrus Durgin    :       Cleaned for KMOD
  64 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  65 *                                      A network device unload needs to purge
  66 *                                      the backlog queue.
  67 *      Paul Rusty Russell      :       SIOCSIFNAME
  68 *              Pekka Riikonen  :       Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *                                      indefinitely on dev->refcnt
  71 *              J Hadi Salim    :       - Backlog queue sampling
  72 *                                      - netif_rx() feedback
  73 */
  74
  75#include <linux/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
  84#include <linux/sched/mm.h>
  85#include <linux/mutex.h>
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/skbuff.h>
  97#include <linux/bpf.h>
  98#include <linux/bpf_trace.h>
  99#include <net/net_namespace.h>
 100#include <net/sock.h>
 101#include <net/busy_poll.h>
 102#include <linux/rtnetlink.h>
 103#include <linux/stat.h>
 104#include <net/dst.h>
 105#include <net/dst_metadata.h>
 106#include <net/pkt_sched.h>
 107#include <net/pkt_cls.h>
 108#include <net/checksum.h>
 109#include <net/xfrm.h>
 110#include <linux/highmem.h>
 111#include <linux/init.h>
 112#include <linux/module.h>
 113#include <linux/netpoll.h>
 114#include <linux/rcupdate.h>
 115#include <linux/delay.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 126#include <net/mpls.h>
 127#include <linux/ipv6.h>
 128#include <linux/in.h>
 129#include <linux/jhash.h>
 130#include <linux/random.h>
 131#include <trace/events/napi.h>
 132#include <trace/events/net.h>
 133#include <trace/events/skb.h>
 134#include <linux/pci.h>
 135#include <linux/inetdevice.h>
 136#include <linux/cpu_rmap.h>
 137#include <linux/static_key.h>
 138#include <linux/hashtable.h>
 139#include <linux/vmalloc.h>
 140#include <linux/if_macvlan.h>
 141#include <linux/errqueue.h>
 142#include <linux/hrtimer.h>
 143#include <linux/netfilter_ingress.h>
 144#include <linux/crash_dump.h>
 145#include <linux/sctp.h>
 146#include <net/udp_tunnel.h>
 147#include <linux/net_namespace.h>
 148
 149#include "net-sysfs.h"
 150
 151#define MAX_GRO_SKBS 8
 152
 153/* This should be increased if a protocol with a bigger head is added. */
 154#define GRO_MAX_HEAD (MAX_HEADER + 128)
 155
 156static DEFINE_SPINLOCK(ptype_lock);
 157static DEFINE_SPINLOCK(offload_lock);
 158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 159struct list_head ptype_all __read_mostly;       /* Taps */
 160static struct list_head offload_base __read_mostly;
 161
 162static int netif_rx_internal(struct sk_buff *skb);
 163static int call_netdevice_notifiers_info(unsigned long val,
 164                                         struct netdev_notifier_info *info);
 165static struct napi_struct *napi_by_id(unsigned int napi_id);
 166
 167/*
 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 169 * semaphore.
 170 *
 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 172 *
 173 * Writers must hold the rtnl semaphore while they loop through the
 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
 175 * actual updates.  This allows pure readers to access the list even
 176 * while a writer is preparing to update it.
 177 *
 178 * To put it another way, dev_base_lock is held for writing only to
 179 * protect against pure readers; the rtnl semaphore provides the
 180 * protection against other writers.
 181 *
 182 * See, for example usages, register_netdevice() and
 183 * unregister_netdevice(), which must be called with the rtnl
 184 * semaphore held.
 185 */
 186DEFINE_RWLOCK(dev_base_lock);
 187EXPORT_SYMBOL(dev_base_lock);
 188
 189static DEFINE_MUTEX(ifalias_mutex);
 190
 191/* protects napi_hash addition/deletion and napi_gen_id */
 192static DEFINE_SPINLOCK(napi_hash_lock);
 193
 194static unsigned int napi_gen_id = NR_CPUS;
 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 196
 197static seqcount_t devnet_rename_seq;
 198
 199static inline void dev_base_seq_inc(struct net *net)
 200{
 201        while (++net->dev_base_seq == 0)
 202                ;
 203}
 204
 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 206{
 207        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 208
 209        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 210}
 211
 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 213{
 214        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 215}
 216
 217static inline void rps_lock(struct softnet_data *sd)
 218{
 219#ifdef CONFIG_RPS
 220        spin_lock(&sd->input_pkt_queue.lock);
 221#endif
 222}
 223
 224static inline void rps_unlock(struct softnet_data *sd)
 225{
 226#ifdef CONFIG_RPS
 227        spin_unlock(&sd->input_pkt_queue.lock);
 228#endif
 229}
 230
 231/* Device list insertion */
 232static void list_netdevice(struct net_device *dev)
 233{
 234        struct net *net = dev_net(dev);
 235
 236        ASSERT_RTNL();
 237
 238        write_lock_bh(&dev_base_lock);
 239        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 240        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 241        hlist_add_head_rcu(&dev->index_hlist,
 242                           dev_index_hash(net, dev->ifindex));
 243        write_unlock_bh(&dev_base_lock);
 244
 245        dev_base_seq_inc(net);
 246}
 247
 248/* Device list removal
 249 * caller must respect a RCU grace period before freeing/reusing dev
 250 */
 251static void unlist_netdevice(struct net_device *dev)
 252{
 253        ASSERT_RTNL();
 254
 255        /* Unlink dev from the device chain */
 256        write_lock_bh(&dev_base_lock);
 257        list_del_rcu(&dev->dev_list);
 258        hlist_del_rcu(&dev->name_hlist);
 259        hlist_del_rcu(&dev->index_hlist);
 260        write_unlock_bh(&dev_base_lock);
 261
 262        dev_base_seq_inc(dev_net(dev));
 263}
 264
 265/*
 266 *      Our notifier list
 267 */
 268
 269static RAW_NOTIFIER_HEAD(netdev_chain);
 270
 271/*
 272 *      Device drivers call our routines to queue packets here. We empty the
 273 *      queue in the local softnet handler.
 274 */
 275
 276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 277EXPORT_PER_CPU_SYMBOL(softnet_data);
 278
 279#ifdef CONFIG_LOCKDEP
 280/*
 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 282 * according to dev->type
 283 */
 284static const unsigned short netdev_lock_type[] = {
 285         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 286         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 287         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 288         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 289         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 290         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 291         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 292         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 293         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 294         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 295         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 296         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 297         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 298         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 299         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 300
 301static const char *const netdev_lock_name[] = {
 302        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 303        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 304        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 305        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 306        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 307        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 308        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 309        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 310        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 311        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 312        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 313        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 314        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 315        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 316        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 317
 318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 320
 321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 322{
 323        int i;
 324
 325        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 326                if (netdev_lock_type[i] == dev_type)
 327                        return i;
 328        /* the last key is used by default */
 329        return ARRAY_SIZE(netdev_lock_type) - 1;
 330}
 331
 332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 333                                                 unsigned short dev_type)
 334{
 335        int i;
 336
 337        i = netdev_lock_pos(dev_type);
 338        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 339                                   netdev_lock_name[i]);
 340}
 341
 342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 343{
 344        int i;
 345
 346        i = netdev_lock_pos(dev->type);
 347        lockdep_set_class_and_name(&dev->addr_list_lock,
 348                                   &netdev_addr_lock_key[i],
 349                                   netdev_lock_name[i]);
 350}
 351#else
 352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 353                                                 unsigned short dev_type)
 354{
 355}
 356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 357{
 358}
 359#endif
 360
 361/*******************************************************************************
 362 *
 363 *              Protocol management and registration routines
 364 *
 365 *******************************************************************************/
 366
 367
 368/*
 369 *      Add a protocol ID to the list. Now that the input handler is
 370 *      smarter we can dispense with all the messy stuff that used to be
 371 *      here.
 372 *
 373 *      BEWARE!!! Protocol handlers, mangling input packets,
 374 *      MUST BE last in hash buckets and checking protocol handlers
 375 *      MUST start from promiscuous ptype_all chain in net_bh.
 376 *      It is true now, do not change it.
 377 *      Explanation follows: if protocol handler, mangling packet, will
 378 *      be the first on list, it is not able to sense, that packet
 379 *      is cloned and should be copied-on-write, so that it will
 380 *      change it and subsequent readers will get broken packet.
 381 *                                                      --ANK (980803)
 382 */
 383
 384static inline struct list_head *ptype_head(const struct packet_type *pt)
 385{
 386        if (pt->type == htons(ETH_P_ALL))
 387                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 388        else
 389                return pt->dev ? &pt->dev->ptype_specific :
 390                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 391}
 392
 393/**
 394 *      dev_add_pack - add packet handler
 395 *      @pt: packet type declaration
 396 *
 397 *      Add a protocol handler to the networking stack. The passed &packet_type
 398 *      is linked into kernel lists and may not be freed until it has been
 399 *      removed from the kernel lists.
 400 *
 401 *      This call does not sleep therefore it can not
 402 *      guarantee all CPU's that are in middle of receiving packets
 403 *      will see the new packet type (until the next received packet).
 404 */
 405
 406void dev_add_pack(struct packet_type *pt)
 407{
 408        struct list_head *head = ptype_head(pt);
 409
 410        spin_lock(&ptype_lock);
 411        list_add_rcu(&pt->list, head);
 412        spin_unlock(&ptype_lock);
 413}
 414EXPORT_SYMBOL(dev_add_pack);
 415
 416/**
 417 *      __dev_remove_pack        - remove packet handler
 418 *      @pt: packet type declaration
 419 *
 420 *      Remove a protocol handler that was previously added to the kernel
 421 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 422 *      from the kernel lists and can be freed or reused once this function
 423 *      returns.
 424 *
 425 *      The packet type might still be in use by receivers
 426 *      and must not be freed until after all the CPU's have gone
 427 *      through a quiescent state.
 428 */
 429void __dev_remove_pack(struct packet_type *pt)
 430{
 431        struct list_head *head = ptype_head(pt);
 432        struct packet_type *pt1;
 433
 434        spin_lock(&ptype_lock);
 435
 436        list_for_each_entry(pt1, head, list) {
 437                if (pt == pt1) {
 438                        list_del_rcu(&pt->list);
 439                        goto out;
 440                }
 441        }
 442
 443        pr_warn("dev_remove_pack: %p not found\n", pt);
 444out:
 445        spin_unlock(&ptype_lock);
 446}
 447EXPORT_SYMBOL(__dev_remove_pack);
 448
 449/**
 450 *      dev_remove_pack  - remove packet handler
 451 *      @pt: packet type declaration
 452 *
 453 *      Remove a protocol handler that was previously added to the kernel
 454 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 455 *      from the kernel lists and can be freed or reused once this function
 456 *      returns.
 457 *
 458 *      This call sleeps to guarantee that no CPU is looking at the packet
 459 *      type after return.
 460 */
 461void dev_remove_pack(struct packet_type *pt)
 462{
 463        __dev_remove_pack(pt);
 464
 465        synchronize_net();
 466}
 467EXPORT_SYMBOL(dev_remove_pack);
 468
 469
 470/**
 471 *      dev_add_offload - register offload handlers
 472 *      @po: protocol offload declaration
 473 *
 474 *      Add protocol offload handlers to the networking stack. The passed
 475 *      &proto_offload is linked into kernel lists and may not be freed until
 476 *      it has been removed from the kernel lists.
 477 *
 478 *      This call does not sleep therefore it can not
 479 *      guarantee all CPU's that are in middle of receiving packets
 480 *      will see the new offload handlers (until the next received packet).
 481 */
 482void dev_add_offload(struct packet_offload *po)
 483{
 484        struct packet_offload *elem;
 485
 486        spin_lock(&offload_lock);
 487        list_for_each_entry(elem, &offload_base, list) {
 488                if (po->priority < elem->priority)
 489                        break;
 490        }
 491        list_add_rcu(&po->list, elem->list.prev);
 492        spin_unlock(&offload_lock);
 493}
 494EXPORT_SYMBOL(dev_add_offload);
 495
 496/**
 497 *      __dev_remove_offload     - remove offload handler
 498 *      @po: packet offload declaration
 499 *
 500 *      Remove a protocol offload handler that was previously added to the
 501 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 502 *      is removed from the kernel lists and can be freed or reused once this
 503 *      function returns.
 504 *
 505 *      The packet type might still be in use by receivers
 506 *      and must not be freed until after all the CPU's have gone
 507 *      through a quiescent state.
 508 */
 509static void __dev_remove_offload(struct packet_offload *po)
 510{
 511        struct list_head *head = &offload_base;
 512        struct packet_offload *po1;
 513
 514        spin_lock(&offload_lock);
 515
 516        list_for_each_entry(po1, head, list) {
 517                if (po == po1) {
 518                        list_del_rcu(&po->list);
 519                        goto out;
 520                }
 521        }
 522
 523        pr_warn("dev_remove_offload: %p not found\n", po);
 524out:
 525        spin_unlock(&offload_lock);
 526}
 527
 528/**
 529 *      dev_remove_offload       - remove packet offload handler
 530 *      @po: packet offload declaration
 531 *
 532 *      Remove a packet offload handler that was previously added to the kernel
 533 *      offload handlers by dev_add_offload(). The passed &offload_type is
 534 *      removed from the kernel lists and can be freed or reused once this
 535 *      function returns.
 536 *
 537 *      This call sleeps to guarantee that no CPU is looking at the packet
 538 *      type after return.
 539 */
 540void dev_remove_offload(struct packet_offload *po)
 541{
 542        __dev_remove_offload(po);
 543
 544        synchronize_net();
 545}
 546EXPORT_SYMBOL(dev_remove_offload);
 547
 548/******************************************************************************
 549 *
 550 *                    Device Boot-time Settings Routines
 551 *
 552 ******************************************************************************/
 553
 554/* Boot time configuration table */
 555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 556
 557/**
 558 *      netdev_boot_setup_add   - add new setup entry
 559 *      @name: name of the device
 560 *      @map: configured settings for the device
 561 *
 562 *      Adds new setup entry to the dev_boot_setup list.  The function
 563 *      returns 0 on error and 1 on success.  This is a generic routine to
 564 *      all netdevices.
 565 */
 566static int netdev_boot_setup_add(char *name, struct ifmap *map)
 567{
 568        struct netdev_boot_setup *s;
 569        int i;
 570
 571        s = dev_boot_setup;
 572        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 573                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 574                        memset(s[i].name, 0, sizeof(s[i].name));
 575                        strlcpy(s[i].name, name, IFNAMSIZ);
 576                        memcpy(&s[i].map, map, sizeof(s[i].map));
 577                        break;
 578                }
 579        }
 580
 581        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 582}
 583
 584/**
 585 * netdev_boot_setup_check      - check boot time settings
 586 * @dev: the netdevice
 587 *
 588 * Check boot time settings for the device.
 589 * The found settings are set for the device to be used
 590 * later in the device probing.
 591 * Returns 0 if no settings found, 1 if they are.
 592 */
 593int netdev_boot_setup_check(struct net_device *dev)
 594{
 595        struct netdev_boot_setup *s = dev_boot_setup;
 596        int i;
 597
 598        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 599                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 600                    !strcmp(dev->name, s[i].name)) {
 601                        dev->irq = s[i].map.irq;
 602                        dev->base_addr = s[i].map.base_addr;
 603                        dev->mem_start = s[i].map.mem_start;
 604                        dev->mem_end = s[i].map.mem_end;
 605                        return 1;
 606                }
 607        }
 608        return 0;
 609}
 610EXPORT_SYMBOL(netdev_boot_setup_check);
 611
 612
 613/**
 614 * netdev_boot_base     - get address from boot time settings
 615 * @prefix: prefix for network device
 616 * @unit: id for network device
 617 *
 618 * Check boot time settings for the base address of device.
 619 * The found settings are set for the device to be used
 620 * later in the device probing.
 621 * Returns 0 if no settings found.
 622 */
 623unsigned long netdev_boot_base(const char *prefix, int unit)
 624{
 625        const struct netdev_boot_setup *s = dev_boot_setup;
 626        char name[IFNAMSIZ];
 627        int i;
 628
 629        sprintf(name, "%s%d", prefix, unit);
 630
 631        /*
 632         * If device already registered then return base of 1
 633         * to indicate not to probe for this interface
 634         */
 635        if (__dev_get_by_name(&init_net, name))
 636                return 1;
 637
 638        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 639                if (!strcmp(name, s[i].name))
 640                        return s[i].map.base_addr;
 641        return 0;
 642}
 643
 644/*
 645 * Saves at boot time configured settings for any netdevice.
 646 */
 647int __init netdev_boot_setup(char *str)
 648{
 649        int ints[5];
 650        struct ifmap map;
 651
 652        str = get_options(str, ARRAY_SIZE(ints), ints);
 653        if (!str || !*str)
 654                return 0;
 655
 656        /* Save settings */
 657        memset(&map, 0, sizeof(map));
 658        if (ints[0] > 0)
 659                map.irq = ints[1];
 660        if (ints[0] > 1)
 661                map.base_addr = ints[2];
 662        if (ints[0] > 2)
 663                map.mem_start = ints[3];
 664        if (ints[0] > 3)
 665                map.mem_end = ints[4];
 666
 667        /* Add new entry to the list */
 668        return netdev_boot_setup_add(str, &map);
 669}
 670
 671__setup("netdev=", netdev_boot_setup);
 672
 673/*******************************************************************************
 674 *
 675 *                          Device Interface Subroutines
 676 *
 677 *******************************************************************************/
 678
 679/**
 680 *      dev_get_iflink  - get 'iflink' value of a interface
 681 *      @dev: targeted interface
 682 *
 683 *      Indicates the ifindex the interface is linked to.
 684 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 685 */
 686
 687int dev_get_iflink(const struct net_device *dev)
 688{
 689        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 690                return dev->netdev_ops->ndo_get_iflink(dev);
 691
 692        return dev->ifindex;
 693}
 694EXPORT_SYMBOL(dev_get_iflink);
 695
 696/**
 697 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 698 *      @dev: targeted interface
 699 *      @skb: The packet.
 700 *
 701 *      For better visibility of tunnel traffic OVS needs to retrieve
 702 *      egress tunnel information for a packet. Following API allows
 703 *      user to get this info.
 704 */
 705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 706{
 707        struct ip_tunnel_info *info;
 708
 709        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 710                return -EINVAL;
 711
 712        info = skb_tunnel_info_unclone(skb);
 713        if (!info)
 714                return -ENOMEM;
 715        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 716                return -EINVAL;
 717
 718        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 719}
 720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 721
 722/**
 723 *      __dev_get_by_name       - find a device by its name
 724 *      @net: the applicable net namespace
 725 *      @name: name to find
 726 *
 727 *      Find an interface by name. Must be called under RTNL semaphore
 728 *      or @dev_base_lock. If the name is found a pointer to the device
 729 *      is returned. If the name is not found then %NULL is returned. The
 730 *      reference counters are not incremented so the caller must be
 731 *      careful with locks.
 732 */
 733
 734struct net_device *__dev_get_by_name(struct net *net, const char *name)
 735{
 736        struct net_device *dev;
 737        struct hlist_head *head = dev_name_hash(net, name);
 738
 739        hlist_for_each_entry(dev, head, name_hlist)
 740                if (!strncmp(dev->name, name, IFNAMSIZ))
 741                        return dev;
 742
 743        return NULL;
 744}
 745EXPORT_SYMBOL(__dev_get_by_name);
 746
 747/**
 748 * dev_get_by_name_rcu  - find a device by its name
 749 * @net: the applicable net namespace
 750 * @name: name to find
 751 *
 752 * Find an interface by name.
 753 * If the name is found a pointer to the device is returned.
 754 * If the name is not found then %NULL is returned.
 755 * The reference counters are not incremented so the caller must be
 756 * careful with locks. The caller must hold RCU lock.
 757 */
 758
 759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 760{
 761        struct net_device *dev;
 762        struct hlist_head *head = dev_name_hash(net, name);
 763
 764        hlist_for_each_entry_rcu(dev, head, name_hlist)
 765                if (!strncmp(dev->name, name, IFNAMSIZ))
 766                        return dev;
 767
 768        return NULL;
 769}
 770EXPORT_SYMBOL(dev_get_by_name_rcu);
 771
 772/**
 773 *      dev_get_by_name         - find a device by its name
 774 *      @net: the applicable net namespace
 775 *      @name: name to find
 776 *
 777 *      Find an interface by name. This can be called from any
 778 *      context and does its own locking. The returned handle has
 779 *      the usage count incremented and the caller must use dev_put() to
 780 *      release it when it is no longer needed. %NULL is returned if no
 781 *      matching device is found.
 782 */
 783
 784struct net_device *dev_get_by_name(struct net *net, const char *name)
 785{
 786        struct net_device *dev;
 787
 788        rcu_read_lock();
 789        dev = dev_get_by_name_rcu(net, name);
 790        if (dev)
 791                dev_hold(dev);
 792        rcu_read_unlock();
 793        return dev;
 794}
 795EXPORT_SYMBOL(dev_get_by_name);
 796
 797/**
 798 *      __dev_get_by_index - find a device by its ifindex
 799 *      @net: the applicable net namespace
 800 *      @ifindex: index of device
 801 *
 802 *      Search for an interface by index. Returns %NULL if the device
 803 *      is not found or a pointer to the device. The device has not
 804 *      had its reference counter increased so the caller must be careful
 805 *      about locking. The caller must hold either the RTNL semaphore
 806 *      or @dev_base_lock.
 807 */
 808
 809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 810{
 811        struct net_device *dev;
 812        struct hlist_head *head = dev_index_hash(net, ifindex);
 813
 814        hlist_for_each_entry(dev, head, index_hlist)
 815                if (dev->ifindex == ifindex)
 816                        return dev;
 817
 818        return NULL;
 819}
 820EXPORT_SYMBOL(__dev_get_by_index);
 821
 822/**
 823 *      dev_get_by_index_rcu - find a device by its ifindex
 824 *      @net: the applicable net namespace
 825 *      @ifindex: index of device
 826 *
 827 *      Search for an interface by index. Returns %NULL if the device
 828 *      is not found or a pointer to the device. The device has not
 829 *      had its reference counter increased so the caller must be careful
 830 *      about locking. The caller must hold RCU lock.
 831 */
 832
 833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 834{
 835        struct net_device *dev;
 836        struct hlist_head *head = dev_index_hash(net, ifindex);
 837
 838        hlist_for_each_entry_rcu(dev, head, index_hlist)
 839                if (dev->ifindex == ifindex)
 840                        return dev;
 841
 842        return NULL;
 843}
 844EXPORT_SYMBOL(dev_get_by_index_rcu);
 845
 846
 847/**
 848 *      dev_get_by_index - find a device by its ifindex
 849 *      @net: the applicable net namespace
 850 *      @ifindex: index of device
 851 *
 852 *      Search for an interface by index. Returns NULL if the device
 853 *      is not found or a pointer to the device. The device returned has
 854 *      had a reference added and the pointer is safe until the user calls
 855 *      dev_put to indicate they have finished with it.
 856 */
 857
 858struct net_device *dev_get_by_index(struct net *net, int ifindex)
 859{
 860        struct net_device *dev;
 861
 862        rcu_read_lock();
 863        dev = dev_get_by_index_rcu(net, ifindex);
 864        if (dev)
 865                dev_hold(dev);
 866        rcu_read_unlock();
 867        return dev;
 868}
 869EXPORT_SYMBOL(dev_get_by_index);
 870
 871/**
 872 *      dev_get_by_napi_id - find a device by napi_id
 873 *      @napi_id: ID of the NAPI struct
 874 *
 875 *      Search for an interface by NAPI ID. Returns %NULL if the device
 876 *      is not found or a pointer to the device. The device has not had
 877 *      its reference counter increased so the caller must be careful
 878 *      about locking. The caller must hold RCU lock.
 879 */
 880
 881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 882{
 883        struct napi_struct *napi;
 884
 885        WARN_ON_ONCE(!rcu_read_lock_held());
 886
 887        if (napi_id < MIN_NAPI_ID)
 888                return NULL;
 889
 890        napi = napi_by_id(napi_id);
 891
 892        return napi ? napi->dev : NULL;
 893}
 894EXPORT_SYMBOL(dev_get_by_napi_id);
 895
 896/**
 897 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 898 *      @net: network namespace
 899 *      @name: a pointer to the buffer where the name will be stored.
 900 *      @ifindex: the ifindex of the interface to get the name from.
 901 *
 902 *      The use of raw_seqcount_begin() and cond_resched() before
 903 *      retrying is required as we want to give the writers a chance
 904 *      to complete when CONFIG_PREEMPT is not set.
 905 */
 906int netdev_get_name(struct net *net, char *name, int ifindex)
 907{
 908        struct net_device *dev;
 909        unsigned int seq;
 910
 911retry:
 912        seq = raw_seqcount_begin(&devnet_rename_seq);
 913        rcu_read_lock();
 914        dev = dev_get_by_index_rcu(net, ifindex);
 915        if (!dev) {
 916                rcu_read_unlock();
 917                return -ENODEV;
 918        }
 919
 920        strcpy(name, dev->name);
 921        rcu_read_unlock();
 922        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 923                cond_resched();
 924                goto retry;
 925        }
 926
 927        return 0;
 928}
 929
 930/**
 931 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 932 *      @net: the applicable net namespace
 933 *      @type: media type of device
 934 *      @ha: hardware address
 935 *
 936 *      Search for an interface by MAC address. Returns NULL if the device
 937 *      is not found or a pointer to the device.
 938 *      The caller must hold RCU or RTNL.
 939 *      The returned device has not had its ref count increased
 940 *      and the caller must therefore be careful about locking
 941 *
 942 */
 943
 944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 945                                       const char *ha)
 946{
 947        struct net_device *dev;
 948
 949        for_each_netdev_rcu(net, dev)
 950                if (dev->type == type &&
 951                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 952                        return dev;
 953
 954        return NULL;
 955}
 956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 957
 958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 959{
 960        struct net_device *dev;
 961
 962        ASSERT_RTNL();
 963        for_each_netdev(net, dev)
 964                if (dev->type == type)
 965                        return dev;
 966
 967        return NULL;
 968}
 969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 970
 971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 972{
 973        struct net_device *dev, *ret = NULL;
 974
 975        rcu_read_lock();
 976        for_each_netdev_rcu(net, dev)
 977                if (dev->type == type) {
 978                        dev_hold(dev);
 979                        ret = dev;
 980                        break;
 981                }
 982        rcu_read_unlock();
 983        return ret;
 984}
 985EXPORT_SYMBOL(dev_getfirstbyhwtype);
 986
 987/**
 988 *      __dev_get_by_flags - find any device with given flags
 989 *      @net: the applicable net namespace
 990 *      @if_flags: IFF_* values
 991 *      @mask: bitmask of bits in if_flags to check
 992 *
 993 *      Search for any interface with the given flags. Returns NULL if a device
 994 *      is not found or a pointer to the device. Must be called inside
 995 *      rtnl_lock(), and result refcount is unchanged.
 996 */
 997
 998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 999                                      unsigned short mask)
1000{
1001        struct net_device *dev, *ret;
1002
1003        ASSERT_RTNL();
1004
1005        ret = NULL;
1006        for_each_netdev(net, dev) {
1007                if (((dev->flags ^ if_flags) & mask) == 0) {
1008                        ret = dev;
1009                        break;
1010                }
1011        }
1012        return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 *      dev_valid_name - check if name is okay for network device
1018 *      @name: name string
1019 *
1020 *      Network device names need to be valid file names to
1021 *      to allow sysfs to work.  We also disallow any kind of
1022 *      whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026        if (*name == '\0')
1027                return false;
1028        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                return false;
1030        if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                return false;
1032
1033        while (*name) {
1034                if (*name == '/' || *name == ':' || isspace(*name))
1035                        return false;
1036                name++;
1037        }
1038        return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 *      __dev_alloc_name - allocate a name for a device
1044 *      @net: network namespace to allocate the device name in
1045 *      @name: name format string
1046 *      @buf:  scratch buffer and result name string
1047 *
1048 *      Passed a format string - eg "lt%d" it will try and find a suitable
1049 *      id. It scans list of devices to build up a free map, then chooses
1050 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051 *      while allocating the name and adding the device in order to avoid
1052 *      duplicates.
1053 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 *      Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059        int i = 0;
1060        const char *p;
1061        const int max_netdevices = 8*PAGE_SIZE;
1062        unsigned long *inuse;
1063        struct net_device *d;
1064
1065        if (!dev_valid_name(name))
1066                return -EINVAL;
1067
1068        p = strchr(name, '%');
1069        if (p) {
1070                /*
1071                 * Verify the string as this thing may have come from
1072                 * the user.  There must be either one "%d" and no other "%"
1073                 * characters.
1074                 */
1075                if (p[1] != 'd' || strchr(p + 2, '%'))
1076                        return -EINVAL;
1077
1078                /* Use one page as a bit array of possible slots */
1079                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                if (!inuse)
1081                        return -ENOMEM;
1082
1083                for_each_netdev(net, d) {
1084                        if (!sscanf(d->name, name, &i))
1085                                continue;
1086                        if (i < 0 || i >= max_netdevices)
1087                                continue;
1088
1089                        /*  avoid cases where sscanf is not exact inverse of printf */
1090                        snprintf(buf, IFNAMSIZ, name, i);
1091                        if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                set_bit(i, inuse);
1093                }
1094
1095                i = find_first_zero_bit(inuse, max_netdevices);
1096                free_page((unsigned long) inuse);
1097        }
1098
1099        snprintf(buf, IFNAMSIZ, name, i);
1100        if (!__dev_get_by_name(net, buf))
1101                return i;
1102
1103        /* It is possible to run out of possible slots
1104         * when the name is long and there isn't enough space left
1105         * for the digits, or if all bits are used.
1106         */
1107        return -ENFILE;
1108}
1109
1110static int dev_alloc_name_ns(struct net *net,
1111                             struct net_device *dev,
1112                             const char *name)
1113{
1114        char buf[IFNAMSIZ];
1115        int ret;
1116
1117        BUG_ON(!net);
1118        ret = __dev_alloc_name(net, name, buf);
1119        if (ret >= 0)
1120                strlcpy(dev->name, buf, IFNAMSIZ);
1121        return ret;
1122}
1123
1124/**
1125 *      dev_alloc_name - allocate a name for a device
1126 *      @dev: device
1127 *      @name: name format string
1128 *
1129 *      Passed a format string - eg "lt%d" it will try and find a suitable
1130 *      id. It scans list of devices to build up a free map, then chooses
1131 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132 *      while allocating the name and adding the device in order to avoid
1133 *      duplicates.
1134 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 *      Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
1140        return dev_alloc_name_ns(dev_net(dev), dev, name);
1141}
1142EXPORT_SYMBOL(dev_alloc_name);
1143
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                       const char *name)
1146{
1147        BUG_ON(!net);
1148
1149        if (!dev_valid_name(name))
1150                return -EINVAL;
1151
1152        if (strchr(name, '%'))
1153                return dev_alloc_name_ns(net, dev, name);
1154        else if (__dev_get_by_name(net, name))
1155                return -EEXIST;
1156        else if (dev->name != name)
1157                strlcpy(dev->name, name, IFNAMSIZ);
1158
1159        return 0;
1160}
1161EXPORT_SYMBOL(dev_get_valid_name);
1162
1163/**
1164 *      dev_change_name - change name of a device
1165 *      @dev: device
1166 *      @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 *      Change name of a device, can pass format strings "eth%d".
1169 *      for wildcarding.
1170 */
1171int dev_change_name(struct net_device *dev, const char *newname)
1172{
1173        unsigned char old_assign_type;
1174        char oldname[IFNAMSIZ];
1175        int err = 0;
1176        int ret;
1177        struct net *net;
1178
1179        ASSERT_RTNL();
1180        BUG_ON(!dev_net(dev));
1181
1182        net = dev_net(dev);
1183        if (dev->flags & IFF_UP)
1184                return -EBUSY;
1185
1186        write_seqcount_begin(&devnet_rename_seq);
1187
1188        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                write_seqcount_end(&devnet_rename_seq);
1190                return 0;
1191        }
1192
1193        memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195        err = dev_get_valid_name(net, dev, newname);
1196        if (err < 0) {
1197                write_seqcount_end(&devnet_rename_seq);
1198                return err;
1199        }
1200
1201        if (oldname[0] && !strchr(oldname, '%'))
1202                netdev_info(dev, "renamed from %s\n", oldname);
1203
1204        old_assign_type = dev->name_assign_type;
1205        dev->name_assign_type = NET_NAME_RENAMED;
1206
1207rollback:
1208        ret = device_rename(&dev->dev, dev->name);
1209        if (ret) {
1210                memcpy(dev->name, oldname, IFNAMSIZ);
1211                dev->name_assign_type = old_assign_type;
1212                write_seqcount_end(&devnet_rename_seq);
1213                return ret;
1214        }
1215
1216        write_seqcount_end(&devnet_rename_seq);
1217
1218        netdev_adjacent_rename_links(dev, oldname);
1219
1220        write_lock_bh(&dev_base_lock);
1221        hlist_del_rcu(&dev->name_hlist);
1222        write_unlock_bh(&dev_base_lock);
1223
1224        synchronize_rcu();
1225
1226        write_lock_bh(&dev_base_lock);
1227        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228        write_unlock_bh(&dev_base_lock);
1229
1230        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231        ret = notifier_to_errno(ret);
1232
1233        if (ret) {
1234                /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                if (err >= 0) {
1236                        err = ret;
1237                        write_seqcount_begin(&devnet_rename_seq);
1238                        memcpy(dev->name, oldname, IFNAMSIZ);
1239                        memcpy(oldname, newname, IFNAMSIZ);
1240                        dev->name_assign_type = old_assign_type;
1241                        old_assign_type = NET_NAME_RENAMED;
1242                        goto rollback;
1243                } else {
1244                        pr_err("%s: name change rollback failed: %d\n",
1245                               dev->name, ret);
1246                }
1247        }
1248
1249        return err;
1250}
1251
1252/**
1253 *      dev_set_alias - change ifalias of a device
1254 *      @dev: device
1255 *      @alias: name up to IFALIASZ
1256 *      @len: limit of bytes to copy from info
1257 *
1258 *      Set ifalias for a device,
1259 */
1260int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261{
1262        struct dev_ifalias *new_alias = NULL;
1263
1264        if (len >= IFALIASZ)
1265                return -EINVAL;
1266
1267        if (len) {
1268                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                if (!new_alias)
1270                        return -ENOMEM;
1271
1272                memcpy(new_alias->ifalias, alias, len);
1273                new_alias->ifalias[len] = 0;
1274        }
1275
1276        mutex_lock(&ifalias_mutex);
1277        rcu_swap_protected(dev->ifalias, new_alias,
1278                           mutex_is_locked(&ifalias_mutex));
1279        mutex_unlock(&ifalias_mutex);
1280
1281        if (new_alias)
1282                kfree_rcu(new_alias, rcuhead);
1283
1284        return len;
1285}
1286EXPORT_SYMBOL(dev_set_alias);
1287
1288/**
1289 *      dev_get_alias - get ifalias of a device
1290 *      @dev: device
1291 *      @name: buffer to store name of ifalias
1292 *      @len: size of buffer
1293 *
1294 *      get ifalias for a device.  Caller must make sure dev cannot go
1295 *      away,  e.g. rcu read lock or own a reference count to device.
1296 */
1297int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298{
1299        const struct dev_ifalias *alias;
1300        int ret = 0;
1301
1302        rcu_read_lock();
1303        alias = rcu_dereference(dev->ifalias);
1304        if (alias)
1305                ret = snprintf(name, len, "%s", alias->ifalias);
1306        rcu_read_unlock();
1307
1308        return ret;
1309}
1310
1311/**
1312 *      netdev_features_change - device changes features
1313 *      @dev: device to cause notification
1314 *
1315 *      Called to indicate a device has changed features.
1316 */
1317void netdev_features_change(struct net_device *dev)
1318{
1319        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320}
1321EXPORT_SYMBOL(netdev_features_change);
1322
1323/**
1324 *      netdev_state_change - device changes state
1325 *      @dev: device to cause notification
1326 *
1327 *      Called to indicate a device has changed state. This function calls
1328 *      the notifier chains for netdev_chain and sends a NEWLINK message
1329 *      to the routing socket.
1330 */
1331void netdev_state_change(struct net_device *dev)
1332{
1333        if (dev->flags & IFF_UP) {
1334                struct netdev_notifier_change_info change_info = {
1335                        .info.dev = dev,
1336                };
1337
1338                call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                              &change_info.info);
1340                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341        }
1342}
1343EXPORT_SYMBOL(netdev_state_change);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357        rtnl_lock();
1358        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360        rtnl_unlock();
1361}
1362EXPORT_SYMBOL(netdev_notify_peers);
1363
1364static int __dev_open(struct net_device *dev)
1365{
1366        const struct net_device_ops *ops = dev->netdev_ops;
1367        int ret;
1368
1369        ASSERT_RTNL();
1370
1371        if (!netif_device_present(dev))
1372                return -ENODEV;
1373
1374        /* Block netpoll from trying to do any rx path servicing.
1375         * If we don't do this there is a chance ndo_poll_controller
1376         * or ndo_poll may be running while we open the device
1377         */
1378        netpoll_poll_disable(dev);
1379
1380        ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381        ret = notifier_to_errno(ret);
1382        if (ret)
1383                return ret;
1384
1385        set_bit(__LINK_STATE_START, &dev->state);
1386
1387        if (ops->ndo_validate_addr)
1388                ret = ops->ndo_validate_addr(dev);
1389
1390        if (!ret && ops->ndo_open)
1391                ret = ops->ndo_open(dev);
1392
1393        netpoll_poll_enable(dev);
1394
1395        if (ret)
1396                clear_bit(__LINK_STATE_START, &dev->state);
1397        else {
1398                dev->flags |= IFF_UP;
1399                dev_set_rx_mode(dev);
1400                dev_activate(dev);
1401                add_device_randomness(dev->dev_addr, dev->addr_len);
1402        }
1403
1404        return ret;
1405}
1406
1407/**
1408 *      dev_open        - prepare an interface for use.
1409 *      @dev:   device to open
1410 *
1411 *      Takes a device from down to up state. The device's private open
1412 *      function is invoked and then the multicast lists are loaded. Finally
1413 *      the device is moved into the up state and a %NETDEV_UP message is
1414 *      sent to the netdev notifier chain.
1415 *
1416 *      Calling this function on an active interface is a nop. On a failure
1417 *      a negative errno code is returned.
1418 */
1419int dev_open(struct net_device *dev)
1420{
1421        int ret;
1422
1423        if (dev->flags & IFF_UP)
1424                return 0;
1425
1426        ret = __dev_open(dev);
1427        if (ret < 0)
1428                return ret;
1429
1430        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431        call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433        return ret;
1434}
1435EXPORT_SYMBOL(dev_open);
1436
1437static void __dev_close_many(struct list_head *head)
1438{
1439        struct net_device *dev;
1440
1441        ASSERT_RTNL();
1442        might_sleep();
1443
1444        list_for_each_entry(dev, head, close_list) {
1445                /* Temporarily disable netpoll until the interface is down */
1446                netpoll_poll_disable(dev);
1447
1448                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450                clear_bit(__LINK_STATE_START, &dev->state);
1451
1452                /* Synchronize to scheduled poll. We cannot touch poll list, it
1453                 * can be even on different cpu. So just clear netif_running().
1454                 *
1455                 * dev->stop() will invoke napi_disable() on all of it's
1456                 * napi_struct instances on this device.
1457                 */
1458                smp_mb__after_atomic(); /* Commit netif_running(). */
1459        }
1460
1461        dev_deactivate_many(head);
1462
1463        list_for_each_entry(dev, head, close_list) {
1464                const struct net_device_ops *ops = dev->netdev_ops;
1465
1466                /*
1467                 *      Call the device specific close. This cannot fail.
1468                 *      Only if device is UP
1469                 *
1470                 *      We allow it to be called even after a DETACH hot-plug
1471                 *      event.
1472                 */
1473                if (ops->ndo_stop)
1474                        ops->ndo_stop(dev);
1475
1476                dev->flags &= ~IFF_UP;
1477                netpoll_poll_enable(dev);
1478        }
1479}
1480
1481static void __dev_close(struct net_device *dev)
1482{
1483        LIST_HEAD(single);
1484
1485        list_add(&dev->close_list, &single);
1486        __dev_close_many(&single);
1487        list_del(&single);
1488}
1489
1490void dev_close_many(struct list_head *head, bool unlink)
1491{
1492        struct net_device *dev, *tmp;
1493
1494        /* Remove the devices that don't need to be closed */
1495        list_for_each_entry_safe(dev, tmp, head, close_list)
1496                if (!(dev->flags & IFF_UP))
1497                        list_del_init(&dev->close_list);
1498
1499        __dev_close_many(head);
1500
1501        list_for_each_entry_safe(dev, tmp, head, close_list) {
1502                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503                call_netdevice_notifiers(NETDEV_DOWN, dev);
1504                if (unlink)
1505                        list_del_init(&dev->close_list);
1506        }
1507}
1508EXPORT_SYMBOL(dev_close_many);
1509
1510/**
1511 *      dev_close - shutdown an interface.
1512 *      @dev: device to shutdown
1513 *
1514 *      This function moves an active device into down state. A
1515 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517 *      chain.
1518 */
1519void dev_close(struct net_device *dev)
1520{
1521        if (dev->flags & IFF_UP) {
1522                LIST_HEAD(single);
1523
1524                list_add(&dev->close_list, &single);
1525                dev_close_many(&single, true);
1526                list_del(&single);
1527        }
1528}
1529EXPORT_SYMBOL(dev_close);
1530
1531
1532/**
1533 *      dev_disable_lro - disable Large Receive Offload on a device
1534 *      @dev: device
1535 *
1536 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1537 *      called under RTNL.  This is needed if received packets may be
1538 *      forwarded to another interface.
1539 */
1540void dev_disable_lro(struct net_device *dev)
1541{
1542        struct net_device *lower_dev;
1543        struct list_head *iter;
1544
1545        dev->wanted_features &= ~NETIF_F_LRO;
1546        netdev_update_features(dev);
1547
1548        if (unlikely(dev->features & NETIF_F_LRO))
1549                netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551        netdev_for_each_lower_dev(dev, lower_dev, iter)
1552                dev_disable_lro(lower_dev);
1553}
1554EXPORT_SYMBOL(dev_disable_lro);
1555
1556/**
1557 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558 *      @dev: device
1559 *
1560 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561 *      called under RTNL.  This is needed if Generic XDP is installed on
1562 *      the device.
1563 */
1564static void dev_disable_gro_hw(struct net_device *dev)
1565{
1566        dev->wanted_features &= ~NETIF_F_GRO_HW;
1567        netdev_update_features(dev);
1568
1569        if (unlikely(dev->features & NETIF_F_GRO_HW))
1570                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571}
1572
1573const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574{
1575#define N(val)                                          \
1576        case NETDEV_##val:                              \
1577                return "NETDEV_" __stringify(val);
1578        switch (cmd) {
1579        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588        }
1589#undef N
1590        return "UNKNOWN_NETDEV_EVENT";
1591}
1592EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595                                   struct net_device *dev)
1596{
1597        struct netdev_notifier_info info = {
1598                .dev = dev,
1599        };
1600
1601        return nb->notifier_call(nb, val, &info);
1602}
1603
1604static int dev_boot_phase = 1;
1605
1606/**
1607 * register_netdevice_notifier - register a network notifier block
1608 * @nb: notifier
1609 *
1610 * Register a notifier to be called when network device events occur.
1611 * The notifier passed is linked into the kernel structures and must
1612 * not be reused until it has been unregistered. A negative errno code
1613 * is returned on a failure.
1614 *
1615 * When registered all registration and up events are replayed
1616 * to the new notifier to allow device to have a race free
1617 * view of the network device list.
1618 */
1619
1620int register_netdevice_notifier(struct notifier_block *nb)
1621{
1622        struct net_device *dev;
1623        struct net_device *last;
1624        struct net *net;
1625        int err;
1626
1627        /* Close race with setup_net() and cleanup_net() */
1628        down_write(&pernet_ops_rwsem);
1629        rtnl_lock();
1630        err = raw_notifier_chain_register(&netdev_chain, nb);
1631        if (err)
1632                goto unlock;
1633        if (dev_boot_phase)
1634                goto unlock;
1635        for_each_net(net) {
1636                for_each_netdev(net, dev) {
1637                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638                        err = notifier_to_errno(err);
1639                        if (err)
1640                                goto rollback;
1641
1642                        if (!(dev->flags & IFF_UP))
1643                                continue;
1644
1645                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1646                }
1647        }
1648
1649unlock:
1650        rtnl_unlock();
1651        up_write(&pernet_ops_rwsem);
1652        return err;
1653
1654rollback:
1655        last = dev;
1656        for_each_net(net) {
1657                for_each_netdev(net, dev) {
1658                        if (dev == last)
1659                                goto outroll;
1660
1661                        if (dev->flags & IFF_UP) {
1662                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663                                                        dev);
1664                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665                        }
1666                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667                }
1668        }
1669
1670outroll:
1671        raw_notifier_chain_unregister(&netdev_chain, nb);
1672        goto unlock;
1673}
1674EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676/**
1677 * unregister_netdevice_notifier - unregister a network notifier block
1678 * @nb: notifier
1679 *
1680 * Unregister a notifier previously registered by
1681 * register_netdevice_notifier(). The notifier is unlinked into the
1682 * kernel structures and may then be reused. A negative errno code
1683 * is returned on a failure.
1684 *
1685 * After unregistering unregister and down device events are synthesized
1686 * for all devices on the device list to the removed notifier to remove
1687 * the need for special case cleanup code.
1688 */
1689
1690int unregister_netdevice_notifier(struct notifier_block *nb)
1691{
1692        struct net_device *dev;
1693        struct net *net;
1694        int err;
1695
1696        /* Close race with setup_net() and cleanup_net() */
1697        down_write(&pernet_ops_rwsem);
1698        rtnl_lock();
1699        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700        if (err)
1701                goto unlock;
1702
1703        for_each_net(net) {
1704                for_each_netdev(net, dev) {
1705                        if (dev->flags & IFF_UP) {
1706                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707                                                        dev);
1708                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709                        }
1710                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711                }
1712        }
1713unlock:
1714        rtnl_unlock();
1715        up_write(&pernet_ops_rwsem);
1716        return err;
1717}
1718EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720/**
1721 *      call_netdevice_notifiers_info - call all network notifier blocks
1722 *      @val: value passed unmodified to notifier function
1723 *      @info: notifier information data
1724 *
1725 *      Call all network notifier blocks.  Parameters and return value
1726 *      are as for raw_notifier_call_chain().
1727 */
1728
1729static int call_netdevice_notifiers_info(unsigned long val,
1730                                         struct netdev_notifier_info *info)
1731{
1732        ASSERT_RTNL();
1733        return raw_notifier_call_chain(&netdev_chain, val, info);
1734}
1735
1736/**
1737 *      call_netdevice_notifiers - call all network notifier blocks
1738 *      @val: value passed unmodified to notifier function
1739 *      @dev: net_device pointer passed unmodified to notifier function
1740 *
1741 *      Call all network notifier blocks.  Parameters and return value
1742 *      are as for raw_notifier_call_chain().
1743 */
1744
1745int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746{
1747        struct netdev_notifier_info info = {
1748                .dev = dev,
1749        };
1750
1751        return call_netdevice_notifiers_info(val, &info);
1752}
1753EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755/**
1756 *      call_netdevice_notifiers_mtu - call all network notifier blocks
1757 *      @val: value passed unmodified to notifier function
1758 *      @dev: net_device pointer passed unmodified to notifier function
1759 *      @arg: additional u32 argument passed to the notifier function
1760 *
1761 *      Call all network notifier blocks.  Parameters and return value
1762 *      are as for raw_notifier_call_chain().
1763 */
1764static int call_netdevice_notifiers_mtu(unsigned long val,
1765                                        struct net_device *dev, u32 arg)
1766{
1767        struct netdev_notifier_info_ext info = {
1768                .info.dev = dev,
1769                .ext.mtu = arg,
1770        };
1771
1772        BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774        return call_netdevice_notifiers_info(val, &info.info);
1775}
1776
1777#ifdef CONFIG_NET_INGRESS
1778static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
1780void net_inc_ingress_queue(void)
1781{
1782        static_branch_inc(&ingress_needed_key);
1783}
1784EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
1786void net_dec_ingress_queue(void)
1787{
1788        static_branch_dec(&ingress_needed_key);
1789}
1790EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791#endif
1792
1793#ifdef CONFIG_NET_EGRESS
1794static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
1796void net_inc_egress_queue(void)
1797{
1798        static_branch_inc(&egress_needed_key);
1799}
1800EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
1802void net_dec_egress_queue(void)
1803{
1804        static_branch_dec(&egress_needed_key);
1805}
1806EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807#endif
1808
1809static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810#ifdef HAVE_JUMP_LABEL
1811static atomic_t netstamp_needed_deferred;
1812static atomic_t netstamp_wanted;
1813static void netstamp_clear(struct work_struct *work)
1814{
1815        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816        int wanted;
1817
1818        wanted = atomic_add_return(deferred, &netstamp_wanted);
1819        if (wanted > 0)
1820                static_branch_enable(&netstamp_needed_key);
1821        else
1822                static_branch_disable(&netstamp_needed_key);
1823}
1824static DECLARE_WORK(netstamp_work, netstamp_clear);
1825#endif
1826
1827void net_enable_timestamp(void)
1828{
1829#ifdef HAVE_JUMP_LABEL
1830        int wanted;
1831
1832        while (1) {
1833                wanted = atomic_read(&netstamp_wanted);
1834                if (wanted <= 0)
1835                        break;
1836                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837                        return;
1838        }
1839        atomic_inc(&netstamp_needed_deferred);
1840        schedule_work(&netstamp_work);
1841#else
1842        static_branch_inc(&netstamp_needed_key);
1843#endif
1844}
1845EXPORT_SYMBOL(net_enable_timestamp);
1846
1847void net_disable_timestamp(void)
1848{
1849#ifdef HAVE_JUMP_LABEL
1850        int wanted;
1851
1852        while (1) {
1853                wanted = atomic_read(&netstamp_wanted);
1854                if (wanted <= 1)
1855                        break;
1856                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857                        return;
1858        }
1859        atomic_dec(&netstamp_needed_deferred);
1860        schedule_work(&netstamp_work);
1861#else
1862        static_branch_dec(&netstamp_needed_key);
1863#endif
1864}
1865EXPORT_SYMBOL(net_disable_timestamp);
1866
1867static inline void net_timestamp_set(struct sk_buff *skb)
1868{
1869        skb->tstamp = 0;
1870        if (static_branch_unlikely(&netstamp_needed_key))
1871                __net_timestamp(skb);
1872}
1873
1874#define net_timestamp_check(COND, SKB)                          \
1875        if (static_branch_unlikely(&netstamp_needed_key)) {     \
1876                if ((COND) && !(SKB)->tstamp)                   \
1877                        __net_timestamp(SKB);                   \
1878        }                                                       \
1879
1880bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881{
1882        unsigned int len;
1883
1884        if (!(dev->flags & IFF_UP))
1885                return false;
1886
1887        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888        if (skb->len <= len)
1889                return true;
1890
1891        /* if TSO is enabled, we don't care about the length as the packet
1892         * could be forwarded without being segmented before
1893         */
1894        if (skb_is_gso(skb))
1895                return true;
1896
1897        return false;
1898}
1899EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
1901int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902{
1903        int ret = ____dev_forward_skb(dev, skb);
1904
1905        if (likely(!ret)) {
1906                skb->protocol = eth_type_trans(skb, dev);
1907                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908        }
1909
1910        return ret;
1911}
1912EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914/**
1915 * dev_forward_skb - loopback an skb to another netif
1916 *
1917 * @dev: destination network device
1918 * @skb: buffer to forward
1919 *
1920 * return values:
1921 *      NET_RX_SUCCESS  (no congestion)
1922 *      NET_RX_DROP     (packet was dropped, but freed)
1923 *
1924 * dev_forward_skb can be used for injecting an skb from the
1925 * start_xmit function of one device into the receive queue
1926 * of another device.
1927 *
1928 * The receiving device may be in another namespace, so
1929 * we have to clear all information in the skb that could
1930 * impact namespace isolation.
1931 */
1932int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933{
1934        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935}
1936EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
1938static inline int deliver_skb(struct sk_buff *skb,
1939                              struct packet_type *pt_prev,
1940                              struct net_device *orig_dev)
1941{
1942        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943                return -ENOMEM;
1944        refcount_inc(&skb->users);
1945        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946}
1947
1948static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949                                          struct packet_type **pt,
1950                                          struct net_device *orig_dev,
1951                                          __be16 type,
1952                                          struct list_head *ptype_list)
1953{
1954        struct packet_type *ptype, *pt_prev = *pt;
1955
1956        list_for_each_entry_rcu(ptype, ptype_list, list) {
1957                if (ptype->type != type)
1958                        continue;
1959                if (pt_prev)
1960                        deliver_skb(skb, pt_prev, orig_dev);
1961                pt_prev = ptype;
1962        }
1963        *pt = pt_prev;
1964}
1965
1966static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967{
1968        if (!ptype->af_packet_priv || !skb->sk)
1969                return false;
1970
1971        if (ptype->id_match)
1972                return ptype->id_match(ptype, skb->sk);
1973        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974                return true;
1975
1976        return false;
1977}
1978
1979/**
1980 * dev_nit_active - return true if any network interface taps are in use
1981 *
1982 * @dev: network device to check for the presence of taps
1983 */
1984bool dev_nit_active(struct net_device *dev)
1985{
1986        return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987}
1988EXPORT_SYMBOL_GPL(dev_nit_active);
1989
1990/*
1991 *      Support routine. Sends outgoing frames to any network
1992 *      taps currently in use.
1993 */
1994
1995void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996{
1997        struct packet_type *ptype;
1998        struct sk_buff *skb2 = NULL;
1999        struct packet_type *pt_prev = NULL;
2000        struct list_head *ptype_list = &ptype_all;
2001
2002        rcu_read_lock();
2003again:
2004        list_for_each_entry_rcu(ptype, ptype_list, list) {
2005                if (ptype->ignore_outgoing)
2006                        continue;
2007
2008                /* Never send packets back to the socket
2009                 * they originated from - MvS (miquels@drinkel.ow.org)
2010                 */
2011                if (skb_loop_sk(ptype, skb))
2012                        continue;
2013
2014                if (pt_prev) {
2015                        deliver_skb(skb2, pt_prev, skb->dev);
2016                        pt_prev = ptype;
2017                        continue;
2018                }
2019
2020                /* need to clone skb, done only once */
2021                skb2 = skb_clone(skb, GFP_ATOMIC);
2022                if (!skb2)
2023                        goto out_unlock;
2024
2025                net_timestamp_set(skb2);
2026
2027                /* skb->nh should be correctly
2028                 * set by sender, so that the second statement is
2029                 * just protection against buggy protocols.
2030                 */
2031                skb_reset_mac_header(skb2);
2032
2033                if (skb_network_header(skb2) < skb2->data ||
2034                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036                                             ntohs(skb2->protocol),
2037                                             dev->name);
2038                        skb_reset_network_header(skb2);
2039                }
2040
2041                skb2->transport_header = skb2->network_header;
2042                skb2->pkt_type = PACKET_OUTGOING;
2043                pt_prev = ptype;
2044        }
2045
2046        if (ptype_list == &ptype_all) {
2047                ptype_list = &dev->ptype_all;
2048                goto again;
2049        }
2050out_unlock:
2051        if (pt_prev) {
2052                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054                else
2055                        kfree_skb(skb2);
2056        }
2057        rcu_read_unlock();
2058}
2059EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060
2061/**
2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063 * @dev: Network device
2064 * @txq: number of queues available
2065 *
2066 * If real_num_tx_queues is changed the tc mappings may no longer be
2067 * valid. To resolve this verify the tc mapping remains valid and if
2068 * not NULL the mapping. With no priorities mapping to this
2069 * offset/count pair it will no longer be used. In the worst case TC0
2070 * is invalid nothing can be done so disable priority mappings. If is
2071 * expected that drivers will fix this mapping if they can before
2072 * calling netif_set_real_num_tx_queues.
2073 */
2074static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075{
2076        int i;
2077        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078
2079        /* If TC0 is invalidated disable TC mapping */
2080        if (tc->offset + tc->count > txq) {
2081                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082                dev->num_tc = 0;
2083                return;
2084        }
2085
2086        /* Invalidated prio to tc mappings set to TC0 */
2087        for (i = 1; i < TC_BITMASK + 1; i++) {
2088                int q = netdev_get_prio_tc_map(dev, i);
2089
2090                tc = &dev->tc_to_txq[q];
2091                if (tc->offset + tc->count > txq) {
2092                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093                                i, q);
2094                        netdev_set_prio_tc_map(dev, i, 0);
2095                }
2096        }
2097}
2098
2099int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100{
2101        if (dev->num_tc) {
2102                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103                int i;
2104
2105                /* walk through the TCs and see if it falls into any of them */
2106                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107                        if ((txq - tc->offset) < tc->count)
2108                                return i;
2109                }
2110
2111                /* didn't find it, just return -1 to indicate no match */
2112                return -1;
2113        }
2114
2115        return 0;
2116}
2117EXPORT_SYMBOL(netdev_txq_to_tc);
2118
2119#ifdef CONFIG_XPS
2120struct static_key xps_needed __read_mostly;
2121EXPORT_SYMBOL(xps_needed);
2122struct static_key xps_rxqs_needed __read_mostly;
2123EXPORT_SYMBOL(xps_rxqs_needed);
2124static DEFINE_MUTEX(xps_map_mutex);
2125#define xmap_dereference(P)             \
2126        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127
2128static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129                             int tci, u16 index)
2130{
2131        struct xps_map *map = NULL;
2132        int pos;
2133
2134        if (dev_maps)
2135                map = xmap_dereference(dev_maps->attr_map[tci]);
2136        if (!map)
2137                return false;
2138
2139        for (pos = map->len; pos--;) {
2140                if (map->queues[pos] != index)
2141                        continue;
2142
2143                if (map->len > 1) {
2144                        map->queues[pos] = map->queues[--map->len];
2145                        break;
2146                }
2147
2148                RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149                kfree_rcu(map, rcu);
2150                return false;
2151        }
2152
2153        return true;
2154}
2155
2156static bool remove_xps_queue_cpu(struct net_device *dev,
2157                                 struct xps_dev_maps *dev_maps,
2158                                 int cpu, u16 offset, u16 count)
2159{
2160        int num_tc = dev->num_tc ? : 1;
2161        bool active = false;
2162        int tci;
2163
2164        for (tci = cpu * num_tc; num_tc--; tci++) {
2165                int i, j;
2166
2167                for (i = count, j = offset; i--; j++) {
2168                        if (!remove_xps_queue(dev_maps, tci, j))
2169                                break;
2170                }
2171
2172                active |= i < 0;
2173        }
2174
2175        return active;
2176}
2177
2178static void reset_xps_maps(struct net_device *dev,
2179                           struct xps_dev_maps *dev_maps,
2180                           bool is_rxqs_map)
2181{
2182        if (is_rxqs_map) {
2183                static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2184                RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2185        } else {
2186                RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2187        }
2188        static_key_slow_dec_cpuslocked(&xps_needed);
2189        kfree_rcu(dev_maps, rcu);
2190}
2191
2192static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2193                           struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2194                           u16 offset, u16 count, bool is_rxqs_map)
2195{
2196        bool active = false;
2197        int i, j;
2198
2199        for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2200             j < nr_ids;)
2201                active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2202                                               count);
2203        if (!active)
2204                reset_xps_maps(dev, dev_maps, is_rxqs_map);
2205
2206        if (!is_rxqs_map) {
2207                for (i = offset + (count - 1); count--; i--) {
2208                        netdev_queue_numa_node_write(
2209                                netdev_get_tx_queue(dev, i),
2210                                NUMA_NO_NODE);
2211                }
2212        }
2213}
2214
2215static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2216                                   u16 count)
2217{
2218        const unsigned long *possible_mask = NULL;
2219        struct xps_dev_maps *dev_maps;
2220        unsigned int nr_ids;
2221
2222        if (!static_key_false(&xps_needed))
2223                return;
2224
2225        cpus_read_lock();
2226        mutex_lock(&xps_map_mutex);
2227
2228        if (static_key_false(&xps_rxqs_needed)) {
2229                dev_maps = xmap_dereference(dev->xps_rxqs_map);
2230                if (dev_maps) {
2231                        nr_ids = dev->num_rx_queues;
2232                        clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2233                                       offset, count, true);
2234                }
2235        }
2236
2237        dev_maps = xmap_dereference(dev->xps_cpus_map);
2238        if (!dev_maps)
2239                goto out_no_maps;
2240
2241        if (num_possible_cpus() > 1)
2242                possible_mask = cpumask_bits(cpu_possible_mask);
2243        nr_ids = nr_cpu_ids;
2244        clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2245                       false);
2246
2247out_no_maps:
2248        mutex_unlock(&xps_map_mutex);
2249        cpus_read_unlock();
2250}
2251
2252static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2253{
2254        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2255}
2256
2257static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2258                                      u16 index, bool is_rxqs_map)
2259{
2260        struct xps_map *new_map;
2261        int alloc_len = XPS_MIN_MAP_ALLOC;
2262        int i, pos;
2263
2264        for (pos = 0; map && pos < map->len; pos++) {
2265                if (map->queues[pos] != index)
2266                        continue;
2267                return map;
2268        }
2269
2270        /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2271        if (map) {
2272                if (pos < map->alloc_len)
2273                        return map;
2274
2275                alloc_len = map->alloc_len * 2;
2276        }
2277
2278        /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2279         *  map
2280         */
2281        if (is_rxqs_map)
2282                new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2283        else
2284                new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2285                                       cpu_to_node(attr_index));
2286        if (!new_map)
2287                return NULL;
2288
2289        for (i = 0; i < pos; i++)
2290                new_map->queues[i] = map->queues[i];
2291        new_map->alloc_len = alloc_len;
2292        new_map->len = pos;
2293
2294        return new_map;
2295}
2296
2297/* Must be called under cpus_read_lock */
2298int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2299                          u16 index, bool is_rxqs_map)
2300{
2301        const unsigned long *online_mask = NULL, *possible_mask = NULL;
2302        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2303        int i, j, tci, numa_node_id = -2;
2304        int maps_sz, num_tc = 1, tc = 0;
2305        struct xps_map *map, *new_map;
2306        bool active = false;
2307        unsigned int nr_ids;
2308
2309        if (dev->num_tc) {
2310                /* Do not allow XPS on subordinate device directly */
2311                num_tc = dev->num_tc;
2312                if (num_tc < 0)
2313                        return -EINVAL;
2314
2315                /* If queue belongs to subordinate dev use its map */
2316                dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2317
2318                tc = netdev_txq_to_tc(dev, index);
2319                if (tc < 0)
2320                        return -EINVAL;
2321        }
2322
2323        mutex_lock(&xps_map_mutex);
2324        if (is_rxqs_map) {
2325                maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2326                dev_maps = xmap_dereference(dev->xps_rxqs_map);
2327                nr_ids = dev->num_rx_queues;
2328        } else {
2329                maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2330                if (num_possible_cpus() > 1) {
2331                        online_mask = cpumask_bits(cpu_online_mask);
2332                        possible_mask = cpumask_bits(cpu_possible_mask);
2333                }
2334                dev_maps = xmap_dereference(dev->xps_cpus_map);
2335                nr_ids = nr_cpu_ids;
2336        }
2337
2338        if (maps_sz < L1_CACHE_BYTES)
2339                maps_sz = L1_CACHE_BYTES;
2340
2341        /* allocate memory for queue storage */
2342        for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2343             j < nr_ids;) {
2344                if (!new_dev_maps)
2345                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2346                if (!new_dev_maps) {
2347                        mutex_unlock(&xps_map_mutex);
2348                        return -ENOMEM;
2349                }
2350
2351                tci = j * num_tc + tc;
2352                map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2353                                 NULL;
2354
2355                map = expand_xps_map(map, j, index, is_rxqs_map);
2356                if (!map)
2357                        goto error;
2358
2359                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2360        }
2361
2362        if (!new_dev_maps)
2363                goto out_no_new_maps;
2364
2365        if (!dev_maps) {
2366                /* Increment static keys at most once per type */
2367                static_key_slow_inc_cpuslocked(&xps_needed);
2368                if (is_rxqs_map)
2369                        static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2370        }
2371
2372        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2373             j < nr_ids;) {
2374                /* copy maps belonging to foreign traffic classes */
2375                for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2376                        /* fill in the new device map from the old device map */
2377                        map = xmap_dereference(dev_maps->attr_map[tci]);
2378                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2379                }
2380
2381                /* We need to explicitly update tci as prevous loop
2382                 * could break out early if dev_maps is NULL.
2383                 */
2384                tci = j * num_tc + tc;
2385
2386                if (netif_attr_test_mask(j, mask, nr_ids) &&
2387                    netif_attr_test_online(j, online_mask, nr_ids)) {
2388                        /* add tx-queue to CPU/rx-queue maps */
2389                        int pos = 0;
2390
2391                        map = xmap_dereference(new_dev_maps->attr_map[tci]);
2392                        while ((pos < map->len) && (map->queues[pos] != index))
2393                                pos++;
2394
2395                        if (pos == map->len)
2396                                map->queues[map->len++] = index;
2397#ifdef CONFIG_NUMA
2398                        if (!is_rxqs_map) {
2399                                if (numa_node_id == -2)
2400                                        numa_node_id = cpu_to_node(j);
2401                                else if (numa_node_id != cpu_to_node(j))
2402                                        numa_node_id = -1;
2403                        }
2404#endif
2405                } else if (dev_maps) {
2406                        /* fill in the new device map from the old device map */
2407                        map = xmap_dereference(dev_maps->attr_map[tci]);
2408                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2409                }
2410
2411                /* copy maps belonging to foreign traffic classes */
2412                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2413                        /* fill in the new device map from the old device map */
2414                        map = xmap_dereference(dev_maps->attr_map[tci]);
2415                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2416                }
2417        }
2418
2419        if (is_rxqs_map)
2420                rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2421        else
2422                rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2423
2424        /* Cleanup old maps */
2425        if (!dev_maps)
2426                goto out_no_old_maps;
2427
2428        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2429             j < nr_ids;) {
2430                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2431                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2432                        map = xmap_dereference(dev_maps->attr_map[tci]);
2433                        if (map && map != new_map)
2434                                kfree_rcu(map, rcu);
2435                }
2436        }
2437
2438        kfree_rcu(dev_maps, rcu);
2439
2440out_no_old_maps:
2441        dev_maps = new_dev_maps;
2442        active = true;
2443
2444out_no_new_maps:
2445        if (!is_rxqs_map) {
2446                /* update Tx queue numa node */
2447                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2448                                             (numa_node_id >= 0) ?
2449                                             numa_node_id : NUMA_NO_NODE);
2450        }
2451
2452        if (!dev_maps)
2453                goto out_no_maps;
2454
2455        /* removes tx-queue from unused CPUs/rx-queues */
2456        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457             j < nr_ids;) {
2458                for (i = tc, tci = j * num_tc; i--; tci++)
2459                        active |= remove_xps_queue(dev_maps, tci, index);
2460                if (!netif_attr_test_mask(j, mask, nr_ids) ||
2461                    !netif_attr_test_online(j, online_mask, nr_ids))
2462                        active |= remove_xps_queue(dev_maps, tci, index);
2463                for (i = num_tc - tc, tci++; --i; tci++)
2464                        active |= remove_xps_queue(dev_maps, tci, index);
2465        }
2466
2467        /* free map if not active */
2468        if (!active)
2469                reset_xps_maps(dev, dev_maps, is_rxqs_map);
2470
2471out_no_maps:
2472        mutex_unlock(&xps_map_mutex);
2473
2474        return 0;
2475error:
2476        /* remove any maps that we added */
2477        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2478             j < nr_ids;) {
2479                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2480                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2481                        map = dev_maps ?
2482                              xmap_dereference(dev_maps->attr_map[tci]) :
2483                              NULL;
2484                        if (new_map && new_map != map)
2485                                kfree(new_map);
2486                }
2487        }
2488
2489        mutex_unlock(&xps_map_mutex);
2490
2491        kfree(new_dev_maps);
2492        return -ENOMEM;
2493}
2494EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2495
2496int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2497                        u16 index)
2498{
2499        int ret;
2500
2501        cpus_read_lock();
2502        ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2503        cpus_read_unlock();
2504
2505        return ret;
2506}
2507EXPORT_SYMBOL(netif_set_xps_queue);
2508
2509#endif
2510static void netdev_unbind_all_sb_channels(struct net_device *dev)
2511{
2512        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2513
2514        /* Unbind any subordinate channels */
2515        while (txq-- != &dev->_tx[0]) {
2516                if (txq->sb_dev)
2517                        netdev_unbind_sb_channel(dev, txq->sb_dev);
2518        }
2519}
2520
2521void netdev_reset_tc(struct net_device *dev)
2522{
2523#ifdef CONFIG_XPS
2524        netif_reset_xps_queues_gt(dev, 0);
2525#endif
2526        netdev_unbind_all_sb_channels(dev);
2527
2528        /* Reset TC configuration of device */
2529        dev->num_tc = 0;
2530        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2531        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2532}
2533EXPORT_SYMBOL(netdev_reset_tc);
2534
2535int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2536{
2537        if (tc >= dev->num_tc)
2538                return -EINVAL;
2539
2540#ifdef CONFIG_XPS
2541        netif_reset_xps_queues(dev, offset, count);
2542#endif
2543        dev->tc_to_txq[tc].count = count;
2544        dev->tc_to_txq[tc].offset = offset;
2545        return 0;
2546}
2547EXPORT_SYMBOL(netdev_set_tc_queue);
2548
2549int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2550{
2551        if (num_tc > TC_MAX_QUEUE)
2552                return -EINVAL;
2553
2554#ifdef CONFIG_XPS
2555        netif_reset_xps_queues_gt(dev, 0);
2556#endif
2557        netdev_unbind_all_sb_channels(dev);
2558
2559        dev->num_tc = num_tc;
2560        return 0;
2561}
2562EXPORT_SYMBOL(netdev_set_num_tc);
2563
2564void netdev_unbind_sb_channel(struct net_device *dev,
2565                              struct net_device *sb_dev)
2566{
2567        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2568
2569#ifdef CONFIG_XPS
2570        netif_reset_xps_queues_gt(sb_dev, 0);
2571#endif
2572        memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2573        memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2574
2575        while (txq-- != &dev->_tx[0]) {
2576                if (txq->sb_dev == sb_dev)
2577                        txq->sb_dev = NULL;
2578        }
2579}
2580EXPORT_SYMBOL(netdev_unbind_sb_channel);
2581
2582int netdev_bind_sb_channel_queue(struct net_device *dev,
2583                                 struct net_device *sb_dev,
2584                                 u8 tc, u16 count, u16 offset)
2585{
2586        /* Make certain the sb_dev and dev are already configured */
2587        if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2588                return -EINVAL;
2589
2590        /* We cannot hand out queues we don't have */
2591        if ((offset + count) > dev->real_num_tx_queues)
2592                return -EINVAL;
2593
2594        /* Record the mapping */
2595        sb_dev->tc_to_txq[tc].count = count;
2596        sb_dev->tc_to_txq[tc].offset = offset;
2597
2598        /* Provide a way for Tx queue to find the tc_to_txq map or
2599         * XPS map for itself.
2600         */
2601        while (count--)
2602                netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2603
2604        return 0;
2605}
2606EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2607
2608int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2609{
2610        /* Do not use a multiqueue device to represent a subordinate channel */
2611        if (netif_is_multiqueue(dev))
2612                return -ENODEV;
2613
2614        /* We allow channels 1 - 32767 to be used for subordinate channels.
2615         * Channel 0 is meant to be "native" mode and used only to represent
2616         * the main root device. We allow writing 0 to reset the device back
2617         * to normal mode after being used as a subordinate channel.
2618         */
2619        if (channel > S16_MAX)
2620                return -EINVAL;
2621
2622        dev->num_tc = -channel;
2623
2624        return 0;
2625}
2626EXPORT_SYMBOL(netdev_set_sb_channel);
2627
2628/*
2629 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2630 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2631 */
2632int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2633{
2634        bool disabling;
2635        int rc;
2636
2637        disabling = txq < dev->real_num_tx_queues;
2638
2639        if (txq < 1 || txq > dev->num_tx_queues)
2640                return -EINVAL;
2641
2642        if (dev->reg_state == NETREG_REGISTERED ||
2643            dev->reg_state == NETREG_UNREGISTERING) {
2644                ASSERT_RTNL();
2645
2646                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2647                                                  txq);
2648                if (rc)
2649                        return rc;
2650
2651                if (dev->num_tc)
2652                        netif_setup_tc(dev, txq);
2653
2654                dev->real_num_tx_queues = txq;
2655
2656                if (disabling) {
2657                        synchronize_net();
2658                        qdisc_reset_all_tx_gt(dev, txq);
2659#ifdef CONFIG_XPS
2660                        netif_reset_xps_queues_gt(dev, txq);
2661#endif
2662                }
2663        } else {
2664                dev->real_num_tx_queues = txq;
2665        }
2666
2667        return 0;
2668}
2669EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2670
2671#ifdef CONFIG_SYSFS
2672/**
2673 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2674 *      @dev: Network device
2675 *      @rxq: Actual number of RX queues
2676 *
2677 *      This must be called either with the rtnl_lock held or before
2678 *      registration of the net device.  Returns 0 on success, or a
2679 *      negative error code.  If called before registration, it always
2680 *      succeeds.
2681 */
2682int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2683{
2684        int rc;
2685
2686        if (rxq < 1 || rxq > dev->num_rx_queues)
2687                return -EINVAL;
2688
2689        if (dev->reg_state == NETREG_REGISTERED) {
2690                ASSERT_RTNL();
2691
2692                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2693                                                  rxq);
2694                if (rc)
2695                        return rc;
2696        }
2697
2698        dev->real_num_rx_queues = rxq;
2699        return 0;
2700}
2701EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2702#endif
2703
2704/**
2705 * netif_get_num_default_rss_queues - default number of RSS queues
2706 *
2707 * This routine should set an upper limit on the number of RSS queues
2708 * used by default by multiqueue devices.
2709 */
2710int netif_get_num_default_rss_queues(void)
2711{
2712        return is_kdump_kernel() ?
2713                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2714}
2715EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2716
2717static void __netif_reschedule(struct Qdisc *q)
2718{
2719        struct softnet_data *sd;
2720        unsigned long flags;
2721
2722        local_irq_save(flags);
2723        sd = this_cpu_ptr(&softnet_data);
2724        q->next_sched = NULL;
2725        *sd->output_queue_tailp = q;
2726        sd->output_queue_tailp = &q->next_sched;
2727        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2728        local_irq_restore(flags);
2729}
2730
2731void __netif_schedule(struct Qdisc *q)
2732{
2733        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2734                __netif_reschedule(q);
2735}
2736EXPORT_SYMBOL(__netif_schedule);
2737
2738struct dev_kfree_skb_cb {
2739        enum skb_free_reason reason;
2740};
2741
2742static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2743{
2744        return (struct dev_kfree_skb_cb *)skb->cb;
2745}
2746
2747void netif_schedule_queue(struct netdev_queue *txq)
2748{
2749        rcu_read_lock();
2750        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2751                struct Qdisc *q = rcu_dereference(txq->qdisc);
2752
2753                __netif_schedule(q);
2754        }
2755        rcu_read_unlock();
2756}
2757EXPORT_SYMBOL(netif_schedule_queue);
2758
2759void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2760{
2761        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2762                struct Qdisc *q;
2763
2764                rcu_read_lock();
2765                q = rcu_dereference(dev_queue->qdisc);
2766                __netif_schedule(q);
2767                rcu_read_unlock();
2768        }
2769}
2770EXPORT_SYMBOL(netif_tx_wake_queue);
2771
2772void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2773{
2774        unsigned long flags;
2775
2776        if (unlikely(!skb))
2777                return;
2778
2779        if (likely(refcount_read(&skb->users) == 1)) {
2780                smp_rmb();
2781                refcount_set(&skb->users, 0);
2782        } else if (likely(!refcount_dec_and_test(&skb->users))) {
2783                return;
2784        }
2785        get_kfree_skb_cb(skb)->reason = reason;
2786        local_irq_save(flags);
2787        skb->next = __this_cpu_read(softnet_data.completion_queue);
2788        __this_cpu_write(softnet_data.completion_queue, skb);
2789        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2790        local_irq_restore(flags);
2791}
2792EXPORT_SYMBOL(__dev_kfree_skb_irq);
2793
2794void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2795{
2796        if (in_irq() || irqs_disabled())
2797                __dev_kfree_skb_irq(skb, reason);
2798        else
2799                dev_kfree_skb(skb);
2800}
2801EXPORT_SYMBOL(__dev_kfree_skb_any);
2802
2803
2804/**
2805 * netif_device_detach - mark device as removed
2806 * @dev: network device
2807 *
2808 * Mark device as removed from system and therefore no longer available.
2809 */
2810void netif_device_detach(struct net_device *dev)
2811{
2812        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2813            netif_running(dev)) {
2814                netif_tx_stop_all_queues(dev);
2815        }
2816}
2817EXPORT_SYMBOL(netif_device_detach);
2818
2819/**
2820 * netif_device_attach - mark device as attached
2821 * @dev: network device
2822 *
2823 * Mark device as attached from system and restart if needed.
2824 */
2825void netif_device_attach(struct net_device *dev)
2826{
2827        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2828            netif_running(dev)) {
2829                netif_tx_wake_all_queues(dev);
2830                __netdev_watchdog_up(dev);
2831        }
2832}
2833EXPORT_SYMBOL(netif_device_attach);
2834
2835/*
2836 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2837 * to be used as a distribution range.
2838 */
2839static u16 skb_tx_hash(const struct net_device *dev,
2840                       const struct net_device *sb_dev,
2841                       struct sk_buff *skb)
2842{
2843        u32 hash;
2844        u16 qoffset = 0;
2845        u16 qcount = dev->real_num_tx_queues;
2846
2847        if (dev->num_tc) {
2848                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2849
2850                qoffset = sb_dev->tc_to_txq[tc].offset;
2851                qcount = sb_dev->tc_to_txq[tc].count;
2852        }
2853
2854        if (skb_rx_queue_recorded(skb)) {
2855                hash = skb_get_rx_queue(skb);
2856                while (unlikely(hash >= qcount))
2857                        hash -= qcount;
2858                return hash + qoffset;
2859        }
2860
2861        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2862}
2863
2864static void skb_warn_bad_offload(const struct sk_buff *skb)
2865{
2866        static const netdev_features_t null_features;
2867        struct net_device *dev = skb->dev;
2868        const char *name = "";
2869
2870        if (!net_ratelimit())
2871                return;
2872
2873        if (dev) {
2874                if (dev->dev.parent)
2875                        name = dev_driver_string(dev->dev.parent);
2876                else
2877                        name = netdev_name(dev);
2878        }
2879        WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2880             "gso_type=%d ip_summed=%d\n",
2881             name, dev ? &dev->features : &null_features,
2882             skb->sk ? &skb->sk->sk_route_caps : &null_features,
2883             skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2884             skb_shinfo(skb)->gso_type, skb->ip_summed);
2885}
2886
2887/*
2888 * Invalidate hardware checksum when packet is to be mangled, and
2889 * complete checksum manually on outgoing path.
2890 */
2891int skb_checksum_help(struct sk_buff *skb)
2892{
2893        __wsum csum;
2894        int ret = 0, offset;
2895
2896        if (skb->ip_summed == CHECKSUM_COMPLETE)
2897                goto out_set_summed;
2898
2899        if (unlikely(skb_shinfo(skb)->gso_size)) {
2900                skb_warn_bad_offload(skb);
2901                return -EINVAL;
2902        }
2903
2904        /* Before computing a checksum, we should make sure no frag could
2905         * be modified by an external entity : checksum could be wrong.
2906         */
2907        if (skb_has_shared_frag(skb)) {
2908                ret = __skb_linearize(skb);
2909                if (ret)
2910                        goto out;
2911        }
2912
2913        offset = skb_checksum_start_offset(skb);
2914        BUG_ON(offset >= skb_headlen(skb));
2915        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2916
2917        offset += skb->csum_offset;
2918        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2919
2920        if (skb_cloned(skb) &&
2921            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2922                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2923                if (ret)
2924                        goto out;
2925        }
2926
2927        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2928out_set_summed:
2929        skb->ip_summed = CHECKSUM_NONE;
2930out:
2931        return ret;
2932}
2933EXPORT_SYMBOL(skb_checksum_help);
2934
2935int skb_crc32c_csum_help(struct sk_buff *skb)
2936{
2937        __le32 crc32c_csum;
2938        int ret = 0, offset, start;
2939
2940        if (skb->ip_summed != CHECKSUM_PARTIAL)
2941                goto out;
2942
2943        if (unlikely(skb_is_gso(skb)))
2944                goto out;
2945
2946        /* Before computing a checksum, we should make sure no frag could
2947         * be modified by an external entity : checksum could be wrong.
2948         */
2949        if (unlikely(skb_has_shared_frag(skb))) {
2950                ret = __skb_linearize(skb);
2951                if (ret)
2952                        goto out;
2953        }
2954        start = skb_checksum_start_offset(skb);
2955        offset = start + offsetof(struct sctphdr, checksum);
2956        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2957                ret = -EINVAL;
2958                goto out;
2959        }
2960        if (skb_cloned(skb) &&
2961            !skb_clone_writable(skb, offset + sizeof(__le32))) {
2962                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2963                if (ret)
2964                        goto out;
2965        }
2966        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2967                                                  skb->len - start, ~(__u32)0,
2968                                                  crc32c_csum_stub));
2969        *(__le32 *)(skb->data + offset) = crc32c_csum;
2970        skb->ip_summed = CHECKSUM_NONE;
2971        skb->csum_not_inet = 0;
2972out:
2973        return ret;
2974}
2975
2976__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2977{
2978        __be16 type = skb->protocol;
2979
2980        /* Tunnel gso handlers can set protocol to ethernet. */
2981        if (type == htons(ETH_P_TEB)) {
2982                struct ethhdr *eth;
2983
2984                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2985                        return 0;
2986
2987                eth = (struct ethhdr *)skb->data;
2988                type = eth->h_proto;
2989        }
2990
2991        return __vlan_get_protocol(skb, type, depth);
2992}
2993
2994/**
2995 *      skb_mac_gso_segment - mac layer segmentation handler.
2996 *      @skb: buffer to segment
2997 *      @features: features for the output path (see dev->features)
2998 */
2999struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3000                                    netdev_features_t features)
3001{
3002        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3003        struct packet_offload *ptype;
3004        int vlan_depth = skb->mac_len;
3005        __be16 type = skb_network_protocol(skb, &vlan_depth);
3006
3007        if (unlikely(!type))
3008                return ERR_PTR(-EINVAL);
3009
3010        __skb_pull(skb, vlan_depth);
3011
3012        rcu_read_lock();
3013        list_for_each_entry_rcu(ptype, &offload_base, list) {
3014                if (ptype->type == type && ptype->callbacks.gso_segment) {
3015                        segs = ptype->callbacks.gso_segment(skb, features);
3016                        break;
3017                }
3018        }
3019        rcu_read_unlock();
3020
3021        __skb_push(skb, skb->data - skb_mac_header(skb));
3022
3023        return segs;
3024}
3025EXPORT_SYMBOL(skb_mac_gso_segment);
3026
3027
3028/* openvswitch calls this on rx path, so we need a different check.
3029 */
3030static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3031{
3032        if (tx_path)
3033                return skb->ip_summed != CHECKSUM_PARTIAL &&
3034                       skb->ip_summed != CHECKSUM_UNNECESSARY;
3035
3036        return skb->ip_summed == CHECKSUM_NONE;
3037}
3038
3039/**
3040 *      __skb_gso_segment - Perform segmentation on skb.
3041 *      @skb: buffer to segment
3042 *      @features: features for the output path (see dev->features)
3043 *      @tx_path: whether it is called in TX path
3044 *
3045 *      This function segments the given skb and returns a list of segments.
3046 *
3047 *      It may return NULL if the skb requires no segmentation.  This is
3048 *      only possible when GSO is used for verifying header integrity.
3049 *
3050 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3051 */
3052struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3053                                  netdev_features_t features, bool tx_path)
3054{
3055        struct sk_buff *segs;
3056
3057        if (unlikely(skb_needs_check(skb, tx_path))) {
3058                int err;
3059
3060                /* We're going to init ->check field in TCP or UDP header */
3061                err = skb_cow_head(skb, 0);
3062                if (err < 0)
3063                        return ERR_PTR(err);
3064        }
3065
3066        /* Only report GSO partial support if it will enable us to
3067         * support segmentation on this frame without needing additional
3068         * work.
3069         */
3070        if (features & NETIF_F_GSO_PARTIAL) {
3071                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3072                struct net_device *dev = skb->dev;
3073
3074                partial_features |= dev->features & dev->gso_partial_features;
3075                if (!skb_gso_ok(skb, features | partial_features))
3076                        features &= ~NETIF_F_GSO_PARTIAL;
3077        }
3078
3079        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3080                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3081
3082        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3083        SKB_GSO_CB(skb)->encap_level = 0;
3084
3085        skb_reset_mac_header(skb);
3086        skb_reset_mac_len(skb);
3087
3088        segs = skb_mac_gso_segment(skb, features);
3089
3090        if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3091                skb_warn_bad_offload(skb);
3092
3093        return segs;
3094}
3095EXPORT_SYMBOL(__skb_gso_segment);
3096
3097/* Take action when hardware reception checksum errors are detected. */
3098#ifdef CONFIG_BUG
3099void netdev_rx_csum_fault(struct net_device *dev)
3100{
3101        if (net_ratelimit()) {
3102                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3103                dump_stack();
3104        }
3105}
3106EXPORT_SYMBOL(netdev_rx_csum_fault);
3107#endif
3108
3109/* XXX: check that highmem exists at all on the given machine. */
3110static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3111{
3112#ifdef CONFIG_HIGHMEM
3113        int i;
3114
3115        if (!(dev->features & NETIF_F_HIGHDMA)) {
3116                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3117                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3118
3119                        if (PageHighMem(skb_frag_page(frag)))
3120                                return 1;
3121                }
3122        }
3123#endif
3124        return 0;
3125}
3126
3127/* If MPLS offload request, verify we are testing hardware MPLS features
3128 * instead of standard features for the netdev.
3129 */
3130#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3131static netdev_features_t net_mpls_features(struct sk_buff *skb,
3132                                           netdev_features_t features,
3133                                           __be16 type)
3134{
3135        if (eth_p_mpls(type))
3136                features &= skb->dev->mpls_features;
3137
3138        return features;
3139}
3140#else
3141static netdev_features_t net_mpls_features(struct sk_buff *skb,
3142                                           netdev_features_t features,
3143                                           __be16 type)
3144{
3145        return features;
3146}
3147#endif
3148
3149static netdev_features_t harmonize_features(struct sk_buff *skb,
3150        netdev_features_t features)
3151{
3152        int tmp;
3153        __be16 type;
3154
3155        type = skb_network_protocol(skb, &tmp);
3156        features = net_mpls_features(skb, features, type);
3157
3158        if (skb->ip_summed != CHECKSUM_NONE &&
3159            !can_checksum_protocol(features, type)) {
3160                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3161        }
3162        if (illegal_highdma(skb->dev, skb))
3163                features &= ~NETIF_F_SG;
3164
3165        return features;
3166}
3167
3168netdev_features_t passthru_features_check(struct sk_buff *skb,
3169                                          struct net_device *dev,
3170                                          netdev_features_t features)
3171{
3172        return features;
3173}
3174EXPORT_SYMBOL(passthru_features_check);
3175
3176static netdev_features_t dflt_features_check(struct sk_buff *skb,
3177                                             struct net_device *dev,
3178                                             netdev_features_t features)
3179{
3180        return vlan_features_check(skb, features);
3181}
3182
3183static netdev_features_t gso_features_check(const struct sk_buff *skb,
3184                                            struct net_device *dev,
3185                                            netdev_features_t features)
3186{
3187        u16 gso_segs = skb_shinfo(skb)->gso_segs;
3188
3189        if (gso_segs > dev->gso_max_segs)
3190                return features & ~NETIF_F_GSO_MASK;
3191
3192        /* Support for GSO partial features requires software
3193         * intervention before we can actually process the packets
3194         * so we need to strip support for any partial features now
3195         * and we can pull them back in after we have partially
3196         * segmented the frame.
3197         */
3198        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3199                features &= ~dev->gso_partial_features;
3200
3201        /* Make sure to clear the IPv4 ID mangling feature if the
3202         * IPv4 header has the potential to be fragmented.
3203         */
3204        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3205                struct iphdr *iph = skb->encapsulation ?
3206                                    inner_ip_hdr(skb) : ip_hdr(skb);
3207
3208                if (!(iph->frag_off & htons(IP_DF)))
3209                        features &= ~NETIF_F_TSO_MANGLEID;
3210        }
3211
3212        return features;
3213}
3214
3215netdev_features_t netif_skb_features(struct sk_buff *skb)
3216{
3217        struct net_device *dev = skb->dev;
3218        netdev_features_t features = dev->features;
3219
3220        if (skb_is_gso(skb))
3221                features = gso_features_check(skb, dev, features);
3222
3223        /* If encapsulation offload request, verify we are testing
3224         * hardware encapsulation features instead of standard
3225         * features for the netdev
3226         */
3227        if (skb->encapsulation)
3228                features &= dev->hw_enc_features;
3229
3230        if (skb_vlan_tagged(skb))
3231                features = netdev_intersect_features(features,
3232                                                     dev->vlan_features |
3233                                                     NETIF_F_HW_VLAN_CTAG_TX |
3234                                                     NETIF_F_HW_VLAN_STAG_TX);
3235
3236        if (dev->netdev_ops->ndo_features_check)
3237                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3238                                                                features);
3239        else
3240                features &= dflt_features_check(skb, dev, features);
3241
3242        return harmonize_features(skb, features);
3243}
3244EXPORT_SYMBOL(netif_skb_features);
3245
3246static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3247                    struct netdev_queue *txq, bool more)
3248{
3249        unsigned int len;
3250        int rc;
3251
3252        if (dev_nit_active(dev))
3253                dev_queue_xmit_nit(skb, dev);
3254
3255        len = skb->len;
3256        trace_net_dev_start_xmit(skb, dev);
3257        rc = netdev_start_xmit(skb, dev, txq, more);
3258        trace_net_dev_xmit(skb, rc, dev, len);
3259
3260        return rc;
3261}
3262
3263struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3264                                    struct netdev_queue *txq, int *ret)
3265{
3266        struct sk_buff *skb = first;
3267        int rc = NETDEV_TX_OK;
3268
3269        while (skb) {
3270                struct sk_buff *next = skb->next;
3271
3272                skb_mark_not_on_list(skb);
3273                rc = xmit_one(skb, dev, txq, next != NULL);
3274                if (unlikely(!dev_xmit_complete(rc))) {
3275                        skb->next = next;
3276                        goto out;
3277                }
3278
3279                skb = next;
3280                if (netif_tx_queue_stopped(txq) && skb) {
3281                        rc = NETDEV_TX_BUSY;
3282                        break;
3283                }
3284        }
3285
3286out:
3287        *ret = rc;
3288        return skb;
3289}
3290
3291static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3292                                          netdev_features_t features)
3293{
3294        if (skb_vlan_tag_present(skb) &&
3295            !vlan_hw_offload_capable(features, skb->vlan_proto))
3296                skb = __vlan_hwaccel_push_inside(skb);
3297        return skb;
3298}
3299
3300int skb_csum_hwoffload_help(struct sk_buff *skb,
3301                            const netdev_features_t features)
3302{
3303        if (unlikely(skb->csum_not_inet))
3304                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3305                        skb_crc32c_csum_help(skb);
3306
3307        return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3308}
3309EXPORT_SYMBOL(skb_csum_hwoffload_help);
3310
3311static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3312{
3313        netdev_features_t features;
3314
3315        features = netif_skb_features(skb);
3316        skb = validate_xmit_vlan(skb, features);
3317        if (unlikely(!skb))
3318                goto out_null;
3319
3320        skb = sk_validate_xmit_skb(skb, dev);
3321        if (unlikely(!skb))
3322                goto out_null;
3323
3324        if (netif_needs_gso(skb, features)) {
3325                struct sk_buff *segs;
3326
3327                segs = skb_gso_segment(skb, features);
3328                if (IS_ERR(segs)) {
3329                        goto out_kfree_skb;
3330                } else if (segs) {
3331                        consume_skb(skb);
3332                        skb = segs;
3333                }
3334        } else {
3335                if (skb_needs_linearize(skb, features) &&
3336                    __skb_linearize(skb))
3337                        goto out_kfree_skb;
3338
3339                /* If packet is not checksummed and device does not
3340                 * support checksumming for this protocol, complete
3341                 * checksumming here.
3342                 */
3343                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3344                        if (skb->encapsulation)
3345                                skb_set_inner_transport_header(skb,
3346                                                               skb_checksum_start_offset(skb));
3347                        else
3348                                skb_set_transport_header(skb,
3349                                                         skb_checksum_start_offset(skb));
3350                        if (skb_csum_hwoffload_help(skb, features))
3351                                goto out_kfree_skb;
3352                }
3353        }
3354
3355        skb = validate_xmit_xfrm(skb, features, again);
3356
3357        return skb;
3358
3359out_kfree_skb:
3360        kfree_skb(skb);
3361out_null:
3362        atomic_long_inc(&dev->tx_dropped);
3363        return NULL;
3364}
3365
3366struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3367{
3368        struct sk_buff *next, *head = NULL, *tail;
3369
3370        for (; skb != NULL; skb = next) {
3371                next = skb->next;
3372                skb_mark_not_on_list(skb);
3373
3374                /* in case skb wont be segmented, point to itself */
3375                skb->prev = skb;
3376
3377                skb = validate_xmit_skb(skb, dev, again);
3378                if (!skb)
3379                        continue;
3380
3381                if (!head)
3382                        head = skb;
3383                else
3384                        tail->next = skb;
3385                /* If skb was segmented, skb->prev points to
3386                 * the last segment. If not, it still contains skb.
3387                 */
3388                tail = skb->prev;
3389        }
3390        return head;
3391}
3392EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3393
3394static void qdisc_pkt_len_init(struct sk_buff *skb)
3395{
3396        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3397
3398        qdisc_skb_cb(skb)->pkt_len = skb->len;
3399
3400        /* To get more precise estimation of bytes sent on wire,
3401         * we add to pkt_len the headers size of all segments
3402         */
3403        if (shinfo->gso_size)  {
3404                unsigned int hdr_len;
3405                u16 gso_segs = shinfo->gso_segs;
3406
3407                /* mac layer + network layer */
3408                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3409
3410                /* + transport layer */
3411                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3412                        const struct tcphdr *th;
3413                        struct tcphdr _tcphdr;
3414
3415                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3416                                                sizeof(_tcphdr), &_tcphdr);
3417                        if (likely(th))
3418                                hdr_len += __tcp_hdrlen(th);
3419                } else {
3420                        struct udphdr _udphdr;
3421
3422                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3423                                               sizeof(_udphdr), &_udphdr))
3424                                hdr_len += sizeof(struct udphdr);
3425                }
3426
3427                if (shinfo->gso_type & SKB_GSO_DODGY)
3428                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3429                                                shinfo->gso_size);
3430
3431                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3432        }
3433}
3434
3435static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3436                                 struct net_device *dev,
3437                                 struct netdev_queue *txq)
3438{
3439        spinlock_t *root_lock = qdisc_lock(q);
3440        struct sk_buff *to_free = NULL;
3441        bool contended;
3442        int rc;
3443
3444        qdisc_calculate_pkt_len(skb, q);
3445
3446        if (q->flags & TCQ_F_NOLOCK) {
3447                if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3448                        __qdisc_drop(skb, &to_free);
3449                        rc = NET_XMIT_DROP;
3450                } else {
3451                        rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3452                        qdisc_run(q);
3453                }
3454
3455                if (unlikely(to_free))
3456                        kfree_skb_list(to_free);
3457                return rc;
3458        }
3459
3460        /*
3461         * Heuristic to force contended enqueues to serialize on a
3462         * separate lock before trying to get qdisc main lock.
3463         * This permits qdisc->running owner to get the lock more
3464         * often and dequeue packets faster.
3465         */
3466        contended = qdisc_is_running(q);
3467        if (unlikely(contended))
3468                spin_lock(&q->busylock);
3469
3470        spin_lock(root_lock);
3471        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3472                __qdisc_drop(skb, &to_free);
3473                rc = NET_XMIT_DROP;
3474        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3475                   qdisc_run_begin(q)) {
3476                /*
3477                 * This is a work-conserving queue; there are no old skbs
3478                 * waiting to be sent out; and the qdisc is not running -
3479                 * xmit the skb directly.
3480                 */
3481
3482                qdisc_bstats_update(q, skb);
3483
3484                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3485                        if (unlikely(contended)) {
3486                                spin_unlock(&q->busylock);
3487                                contended = false;
3488                        }
3489                        __qdisc_run(q);
3490                }
3491
3492                qdisc_run_end(q);
3493                rc = NET_XMIT_SUCCESS;
3494        } else {
3495                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496                if (qdisc_run_begin(q)) {
3497                        if (unlikely(contended)) {
3498                                spin_unlock(&q->busylock);
3499                                contended = false;
3500                        }
3501                        __qdisc_run(q);
3502                        qdisc_run_end(q);
3503                }
3504        }
3505        spin_unlock(root_lock);
3506        if (unlikely(to_free))
3507                kfree_skb_list(to_free);
3508        if (unlikely(contended))
3509                spin_unlock(&q->busylock);
3510        return rc;
3511}
3512
3513#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3514static void skb_update_prio(struct sk_buff *skb)
3515{
3516        const struct netprio_map *map;
3517        const struct sock *sk;
3518        unsigned int prioidx;
3519
3520        if (skb->priority)
3521                return;
3522        map = rcu_dereference_bh(skb->dev->priomap);
3523        if (!map)
3524                return;
3525        sk = skb_to_full_sk(skb);
3526        if (!sk)
3527                return;
3528
3529        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3530
3531        if (prioidx < map->priomap_len)
3532                skb->priority = map->priomap[prioidx];
3533}
3534#else
3535#define skb_update_prio(skb)
3536#endif
3537
3538DEFINE_PER_CPU(int, xmit_recursion);
3539EXPORT_SYMBOL(xmit_recursion);
3540
3541/**
3542 *      dev_loopback_xmit - loop back @skb
3543 *      @net: network namespace this loopback is happening in
3544 *      @sk:  sk needed to be a netfilter okfn
3545 *      @skb: buffer to transmit
3546 */
3547int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3548{
3549        skb_reset_mac_header(skb);
3550        __skb_pull(skb, skb_network_offset(skb));
3551        skb->pkt_type = PACKET_LOOPBACK;
3552        skb->ip_summed = CHECKSUM_UNNECESSARY;
3553        WARN_ON(!skb_dst(skb));
3554        skb_dst_force(skb);
3555        netif_rx_ni(skb);
3556        return 0;
3557}
3558EXPORT_SYMBOL(dev_loopback_xmit);
3559
3560#ifdef CONFIG_NET_EGRESS
3561static struct sk_buff *
3562sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3563{
3564        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3565        struct tcf_result cl_res;
3566
3567        if (!miniq)
3568                return skb;
3569
3570        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3571        mini_qdisc_bstats_cpu_update(miniq, skb);
3572
3573        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3574        case TC_ACT_OK:
3575        case TC_ACT_RECLASSIFY:
3576                skb->tc_index = TC_H_MIN(cl_res.classid);
3577                break;
3578        case TC_ACT_SHOT:
3579                mini_qdisc_qstats_cpu_drop(miniq);
3580                *ret = NET_XMIT_DROP;
3581                kfree_skb(skb);
3582                return NULL;
3583        case TC_ACT_STOLEN:
3584        case TC_ACT_QUEUED:
3585        case TC_ACT_TRAP:
3586                *ret = NET_XMIT_SUCCESS;
3587                consume_skb(skb);
3588                return NULL;
3589        case TC_ACT_REDIRECT:
3590                /* No need to push/pop skb's mac_header here on egress! */
3591                skb_do_redirect(skb);
3592                *ret = NET_XMIT_SUCCESS;
3593                return NULL;
3594        default:
3595                break;
3596        }
3597
3598        return skb;
3599}
3600#endif /* CONFIG_NET_EGRESS */
3601
3602#ifdef CONFIG_XPS
3603static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3604                               struct xps_dev_maps *dev_maps, unsigned int tci)
3605{
3606        struct xps_map *map;
3607        int queue_index = -1;
3608
3609        if (dev->num_tc) {
3610                tci *= dev->num_tc;
3611                tci += netdev_get_prio_tc_map(dev, skb->priority);
3612        }
3613
3614        map = rcu_dereference(dev_maps->attr_map[tci]);
3615        if (map) {
3616                if (map->len == 1)
3617                        queue_index = map->queues[0];
3618                else
3619                        queue_index = map->queues[reciprocal_scale(
3620                                                skb_get_hash(skb), map->len)];
3621                if (unlikely(queue_index >= dev->real_num_tx_queues))
3622                        queue_index = -1;
3623        }
3624        return queue_index;
3625}
3626#endif
3627
3628static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3629                         struct sk_buff *skb)
3630{
3631#ifdef CONFIG_XPS
3632        struct xps_dev_maps *dev_maps;
3633        struct sock *sk = skb->sk;
3634        int queue_index = -1;
3635
3636        if (!static_key_false(&xps_needed))
3637                return -1;
3638
3639        rcu_read_lock();
3640        if (!static_key_false(&xps_rxqs_needed))
3641                goto get_cpus_map;
3642
3643        dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3644        if (dev_maps) {
3645                int tci = sk_rx_queue_get(sk);
3646
3647                if (tci >= 0 && tci < dev->num_rx_queues)
3648                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3649                                                          tci);
3650        }
3651
3652get_cpus_map:
3653        if (queue_index < 0) {
3654                dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3655                if (dev_maps) {
3656                        unsigned int tci = skb->sender_cpu - 1;
3657
3658                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3659                                                          tci);
3660                }
3661        }
3662        rcu_read_unlock();
3663
3664        return queue_index;
3665#else
3666        return -1;
3667#endif
3668}
3669
3670u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3671                     struct net_device *sb_dev,
3672                     select_queue_fallback_t fallback)
3673{
3674        return 0;
3675}
3676EXPORT_SYMBOL(dev_pick_tx_zero);
3677
3678u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3679                       struct net_device *sb_dev,
3680                       select_queue_fallback_t fallback)
3681{
3682        return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3683}
3684EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3685
3686static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3687                            struct net_device *sb_dev)
3688{
3689        struct sock *sk = skb->sk;
3690        int queue_index = sk_tx_queue_get(sk);
3691
3692        sb_dev = sb_dev ? : dev;
3693
3694        if (queue_index < 0 || skb->ooo_okay ||
3695            queue_index >= dev->real_num_tx_queues) {
3696                int new_index = get_xps_queue(dev, sb_dev, skb);
3697
3698                if (new_index < 0)
3699                        new_index = skb_tx_hash(dev, sb_dev, skb);
3700
3701                if (queue_index != new_index && sk &&
3702                    sk_fullsock(sk) &&
3703                    rcu_access_pointer(sk->sk_dst_cache))
3704                        sk_tx_queue_set(sk, new_index);
3705
3706                queue_index = new_index;
3707        }
3708
3709        return queue_index;
3710}
3711
3712struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3713                                    struct sk_buff *skb,
3714                                    struct net_device *sb_dev)
3715{
3716        int queue_index = 0;
3717
3718#ifdef CONFIG_XPS
3719        u32 sender_cpu = skb->sender_cpu - 1;
3720
3721        if (sender_cpu >= (u32)NR_CPUS)
3722                skb->sender_cpu = raw_smp_processor_id() + 1;
3723#endif
3724
3725        if (dev->real_num_tx_queues != 1) {
3726                const struct net_device_ops *ops = dev->netdev_ops;
3727
3728                if (ops->ndo_select_queue)
3729                        queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3730                                                            __netdev_pick_tx);
3731                else
3732                        queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3733
3734                queue_index = netdev_cap_txqueue(dev, queue_index);
3735        }
3736
3737        skb_set_queue_mapping(skb, queue_index);
3738        return netdev_get_tx_queue(dev, queue_index);
3739}
3740
3741/**
3742 *      __dev_queue_xmit - transmit a buffer
3743 *      @skb: buffer to transmit
3744 *      @sb_dev: suboordinate device used for L2 forwarding offload
3745 *
3746 *      Queue a buffer for transmission to a network device. The caller must
3747 *      have set the device and priority and built the buffer before calling
3748 *      this function. The function can be called from an interrupt.
3749 *
3750 *      A negative errno code is returned on a failure. A success does not
3751 *      guarantee the frame will be transmitted as it may be dropped due
3752 *      to congestion or traffic shaping.
3753 *
3754 * -----------------------------------------------------------------------------------
3755 *      I notice this method can also return errors from the queue disciplines,
3756 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3757 *      be positive.
3758 *
3759 *      Regardless of the return value, the skb is consumed, so it is currently
3760 *      difficult to retry a send to this method.  (You can bump the ref count
3761 *      before sending to hold a reference for retry if you are careful.)
3762 *
3763 *      When calling this method, interrupts MUST be enabled.  This is because
3764 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3765 *          --BLG
3766 */
3767static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3768{
3769        struct net_device *dev = skb->dev;
3770        struct netdev_queue *txq;
3771        struct Qdisc *q;
3772        int rc = -ENOMEM;
3773        bool again = false;
3774
3775        skb_reset_mac_header(skb);
3776
3777        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3778                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3779
3780        /* Disable soft irqs for various locks below. Also
3781         * stops preemption for RCU.
3782         */
3783        rcu_read_lock_bh();
3784
3785        skb_update_prio(skb);
3786
3787        qdisc_pkt_len_init(skb);
3788#ifdef CONFIG_NET_CLS_ACT
3789        skb->tc_at_ingress = 0;
3790# ifdef CONFIG_NET_EGRESS
3791        if (static_branch_unlikely(&egress_needed_key)) {
3792                skb = sch_handle_egress(skb, &rc, dev);
3793                if (!skb)
3794                        goto out;
3795        }
3796# endif
3797#endif
3798        /* If device/qdisc don't need skb->dst, release it right now while
3799         * its hot in this cpu cache.
3800         */
3801        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3802                skb_dst_drop(skb);
3803        else
3804                skb_dst_force(skb);
3805
3806        txq = netdev_pick_tx(dev, skb, sb_dev);
3807        q = rcu_dereference_bh(txq->qdisc);
3808
3809        trace_net_dev_queue(skb);
3810        if (q->enqueue) {
3811                rc = __dev_xmit_skb(skb, q, dev, txq);
3812                goto out;
3813        }
3814
3815        /* The device has no queue. Common case for software devices:
3816         * loopback, all the sorts of tunnels...
3817
3818         * Really, it is unlikely that netif_tx_lock protection is necessary
3819         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3820         * counters.)
3821         * However, it is possible, that they rely on protection
3822         * made by us here.
3823
3824         * Check this and shot the lock. It is not prone from deadlocks.
3825         *Either shot noqueue qdisc, it is even simpler 8)
3826         */
3827        if (dev->flags & IFF_UP) {
3828                int cpu = smp_processor_id(); /* ok because BHs are off */
3829
3830                if (txq->xmit_lock_owner != cpu) {
3831                        if (unlikely(__this_cpu_read(xmit_recursion) >
3832                                     XMIT_RECURSION_LIMIT))
3833                                goto recursion_alert;
3834
3835                        skb = validate_xmit_skb(skb, dev, &again);
3836                        if (!skb)
3837                                goto out;
3838
3839                        HARD_TX_LOCK(dev, txq, cpu);
3840
3841                        if (!netif_xmit_stopped(txq)) {
3842                                __this_cpu_inc(xmit_recursion);
3843                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3844                                __this_cpu_dec(xmit_recursion);
3845                                if (dev_xmit_complete(rc)) {
3846                                        HARD_TX_UNLOCK(dev, txq);
3847                                        goto out;
3848                                }
3849                        }
3850                        HARD_TX_UNLOCK(dev, txq);
3851                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3852                                             dev->name);
3853                } else {
3854                        /* Recursion is detected! It is possible,
3855                         * unfortunately
3856                         */
3857recursion_alert:
3858                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3859                                             dev->name);
3860                }
3861        }
3862
3863        rc = -ENETDOWN;
3864        rcu_read_unlock_bh();
3865
3866        atomic_long_inc(&dev->tx_dropped);
3867        kfree_skb_list(skb);
3868        return rc;
3869out:
3870        rcu_read_unlock_bh();
3871        return rc;
3872}
3873
3874int dev_queue_xmit(struct sk_buff *skb)
3875{
3876        return __dev_queue_xmit(skb, NULL);
3877}
3878EXPORT_SYMBOL(dev_queue_xmit);
3879
3880int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3881{
3882        return __dev_queue_xmit(skb, sb_dev);
3883}
3884EXPORT_SYMBOL(dev_queue_xmit_accel);
3885
3886int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3887{
3888        struct net_device *dev = skb->dev;
3889        struct sk_buff *orig_skb = skb;
3890        struct netdev_queue *txq;
3891        int ret = NETDEV_TX_BUSY;
3892        bool again = false;
3893
3894        if (unlikely(!netif_running(dev) ||
3895                     !netif_carrier_ok(dev)))
3896                goto drop;
3897
3898        skb = validate_xmit_skb_list(skb, dev, &again);
3899        if (skb != orig_skb)
3900                goto drop;
3901
3902        skb_set_queue_mapping(skb, queue_id);
3903        txq = skb_get_tx_queue(dev, skb);
3904
3905        local_bh_disable();
3906
3907        HARD_TX_LOCK(dev, txq, smp_processor_id());
3908        if (!netif_xmit_frozen_or_drv_stopped(txq))
3909                ret = netdev_start_xmit(skb, dev, txq, false);
3910        HARD_TX_UNLOCK(dev, txq);
3911
3912        local_bh_enable();
3913
3914        if (!dev_xmit_complete(ret))
3915                kfree_skb(skb);
3916
3917        return ret;
3918drop:
3919        atomic_long_inc(&dev->tx_dropped);
3920        kfree_skb_list(skb);
3921        return NET_XMIT_DROP;
3922}
3923EXPORT_SYMBOL(dev_direct_xmit);
3924
3925/*************************************************************************
3926 *                      Receiver routines
3927 *************************************************************************/
3928
3929int netdev_max_backlog __read_mostly = 1000;
3930EXPORT_SYMBOL(netdev_max_backlog);
3931
3932int netdev_tstamp_prequeue __read_mostly = 1;
3933int netdev_budget __read_mostly = 300;
3934unsigned int __read_mostly netdev_budget_usecs = 2000;
3935int weight_p __read_mostly = 64;           /* old backlog weight */
3936int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3937int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3938int dev_rx_weight __read_mostly = 64;
3939int dev_tx_weight __read_mostly = 64;
3940
3941/* Called with irq disabled */
3942static inline void ____napi_schedule(struct softnet_data *sd,
3943                                     struct napi_struct *napi)
3944{
3945        list_add_tail(&napi->poll_list, &sd->poll_list);
3946        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3947}
3948
3949#ifdef CONFIG_RPS
3950
3951/* One global table that all flow-based protocols share. */
3952struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3953EXPORT_SYMBOL(rps_sock_flow_table);
3954u32 rps_cpu_mask __read_mostly;
3955EXPORT_SYMBOL(rps_cpu_mask);
3956
3957struct static_key rps_needed __read_mostly;
3958EXPORT_SYMBOL(rps_needed);
3959struct static_key rfs_needed __read_mostly;
3960EXPORT_SYMBOL(rfs_needed);
3961
3962static struct rps_dev_flow *
3963set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964            struct rps_dev_flow *rflow, u16 next_cpu)
3965{
3966        if (next_cpu < nr_cpu_ids) {
3967#ifdef CONFIG_RFS_ACCEL
3968                struct netdev_rx_queue *rxqueue;
3969                struct rps_dev_flow_table *flow_table;
3970                struct rps_dev_flow *old_rflow;
3971                u32 flow_id;
3972                u16 rxq_index;
3973                int rc;
3974
3975                /* Should we steer this flow to a different hardware queue? */
3976                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3977                    !(dev->features & NETIF_F_NTUPLE))
3978                        goto out;
3979                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3980                if (rxq_index == skb_get_rx_queue(skb))
3981                        goto out;
3982
3983                rxqueue = dev->_rx + rxq_index;
3984                flow_table = rcu_dereference(rxqueue->rps_flow_table);
3985                if (!flow_table)
3986                        goto out;
3987                flow_id = skb_get_hash(skb) & flow_table->mask;
3988                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3989                                                        rxq_index, flow_id);
3990                if (rc < 0)
3991                        goto out;
3992                old_rflow = rflow;
3993                rflow = &flow_table->flows[flow_id];
3994                rflow->filter = rc;
3995                if (old_rflow->filter == rflow->filter)
3996                        old_rflow->filter = RPS_NO_FILTER;
3997        out:
3998#endif
3999                rflow->last_qtail =
4000                        per_cpu(softnet_data, next_cpu).input_queue_head;
4001        }
4002
4003        rflow->cpu = next_cpu;
4004        return rflow;
4005}
4006
4007/*
4008 * get_rps_cpu is called from netif_receive_skb and returns the target
4009 * CPU from the RPS map of the receiving queue for a given skb.
4010 * rcu_read_lock must be held on entry.
4011 */
4012static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4013                       struct rps_dev_flow **rflowp)
4014{
4015        const struct rps_sock_flow_table *sock_flow_table;
4016        struct netdev_rx_queue *rxqueue = dev->_rx;
4017        struct rps_dev_flow_table *flow_table;
4018        struct rps_map *map;
4019        int cpu = -1;
4020        u32 tcpu;
4021        u32 hash;
4022
4023        if (skb_rx_queue_recorded(skb)) {
4024                u16 index = skb_get_rx_queue(skb);
4025
4026                if (unlikely(index >= dev->real_num_rx_queues)) {
4027                        WARN_ONCE(dev->real_num_rx_queues > 1,
4028                                  "%s received packet on queue %u, but number "
4029                                  "of RX queues is %u\n",
4030                                  dev->name, index, dev->real_num_rx_queues);
4031                        goto done;
4032                }
4033                rxqueue += index;
4034        }
4035
4036        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4037
4038        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4039        map = rcu_dereference(rxqueue->rps_map);
4040        if (!flow_table && !map)
4041                goto done;
4042
4043        skb_reset_network_header(skb);
4044        hash = skb_get_hash(skb);
4045        if (!hash)
4046                goto done;
4047
4048        sock_flow_table = rcu_dereference(rps_sock_flow_table);
4049        if (flow_table && sock_flow_table) {
4050                struct rps_dev_flow *rflow;
4051                u32 next_cpu;
4052                u32 ident;
4053
4054                /* First check into global flow table if there is a match */
4055                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4056                if ((ident ^ hash) & ~rps_cpu_mask)
4057                        goto try_rps;
4058
4059                next_cpu = ident & rps_cpu_mask;
4060
4061                /* OK, now we know there is a match,
4062                 * we can look at the local (per receive queue) flow table
4063                 */
4064                rflow = &flow_table->flows[hash & flow_table->mask];
4065                tcpu = rflow->cpu;
4066
4067                /*
4068                 * If the desired CPU (where last recvmsg was done) is
4069                 * different from current CPU (one in the rx-queue flow
4070                 * table entry), switch if one of the following holds:
4071                 *   - Current CPU is unset (>= nr_cpu_ids).
4072                 *   - Current CPU is offline.
4073                 *   - The current CPU's queue tail has advanced beyond the
4074                 *     last packet that was enqueued using this table entry.
4075                 *     This guarantees that all previous packets for the flow
4076                 *     have been dequeued, thus preserving in order delivery.
4077                 */
4078                if (unlikely(tcpu != next_cpu) &&
4079                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4080                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4081                      rflow->last_qtail)) >= 0)) {
4082                        tcpu = next_cpu;
4083                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4084                }
4085
4086                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4087                        *rflowp = rflow;
4088                        cpu = tcpu;
4089                        goto done;
4090                }
4091        }
4092
4093try_rps:
4094
4095        if (map) {
4096                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4097                if (cpu_online(tcpu)) {
4098                        cpu = tcpu;
4099                        goto done;
4100                }
4101        }
4102
4103done:
4104        return cpu;
4105}
4106
4107#ifdef CONFIG_RFS_ACCEL
4108
4109/**
4110 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4111 * @dev: Device on which the filter was set
4112 * @rxq_index: RX queue index
4113 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4114 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4115 *
4116 * Drivers that implement ndo_rx_flow_steer() should periodically call
4117 * this function for each installed filter and remove the filters for
4118 * which it returns %true.
4119 */
4120bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4121                         u32 flow_id, u16 filter_id)
4122{
4123        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4124        struct rps_dev_flow_table *flow_table;
4125        struct rps_dev_flow *rflow;
4126        bool expire = true;
4127        unsigned int cpu;
4128
4129        rcu_read_lock();
4130        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4131        if (flow_table && flow_id <= flow_table->mask) {
4132                rflow = &flow_table->flows[flow_id];
4133                cpu = READ_ONCE(rflow->cpu);
4134                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4135                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4136                           rflow->last_qtail) <
4137                     (int)(10 * flow_table->mask)))
4138                        expire = false;
4139        }
4140        rcu_read_unlock();
4141        return expire;
4142}
4143EXPORT_SYMBOL(rps_may_expire_flow);
4144
4145#endif /* CONFIG_RFS_ACCEL */
4146
4147/* Called from hardirq (IPI) context */
4148static void rps_trigger_softirq(void *data)
4149{
4150        struct softnet_data *sd = data;
4151
4152        ____napi_schedule(sd, &sd->backlog);
4153        sd->received_rps++;
4154}
4155
4156#endif /* CONFIG_RPS */
4157
4158/*
4159 * Check if this softnet_data structure is another cpu one
4160 * If yes, queue it to our IPI list and return 1
4161 * If no, return 0
4162 */
4163static int rps_ipi_queued(struct softnet_data *sd)
4164{
4165#ifdef CONFIG_RPS
4166        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4167
4168        if (sd != mysd) {
4169                sd->rps_ipi_next = mysd->rps_ipi_list;
4170                mysd->rps_ipi_list = sd;
4171
4172                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4173                return 1;
4174        }
4175#endif /* CONFIG_RPS */
4176        return 0;
4177}
4178
4179#ifdef CONFIG_NET_FLOW_LIMIT
4180int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4181#endif
4182
4183static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4184{
4185#ifdef CONFIG_NET_FLOW_LIMIT
4186        struct sd_flow_limit *fl;
4187        struct softnet_data *sd;
4188        unsigned int old_flow, new_flow;
4189
4190        if (qlen < (netdev_max_backlog >> 1))
4191                return false;
4192
4193        sd = this_cpu_ptr(&softnet_data);
4194
4195        rcu_read_lock();
4196        fl = rcu_dereference(sd->flow_limit);
4197        if (fl) {
4198                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4199                old_flow = fl->history[fl->history_head];
4200                fl->history[fl->history_head] = new_flow;
4201
4202                fl->history_head++;
4203                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4204
4205                if (likely(fl->buckets[old_flow]))
4206                        fl->buckets[old_flow]--;
4207
4208                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4209                        fl->count++;
4210                        rcu_read_unlock();
4211                        return true;
4212                }
4213        }
4214        rcu_read_unlock();
4215#endif
4216        return false;
4217}
4218
4219/*
4220 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4221 * queue (may be a remote CPU queue).
4222 */
4223static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4224                              unsigned int *qtail)
4225{
4226        struct softnet_data *sd;
4227        unsigned long flags;
4228        unsigned int qlen;
4229
4230        sd = &per_cpu(softnet_data, cpu);
4231
4232        local_irq_save(flags);
4233
4234        rps_lock(sd);
4235        if (!netif_running(skb->dev))
4236                goto drop;
4237        qlen = skb_queue_len(&sd->input_pkt_queue);
4238        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4239                if (qlen) {
4240enqueue:
4241                        __skb_queue_tail(&sd->input_pkt_queue, skb);
4242                        input_queue_tail_incr_save(sd, qtail);
4243                        rps_unlock(sd);
4244                        local_irq_restore(flags);
4245                        return NET_RX_SUCCESS;
4246                }
4247
4248                /* Schedule NAPI for backlog device
4249                 * We can use non atomic operation since we own the queue lock
4250                 */
4251                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4252                        if (!rps_ipi_queued(sd))
4253                                ____napi_schedule(sd, &sd->backlog);
4254                }
4255                goto enqueue;
4256        }
4257
4258drop:
4259        sd->dropped++;
4260        rps_unlock(sd);
4261
4262        local_irq_restore(flags);
4263
4264        atomic_long_inc(&skb->dev->rx_dropped);
4265        kfree_skb(skb);
4266        return NET_RX_DROP;
4267}
4268
4269static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4270{
4271        struct net_device *dev = skb->dev;
4272        struct netdev_rx_queue *rxqueue;
4273
4274        rxqueue = dev->_rx;
4275
4276        if (skb_rx_queue_recorded(skb)) {
4277                u16 index = skb_get_rx_queue(skb);
4278
4279                if (unlikely(index >= dev->real_num_rx_queues)) {
4280                        WARN_ONCE(dev->real_num_rx_queues > 1,
4281                                  "%s received packet on queue %u, but number "
4282                                  "of RX queues is %u\n",
4283                                  dev->name, index, dev->real_num_rx_queues);
4284
4285                        return rxqueue; /* Return first rxqueue */
4286                }
4287                rxqueue += index;
4288        }
4289        return rxqueue;
4290}
4291
4292static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4293                                     struct xdp_buff *xdp,
4294                                     struct bpf_prog *xdp_prog)
4295{
4296        struct netdev_rx_queue *rxqueue;
4297        void *orig_data, *orig_data_end;
4298        u32 metalen, act = XDP_DROP;
4299        __be16 orig_eth_type;
4300        struct ethhdr *eth;
4301        bool orig_bcast;
4302        int hlen, off;
4303        u32 mac_len;
4304
4305        /* Reinjected packets coming from act_mirred or similar should
4306         * not get XDP generic processing.
4307         */
4308        if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4309                return XDP_PASS;
4310
4311        /* XDP packets must be linear and must have sufficient headroom
4312         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4313         * native XDP provides, thus we need to do it here as well.
4314         */
4315        if (skb_is_nonlinear(skb) ||
4316            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4317                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4318                int troom = skb->tail + skb->data_len - skb->end;
4319
4320                /* In case we have to go down the path and also linearize,
4321                 * then lets do the pskb_expand_head() work just once here.
4322                 */
4323                if (pskb_expand_head(skb,
4324                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4325                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4326                        goto do_drop;
4327                if (skb_linearize(skb))
4328                        goto do_drop;
4329        }
4330
4331        /* The XDP program wants to see the packet starting at the MAC
4332         * header.
4333         */
4334        mac_len = skb->data - skb_mac_header(skb);
4335        hlen = skb_headlen(skb) + mac_len;
4336        xdp->data = skb->data - mac_len;
4337        xdp->data_meta = xdp->data;
4338        xdp->data_end = xdp->data + hlen;
4339        xdp->data_hard_start = skb->data - skb_headroom(skb);
4340        orig_data_end = xdp->data_end;
4341        orig_data = xdp->data;
4342        eth = (struct ethhdr *)xdp->data;
4343        orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4344        orig_eth_type = eth->h_proto;
4345
4346        rxqueue = netif_get_rxqueue(skb);
4347        xdp->rxq = &rxqueue->xdp_rxq;
4348
4349        act = bpf_prog_run_xdp(xdp_prog, xdp);
4350
4351        off = xdp->data - orig_data;
4352        if (off > 0)
4353                __skb_pull(skb, off);
4354        else if (off < 0)
4355                __skb_push(skb, -off);
4356        skb->mac_header += off;
4357
4358        /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4359         * pckt.
4360         */
4361        off = orig_data_end - xdp->data_end;
4362        if (off != 0) {
4363                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4364                skb->len -= off;
4365
4366        }
4367
4368        /* check if XDP changed eth hdr such SKB needs update */
4369        eth = (struct ethhdr *)xdp->data;
4370        if ((orig_eth_type != eth->h_proto) ||
4371            (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4372                __skb_push(skb, ETH_HLEN);
4373                skb->protocol = eth_type_trans(skb, skb->dev);
4374        }
4375
4376        switch (act) {
4377        case XDP_REDIRECT:
4378        case XDP_TX:
4379                __skb_push(skb, mac_len);
4380                break;
4381        case XDP_PASS:
4382                metalen = xdp->data - xdp->data_meta;
4383                if (metalen)
4384                        skb_metadata_set(skb, metalen);
4385                break;
4386        default:
4387                bpf_warn_invalid_xdp_action(act);
4388                /* fall through */
4389        case XDP_ABORTED:
4390                trace_xdp_exception(skb->dev, xdp_prog, act);
4391                /* fall through */
4392        case XDP_DROP:
4393        do_drop:
4394                kfree_skb(skb);
4395                break;
4396        }
4397
4398        return act;
4399}
4400
4401/* When doing generic XDP we have to bypass the qdisc layer and the
4402 * network taps in order to match in-driver-XDP behavior.
4403 */
4404void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4405{
4406        struct net_device *dev = skb->dev;
4407        struct netdev_queue *txq;
4408        bool free_skb = true;
4409        int cpu, rc;
4410
4411        txq = netdev_pick_tx(dev, skb, NULL);
4412        cpu = smp_processor_id();
4413        HARD_TX_LOCK(dev, txq, cpu);
4414        if (!netif_xmit_stopped(txq)) {
4415                rc = netdev_start_xmit(skb, dev, txq, 0);
4416                if (dev_xmit_complete(rc))
4417                        free_skb = false;
4418        }
4419        HARD_TX_UNLOCK(dev, txq);
4420        if (free_skb) {
4421                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4422                kfree_skb(skb);
4423        }
4424}
4425EXPORT_SYMBOL_GPL(generic_xdp_tx);
4426
4427static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4428
4429int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4430{
4431        if (xdp_prog) {
4432                struct xdp_buff xdp;
4433                u32 act;
4434                int err;
4435
4436                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4437                if (act != XDP_PASS) {
4438                        switch (act) {
4439                        case XDP_REDIRECT:
4440                                err = xdp_do_generic_redirect(skb->dev, skb,
4441                                                              &xdp, xdp_prog);
4442                                if (err)
4443                                        goto out_redir;
4444                                break;
4445                        case XDP_TX:
4446                                generic_xdp_tx(skb, xdp_prog);
4447                                break;
4448                        }
4449                        return XDP_DROP;
4450                }
4451        }
4452        return XDP_PASS;
4453out_redir:
4454        kfree_skb(skb);
4455        return XDP_DROP;
4456}
4457EXPORT_SYMBOL_GPL(do_xdp_generic);
4458
4459static int netif_rx_internal(struct sk_buff *skb)
4460{
4461        int ret;
4462
4463        net_timestamp_check(netdev_tstamp_prequeue, skb);
4464
4465        trace_netif_rx(skb);
4466
4467        if (static_branch_unlikely(&generic_xdp_needed_key)) {
4468                int ret;
4469
4470                preempt_disable();
4471                rcu_read_lock();
4472                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4473                rcu_read_unlock();
4474                preempt_enable();
4475
4476                /* Consider XDP consuming the packet a success from
4477                 * the netdev point of view we do not want to count
4478                 * this as an error.
4479                 */
4480                if (ret != XDP_PASS)
4481                        return NET_RX_SUCCESS;
4482        }
4483
4484#ifdef CONFIG_RPS
4485        if (static_key_false(&rps_needed)) {
4486                struct rps_dev_flow voidflow, *rflow = &voidflow;
4487                int cpu;
4488
4489                preempt_disable();
4490                rcu_read_lock();
4491
4492                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4493                if (cpu < 0)
4494                        cpu = smp_processor_id();
4495
4496                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4497
4498                rcu_read_unlock();
4499                preempt_enable();
4500        } else
4501#endif
4502        {
4503                unsigned int qtail;
4504
4505                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4506                put_cpu();
4507        }
4508        return ret;
4509}
4510
4511/**
4512 *      netif_rx        -       post buffer to the network code
4513 *      @skb: buffer to post
4514 *
4515 *      This function receives a packet from a device driver and queues it for
4516 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4517 *      may be dropped during processing for congestion control or by the
4518 *      protocol layers.
4519 *
4520 *      return values:
4521 *      NET_RX_SUCCESS  (no congestion)
4522 *      NET_RX_DROP     (packet was dropped)
4523 *
4524 */
4525
4526int netif_rx(struct sk_buff *skb)
4527{
4528        trace_netif_rx_entry(skb);
4529
4530        return netif_rx_internal(skb);
4531}
4532EXPORT_SYMBOL(netif_rx);
4533
4534int netif_rx_ni(struct sk_buff *skb)
4535{
4536        int err;
4537
4538        trace_netif_rx_ni_entry(skb);
4539
4540        preempt_disable();
4541        err = netif_rx_internal(skb);
4542        if (local_softirq_pending())
4543                do_softirq();
4544        preempt_enable();
4545
4546        return err;
4547}
4548EXPORT_SYMBOL(netif_rx_ni);
4549
4550static __latent_entropy void net_tx_action(struct softirq_action *h)
4551{
4552        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4553
4554        if (sd->completion_queue) {
4555                struct sk_buff *clist;
4556
4557                local_irq_disable();
4558                clist = sd->completion_queue;
4559                sd->completion_queue = NULL;
4560                local_irq_enable();
4561
4562                while (clist) {
4563                        struct sk_buff *skb = clist;
4564
4565                        clist = clist->next;
4566
4567                        WARN_ON(refcount_read(&skb->users));
4568                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4569                                trace_consume_skb(skb);
4570                        else
4571                                trace_kfree_skb(skb, net_tx_action);
4572
4573                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4574                                __kfree_skb(skb);
4575                        else
4576                                __kfree_skb_defer(skb);
4577                }
4578
4579                __kfree_skb_flush();
4580        }
4581
4582        if (sd->output_queue) {
4583                struct Qdisc *head;
4584
4585                local_irq_disable();
4586                head = sd->output_queue;
4587                sd->output_queue = NULL;
4588                sd->output_queue_tailp = &sd->output_queue;
4589                local_irq_enable();
4590
4591                while (head) {
4592                        struct Qdisc *q = head;
4593                        spinlock_t *root_lock = NULL;
4594
4595                        head = head->next_sched;
4596
4597                        if (!(q->flags & TCQ_F_NOLOCK)) {
4598                                root_lock = qdisc_lock(q);
4599                                spin_lock(root_lock);
4600                        }
4601                        /* We need to make sure head->next_sched is read
4602                         * before clearing __QDISC_STATE_SCHED
4603                         */
4604                        smp_mb__before_atomic();
4605                        clear_bit(__QDISC_STATE_SCHED, &q->state);
4606                        qdisc_run(q);
4607                        if (root_lock)
4608                                spin_unlock(root_lock);
4609                }
4610        }
4611
4612        xfrm_dev_backlog(sd);
4613}
4614
4615#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4616/* This hook is defined here for ATM LANE */
4617int (*br_fdb_test_addr_hook)(struct net_device *dev,
4618                             unsigned char *addr) __read_mostly;
4619EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4620#endif
4621
4622static inline struct sk_buff *
4623sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4624                   struct net_device *orig_dev)
4625{
4626#ifdef CONFIG_NET_CLS_ACT
4627        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4628        struct tcf_result cl_res;
4629
4630        /* If there's at least one ingress present somewhere (so
4631         * we get here via enabled static key), remaining devices
4632         * that are not configured with an ingress qdisc will bail
4633         * out here.
4634         */
4635        if (!miniq)
4636                return skb;
4637
4638        if (*pt_prev) {
4639                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4640                *pt_prev = NULL;
4641        }
4642
4643        qdisc_skb_cb(skb)->pkt_len = skb->len;
4644        skb->tc_at_ingress = 1;
4645        mini_qdisc_bstats_cpu_update(miniq, skb);
4646
4647        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4648        case TC_ACT_OK:
4649        case TC_ACT_RECLASSIFY:
4650                skb->tc_index = TC_H_MIN(cl_res.classid);
4651                break;
4652        case TC_ACT_SHOT:
4653                mini_qdisc_qstats_cpu_drop(miniq);
4654                kfree_skb(skb);
4655                return NULL;
4656        case TC_ACT_STOLEN:
4657        case TC_ACT_QUEUED:
4658        case TC_ACT_TRAP:
4659                consume_skb(skb);
4660                return NULL;
4661        case TC_ACT_REDIRECT:
4662                /* skb_mac_header check was done by cls/act_bpf, so
4663                 * we can safely push the L2 header back before
4664                 * redirecting to another netdev
4665                 */
4666                __skb_push(skb, skb->mac_len);
4667                skb_do_redirect(skb);
4668                return NULL;
4669        case TC_ACT_REINSERT:
4670                /* this does not scrub the packet, and updates stats on error */
4671                skb_tc_reinsert(skb, &cl_res);
4672                return NULL;
4673        default:
4674                break;
4675        }
4676#endif /* CONFIG_NET_CLS_ACT */
4677        return skb;
4678}
4679
4680/**
4681 *      netdev_is_rx_handler_busy - check if receive handler is registered
4682 *      @dev: device to check
4683 *
4684 *      Check if a receive handler is already registered for a given device.
4685 *      Return true if there one.
4686 *
4687 *      The caller must hold the rtnl_mutex.
4688 */
4689bool netdev_is_rx_handler_busy(struct net_device *dev)
4690{
4691        ASSERT_RTNL();
4692        return dev && rtnl_dereference(dev->rx_handler);
4693}
4694EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4695
4696/**
4697 *      netdev_rx_handler_register - register receive handler
4698 *      @dev: device to register a handler for
4699 *      @rx_handler: receive handler to register
4700 *      @rx_handler_data: data pointer that is used by rx handler
4701 *
4702 *      Register a receive handler for a device. This handler will then be
4703 *      called from __netif_receive_skb. A negative errno code is returned
4704 *      on a failure.
4705 *
4706 *      The caller must hold the rtnl_mutex.
4707 *
4708 *      For a general description of rx_handler, see enum rx_handler_result.
4709 */
4710int netdev_rx_handler_register(struct net_device *dev,
4711                               rx_handler_func_t *rx_handler,
4712                               void *rx_handler_data)
4713{
4714        if (netdev_is_rx_handler_busy(dev))
4715                return -EBUSY;
4716
4717        if (dev->priv_flags & IFF_NO_RX_HANDLER)
4718                return -EINVAL;
4719
4720        /* Note: rx_handler_data must be set before rx_handler */
4721        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4722        rcu_assign_pointer(dev->rx_handler, rx_handler);
4723
4724        return 0;
4725}
4726EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4727
4728/**
4729 *      netdev_rx_handler_unregister - unregister receive handler
4730 *      @dev: device to unregister a handler from
4731 *
4732 *      Unregister a receive handler from a device.
4733 *
4734 *      The caller must hold the rtnl_mutex.
4735 */
4736void netdev_rx_handler_unregister(struct net_device *dev)
4737{
4738
4739        ASSERT_RTNL();
4740        RCU_INIT_POINTER(dev->rx_handler, NULL);
4741        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4742         * section has a guarantee to see a non NULL rx_handler_data
4743         * as well.
4744         */
4745        synchronize_net();
4746        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4747}
4748EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4749
4750/*
4751 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4752 * the special handling of PFMEMALLOC skbs.
4753 */
4754static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4755{
4756        switch (skb->protocol) {
4757        case htons(ETH_P_ARP):
4758        case htons(ETH_P_IP):
4759        case htons(ETH_P_IPV6):
4760        case htons(ETH_P_8021Q):
4761        case htons(ETH_P_8021AD):
4762                return true;
4763        default:
4764                return false;
4765        }
4766}
4767
4768static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4769                             int *ret, struct net_device *orig_dev)
4770{
4771#ifdef CONFIG_NETFILTER_INGRESS
4772        if (nf_hook_ingress_active(skb)) {
4773                int ingress_retval;
4774
4775                if (*pt_prev) {
4776                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4777                        *pt_prev = NULL;
4778                }
4779
4780                rcu_read_lock();
4781                ingress_retval = nf_hook_ingress(skb);
4782                rcu_read_unlock();
4783                return ingress_retval;
4784        }
4785#endif /* CONFIG_NETFILTER_INGRESS */
4786        return 0;
4787}
4788
4789static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4790                                    struct packet_type **ppt_prev)
4791{
4792        struct packet_type *ptype, *pt_prev;
4793        rx_handler_func_t *rx_handler;
4794        struct net_device *orig_dev;
4795        bool deliver_exact = false;
4796        int ret = NET_RX_DROP;
4797        __be16 type;
4798
4799        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4800
4801        trace_netif_receive_skb(skb);
4802
4803        orig_dev = skb->dev;
4804
4805        skb_reset_network_header(skb);
4806        if (!skb_transport_header_was_set(skb))
4807                skb_reset_transport_header(skb);
4808        skb_reset_mac_len(skb);
4809
4810        pt_prev = NULL;
4811
4812another_round:
4813        skb->skb_iif = skb->dev->ifindex;
4814
4815        __this_cpu_inc(softnet_data.processed);
4816
4817        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4818            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4819                skb = skb_vlan_untag(skb);
4820                if (unlikely(!skb))
4821                        goto out;
4822        }
4823
4824        if (skb_skip_tc_classify(skb))
4825                goto skip_classify;
4826
4827        if (pfmemalloc)
4828                goto skip_taps;
4829
4830        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4831                if (pt_prev)
4832                        ret = deliver_skb(skb, pt_prev, orig_dev);
4833                pt_prev = ptype;
4834        }
4835
4836        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4837                if (pt_prev)
4838                        ret = deliver_skb(skb, pt_prev, orig_dev);
4839                pt_prev = ptype;
4840        }
4841
4842skip_taps:
4843#ifdef CONFIG_NET_INGRESS
4844        if (static_branch_unlikely(&ingress_needed_key)) {
4845                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4846                if (!skb)
4847                        goto out;
4848
4849                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4850                        goto out;
4851        }
4852#endif
4853        skb_reset_tc(skb);
4854skip_classify:
4855        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4856                goto drop;
4857
4858        if (skb_vlan_tag_present(skb)) {
4859                if (pt_prev) {
4860                        ret = deliver_skb(skb, pt_prev, orig_dev);
4861                        pt_prev = NULL;
4862                }
4863                if (vlan_do_receive(&skb))
4864                        goto another_round;
4865                else if (unlikely(!skb))
4866                        goto out;
4867        }
4868
4869        rx_handler = rcu_dereference(skb->dev->rx_handler);
4870        if (rx_handler) {
4871                if (pt_prev) {
4872                        ret = deliver_skb(skb, pt_prev, orig_dev);
4873                        pt_prev = NULL;
4874                }
4875                switch (rx_handler(&skb)) {
4876                case RX_HANDLER_CONSUMED:
4877                        ret = NET_RX_SUCCESS;
4878                        goto out;
4879                case RX_HANDLER_ANOTHER:
4880                        goto another_round;
4881                case RX_HANDLER_EXACT:
4882                        deliver_exact = true;
4883                case RX_HANDLER_PASS:
4884                        break;
4885                default:
4886                        BUG();
4887                }
4888        }
4889
4890        if (unlikely(skb_vlan_tag_present(skb))) {
4891                if (skb_vlan_tag_get_id(skb))
4892                        skb->pkt_type = PACKET_OTHERHOST;
4893                /* Note: we might in the future use prio bits
4894                 * and set skb->priority like in vlan_do_receive()
4895                 * For the time being, just ignore Priority Code Point
4896                 */
4897                skb->vlan_tci = 0;
4898        }
4899
4900        type = skb->protocol;
4901
4902        /* deliver only exact match when indicated */
4903        if (likely(!deliver_exact)) {
4904                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905                                       &ptype_base[ntohs(type) &
4906                                                   PTYPE_HASH_MASK]);
4907        }
4908
4909        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4910                               &orig_dev->ptype_specific);
4911
4912        if (unlikely(skb->dev != orig_dev)) {
4913                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4914                                       &skb->dev->ptype_specific);
4915        }
4916
4917        if (pt_prev) {
4918                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4919                        goto drop;
4920                *ppt_prev = pt_prev;
4921        } else {
4922drop:
4923                if (!deliver_exact)
4924                        atomic_long_inc(&skb->dev->rx_dropped);
4925                else
4926                        atomic_long_inc(&skb->dev->rx_nohandler);
4927                kfree_skb(skb);
4928                /* Jamal, now you will not able to escape explaining
4929                 * me how you were going to use this. :-)
4930                 */
4931                ret = NET_RX_DROP;
4932        }
4933
4934out:
4935        return ret;
4936}
4937
4938static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4939{
4940        struct net_device *orig_dev = skb->dev;
4941        struct packet_type *pt_prev = NULL;
4942        int ret;
4943
4944        ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4945        if (pt_prev)
4946                ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4947        return ret;
4948}
4949
4950/**
4951 *      netif_receive_skb_core - special purpose version of netif_receive_skb
4952 *      @skb: buffer to process
4953 *
4954 *      More direct receive version of netif_receive_skb().  It should
4955 *      only be used by callers that have a need to skip RPS and Generic XDP.
4956 *      Caller must also take care of handling if (page_is_)pfmemalloc.
4957 *
4958 *      This function may only be called from softirq context and interrupts
4959 *      should be enabled.
4960 *
4961 *      Return values (usually ignored):
4962 *      NET_RX_SUCCESS: no congestion
4963 *      NET_RX_DROP: packet was dropped
4964 */
4965int netif_receive_skb_core(struct sk_buff *skb)
4966{
4967        int ret;
4968
4969        rcu_read_lock();
4970        ret = __netif_receive_skb_one_core(skb, false);
4971        rcu_read_unlock();
4972
4973        return ret;
4974}
4975EXPORT_SYMBOL(netif_receive_skb_core);
4976
4977static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4978                                                  struct packet_type *pt_prev,
4979                                                  struct net_device *orig_dev)
4980{
4981        struct sk_buff *skb, *next;
4982
4983        if (!pt_prev)
4984                return;
4985        if (list_empty(head))
4986                return;
4987        if (pt_prev->list_func != NULL)
4988                pt_prev->list_func(head, pt_prev, orig_dev);
4989        else
4990                list_for_each_entry_safe(skb, next, head, list)
4991                        pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4992}
4993
4994static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4995{
4996        /* Fast-path assumptions:
4997         * - There is no RX handler.
4998         * - Only one packet_type matches.
4999         * If either of these fails, we will end up doing some per-packet
5000         * processing in-line, then handling the 'last ptype' for the whole
5001         * sublist.  This can't cause out-of-order delivery to any single ptype,
5002         * because the 'last ptype' must be constant across the sublist, and all
5003         * other ptypes are handled per-packet.
5004         */
5005        /* Current (common) ptype of sublist */
5006        struct packet_type *pt_curr = NULL;
5007        /* Current (common) orig_dev of sublist */
5008        struct net_device *od_curr = NULL;
5009        struct list_head sublist;
5010        struct sk_buff *skb, *next;
5011
5012        INIT_LIST_HEAD(&sublist);
5013        list_for_each_entry_safe(skb, next, head, list) {
5014                struct net_device *orig_dev = skb->dev;
5015                struct packet_type *pt_prev = NULL;
5016
5017                skb_list_del_init(skb);
5018                __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5019                if (!pt_prev)
5020                        continue;
5021                if (pt_curr != pt_prev || od_curr != orig_dev) {
5022                        /* dispatch old sublist */
5023                        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5024                        /* start new sublist */
5025                        INIT_LIST_HEAD(&sublist);
5026                        pt_curr = pt_prev;
5027                        od_curr = orig_dev;
5028                }
5029                list_add_tail(&skb->list, &sublist);
5030        }
5031
5032        /* dispatch final sublist */
5033        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034}
5035
5036static int __netif_receive_skb(struct sk_buff *skb)
5037{
5038        int ret;
5039
5040        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5041                unsigned int noreclaim_flag;
5042
5043                /*
5044                 * PFMEMALLOC skbs are special, they should
5045                 * - be delivered to SOCK_MEMALLOC sockets only
5046                 * - stay away from userspace
5047                 * - have bounded memory usage
5048                 *
5049                 * Use PF_MEMALLOC as this saves us from propagating the allocation
5050                 * context down to all allocation sites.
5051                 */
5052                noreclaim_flag = memalloc_noreclaim_save();
5053                ret = __netif_receive_skb_one_core(skb, true);
5054                memalloc_noreclaim_restore(noreclaim_flag);
5055        } else
5056                ret = __netif_receive_skb_one_core(skb, false);
5057
5058        return ret;
5059}
5060
5061static void __netif_receive_skb_list(struct list_head *head)
5062{
5063        unsigned long noreclaim_flag = 0;
5064        struct sk_buff *skb, *next;
5065        bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5066
5067        list_for_each_entry_safe(skb, next, head, list) {
5068                if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5069                        struct list_head sublist;
5070
5071                        /* Handle the previous sublist */
5072                        list_cut_before(&sublist, head, &skb->list);
5073                        if (!list_empty(&sublist))
5074                                __netif_receive_skb_list_core(&sublist, pfmemalloc);
5075                        pfmemalloc = !pfmemalloc;
5076                        /* See comments in __netif_receive_skb */
5077                        if (pfmemalloc)
5078                                noreclaim_flag = memalloc_noreclaim_save();
5079                        else
5080                                memalloc_noreclaim_restore(noreclaim_flag);
5081                }
5082        }
5083        /* Handle the remaining sublist */
5084        if (!list_empty(head))
5085                __netif_receive_skb_list_core(head, pfmemalloc);
5086        /* Restore pflags */
5087        if (pfmemalloc)
5088                memalloc_noreclaim_restore(noreclaim_flag);
5089}
5090
5091static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5092{
5093        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5094        struct bpf_prog *new = xdp->prog;
5095        int ret = 0;
5096
5097        switch (xdp->command) {
5098        case XDP_SETUP_PROG:
5099                rcu_assign_pointer(dev->xdp_prog, new);
5100                if (old)
5101                        bpf_prog_put(old);
5102
5103                if (old && !new) {
5104                        static_branch_dec(&generic_xdp_needed_key);
5105                } else if (new && !old) {
5106                        static_branch_inc(&generic_xdp_needed_key);
5107                        dev_disable_lro(dev);
5108                        dev_disable_gro_hw(dev);
5109                }
5110                break;
5111
5112        case XDP_QUERY_PROG:
5113                xdp->prog_id = old ? old->aux->id : 0;
5114                break;
5115
5116        default:
5117                ret = -EINVAL;
5118                break;
5119        }
5120
5121        return ret;
5122}
5123
5124static int netif_receive_skb_internal(struct sk_buff *skb)
5125{
5126        int ret;
5127
5128        net_timestamp_check(netdev_tstamp_prequeue, skb);
5129
5130        if (skb_defer_rx_timestamp(skb))
5131                return NET_RX_SUCCESS;
5132
5133        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5134                int ret;
5135
5136                preempt_disable();
5137                rcu_read_lock();
5138                ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5139                rcu_read_unlock();
5140                preempt_enable();
5141
5142                if (ret != XDP_PASS)
5143                        return NET_RX_DROP;
5144        }
5145
5146        rcu_read_lock();
5147#ifdef CONFIG_RPS
5148        if (static_key_false(&rps_needed)) {
5149                struct rps_dev_flow voidflow, *rflow = &voidflow;
5150                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5151
5152                if (cpu >= 0) {
5153                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5154                        rcu_read_unlock();
5155                        return ret;
5156                }
5157        }
5158#endif
5159        ret = __netif_receive_skb(skb);
5160        rcu_read_unlock();
5161        return ret;
5162}
5163
5164static void netif_receive_skb_list_internal(struct list_head *head)
5165{
5166        struct bpf_prog *xdp_prog = NULL;
5167        struct sk_buff *skb, *next;
5168        struct list_head sublist;
5169
5170        INIT_LIST_HEAD(&sublist);
5171        list_for_each_entry_safe(skb, next, head, list) {
5172                net_timestamp_check(netdev_tstamp_prequeue, skb);
5173                skb_list_del_init(skb);
5174                if (!skb_defer_rx_timestamp(skb))
5175                        list_add_tail(&skb->list, &sublist);
5176        }
5177        list_splice_init(&sublist, head);
5178
5179        if (static_branch_unlikely(&generic_xdp_needed_key)) {
5180                preempt_disable();
5181                rcu_read_lock();
5182                list_for_each_entry_safe(skb, next, head, list) {
5183                        xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5184                        skb_list_del_init(skb);
5185                        if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5186                                list_add_tail(&skb->list, &sublist);
5187                }
5188                rcu_read_unlock();
5189                preempt_enable();
5190                /* Put passed packets back on main list */
5191                list_splice_init(&sublist, head);
5192        }
5193
5194        rcu_read_lock();
5195#ifdef CONFIG_RPS
5196        if (static_key_false(&rps_needed)) {
5197                list_for_each_entry_safe(skb, next, head, list) {
5198                        struct rps_dev_flow voidflow, *rflow = &voidflow;
5199                        int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5200
5201                        if (cpu >= 0) {
5202                                /* Will be handled, remove from list */
5203                                skb_list_del_init(skb);
5204                                enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5205                        }
5206                }
5207        }
5208#endif
5209        __netif_receive_skb_list(head);
5210        rcu_read_unlock();
5211}
5212
5213/**
5214 *      netif_receive_skb - process receive buffer from network
5215 *      @skb: buffer to process
5216 *
5217 *      netif_receive_skb() is the main receive data processing function.
5218 *      It always succeeds. The buffer may be dropped during processing
5219 *      for congestion control or by the protocol layers.
5220 *
5221 *      This function may only be called from softirq context and interrupts
5222 *      should be enabled.
5223 *
5224 *      Return values (usually ignored):
5225 *      NET_RX_SUCCESS: no congestion
5226 *      NET_RX_DROP: packet was dropped
5227 */
5228int netif_receive_skb(struct sk_buff *skb)
5229{
5230        trace_netif_receive_skb_entry(skb);
5231
5232        return netif_receive_skb_internal(skb);
5233}
5234EXPORT_SYMBOL(netif_receive_skb);
5235
5236/**
5237 *      netif_receive_skb_list - process many receive buffers from network
5238 *      @head: list of skbs to process.
5239 *
5240 *      Since return value of netif_receive_skb() is normally ignored, and
5241 *      wouldn't be meaningful for a list, this function returns void.
5242 *
5243 *      This function may only be called from softirq context and interrupts
5244 *      should be enabled.
5245 */
5246void netif_receive_skb_list(struct list_head *head)
5247{
5248        struct sk_buff *skb;
5249
5250        if (list_empty(head))
5251                return;
5252        list_for_each_entry(skb, head, list)
5253                trace_netif_receive_skb_list_entry(skb);
5254        netif_receive_skb_list_internal(head);
5255}
5256EXPORT_SYMBOL(netif_receive_skb_list);
5257
5258DEFINE_PER_CPU(struct work_struct, flush_works);
5259
5260/* Network device is going away, flush any packets still pending */
5261static void flush_backlog(struct work_struct *work)
5262{
5263        struct sk_buff *skb, *tmp;
5264        struct softnet_data *sd;
5265
5266        local_bh_disable();
5267        sd = this_cpu_ptr(&softnet_data);
5268
5269        local_irq_disable();
5270        rps_lock(sd);
5271        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5272                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5273                        __skb_unlink(skb, &sd->input_pkt_queue);
5274                        kfree_skb(skb);
5275                        input_queue_head_incr(sd);
5276                }
5277        }
5278        rps_unlock(sd);
5279        local_irq_enable();
5280
5281        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5282                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5283                        __skb_unlink(skb, &sd->process_queue);
5284                        kfree_skb(skb);
5285                        input_queue_head_incr(sd);
5286                }
5287        }
5288        local_bh_enable();
5289}
5290
5291static void flush_all_backlogs(void)
5292{
5293        unsigned int cpu;
5294
5295        get_online_cpus();
5296
5297        for_each_online_cpu(cpu)
5298                queue_work_on(cpu, system_highpri_wq,
5299                              per_cpu_ptr(&flush_works, cpu));
5300
5301        for_each_online_cpu(cpu)
5302                flush_work(per_cpu_ptr(&flush_works, cpu));
5303
5304        put_online_cpus();
5305}
5306
5307static int napi_gro_complete(struct sk_buff *skb)
5308{
5309        struct packet_offload *ptype;
5310        __be16 type = skb->protocol;
5311        struct list_head *head = &offload_base;
5312        int err = -ENOENT;
5313
5314        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5315
5316        if (NAPI_GRO_CB(skb)->count == 1) {
5317                skb_shinfo(skb)->gso_size = 0;
5318                goto out;
5319        }
5320
5321        rcu_read_lock();
5322        list_for_each_entry_rcu(ptype, head, list) {
5323                if (ptype->type != type || !ptype->callbacks.gro_complete)
5324                        continue;
5325
5326                err = ptype->callbacks.gro_complete(skb, 0);
5327                break;
5328        }
5329        rcu_read_unlock();
5330
5331        if (err) {
5332                WARN_ON(&ptype->list == head);
5333                kfree_skb(skb);
5334                return NET_RX_SUCCESS;
5335        }
5336
5337out:
5338        return netif_receive_skb_internal(skb);
5339}
5340
5341static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5342                                   bool flush_old)
5343{
5344        struct list_head *head = &napi->gro_hash[index].list;
5345        struct sk_buff *skb, *p;
5346
5347        list_for_each_entry_safe_reverse(skb, p, head, list) {
5348                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5349                        return;
5350                skb_list_del_init(skb);
5351                napi_gro_complete(skb);
5352                napi->gro_hash[index].count--;
5353        }
5354
5355        if (!napi->gro_hash[index].count)
5356                __clear_bit(index, &napi->gro_bitmask);
5357}
5358
5359/* napi->gro_hash[].list contains packets ordered by age.
5360 * youngest packets at the head of it.
5361 * Complete skbs in reverse order to reduce latencies.
5362 */
5363void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5364{
5365        u32 i;
5366
5367        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5368                if (test_bit(i, &napi->gro_bitmask))
5369                        __napi_gro_flush_chain(napi, i, flush_old);
5370        }
5371}
5372EXPORT_SYMBOL(napi_gro_flush);
5373
5374static struct list_head *gro_list_prepare(struct napi_struct *napi,
5375                                          struct sk_buff *skb)
5376{
5377        unsigned int maclen = skb->dev->hard_header_len;
5378        u32 hash = skb_get_hash_raw(skb);
5379        struct list_head *head;
5380        struct sk_buff *p;
5381
5382        head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5383        list_for_each_entry(p, head, list) {
5384                unsigned long diffs;
5385
5386                NAPI_GRO_CB(p)->flush = 0;
5387
5388                if (hash != skb_get_hash_raw(p)) {
5389                        NAPI_GRO_CB(p)->same_flow = 0;
5390                        continue;
5391                }
5392
5393                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5394                diffs |= p->vlan_tci ^ skb->vlan_tci;
5395                diffs |= skb_metadata_dst_cmp(p, skb);
5396                diffs |= skb_metadata_differs(p, skb);
5397                if (maclen == ETH_HLEN)
5398                        diffs |= compare_ether_header(skb_mac_header(p),
5399                                                      skb_mac_header(skb));
5400                else if (!diffs)
5401                        diffs = memcmp(skb_mac_header(p),
5402                                       skb_mac_header(skb),
5403                                       maclen);
5404                NAPI_GRO_CB(p)->same_flow = !diffs;
5405        }
5406
5407        return head;
5408}
5409
5410static void skb_gro_reset_offset(struct sk_buff *skb)
5411{
5412        const struct skb_shared_info *pinfo = skb_shinfo(skb);
5413        const skb_frag_t *frag0 = &pinfo->frags[0];
5414
5415        NAPI_GRO_CB(skb)->data_offset = 0;
5416        NAPI_GRO_CB(skb)->frag0 = NULL;
5417        NAPI_GRO_CB(skb)->frag0_len = 0;
5418
5419        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5420            pinfo->nr_frags &&
5421            !PageHighMem(skb_frag_page(frag0))) {
5422                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5423                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5424                                                    skb_frag_size(frag0),
5425                                                    skb->end - skb->tail);
5426        }
5427}
5428
5429static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5430{
5431        struct skb_shared_info *pinfo = skb_shinfo(skb);
5432
5433        BUG_ON(skb->end - skb->tail < grow);
5434
5435        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5436
5437        skb->data_len -= grow;
5438        skb->tail += grow;
5439
5440        pinfo->frags[0].page_offset += grow;
5441        skb_frag_size_sub(&pinfo->frags[0], grow);
5442
5443        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5444                skb_frag_unref(skb, 0);
5445                memmove(pinfo->frags, pinfo->frags + 1,
5446                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5447        }
5448}
5449
5450static void gro_flush_oldest(struct list_head *head)
5451{
5452        struct sk_buff *oldest;
5453
5454        oldest = list_last_entry(head, struct sk_buff, list);
5455
5456        /* We are called with head length >= MAX_GRO_SKBS, so this is
5457         * impossible.
5458         */
5459        if (WARN_ON_ONCE(!oldest))
5460                return;
5461
5462        /* Do not adjust napi->gro_hash[].count, caller is adding a new
5463         * SKB to the chain.
5464         */
5465        skb_list_del_init(oldest);
5466        napi_gro_complete(oldest);
5467}
5468
5469static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5470{
5471        u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5472        struct list_head *head = &offload_base;
5473        struct packet_offload *ptype;
5474        __be16 type = skb->protocol;
5475        struct list_head *gro_head;
5476        struct sk_buff *pp = NULL;
5477        enum gro_result ret;
5478        int same_flow;
5479        int grow;
5480
5481        if (netif_elide_gro(skb->dev))
5482                goto normal;
5483
5484        gro_head = gro_list_prepare(napi, skb);
5485
5486        rcu_read_lock();
5487        list_for_each_entry_rcu(ptype, head, list) {
5488                if (ptype->type != type || !ptype->callbacks.gro_receive)
5489                        continue;
5490
5491                skb_set_network_header(skb, skb_gro_offset(skb));
5492                skb_reset_mac_len(skb);
5493                NAPI_GRO_CB(skb)->same_flow = 0;
5494                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5495                NAPI_GRO_CB(skb)->free = 0;
5496                NAPI_GRO_CB(skb)->encap_mark = 0;
5497                NAPI_GRO_CB(skb)->recursion_counter = 0;
5498                NAPI_GRO_CB(skb)->is_fou = 0;
5499                NAPI_GRO_CB(skb)->is_atomic = 1;
5500                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5501
5502                /* Setup for GRO checksum validation */
5503                switch (skb->ip_summed) {
5504                case CHECKSUM_COMPLETE:
5505                        NAPI_GRO_CB(skb)->csum = skb->csum;
5506                        NAPI_GRO_CB(skb)->csum_valid = 1;
5507                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5508                        break;
5509                case CHECKSUM_UNNECESSARY:
5510                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5511                        NAPI_GRO_CB(skb)->csum_valid = 0;
5512                        break;
5513                default:
5514                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5515                        NAPI_GRO_CB(skb)->csum_valid = 0;
5516                }
5517
5518                pp = ptype->callbacks.gro_receive(gro_head, skb);
5519                break;
5520        }
5521        rcu_read_unlock();
5522
5523        if (&ptype->list == head)
5524                goto normal;
5525
5526        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5527                ret = GRO_CONSUMED;
5528                goto ok;
5529        }
5530
5531        same_flow = NAPI_GRO_CB(skb)->same_flow;
5532        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5533
5534        if (pp) {
5535                skb_list_del_init(pp);
5536                napi_gro_complete(pp);
5537                napi->gro_hash[hash].count--;
5538        }
5539
5540        if (same_flow)
5541                goto ok;
5542
5543        if (NAPI_GRO_CB(skb)->flush)
5544                goto normal;
5545
5546        if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5547                gro_flush_oldest(gro_head);
5548        } else {
5549                napi->gro_hash[hash].count++;
5550        }
5551        NAPI_GRO_CB(skb)->count = 1;
5552        NAPI_GRO_CB(skb)->age = jiffies;
5553        NAPI_GRO_CB(skb)->last = skb;
5554        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5555        list_add(&skb->list, gro_head);
5556        ret = GRO_HELD;
5557
5558pull:
5559        grow = skb_gro_offset(skb) - skb_headlen(skb);
5560        if (grow > 0)
5561                gro_pull_from_frag0(skb, grow);
5562ok:
5563        if (napi->gro_hash[hash].count) {
5564                if (!test_bit(hash, &napi->gro_bitmask))
5565                        __set_bit(hash, &napi->gro_bitmask);
5566        } else if (test_bit(hash, &napi->gro_bitmask)) {
5567                __clear_bit(hash, &napi->gro_bitmask);
5568        }
5569
5570        return ret;
5571
5572normal:
5573        ret = GRO_NORMAL;
5574        goto pull;
5575}
5576
5577struct packet_offload *gro_find_receive_by_type(__be16 type)
5578{
5579        struct list_head *offload_head = &offload_base;
5580        struct packet_offload *ptype;
5581
5582        list_for_each_entry_rcu(ptype, offload_head, list) {
5583                if (ptype->type != type || !ptype->callbacks.gro_receive)
5584                        continue;
5585                return ptype;
5586        }
5587        return NULL;
5588}
5589EXPORT_SYMBOL(gro_find_receive_by_type);
5590
5591struct packet_offload *gro_find_complete_by_type(__be16 type)
5592{
5593        struct list_head *offload_head = &offload_base;
5594        struct packet_offload *ptype;
5595
5596        list_for_each_entry_rcu(ptype, offload_head, list) {
5597                if (ptype->type != type || !ptype->callbacks.gro_complete)
5598                        continue;
5599                return ptype;
5600        }
5601        return NULL;
5602}
5603EXPORT_SYMBOL(gro_find_complete_by_type);
5604
5605static void napi_skb_free_stolen_head(struct sk_buff *skb)
5606{
5607        skb_dst_drop(skb);
5608        secpath_reset(skb);
5609        kmem_cache_free(skbuff_head_cache, skb);
5610}
5611
5612static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5613{
5614        switch (ret) {
5615        case GRO_NORMAL:
5616                if (netif_receive_skb_internal(skb))
5617                        ret = GRO_DROP;
5618                break;
5619
5620        case GRO_DROP:
5621                kfree_skb(skb);
5622                break;
5623
5624        case GRO_MERGED_FREE:
5625                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5626                        napi_skb_free_stolen_head(skb);
5627                else
5628                        __kfree_skb(skb);
5629                break;
5630
5631        case GRO_HELD:
5632        case GRO_MERGED:
5633        case GRO_CONSUMED:
5634                break;
5635        }
5636
5637        return ret;
5638}
5639
5640gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5641{
5642        skb_mark_napi_id(skb, napi);
5643        trace_napi_gro_receive_entry(skb);
5644
5645        skb_gro_reset_offset(skb);
5646
5647        return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5648}
5649EXPORT_SYMBOL(napi_gro_receive);
5650
5651static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5652{
5653        if (unlikely(skb->pfmemalloc)) {
5654                consume_skb(skb);
5655                return;
5656        }
5657        __skb_pull(skb, skb_headlen(skb));
5658        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5659        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5660        skb->vlan_tci = 0;
5661        skb->dev = napi->dev;
5662        skb->skb_iif = 0;
5663
5664        /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5665        skb->pkt_type = PACKET_HOST;
5666
5667        skb->encapsulation = 0;
5668        skb_shinfo(skb)->gso_type = 0;
5669        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5670        secpath_reset(skb);
5671
5672        napi->skb = skb;
5673}
5674
5675struct sk_buff *napi_get_frags(struct napi_struct *napi)
5676{
5677        struct sk_buff *skb = napi->skb;
5678
5679        if (!skb) {
5680                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5681                if (skb) {
5682                        napi->skb = skb;
5683                        skb_mark_napi_id(skb, napi);
5684                }
5685        }
5686        return skb;
5687}
5688EXPORT_SYMBOL(napi_get_frags);
5689
5690static gro_result_t napi_frags_finish(struct napi_struct *napi,
5691                                      struct sk_buff *skb,
5692                                      gro_result_t ret)
5693{
5694        switch (ret) {
5695        case GRO_NORMAL:
5696        case GRO_HELD:
5697                __skb_push(skb, ETH_HLEN);
5698                skb->protocol = eth_type_trans(skb, skb->dev);
5699                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5700                        ret = GRO_DROP;
5701                break;
5702
5703        case GRO_DROP:
5704                napi_reuse_skb(napi, skb);
5705                break;
5706
5707        case GRO_MERGED_FREE:
5708                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5709                        napi_skb_free_stolen_head(skb);
5710                else
5711                        napi_reuse_skb(napi, skb);
5712                break;
5713
5714        case GRO_MERGED:
5715        case GRO_CONSUMED:
5716                break;
5717        }
5718
5719        return ret;
5720}
5721
5722/* Upper GRO stack assumes network header starts at gro_offset=0
5723 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5724 * We copy ethernet header into skb->data to have a common layout.
5725 */
5726static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5727{
5728        struct sk_buff *skb = napi->skb;
5729        const struct ethhdr *eth;
5730        unsigned int hlen = sizeof(*eth);
5731
5732        napi->skb = NULL;
5733
5734        skb_reset_mac_header(skb);
5735        skb_gro_reset_offset(skb);
5736
5737        eth = skb_gro_header_fast(skb, 0);
5738        if (unlikely(skb_gro_header_hard(skb, hlen))) {
5739                eth = skb_gro_header_slow(skb, hlen, 0);
5740                if (unlikely(!eth)) {
5741                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5742                                             __func__, napi->dev->name);
5743                        napi_reuse_skb(napi, skb);
5744                        return NULL;
5745                }
5746        } else {
5747                gro_pull_from_frag0(skb, hlen);
5748                NAPI_GRO_CB(skb)->frag0 += hlen;
5749                NAPI_GRO_CB(skb)->frag0_len -= hlen;
5750        }
5751        __skb_pull(skb, hlen);
5752
5753        /*
5754         * This works because the only protocols we care about don't require
5755         * special handling.
5756         * We'll fix it up properly in napi_frags_finish()
5757         */
5758        skb->protocol = eth->h_proto;
5759
5760        return skb;
5761}
5762
5763gro_result_t napi_gro_frags(struct napi_struct *napi)
5764{
5765        struct sk_buff *skb = napi_frags_skb(napi);
5766
5767        if (!skb)
5768                return GRO_DROP;
5769
5770        trace_napi_gro_frags_entry(skb);
5771
5772        return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5773}
5774EXPORT_SYMBOL(napi_gro_frags);
5775
5776/* Compute the checksum from gro_offset and return the folded value
5777 * after adding in any pseudo checksum.
5778 */
5779__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5780{
5781        __wsum wsum;
5782        __sum16 sum;
5783
5784        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5785
5786        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5787        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5788        if (likely(!sum)) {
5789                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5790                    !skb->csum_complete_sw)
5791                        netdev_rx_csum_fault(skb->dev);
5792        }
5793
5794        NAPI_GRO_CB(skb)->csum = wsum;
5795        NAPI_GRO_CB(skb)->csum_valid = 1;
5796
5797        return sum;
5798}
5799EXPORT_SYMBOL(__skb_gro_checksum_complete);
5800
5801static void net_rps_send_ipi(struct softnet_data *remsd)
5802{
5803#ifdef CONFIG_RPS
5804        while (remsd) {
5805                struct softnet_data *next = remsd->rps_ipi_next;
5806
5807                if (cpu_online(remsd->cpu))
5808                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5809                remsd = next;
5810        }
5811#endif
5812}
5813
5814/*
5815 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5816 * Note: called with local irq disabled, but exits with local irq enabled.
5817 */
5818static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5819{
5820#ifdef CONFIG_RPS
5821        struct softnet_data *remsd = sd->rps_ipi_list;
5822
5823        if (remsd) {
5824                sd->rps_ipi_list = NULL;
5825
5826                local_irq_enable();
5827
5828                /* Send pending IPI's to kick RPS processing on remote cpus. */
5829                net_rps_send_ipi(remsd);
5830        } else
5831#endif
5832                local_irq_enable();
5833}
5834
5835static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5836{
5837#ifdef CONFIG_RPS
5838        return sd->rps_ipi_list != NULL;
5839#else
5840        return false;
5841#endif
5842}
5843
5844static int process_backlog(struct napi_struct *napi, int quota)
5845{
5846        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5847        bool again = true;
5848        int work = 0;
5849
5850        /* Check if we have pending ipi, its better to send them now,
5851         * not waiting net_rx_action() end.
5852         */
5853        if (sd_has_rps_ipi_waiting(sd)) {
5854                local_irq_disable();
5855                net_rps_action_and_irq_enable(sd);
5856        }
5857
5858        napi->weight = dev_rx_weight;
5859        while (again) {
5860                struct sk_buff *skb;
5861
5862                while ((skb = __skb_dequeue(&sd->process_queue))) {
5863                        rcu_read_lock();
5864                        __netif_receive_skb(skb);
5865                        rcu_read_unlock();
5866                        input_queue_head_incr(sd);
5867                        if (++work >= quota)
5868                                return work;
5869
5870                }
5871
5872                local_irq_disable();
5873                rps_lock(sd);
5874                if (skb_queue_empty(&sd->input_pkt_queue)) {
5875                        /*
5876                         * Inline a custom version of __napi_complete().
5877                         * only current cpu owns and manipulates this napi,
5878                         * and NAPI_STATE_SCHED is the only possible flag set
5879                         * on backlog.
5880                         * We can use a plain write instead of clear_bit(),
5881                         * and we dont need an smp_mb() memory barrier.
5882                         */
5883                        napi->state = 0;
5884                        again = false;
5885                } else {
5886                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5887                                                   &sd->process_queue);
5888                }
5889                rps_unlock(sd);
5890                local_irq_enable();
5891        }
5892
5893        return work;
5894}
5895
5896/**
5897 * __napi_schedule - schedule for receive
5898 * @n: entry to schedule
5899 *
5900 * The entry's receive function will be scheduled to run.
5901 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5902 */
5903void __napi_schedule(struct napi_struct *n)
5904{
5905        unsigned long flags;
5906
5907        local_irq_save(flags);
5908        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5909        local_irq_restore(flags);
5910}
5911EXPORT_SYMBOL(__napi_schedule);
5912
5913/**
5914 *      napi_schedule_prep - check if napi can be scheduled
5915 *      @n: napi context
5916 *
5917 * Test if NAPI routine is already running, and if not mark
5918 * it as running.  This is used as a condition variable
5919 * insure only one NAPI poll instance runs.  We also make
5920 * sure there is no pending NAPI disable.
5921 */
5922bool napi_schedule_prep(struct napi_struct *n)
5923{
5924        unsigned long val, new;
5925
5926        do {
5927                val = READ_ONCE(n->state);
5928                if (unlikely(val & NAPIF_STATE_DISABLE))
5929                        return false;
5930                new = val | NAPIF_STATE_SCHED;
5931
5932                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5933                 * This was suggested by Alexander Duyck, as compiler
5934                 * emits better code than :
5935                 * if (val & NAPIF_STATE_SCHED)
5936                 *     new |= NAPIF_STATE_MISSED;
5937                 */
5938                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5939                                                   NAPIF_STATE_MISSED;
5940        } while (cmpxchg(&n->state, val, new) != val);
5941
5942        return !(val & NAPIF_STATE_SCHED);
5943}
5944EXPORT_SYMBOL(napi_schedule_prep);
5945
5946/**
5947 * __napi_schedule_irqoff - schedule for receive
5948 * @n: entry to schedule
5949 *
5950 * Variant of __napi_schedule() assuming hard irqs are masked
5951 */
5952void __napi_schedule_irqoff(struct napi_struct *n)
5953{
5954        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5955}
5956EXPORT_SYMBOL(__napi_schedule_irqoff);
5957
5958bool napi_complete_done(struct napi_struct *n, int work_done)
5959{
5960        unsigned long flags, val, new;
5961
5962        /*
5963         * 1) Don't let napi dequeue from the cpu poll list
5964         *    just in case its running on a different cpu.
5965         * 2) If we are busy polling, do nothing here, we have
5966         *    the guarantee we will be called later.
5967         */
5968        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5969                                 NAPIF_STATE_IN_BUSY_POLL)))
5970                return false;
5971
5972        if (n->gro_bitmask) {
5973                unsigned long timeout = 0;
5974
5975                if (work_done)
5976                        timeout = n->dev->gro_flush_timeout;
5977
5978                /* When the NAPI instance uses a timeout and keeps postponing
5979                 * it, we need to bound somehow the time packets are kept in
5980                 * the GRO layer
5981                 */
5982                napi_gro_flush(n, !!timeout);
5983                if (timeout)
5984                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
5985                                      HRTIMER_MODE_REL_PINNED);
5986        }
5987        if (unlikely(!list_empty(&n->poll_list))) {
5988                /* If n->poll_list is not empty, we need to mask irqs */
5989                local_irq_save(flags);
5990                list_del_init(&n->poll_list);
5991                local_irq_restore(flags);
5992        }
5993
5994        do {
5995                val = READ_ONCE(n->state);
5996
5997                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5998
5999                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6000
6001                /* If STATE_MISSED was set, leave STATE_SCHED set,
6002                 * because we will call napi->poll() one more time.
6003                 * This C code was suggested by Alexander Duyck to help gcc.
6004                 */
6005                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6006                                                    NAPIF_STATE_SCHED;
6007        } while (cmpxchg(&n->state, val, new) != val);
6008
6009        if (unlikely(val & NAPIF_STATE_MISSED)) {
6010                __napi_schedule(n);
6011                return false;
6012        }
6013
6014        return true;
6015}
6016EXPORT_SYMBOL(napi_complete_done);
6017
6018/* must be called under rcu_read_lock(), as we dont take a reference */
6019static struct napi_struct *napi_by_id(unsigned int napi_id)
6020{
6021        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6022        struct napi_struct *napi;
6023
6024        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6025                if (napi->napi_id == napi_id)
6026                        return napi;
6027
6028        return NULL;
6029}
6030
6031#if defined(CONFIG_NET_RX_BUSY_POLL)
6032
6033#define BUSY_POLL_BUDGET 8
6034
6035static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6036{
6037        int rc;
6038
6039        /* Busy polling means there is a high chance device driver hard irq
6040         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6041         * set in napi_schedule_prep().
6042         * Since we are about to call napi->poll() once more, we can safely
6043         * clear NAPI_STATE_MISSED.
6044         *
6045         * Note: x86 could use a single "lock and ..." instruction
6046         * to perform these two clear_bit()
6047         */
6048        clear_bit(NAPI_STATE_MISSED, &napi->state);
6049        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6050
6051        local_bh_disable();
6052
6053        /* All we really want here is to re-enable device interrupts.
6054         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6055         */
6056        rc = napi->poll(napi, BUSY_POLL_BUDGET);
6057        trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6058        netpoll_poll_unlock(have_poll_lock);
6059        if (rc == BUSY_POLL_BUDGET)
6060                __napi_schedule(napi);
6061        local_bh_enable();
6062}
6063
6064void napi_busy_loop(unsigned int napi_id,
6065                    bool (*loop_end)(void *, unsigned long),
6066                    void *loop_end_arg)
6067{
6068        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6069        int (*napi_poll)(struct napi_struct *napi, int budget);
6070        void *have_poll_lock = NULL;
6071        struct napi_struct *napi;
6072
6073restart:
6074        napi_poll = NULL;
6075
6076        rcu_read_lock();
6077
6078        napi = napi_by_id(napi_id);
6079        if (!napi)
6080                goto out;
6081
6082        preempt_disable();
6083        for (;;) {
6084                int work = 0;
6085
6086                local_bh_disable();
6087                if (!napi_poll) {
6088                        unsigned long val = READ_ONCE(napi->state);
6089
6090                        /* If multiple threads are competing for this napi,
6091                         * we avoid dirtying napi->state as much as we can.
6092                         */
6093                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6094                                   NAPIF_STATE_IN_BUSY_POLL))
6095                                goto count;
6096                        if (cmpxchg(&napi->state, val,
6097                                    val | NAPIF_STATE_IN_BUSY_POLL |
6098                                          NAPIF_STATE_SCHED) != val)
6099                                goto count;
6100                        have_poll_lock = netpoll_poll_lock(napi);
6101                        napi_poll = napi->poll;
6102                }
6103                work = napi_poll(napi, BUSY_POLL_BUDGET);
6104                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6105count:
6106                if (work > 0)
6107                        __NET_ADD_STATS(dev_net(napi->dev),
6108                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
6109                local_bh_enable();
6110
6111                if (!loop_end || loop_end(loop_end_arg, start_time))
6112                        break;
6113
6114                if (unlikely(need_resched())) {
6115                        if (napi_poll)
6116                                busy_poll_stop(napi, have_poll_lock);
6117                        preempt_enable();
6118                        rcu_read_unlock();
6119                        cond_resched();
6120                        if (loop_end(loop_end_arg, start_time))
6121                                return;
6122                        goto restart;
6123                }
6124                cpu_relax();
6125        }
6126        if (napi_poll)
6127                busy_poll_stop(napi, have_poll_lock);
6128        preempt_enable();
6129out:
6130        rcu_read_unlock();
6131}
6132EXPORT_SYMBOL(napi_busy_loop);
6133
6134#endif /* CONFIG_NET_RX_BUSY_POLL */
6135
6136static void napi_hash_add(struct napi_struct *napi)
6137{
6138        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6139            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6140                return;
6141
6142        spin_lock(&napi_hash_lock);
6143
6144        /* 0..NR_CPUS range is reserved for sender_cpu use */
6145        do {
6146                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6147                        napi_gen_id = MIN_NAPI_ID;
6148        } while (napi_by_id(napi_gen_id));
6149        napi->napi_id = napi_gen_id;
6150
6151        hlist_add_head_rcu(&napi->napi_hash_node,
6152                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6153
6154        spin_unlock(&napi_hash_lock);
6155}
6156
6157/* Warning : caller is responsible to make sure rcu grace period
6158 * is respected before freeing memory containing @napi
6159 */
6160bool napi_hash_del(struct napi_struct *napi)
6161{
6162        bool rcu_sync_needed = false;
6163
6164        spin_lock(&napi_hash_lock);
6165
6166        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6167                rcu_sync_needed = true;
6168                hlist_del_rcu(&napi->napi_hash_node);
6169        }
6170        spin_unlock(&napi_hash_lock);
6171        return rcu_sync_needed;
6172}
6173EXPORT_SYMBOL_GPL(napi_hash_del);
6174
6175static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6176{
6177        struct napi_struct *napi;
6178
6179        napi = container_of(timer, struct napi_struct, timer);
6180
6181        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6182         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6183         */
6184        if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6185            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6186                __napi_schedule_irqoff(napi);
6187
6188        return HRTIMER_NORESTART;
6189}
6190
6191static void init_gro_hash(struct napi_struct *napi)
6192{
6193        int i;
6194
6195        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6196                INIT_LIST_HEAD(&napi->gro_hash[i].list);
6197                napi->gro_hash[i].count = 0;
6198        }
6199        napi->gro_bitmask = 0;
6200}
6201
6202void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6203                    int (*poll)(struct napi_struct *, int), int weight)
6204{
6205        INIT_LIST_HEAD(&napi->poll_list);
6206        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6207        napi->timer.function = napi_watchdog;
6208        init_gro_hash(napi);
6209        napi->skb = NULL;
6210        napi->poll = poll;
6211        if (weight > NAPI_POLL_WEIGHT)
6212                netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6213                                weight);
6214        napi->weight = weight;
6215        list_add(&napi->dev_list, &dev->napi_list);
6216        napi->dev = dev;
6217#ifdef CONFIG_NETPOLL
6218        napi->poll_owner = -1;
6219#endif
6220        set_bit(NAPI_STATE_SCHED, &napi->state);
6221        napi_hash_add(napi);
6222}
6223EXPORT_SYMBOL(netif_napi_add);
6224
6225void napi_disable(struct napi_struct *n)
6226{
6227        might_sleep();
6228        set_bit(NAPI_STATE_DISABLE, &n->state);
6229
6230        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6231                msleep(1);
6232        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6233                msleep(1);
6234
6235        hrtimer_cancel(&n->timer);
6236
6237        clear_bit(NAPI_STATE_DISABLE, &n->state);
6238}
6239EXPORT_SYMBOL(napi_disable);
6240
6241static void flush_gro_hash(struct napi_struct *napi)
6242{
6243        int i;
6244
6245        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6246                struct sk_buff *skb, *n;
6247
6248                list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6249                        kfree_skb(skb);
6250                napi->gro_hash[i].count = 0;
6251        }
6252}
6253
6254/* Must be called in process context */
6255void netif_napi_del(struct napi_struct *napi)
6256{
6257        might_sleep();
6258        if (napi_hash_del(napi))
6259                synchronize_net();
6260        list_del_init(&napi->dev_list);
6261        napi_free_frags(napi);
6262
6263        flush_gro_hash(napi);
6264        napi->gro_bitmask = 0;
6265}
6266EXPORT_SYMBOL(netif_napi_del);
6267
6268static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6269{
6270        void *have;
6271        int work, weight;
6272
6273        list_del_init(&n->poll_list);
6274
6275        have = netpoll_poll_lock(n);
6276
6277        weight = n->weight;
6278
6279        /* This NAPI_STATE_SCHED test is for avoiding a race
6280         * with netpoll's poll_napi().  Only the entity which
6281         * obtains the lock and sees NAPI_STATE_SCHED set will
6282         * actually make the ->poll() call.  Therefore we avoid
6283         * accidentally calling ->poll() when NAPI is not scheduled.
6284         */
6285        work = 0;
6286        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6287                work = n->poll(n, weight);
6288                trace_napi_poll(n, work, weight);
6289        }
6290
6291        WARN_ON_ONCE(work > weight);
6292
6293        if (likely(work < weight))
6294                goto out_unlock;
6295
6296        /* Drivers must not modify the NAPI state if they
6297         * consume the entire weight.  In such cases this code
6298         * still "owns" the NAPI instance and therefore can
6299         * move the instance around on the list at-will.
6300         */
6301        if (unlikely(napi_disable_pending(n))) {
6302                napi_complete(n);
6303                goto out_unlock;
6304        }
6305
6306        if (n->gro_bitmask) {
6307                /* flush too old packets
6308                 * If HZ < 1000, flush all packets.
6309                 */
6310                napi_gro_flush(n, HZ >= 1000);
6311        }
6312
6313        /* Some drivers may have called napi_schedule
6314         * prior to exhausting their budget.
6315         */
6316        if (unlikely(!list_empty(&n->poll_list))) {
6317                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6318                             n->dev ? n->dev->name : "backlog");
6319                goto out_unlock;
6320        }
6321
6322        list_add_tail(&n->poll_list, repoll);
6323
6324out_unlock:
6325        netpoll_poll_unlock(have);
6326
6327        return work;
6328}
6329
6330static __latent_entropy void net_rx_action(struct softirq_action *h)
6331{
6332        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6333        unsigned long time_limit = jiffies +
6334                usecs_to_jiffies(netdev_budget_usecs);
6335        int budget = netdev_budget;
6336        LIST_HEAD(list);
6337        LIST_HEAD(repoll);
6338
6339        local_irq_disable();
6340        list_splice_init(&sd->poll_list, &list);
6341        local_irq_enable();
6342
6343        for (;;) {
6344                struct napi_struct *n;
6345
6346                if (list_empty(&list)) {
6347                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6348                                goto out;
6349                        break;
6350                }
6351
6352                n = list_first_entry(&list, struct napi_struct, poll_list);
6353                budget -= napi_poll(n, &repoll);
6354
6355                /* If softirq window is exhausted then punt.
6356                 * Allow this to run for 2 jiffies since which will allow
6357                 * an average latency of 1.5/HZ.
6358                 */
6359                if (unlikely(budget <= 0 ||
6360                             time_after_eq(jiffies, time_limit))) {
6361                        sd->time_squeeze++;
6362                        break;
6363                }
6364        }
6365
6366        local_irq_disable();
6367
6368        list_splice_tail_init(&sd->poll_list, &list);
6369        list_splice_tail(&repoll, &list);
6370        list_splice(&list, &sd->poll_list);
6371        if (!list_empty(&sd->poll_list))
6372                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6373
6374        net_rps_action_and_irq_enable(sd);
6375out:
6376        __kfree_skb_flush();
6377}
6378
6379struct netdev_adjacent {
6380        struct net_device *dev;
6381
6382        /* upper master flag, there can only be one master device per list */
6383        bool master;
6384
6385        /* counter for the number of times this device was added to us */
6386        u16 ref_nr;
6387
6388        /* private field for the users */
6389        void *private;
6390
6391        struct list_head list;
6392        struct rcu_head rcu;
6393};
6394
6395static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6396                                                 struct list_head *adj_list)
6397{
6398        struct netdev_adjacent *adj;
6399
6400        list_for_each_entry(adj, adj_list, list) {
6401                if (adj->dev == adj_dev)
6402                        return adj;
6403        }
6404        return NULL;
6405}
6406
6407static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6408{
6409        struct net_device *dev = data;
6410
6411        return upper_dev == dev;
6412}
6413
6414/**
6415 * netdev_has_upper_dev - Check if device is linked to an upper device
6416 * @dev: device
6417 * @upper_dev: upper device to check
6418 *
6419 * Find out if a device is linked to specified upper device and return true
6420 * in case it is. Note that this checks only immediate upper device,
6421 * not through a complete stack of devices. The caller must hold the RTNL lock.
6422 */
6423bool netdev_has_upper_dev(struct net_device *dev,
6424                          struct net_device *upper_dev)
6425{
6426        ASSERT_RTNL();
6427
6428        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6429                                             upper_dev);
6430}
6431EXPORT_SYMBOL(netdev_has_upper_dev);
6432
6433/**
6434 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6435 * @dev: device
6436 * @upper_dev: upper device to check
6437 *
6438 * Find out if a device is linked to specified upper device and return true
6439 * in case it is. Note that this checks the entire upper device chain.
6440 * The caller must hold rcu lock.
6441 */
6442
6443bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6444                                  struct net_device *upper_dev)
6445{
6446        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6447                                               upper_dev);
6448}
6449EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6450
6451/**
6452 * netdev_has_any_upper_dev - Check if device is linked to some device
6453 * @dev: device
6454 *
6455 * Find out if a device is linked to an upper device and return true in case
6456 * it is. The caller must hold the RTNL lock.
6457 */
6458bool netdev_has_any_upper_dev(struct net_device *dev)
6459{
6460        ASSERT_RTNL();
6461
6462        return !list_empty(&dev->adj_list.upper);
6463}
6464EXPORT_SYMBOL(netdev_has_any_upper_dev);
6465
6466/**
6467 * netdev_master_upper_dev_get - Get master upper device
6468 * @dev: device
6469 *
6470 * Find a master upper device and return pointer to it or NULL in case
6471 * it's not there. The caller must hold the RTNL lock.
6472 */
6473struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6474{
6475        struct netdev_adjacent *upper;
6476
6477        ASSERT_RTNL();
6478
6479        if (list_empty(&dev->adj_list.upper))
6480                return NULL;
6481
6482        upper = list_first_entry(&dev->adj_list.upper,
6483                                 struct netdev_adjacent, list);
6484        if (likely(upper->master))
6485                return upper->dev;
6486        return NULL;
6487}
6488EXPORT_SYMBOL(netdev_master_upper_dev_get);
6489
6490/**
6491 * netdev_has_any_lower_dev - Check if device is linked to some device
6492 * @dev: device
6493 *
6494 * Find out if a device is linked to a lower device and return true in case
6495 * it is. The caller must hold the RTNL lock.
6496 */
6497static bool netdev_has_any_lower_dev(struct net_device *dev)
6498{
6499        ASSERT_RTNL();
6500
6501        return !list_empty(&dev->adj_list.lower);
6502}
6503
6504void *netdev_adjacent_get_private(struct list_head *adj_list)
6505{
6506        struct netdev_adjacent *adj;
6507
6508        adj = list_entry(adj_list, struct netdev_adjacent, list);
6509
6510        return adj->private;
6511}
6512EXPORT_SYMBOL(netdev_adjacent_get_private);
6513
6514/**
6515 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6516 * @dev: device
6517 * @iter: list_head ** of the current position
6518 *
6519 * Gets the next device from the dev's upper list, starting from iter
6520 * position. The caller must hold RCU read lock.
6521 */
6522struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6523                                                 struct list_head **iter)
6524{
6525        struct netdev_adjacent *upper;
6526
6527        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6528
6529        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6530
6531        if (&upper->list == &dev->adj_list.upper)
6532                return NULL;
6533
6534        *iter = &upper->list;
6535
6536        return upper->dev;
6537}
6538EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6539
6540static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6541                                                    struct list_head **iter)
6542{
6543        struct netdev_adjacent *upper;
6544
6545        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6546
6547        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6548
6549        if (&upper->list == &dev->adj_list.upper)
6550                return NULL;
6551
6552        *iter = &upper->list;
6553
6554        return upper->dev;
6555}
6556
6557int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6558                                  int (*fn)(struct net_device *dev,
6559                                            void *data),
6560                                  void *data)
6561{
6562        struct net_device *udev;
6563        struct list_head *iter;
6564        int ret;
6565
6566        for (iter = &dev->adj_list.upper,
6567             udev = netdev_next_upper_dev_rcu(dev, &iter);
6568             udev;
6569             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6570                /* first is the upper device itself */
6571                ret = fn(udev, data);
6572                if (ret)
6573                        return ret;
6574
6575                /* then look at all of its upper devices */
6576                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6577                if (ret)
6578                        return ret;
6579        }
6580
6581        return 0;
6582}
6583EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6584
6585/**
6586 * netdev_lower_get_next_private - Get the next ->private from the
6587 *                                 lower neighbour list
6588 * @dev: device
6589 * @iter: list_head ** of the current position
6590 *
6591 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6592 * list, starting from iter position. The caller must hold either hold the
6593 * RTNL lock or its own locking that guarantees that the neighbour lower
6594 * list will remain unchanged.
6595 */
6596void *netdev_lower_get_next_private(struct net_device *dev,
6597                                    struct list_head **iter)
6598{
6599        struct netdev_adjacent *lower;
6600
6601        lower = list_entry(*iter, struct netdev_adjacent, list);
6602
6603        if (&lower->list == &dev->adj_list.lower)
6604                return NULL;
6605
6606        *iter = lower->list.next;
6607
6608        return lower->private;
6609}
6610EXPORT_SYMBOL(netdev_lower_get_next_private);
6611
6612/**
6613 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6614 *                                     lower neighbour list, RCU
6615 *                                     variant
6616 * @dev: device
6617 * @iter: list_head ** of the current position
6618 *
6619 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6620 * list, starting from iter position. The caller must hold RCU read lock.
6621 */
6622void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6623                                        struct list_head **iter)
6624{
6625        struct netdev_adjacent *lower;
6626
6627        WARN_ON_ONCE(!rcu_read_lock_held());
6628
6629        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6630
6631        if (&lower->list == &dev->adj_list.lower)
6632                return NULL;
6633
6634        *iter = &lower->list;
6635
6636        return lower->private;
6637}
6638EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6639
6640/**
6641 * netdev_lower_get_next - Get the next device from the lower neighbour
6642 *                         list
6643 * @dev: device
6644 * @iter: list_head ** of the current position
6645 *
6646 * Gets the next netdev_adjacent from the dev's lower neighbour
6647 * list, starting from iter position. The caller must hold RTNL lock or
6648 * its own locking that guarantees that the neighbour lower
6649 * list will remain unchanged.
6650 */
6651void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6652{
6653        struct netdev_adjacent *lower;
6654
6655        lower = list_entry(*iter, struct netdev_adjacent, list);
6656
6657        if (&lower->list == &dev->adj_list.lower)
6658                return NULL;
6659
6660        *iter = lower->list.next;
6661
6662        return lower->dev;
6663}
6664EXPORT_SYMBOL(netdev_lower_get_next);
6665
6666static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6667                                                struct list_head **iter)
6668{
6669        struct netdev_adjacent *lower;
6670
6671        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6672
6673        if (&lower->list == &dev->adj_list.lower)
6674                return NULL;
6675
6676        *iter = &lower->list;
6677
6678        return lower->dev;
6679}
6680
6681int netdev_walk_all_lower_dev(struct net_device *dev,
6682                              int (*fn)(struct net_device *dev,
6683                                        void *data),
6684                              void *data)
6685{
6686        struct net_device *ldev;
6687        struct list_head *iter;
6688        int ret;
6689
6690        for (iter = &dev->adj_list.lower,
6691             ldev = netdev_next_lower_dev(dev, &iter);
6692             ldev;
6693             ldev = netdev_next_lower_dev(dev, &iter)) {
6694                /* first is the lower device itself */
6695                ret = fn(ldev, data);
6696                if (ret)
6697                        return ret;
6698
6699                /* then look at all of its lower devices */
6700                ret = netdev_walk_all_lower_dev(ldev, fn, data);
6701                if (ret)
6702                        return ret;
6703        }
6704
6705        return 0;
6706}
6707EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6708
6709static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6710                                                    struct list_head **iter)
6711{
6712        struct netdev_adjacent *lower;
6713
6714        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6715        if (&lower->list == &dev->adj_list.lower)
6716                return NULL;
6717
6718        *iter = &lower->list;
6719
6720        return lower->dev;
6721}
6722
6723int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6724                                  int (*fn)(struct net_device *dev,
6725                                            void *data),
6726                                  void *data)
6727{
6728        struct net_device *ldev;
6729        struct list_head *iter;
6730        int ret;
6731
6732        for (iter = &dev->adj_list.lower,
6733             ldev = netdev_next_lower_dev_rcu(dev, &iter);
6734             ldev;
6735             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6736                /* first is the lower device itself */
6737                ret = fn(ldev, data);
6738                if (ret)
6739                        return ret;
6740
6741                /* then look at all of its lower devices */
6742                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6743                if (ret)
6744                        return ret;
6745        }
6746
6747        return 0;
6748}
6749EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6750
6751/**
6752 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6753 *                                     lower neighbour list, RCU
6754 *                                     variant
6755 * @dev: device
6756 *
6757 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6758 * list. The caller must hold RCU read lock.
6759 */
6760void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6761{
6762        struct netdev_adjacent *lower;
6763
6764        lower = list_first_or_null_rcu(&dev->adj_list.lower,
6765                        struct netdev_adjacent, list);
6766        if (lower)
6767                return lower->private;
6768        return NULL;
6769}
6770EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6771
6772/**
6773 * netdev_master_upper_dev_get_rcu - Get master upper device
6774 * @dev: device
6775 *
6776 * Find a master upper device and return pointer to it or NULL in case
6777 * it's not there. The caller must hold the RCU read lock.
6778 */
6779struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6780{
6781        struct netdev_adjacent *upper;
6782
6783        upper = list_first_or_null_rcu(&dev->adj_list.upper,
6784                                       struct netdev_adjacent, list);
6785        if (upper && likely(upper->master))
6786                return upper->dev;
6787        return NULL;
6788}
6789EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6790
6791static int netdev_adjacent_sysfs_add(struct net_device *dev,
6792                              struct net_device *adj_dev,
6793                              struct list_head *dev_list)
6794{
6795        char linkname[IFNAMSIZ+7];
6796
6797        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6798                "upper_%s" : "lower_%s", adj_dev->name);
6799        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6800                                 linkname);
6801}
6802static void netdev_adjacent_sysfs_del(struct net_device *dev,
6803                               char *name,
6804                               struct list_head *dev_list)
6805{
6806        char linkname[IFNAMSIZ+7];
6807
6808        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6809                "upper_%s" : "lower_%s", name);
6810        sysfs_remove_link(&(dev->dev.kobj), linkname);
6811}
6812
6813static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6814                                                 struct net_device *adj_dev,
6815                                                 struct list_head *dev_list)
6816{
6817        return (dev_list == &dev->adj_list.upper ||
6818                dev_list == &dev->adj_list.lower) &&
6819                net_eq(dev_net(dev), dev_net(adj_dev));
6820}
6821
6822static int __netdev_adjacent_dev_insert(struct net_device *dev,
6823                                        struct net_device *adj_dev,
6824                                        struct list_head *dev_list,
6825                                        void *private, bool master)
6826{
6827        struct netdev_adjacent *adj;
6828        int ret;
6829
6830        adj = __netdev_find_adj(adj_dev, dev_list);
6831
6832        if (adj) {
6833                adj->ref_nr += 1;
6834                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6835                         dev->name, adj_dev->name, adj->ref_nr);
6836
6837                return 0;
6838        }
6839
6840        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6841        if (!adj)
6842                return -ENOMEM;
6843
6844        adj->dev = adj_dev;
6845        adj->master = master;
6846        adj->ref_nr = 1;
6847        adj->private = private;
6848        dev_hold(adj_dev);
6849
6850        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6851                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6852
6853        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6854                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6855                if (ret)
6856                        goto free_adj;
6857        }
6858
6859        /* Ensure that master link is always the first item in list. */
6860        if (master) {
6861                ret = sysfs_create_link(&(dev->dev.kobj),
6862                                        &(adj_dev->dev.kobj), "master");
6863                if (ret)
6864                        goto remove_symlinks;
6865
6866                list_add_rcu(&adj->list, dev_list);
6867        } else {
6868                list_add_tail_rcu(&adj->list, dev_list);
6869        }
6870
6871        return 0;
6872
6873remove_symlinks:
6874        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6875                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6876free_adj:
6877        kfree(adj);
6878        dev_put(adj_dev);
6879
6880        return ret;
6881}
6882
6883static void __netdev_adjacent_dev_remove(struct net_device *dev,
6884                                         struct net_device *adj_dev,
6885                                         u16 ref_nr,
6886                                         struct list_head *dev_list)
6887{
6888        struct netdev_adjacent *adj;
6889
6890        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6891                 dev->name, adj_dev->name, ref_nr);
6892
6893        adj = __netdev_find_adj(adj_dev, dev_list);
6894
6895        if (!adj) {
6896                pr_err("Adjacency does not exist for device %s from %s\n",
6897                       dev->name, adj_dev->name);
6898                WARN_ON(1);
6899                return;
6900        }
6901
6902        if (adj->ref_nr > ref_nr) {
6903                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6904                         dev->name, adj_dev->name, ref_nr,
6905                         adj->ref_nr - ref_nr);
6906                adj->ref_nr -= ref_nr;
6907                return;
6908        }
6909
6910        if (adj->master)
6911                sysfs_remove_link(&(dev->dev.kobj), "master");
6912
6913        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6914                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6915
6916        list_del_rcu(&adj->list);
6917        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6918                 adj_dev->name, dev->name, adj_dev->name);
6919        dev_put(adj_dev);
6920        kfree_rcu(adj, rcu);
6921}
6922
6923static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6924                                            struct net_device *upper_dev,
6925                                            struct list_head *up_list,
6926                                            struct list_head *down_list,
6927                                            void *private, bool master)
6928{
6929        int ret;
6930
6931        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6932                                           private, master);
6933        if (ret)
6934                return ret;
6935
6936        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6937                                           private, false);
6938        if (ret) {
6939                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6940                return ret;
6941        }
6942
6943        return 0;
6944}
6945
6946static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6947                                               struct net_device *upper_dev,
6948                                               u16 ref_nr,
6949                                               struct list_head *up_list,
6950                                               struct list_head *down_list)
6951{
6952        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6953        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6954}
6955
6956static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6957                                                struct net_device *upper_dev,
6958                                                void *private, bool master)
6959{
6960        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6961                                                &dev->adj_list.upper,
6962                                                &upper_dev->adj_list.lower,
6963                                                private, master);
6964}
6965
6966static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6967                                                   struct net_device *upper_dev)
6968{
6969        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6970                                           &dev->adj_list.upper,
6971                                           &upper_dev->adj_list.lower);
6972}
6973
6974static int __netdev_upper_dev_link(struct net_device *dev,
6975                                   struct net_device *upper_dev, bool master,
6976                                   void *upper_priv, void *upper_info,
6977                                   struct netlink_ext_ack *extack)
6978{
6979        struct netdev_notifier_changeupper_info changeupper_info = {
6980                .info = {
6981                        .dev = dev,
6982                        .extack = extack,
6983                },
6984                .upper_dev = upper_dev,
6985                .master = master,
6986                .linking = true,
6987                .upper_info = upper_info,
6988        };
6989        struct net_device *master_dev;
6990        int ret = 0;
6991
6992        ASSERT_RTNL();
6993
6994        if (dev == upper_dev)
6995                return -EBUSY;
6996
6997        /* To prevent loops, check if dev is not upper device to upper_dev. */
6998        if (netdev_has_upper_dev(upper_dev, dev))
6999                return -EBUSY;
7000
7001        if (!master) {
7002                if (netdev_has_upper_dev(dev, upper_dev))
7003                        return -EEXIST;
7004        } else {
7005                master_dev = netdev_master_upper_dev_get(dev);
7006                if (master_dev)
7007                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
7008        }
7009
7010        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7011                                            &changeupper_info.info);
7012        ret = notifier_to_errno(ret);
7013        if (ret)
7014                return ret;
7015
7016        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7017                                                   master);
7018        if (ret)
7019                return ret;
7020
7021        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7022                                            &changeupper_info.info);
7023        ret = notifier_to_errno(ret);
7024        if (ret)
7025                goto rollback;
7026
7027        return 0;
7028
7029rollback:
7030        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7031
7032        return ret;
7033}
7034
7035/**
7036 * netdev_upper_dev_link - Add a link to the upper device
7037 * @dev: device
7038 * @upper_dev: new upper device
7039 * @extack: netlink extended ack
7040 *
7041 * Adds a link to device which is upper to this one. The caller must hold
7042 * the RTNL lock. On a failure a negative errno code is returned.
7043 * On success the reference counts are adjusted and the function
7044 * returns zero.
7045 */
7046int netdev_upper_dev_link(struct net_device *dev,
7047                          struct net_device *upper_dev,
7048                          struct netlink_ext_ack *extack)
7049{
7050        return __netdev_upper_dev_link(dev, upper_dev, false,
7051                                       NULL, NULL, extack);
7052}
7053EXPORT_SYMBOL(netdev_upper_dev_link);
7054
7055/**
7056 * netdev_master_upper_dev_link - Add a master link to the upper device
7057 * @dev: device
7058 * @upper_dev: new upper device
7059 * @upper_priv: upper device private
7060 * @upper_info: upper info to be passed down via notifier
7061 * @extack: netlink extended ack
7062 *
7063 * Adds a link to device which is upper to this one. In this case, only
7064 * one master upper device can be linked, although other non-master devices
7065 * might be linked as well. The caller must hold the RTNL lock.
7066 * On a failure a negative errno code is returned. On success the reference
7067 * counts are adjusted and the function returns zero.
7068 */
7069int netdev_master_upper_dev_link(struct net_device *dev,
7070                                 struct net_device *upper_dev,
7071                                 void *upper_priv, void *upper_info,
7072                                 struct netlink_ext_ack *extack)
7073{
7074        return __netdev_upper_dev_link(dev, upper_dev, true,
7075                                       upper_priv, upper_info, extack);
7076}
7077EXPORT_SYMBOL(netdev_master_upper_dev_link);
7078
7079/**
7080 * netdev_upper_dev_unlink - Removes a link to upper device
7081 * @dev: device
7082 * @upper_dev: new upper device
7083 *
7084 * Removes a link to device which is upper to this one. The caller must hold
7085 * the RTNL lock.
7086 */
7087void netdev_upper_dev_unlink(struct net_device *dev,
7088                             struct net_device *upper_dev)
7089{
7090        struct netdev_notifier_changeupper_info changeupper_info = {
7091                .info = {
7092                        .dev = dev,
7093                },
7094                .upper_dev = upper_dev,
7095                .linking = false,
7096        };
7097
7098        ASSERT_RTNL();
7099
7100        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7101
7102        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7103                                      &changeupper_info.info);
7104
7105        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7106
7107        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7108                                      &changeupper_info.info);
7109}
7110EXPORT_SYMBOL(netdev_upper_dev_unlink);
7111
7112/**
7113 * netdev_bonding_info_change - Dispatch event about slave change
7114 * @dev: device
7115 * @bonding_info: info to dispatch
7116 *
7117 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7118 * The caller must hold the RTNL lock.
7119 */
7120void netdev_bonding_info_change(struct net_device *dev,
7121                                struct netdev_bonding_info *bonding_info)
7122{
7123        struct netdev_notifier_bonding_info info = {
7124                .info.dev = dev,
7125        };
7126
7127        memcpy(&info.bonding_info, bonding_info,
7128               sizeof(struct netdev_bonding_info));
7129        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7130                                      &info.info);
7131}
7132EXPORT_SYMBOL(netdev_bonding_info_change);
7133
7134static void netdev_adjacent_add_links(struct net_device *dev)
7135{
7136        struct netdev_adjacent *iter;
7137
7138        struct net *net = dev_net(dev);
7139
7140        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7141                if (!net_eq(net, dev_net(iter->dev)))
7142                        continue;
7143                netdev_adjacent_sysfs_add(iter->dev, dev,
7144                                          &iter->dev->adj_list.lower);
7145                netdev_adjacent_sysfs_add(dev, iter->dev,
7146                                          &dev->adj_list.upper);
7147        }
7148
7149        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7150                if (!net_eq(net, dev_net(iter->dev)))
7151                        continue;
7152                netdev_adjacent_sysfs_add(iter->dev, dev,
7153                                          &iter->dev->adj_list.upper);
7154                netdev_adjacent_sysfs_add(dev, iter->dev,
7155                                          &dev->adj_list.lower);
7156        }
7157}
7158
7159static void netdev_adjacent_del_links(struct net_device *dev)
7160{
7161        struct netdev_adjacent *iter;
7162
7163        struct net *net = dev_net(dev);
7164
7165        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7166                if (!net_eq(net, dev_net(iter->dev)))
7167                        continue;
7168                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7169                                          &iter->dev->adj_list.lower);
7170                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7171                                          &dev->adj_list.upper);
7172        }
7173
7174        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7175                if (!net_eq(net, dev_net(iter->dev)))
7176                        continue;
7177                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7178                                          &iter->dev->adj_list.upper);
7179                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7180                                          &dev->adj_list.lower);
7181        }
7182}
7183
7184void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7185{
7186        struct netdev_adjacent *iter;
7187
7188        struct net *net = dev_net(dev);
7189
7190        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7191                if (!net_eq(net, dev_net(iter->dev)))
7192                        continue;
7193                netdev_adjacent_sysfs_del(iter->dev, oldname,
7194                                          &iter->dev->adj_list.lower);
7195                netdev_adjacent_sysfs_add(iter->dev, dev,
7196                                          &iter->dev->adj_list.lower);
7197        }
7198
7199        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7200                if (!net_eq(net, dev_net(iter->dev)))
7201                        continue;
7202                netdev_adjacent_sysfs_del(iter->dev, oldname,
7203                                          &iter->dev->adj_list.upper);
7204                netdev_adjacent_sysfs_add(iter->dev, dev,
7205                                          &iter->dev->adj_list.upper);
7206        }
7207}
7208
7209void *netdev_lower_dev_get_private(struct net_device *dev,
7210                                   struct net_device *lower_dev)
7211{
7212        struct netdev_adjacent *lower;
7213
7214        if (!lower_dev)
7215                return NULL;
7216        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7217        if (!lower)
7218                return NULL;
7219
7220        return lower->private;
7221}
7222EXPORT_SYMBOL(netdev_lower_dev_get_private);
7223
7224
7225int dev_get_nest_level(struct net_device *dev)
7226{
7227        struct net_device *lower = NULL;
7228        struct list_head *iter;
7229        int max_nest = -1;
7230        int nest;
7231
7232        ASSERT_RTNL();
7233
7234        netdev_for_each_lower_dev(dev, lower, iter) {
7235                nest = dev_get_nest_level(lower);
7236                if (max_nest < nest)
7237                        max_nest = nest;
7238        }
7239
7240        return max_nest + 1;
7241}
7242EXPORT_SYMBOL(dev_get_nest_level);
7243
7244/**
7245 * netdev_lower_change - Dispatch event about lower device state change
7246 * @lower_dev: device
7247 * @lower_state_info: state to dispatch
7248 *
7249 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7250 * The caller must hold the RTNL lock.
7251 */
7252void netdev_lower_state_changed(struct net_device *lower_dev,
7253                                void *lower_state_info)
7254{
7255        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7256                .info.dev = lower_dev,
7257        };
7258
7259        ASSERT_RTNL();
7260        changelowerstate_info.lower_state_info = lower_state_info;
7261        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7262                                      &changelowerstate_info.info);
7263}
7264EXPORT_SYMBOL(netdev_lower_state_changed);
7265
7266static void dev_change_rx_flags(struct net_device *dev, int flags)
7267{
7268        const struct net_device_ops *ops = dev->netdev_ops;
7269
7270        if (ops->ndo_change_rx_flags)
7271                ops->ndo_change_rx_flags(dev, flags);
7272}
7273
7274static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7275{
7276        unsigned int old_flags = dev->flags;
7277        kuid_t uid;
7278        kgid_t gid;
7279
7280        ASSERT_RTNL();
7281
7282        dev->flags |= IFF_PROMISC;
7283        dev->promiscuity += inc;
7284        if (dev->promiscuity == 0) {
7285                /*
7286                 * Avoid overflow.
7287                 * If inc causes overflow, untouch promisc and return error.
7288                 */
7289                if (inc < 0)
7290                        dev->flags &= ~IFF_PROMISC;
7291                else {
7292                        dev->promiscuity -= inc;
7293                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7294                                dev->name);
7295                        return -EOVERFLOW;
7296                }
7297        }
7298        if (dev->flags != old_flags) {
7299                pr_info("device %s %s promiscuous mode\n",
7300                        dev->name,
7301                        dev->flags & IFF_PROMISC ? "entered" : "left");
7302                if (audit_enabled) {
7303                        current_uid_gid(&uid, &gid);
7304                        audit_log(audit_context(), GFP_ATOMIC,
7305                                  AUDIT_ANOM_PROMISCUOUS,
7306                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7307                                  dev->name, (dev->flags & IFF_PROMISC),
7308                                  (old_flags & IFF_PROMISC),
7309                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7310                                  from_kuid(&init_user_ns, uid),
7311                                  from_kgid(&init_user_ns, gid),
7312                                  audit_get_sessionid(current));
7313                }
7314
7315                dev_change_rx_flags(dev, IFF_PROMISC);
7316        }
7317        if (notify)
7318                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7319        return 0;
7320}
7321
7322/**
7323 *      dev_set_promiscuity     - update promiscuity count on a device
7324 *      @dev: device
7325 *      @inc: modifier
7326 *
7327 *      Add or remove promiscuity from a device. While the count in the device
7328 *      remains above zero the interface remains promiscuous. Once it hits zero
7329 *      the device reverts back to normal filtering operation. A negative inc
7330 *      value is used to drop promiscuity on the device.
7331 *      Return 0 if successful or a negative errno code on error.
7332 */
7333int dev_set_promiscuity(struct net_device *dev, int inc)
7334{
7335        unsigned int old_flags = dev->flags;
7336        int err;
7337
7338        err = __dev_set_promiscuity(dev, inc, true);
7339        if (err < 0)
7340                return err;
7341        if (dev->flags != old_flags)
7342                dev_set_rx_mode(dev);
7343        return err;
7344}
7345EXPORT_SYMBOL(dev_set_promiscuity);
7346
7347static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7348{
7349        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7350
7351        ASSERT_RTNL();
7352
7353        dev->flags |= IFF_ALLMULTI;
7354        dev->allmulti += inc;
7355        if (dev->allmulti == 0) {
7356                /*
7357                 * Avoid overflow.
7358                 * If inc causes overflow, untouch allmulti and return error.
7359                 */
7360                if (inc < 0)
7361                        dev->flags &= ~IFF_ALLMULTI;
7362                else {
7363                        dev->allmulti -= inc;
7364                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7365                                dev->name);
7366                        return -EOVERFLOW;
7367                }
7368        }
7369        if (dev->flags ^ old_flags) {
7370                dev_change_rx_flags(dev, IFF_ALLMULTI);
7371                dev_set_rx_mode(dev);
7372                if (notify)
7373                        __dev_notify_flags(dev, old_flags,
7374                                           dev->gflags ^ old_gflags);
7375        }
7376        return 0;
7377}
7378
7379/**
7380 *      dev_set_allmulti        - update allmulti count on a device
7381 *      @dev: device
7382 *      @inc: modifier
7383 *
7384 *      Add or remove reception of all multicast frames to a device. While the
7385 *      count in the device remains above zero the interface remains listening
7386 *      to all interfaces. Once it hits zero the device reverts back to normal
7387 *      filtering operation. A negative @inc value is used to drop the counter
7388 *      when releasing a resource needing all multicasts.
7389 *      Return 0 if successful or a negative errno code on error.
7390 */
7391
7392int dev_set_allmulti(struct net_device *dev, int inc)
7393{
7394        return __dev_set_allmulti(dev, inc, true);
7395}
7396EXPORT_SYMBOL(dev_set_allmulti);
7397
7398/*
7399 *      Upload unicast and multicast address lists to device and
7400 *      configure RX filtering. When the device doesn't support unicast
7401 *      filtering it is put in promiscuous mode while unicast addresses
7402 *      are present.
7403 */
7404void __dev_set_rx_mode(struct net_device *dev)
7405{
7406        const struct net_device_ops *ops = dev->netdev_ops;
7407
7408        /* dev_open will call this function so the list will stay sane. */
7409        if (!(dev->flags&IFF_UP))
7410                return;
7411
7412        if (!netif_device_present(dev))
7413                return;
7414
7415        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7416                /* Unicast addresses changes may only happen under the rtnl,
7417                 * therefore calling __dev_set_promiscuity here is safe.
7418                 */
7419                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7420                        __dev_set_promiscuity(dev, 1, false);
7421                        dev->uc_promisc = true;
7422                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7423                        __dev_set_promiscuity(dev, -1, false);
7424                        dev->uc_promisc = false;
7425                }
7426        }
7427
7428        if (ops->ndo_set_rx_mode)
7429                ops->ndo_set_rx_mode(dev);
7430}
7431
7432void dev_set_rx_mode(struct net_device *dev)
7433{
7434        netif_addr_lock_bh(dev);
7435        __dev_set_rx_mode(dev);
7436        netif_addr_unlock_bh(dev);
7437}
7438
7439/**
7440 *      dev_get_flags - get flags reported to userspace
7441 *      @dev: device
7442 *
7443 *      Get the combination of flag bits exported through APIs to userspace.
7444 */
7445unsigned int dev_get_flags(const struct net_device *dev)
7446{
7447        unsigned int flags;
7448
7449        flags = (dev->flags & ~(IFF_PROMISC |
7450                                IFF_ALLMULTI |
7451                                IFF_RUNNING |
7452                                IFF_LOWER_UP |
7453                                IFF_DORMANT)) |
7454                (dev->gflags & (IFF_PROMISC |
7455                                IFF_ALLMULTI));
7456
7457        if (netif_running(dev)) {
7458                if (netif_oper_up(dev))
7459                        flags |= IFF_RUNNING;
7460                if (netif_carrier_ok(dev))
7461                        flags |= IFF_LOWER_UP;
7462                if (netif_dormant(dev))
7463                        flags |= IFF_DORMANT;
7464        }
7465
7466        return flags;
7467}
7468EXPORT_SYMBOL(dev_get_flags);
7469
7470int __dev_change_flags(struct net_device *dev, unsigned int flags)
7471{
7472        unsigned int old_flags = dev->flags;
7473        int ret;
7474
7475        ASSERT_RTNL();
7476
7477        /*
7478         *      Set the flags on our device.
7479         */
7480
7481        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7482                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7483                               IFF_AUTOMEDIA)) |
7484                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7485                                    IFF_ALLMULTI));
7486
7487        /*
7488         *      Load in the correct multicast list now the flags have changed.
7489         */
7490
7491        if ((old_flags ^ flags) & IFF_MULTICAST)
7492                dev_change_rx_flags(dev, IFF_MULTICAST);
7493
7494        dev_set_rx_mode(dev);
7495
7496        /*
7497         *      Have we downed the interface. We handle IFF_UP ourselves
7498         *      according to user attempts to set it, rather than blindly
7499         *      setting it.
7500         */
7501
7502        ret = 0;
7503        if ((old_flags ^ flags) & IFF_UP) {
7504                if (old_flags & IFF_UP)
7505                        __dev_close(dev);
7506                else
7507                        ret = __dev_open(dev);
7508        }
7509
7510        if ((flags ^ dev->gflags) & IFF_PROMISC) {
7511                int inc = (flags & IFF_PROMISC) ? 1 : -1;
7512                unsigned int old_flags = dev->flags;
7513
7514                dev->gflags ^= IFF_PROMISC;
7515
7516                if (__dev_set_promiscuity(dev, inc, false) >= 0)
7517                        if (dev->flags != old_flags)
7518                                dev_set_rx_mode(dev);
7519        }
7520
7521        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7522         * is important. Some (broken) drivers set IFF_PROMISC, when
7523         * IFF_ALLMULTI is requested not asking us and not reporting.
7524         */
7525        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7526                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7527
7528                dev->gflags ^= IFF_ALLMULTI;
7529                __dev_set_allmulti(dev, inc, false);
7530        }
7531
7532        return ret;
7533}
7534
7535void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7536                        unsigned int gchanges)
7537{
7538        unsigned int changes = dev->flags ^ old_flags;
7539
7540        if (gchanges)
7541                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7542
7543        if (changes & IFF_UP) {
7544                if (dev->flags & IFF_UP)
7545                        call_netdevice_notifiers(NETDEV_UP, dev);
7546                else
7547                        call_netdevice_notifiers(NETDEV_DOWN, dev);
7548        }
7549
7550        if (dev->flags & IFF_UP &&
7551            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7552                struct netdev_notifier_change_info change_info = {
7553                        .info = {
7554                                .dev = dev,
7555                        },
7556                        .flags_changed = changes,
7557                };
7558
7559                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7560        }
7561}
7562
7563/**
7564 *      dev_change_flags - change device settings
7565 *      @dev: device
7566 *      @flags: device state flags
7567 *
7568 *      Change settings on device based state flags. The flags are
7569 *      in the userspace exported format.
7570 */
7571int dev_change_flags(struct net_device *dev, unsigned int flags)
7572{
7573        int ret;
7574        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7575
7576        ret = __dev_change_flags(dev, flags);
7577        if (ret < 0)
7578                return ret;
7579
7580        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7581        __dev_notify_flags(dev, old_flags, changes);
7582        return ret;
7583}
7584EXPORT_SYMBOL(dev_change_flags);
7585
7586int __dev_set_mtu(struct net_device *dev, int new_mtu)
7587{
7588        const struct net_device_ops *ops = dev->netdev_ops;
7589
7590        if (ops->ndo_change_mtu)
7591                return ops->ndo_change_mtu(dev, new_mtu);
7592
7593        dev->mtu = new_mtu;
7594        return 0;
7595}
7596EXPORT_SYMBOL(__dev_set_mtu);
7597
7598/**
7599 *      dev_set_mtu_ext - Change maximum transfer unit
7600 *      @dev: device
7601 *      @new_mtu: new transfer unit
7602 *      @extack: netlink extended ack
7603 *
7604 *      Change the maximum transfer size of the network device.
7605 */
7606int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7607                    struct netlink_ext_ack *extack)
7608{
7609        int err, orig_mtu;
7610
7611        if (new_mtu == dev->mtu)
7612                return 0;
7613
7614        /* MTU must be positive, and in range */
7615        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7616                NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7617                return -EINVAL;
7618        }
7619
7620        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7621                NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7622                return -EINVAL;
7623        }
7624
7625        if (!netif_device_present(dev))
7626                return -ENODEV;
7627
7628        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7629        err = notifier_to_errno(err);
7630        if (err)
7631                return err;
7632
7633        orig_mtu = dev->mtu;
7634        err = __dev_set_mtu(dev, new_mtu);
7635
7636        if (!err) {
7637                err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7638                                                   orig_mtu);
7639                err = notifier_to_errno(err);
7640                if (err) {
7641                        /* setting mtu back and notifying everyone again,
7642                         * so that they have a chance to revert changes.
7643                         */
7644                        __dev_set_mtu(dev, orig_mtu);
7645                        call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7646                                                     new_mtu);
7647                }
7648        }
7649        return err;
7650}
7651
7652int dev_set_mtu(struct net_device *dev, int new_mtu)
7653{
7654        struct netlink_ext_ack extack;
7655        int err;
7656
7657        memset(&extack, 0, sizeof(extack));
7658        err = dev_set_mtu_ext(dev, new_mtu, &extack);
7659        if (err && extack._msg)
7660                net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7661        return err;
7662}
7663EXPORT_SYMBOL(dev_set_mtu);
7664
7665/**
7666 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7667 *      @dev: device
7668 *      @new_len: new tx queue length
7669 */
7670int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7671{
7672        unsigned int orig_len = dev->tx_queue_len;
7673        int res;
7674
7675        if (new_len != (unsigned int)new_len)
7676                return -ERANGE;
7677
7678        if (new_len != orig_len) {
7679                dev->tx_queue_len = new_len;
7680                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7681                res = notifier_to_errno(res);
7682                if (res)
7683                        goto err_rollback;
7684                res = dev_qdisc_change_tx_queue_len(dev);
7685                if (res)
7686                        goto err_rollback;
7687        }
7688
7689        return 0;
7690
7691err_rollback:
7692        netdev_err(dev, "refused to change device tx_queue_len\n");
7693        dev->tx_queue_len = orig_len;
7694        return res;
7695}
7696
7697/**
7698 *      dev_set_group - Change group this device belongs to
7699 *      @dev: device
7700 *      @new_group: group this device should belong to
7701 */
7702void dev_set_group(struct net_device *dev, int new_group)
7703{
7704        dev->group = new_group;
7705}
7706EXPORT_SYMBOL(dev_set_group);
7707
7708/**
7709 *      dev_set_mac_address - Change Media Access Control Address
7710 *      @dev: device
7711 *      @sa: new address
7712 *
7713 *      Change the hardware (MAC) address of the device
7714 */
7715int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7716{
7717        const struct net_device_ops *ops = dev->netdev_ops;
7718        int err;
7719
7720        if (!ops->ndo_set_mac_address)
7721                return -EOPNOTSUPP;
7722        if (sa->sa_family != dev->type)
7723                return -EINVAL;
7724        if (!netif_device_present(dev))
7725                return -ENODEV;
7726        err = ops->ndo_set_mac_address(dev, sa);
7727        if (err)
7728                return err;
7729        dev->addr_assign_type = NET_ADDR_SET;
7730        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7731        add_device_randomness(dev->dev_addr, dev->addr_len);
7732        return 0;
7733}
7734EXPORT_SYMBOL(dev_set_mac_address);
7735
7736/**
7737 *      dev_change_carrier - Change device carrier
7738 *      @dev: device
7739 *      @new_carrier: new value
7740 *
7741 *      Change device carrier
7742 */
7743int dev_change_carrier(struct net_device *dev, bool new_carrier)
7744{
7745        const struct net_device_ops *ops = dev->netdev_ops;
7746
7747        if (!ops->ndo_change_carrier)
7748                return -EOPNOTSUPP;
7749        if (!netif_device_present(dev))
7750                return -ENODEV;
7751        return ops->ndo_change_carrier(dev, new_carrier);
7752}
7753EXPORT_SYMBOL(dev_change_carrier);
7754
7755/**
7756 *      dev_get_phys_port_id - Get device physical port ID
7757 *      @dev: device
7758 *      @ppid: port ID
7759 *
7760 *      Get device physical port ID
7761 */
7762int dev_get_phys_port_id(struct net_device *dev,
7763                         struct netdev_phys_item_id *ppid)
7764{
7765        const struct net_device_ops *ops = dev->netdev_ops;
7766
7767        if (!ops->ndo_get_phys_port_id)
7768                return -EOPNOTSUPP;
7769        return ops->ndo_get_phys_port_id(dev, ppid);
7770}
7771EXPORT_SYMBOL(dev_get_phys_port_id);
7772
7773/**
7774 *      dev_get_phys_port_name - Get device physical port name
7775 *      @dev: device
7776 *      @name: port name
7777 *      @len: limit of bytes to copy to name
7778 *
7779 *      Get device physical port name
7780 */
7781int dev_get_phys_port_name(struct net_device *dev,
7782                           char *name, size_t len)
7783{
7784        const struct net_device_ops *ops = dev->netdev_ops;
7785
7786        if (!ops->ndo_get_phys_port_name)
7787                return -EOPNOTSUPP;
7788        return ops->ndo_get_phys_port_name(dev, name, len);
7789}
7790EXPORT_SYMBOL(dev_get_phys_port_name);
7791
7792/**
7793 *      dev_change_proto_down - update protocol port state information
7794 *      @dev: device
7795 *      @proto_down: new value
7796 *
7797 *      This info can be used by switch drivers to set the phys state of the
7798 *      port.
7799 */
7800int dev_change_proto_down(struct net_device *dev, bool proto_down)
7801{
7802        const struct net_device_ops *ops = dev->netdev_ops;
7803
7804        if (!ops->ndo_change_proto_down)
7805                return -EOPNOTSUPP;
7806        if (!netif_device_present(dev))
7807                return -ENODEV;
7808        return ops->ndo_change_proto_down(dev, proto_down);
7809}
7810EXPORT_SYMBOL(dev_change_proto_down);
7811
7812u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7813                    enum bpf_netdev_command cmd)
7814{
7815        struct netdev_bpf xdp;
7816
7817        if (!bpf_op)
7818                return 0;
7819
7820        memset(&xdp, 0, sizeof(xdp));
7821        xdp.command = cmd;
7822
7823        /* Query must always succeed. */
7824        WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7825
7826        return xdp.prog_id;
7827}
7828
7829static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7830                           struct netlink_ext_ack *extack, u32 flags,
7831                           struct bpf_prog *prog)
7832{
7833        struct netdev_bpf xdp;
7834
7835        memset(&xdp, 0, sizeof(xdp));
7836        if (flags & XDP_FLAGS_HW_MODE)
7837                xdp.command = XDP_SETUP_PROG_HW;
7838        else
7839                xdp.command = XDP_SETUP_PROG;
7840        xdp.extack = extack;
7841        xdp.flags = flags;
7842        xdp.prog = prog;
7843
7844        return bpf_op(dev, &xdp);
7845}
7846
7847static void dev_xdp_uninstall(struct net_device *dev)
7848{
7849        struct netdev_bpf xdp;
7850        bpf_op_t ndo_bpf;
7851
7852        /* Remove generic XDP */
7853        WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7854
7855        /* Remove from the driver */
7856        ndo_bpf = dev->netdev_ops->ndo_bpf;
7857        if (!ndo_bpf)
7858                return;
7859
7860        memset(&xdp, 0, sizeof(xdp));
7861        xdp.command = XDP_QUERY_PROG;
7862        WARN_ON(ndo_bpf(dev, &xdp));
7863        if (xdp.prog_id)
7864                WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7865                                        NULL));
7866
7867        /* Remove HW offload */
7868        memset(&xdp, 0, sizeof(xdp));
7869        xdp.command = XDP_QUERY_PROG_HW;
7870        if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7871                WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7872                                        NULL));
7873}
7874
7875/**
7876 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7877 *      @dev: device
7878 *      @extack: netlink extended ack
7879 *      @fd: new program fd or negative value to clear
7880 *      @flags: xdp-related flags
7881 *
7882 *      Set or clear a bpf program for a device
7883 */
7884int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7885                      int fd, u32 flags)
7886{
7887        const struct net_device_ops *ops = dev->netdev_ops;
7888        enum bpf_netdev_command query;
7889        struct bpf_prog *prog = NULL;
7890        bpf_op_t bpf_op, bpf_chk;
7891        int err;
7892
7893        ASSERT_RTNL();
7894
7895        query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7896
7897        bpf_op = bpf_chk = ops->ndo_bpf;
7898        if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7899                return -EOPNOTSUPP;
7900        if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7901                bpf_op = generic_xdp_install;
7902        if (bpf_op == bpf_chk)
7903                bpf_chk = generic_xdp_install;
7904
7905        if (fd >= 0) {
7906                if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7907                    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7908                        return -EEXIST;
7909                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7910                    __dev_xdp_query(dev, bpf_op, query))
7911                        return -EBUSY;
7912
7913                prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7914                                             bpf_op == ops->ndo_bpf);
7915                if (IS_ERR(prog))
7916                        return PTR_ERR(prog);
7917
7918                if (!(flags & XDP_FLAGS_HW_MODE) &&
7919                    bpf_prog_is_dev_bound(prog->aux)) {
7920                        NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7921                        bpf_prog_put(prog);
7922                        return -EINVAL;
7923                }
7924        }
7925
7926        err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7927        if (err < 0 && prog)
7928                bpf_prog_put(prog);
7929
7930        return err;
7931}
7932
7933/**
7934 *      dev_new_index   -       allocate an ifindex
7935 *      @net: the applicable net namespace
7936 *
7937 *      Returns a suitable unique value for a new device interface
7938 *      number.  The caller must hold the rtnl semaphore or the
7939 *      dev_base_lock to be sure it remains unique.
7940 */
7941static int dev_new_index(struct net *net)
7942{
7943        int ifindex = net->ifindex;
7944
7945        for (;;) {
7946                if (++ifindex <= 0)
7947                        ifindex = 1;
7948                if (!__dev_get_by_index(net, ifindex))
7949                        return net->ifindex = ifindex;
7950        }
7951}
7952
7953/* Delayed registration/unregisteration */
7954static LIST_HEAD(net_todo_list);
7955DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7956
7957static void net_set_todo(struct net_device *dev)
7958{
7959        list_add_tail(&dev->todo_list, &net_todo_list);
7960        dev_net(dev)->dev_unreg_count++;
7961}
7962
7963static void rollback_registered_many(struct list_head *head)
7964{
7965        struct net_device *dev, *tmp;
7966        LIST_HEAD(close_head);
7967
7968        BUG_ON(dev_boot_phase);
7969        ASSERT_RTNL();
7970
7971        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7972                /* Some devices call without registering
7973                 * for initialization unwind. Remove those
7974                 * devices and proceed with the remaining.
7975                 */
7976                if (dev->reg_state == NETREG_UNINITIALIZED) {
7977                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7978                                 dev->name, dev);
7979
7980                        WARN_ON(1);
7981                        list_del(&dev->unreg_list);
7982                        continue;
7983                }
7984                dev->dismantle = true;
7985                BUG_ON(dev->reg_state != NETREG_REGISTERED);
7986        }
7987
7988        /* If device is running, close it first. */
7989        list_for_each_entry(dev, head, unreg_list)
7990                list_add_tail(&dev->close_list, &close_head);
7991        dev_close_many(&close_head, true);
7992
7993        list_for_each_entry(dev, head, unreg_list) {
7994                /* And unlink it from device chain. */
7995                unlist_netdevice(dev);
7996
7997                dev->reg_state = NETREG_UNREGISTERING;
7998        }
7999        flush_all_backlogs();
8000
8001        synchronize_net();
8002
8003        list_for_each_entry(dev, head, unreg_list) {
8004                struct sk_buff *skb = NULL;
8005
8006                /* Shutdown queueing discipline. */
8007                dev_shutdown(dev);
8008
8009                dev_xdp_uninstall(dev);
8010
8011                /* Notify protocols, that we are about to destroy
8012                 * this device. They should clean all the things.
8013                 */
8014                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8015
8016                if (!dev->rtnl_link_ops ||
8017                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8018                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8019                                                     GFP_KERNEL, NULL, 0);
8020
8021                /*
8022                 *      Flush the unicast and multicast chains
8023                 */
8024                dev_uc_flush(dev);
8025                dev_mc_flush(dev);
8026
8027                if (dev->netdev_ops->ndo_uninit)
8028                        dev->netdev_ops->ndo_uninit(dev);
8029
8030                if (skb)
8031                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8032
8033                /* Notifier chain MUST detach us all upper devices. */
8034                WARN_ON(netdev_has_any_upper_dev(dev));
8035                WARN_ON(netdev_has_any_lower_dev(dev));
8036
8037                /* Remove entries from kobject tree */
8038                netdev_unregister_kobject(dev);
8039#ifdef CONFIG_XPS
8040                /* Remove XPS queueing entries */
8041                netif_reset_xps_queues_gt(dev, 0);
8042#endif
8043        }
8044
8045        synchronize_net();
8046
8047        list_for_each_entry(dev, head, unreg_list)
8048                dev_put(dev);
8049}
8050
8051static void rollback_registered(struct net_device *dev)
8052{
8053        LIST_HEAD(single);
8054
8055        list_add(&dev->unreg_list, &single);
8056        rollback_registered_many(&single);
8057        list_del(&single);
8058}
8059
8060static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8061        struct net_device *upper, netdev_features_t features)
8062{
8063        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8064        netdev_features_t feature;
8065        int feature_bit;
8066
8067        for_each_netdev_feature(&upper_disables, feature_bit) {
8068                feature = __NETIF_F_BIT(feature_bit);
8069                if (!(upper->wanted_features & feature)
8070                    && (features & feature)) {
8071                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8072                                   &feature, upper->name);
8073                        features &= ~feature;
8074                }
8075        }
8076
8077        return features;
8078}
8079
8080static void netdev_sync_lower_features(struct net_device *upper,
8081        struct net_device *lower, netdev_features_t features)
8082{
8083        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8084        netdev_features_t feature;
8085        int feature_bit;
8086
8087        for_each_netdev_feature(&upper_disables, feature_bit) {
8088                feature = __NETIF_F_BIT(feature_bit);
8089                if (!(features & feature) && (lower->features & feature)) {
8090                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8091                                   &feature, lower->name);
8092                        lower->wanted_features &= ~feature;
8093                        netdev_update_features(lower);
8094
8095                        if (unlikely(lower->features & feature))
8096                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8097                                            &feature, lower->name);
8098                }
8099        }
8100}
8101
8102static netdev_features_t netdev_fix_features(struct net_device *dev,
8103        netdev_features_t features)
8104{
8105        /* Fix illegal checksum combinations */
8106        if ((features & NETIF_F_HW_CSUM) &&
8107            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8108                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8109                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8110        }
8111
8112        /* TSO requires that SG is present as well. */
8113        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8114                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8115                features &= ~NETIF_F_ALL_TSO;
8116        }
8117
8118        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8119                                        !(features & NETIF_F_IP_CSUM)) {
8120                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8121                features &= ~NETIF_F_TSO;
8122                features &= ~NETIF_F_TSO_ECN;
8123        }
8124
8125        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8126                                         !(features & NETIF_F_IPV6_CSUM)) {
8127                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8128                features &= ~NETIF_F_TSO6;
8129        }
8130
8131        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8132        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8133                features &= ~NETIF_F_TSO_MANGLEID;
8134
8135        /* TSO ECN requires that TSO is present as well. */
8136        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8137                features &= ~NETIF_F_TSO_ECN;
8138
8139        /* Software GSO depends on SG. */
8140        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8141                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8142                features &= ~NETIF_F_GSO;
8143        }
8144
8145        /* GSO partial features require GSO partial be set */
8146        if ((features & dev->gso_partial_features) &&
8147            !(features & NETIF_F_GSO_PARTIAL)) {
8148                netdev_dbg(dev,
8149                           "Dropping partially supported GSO features since no GSO partial.\n");
8150                features &= ~dev->gso_partial_features;
8151        }
8152
8153        if (!(features & NETIF_F_RXCSUM)) {
8154                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8155                 * successfully merged by hardware must also have the
8156                 * checksum verified by hardware.  If the user does not
8157                 * want to enable RXCSUM, logically, we should disable GRO_HW.
8158                 */
8159                if (features & NETIF_F_GRO_HW) {
8160                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8161                        features &= ~NETIF_F_GRO_HW;
8162                }
8163        }
8164
8165        /* LRO/HW-GRO features cannot be combined with RX-FCS */
8166        if (features & NETIF_F_RXFCS) {
8167                if (features & NETIF_F_LRO) {
8168                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8169                        features &= ~NETIF_F_LRO;
8170                }
8171
8172                if (features & NETIF_F_GRO_HW) {
8173                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8174                        features &= ~NETIF_F_GRO_HW;
8175                }
8176        }
8177
8178        return features;
8179}
8180
8181int __netdev_update_features(struct net_device *dev)
8182{
8183        struct net_device *upper, *lower;
8184        netdev_features_t features;
8185        struct list_head *iter;
8186        int err = -1;
8187
8188        ASSERT_RTNL();
8189
8190        features = netdev_get_wanted_features(dev);
8191
8192        if (dev->netdev_ops->ndo_fix_features)
8193                features = dev->netdev_ops->ndo_fix_features(dev, features);
8194
8195        /* driver might be less strict about feature dependencies */
8196        features = netdev_fix_features(dev, features);
8197
8198        /* some features can't be enabled if they're off an an upper device */
8199        netdev_for_each_upper_dev_rcu(dev, upper, iter)
8200                features = netdev_sync_upper_features(dev, upper, features);
8201
8202        if (dev->features == features)
8203                goto sync_lower;
8204
8205        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8206                &dev->features, &features);
8207
8208        if (dev->netdev_ops->ndo_set_features)
8209                err = dev->netdev_ops->ndo_set_features(dev, features);
8210        else
8211                err = 0;
8212
8213        if (unlikely(err < 0)) {
8214                netdev_err(dev,
8215                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
8216                        err, &features, &dev->features);
8217                /* return non-0 since some features might have changed and
8218                 * it's better to fire a spurious notification than miss it
8219                 */
8220                return -1;
8221        }
8222
8223sync_lower:
8224        /* some features must be disabled on lower devices when disabled
8225         * on an upper device (think: bonding master or bridge)
8226         */
8227        netdev_for_each_lower_dev(dev, lower, iter)
8228                netdev_sync_lower_features(dev, lower, features);
8229
8230        if (!err) {
8231                netdev_features_t diff = features ^ dev->features;
8232
8233                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8234                        /* udp_tunnel_{get,drop}_rx_info both need
8235                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8236                         * device, or they won't do anything.
8237                         * Thus we need to update dev->features
8238                         * *before* calling udp_tunnel_get_rx_info,
8239                         * but *after* calling udp_tunnel_drop_rx_info.
8240                         */
8241                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8242                                dev->features = features;
8243                                udp_tunnel_get_rx_info(dev);
8244                        } else {
8245                                udp_tunnel_drop_rx_info(dev);
8246                        }
8247                }
8248
8249                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8250                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8251                                dev->features = features;
8252                                err |= vlan_get_rx_ctag_filter_info(dev);
8253                        } else {
8254                                vlan_drop_rx_ctag_filter_info(dev);
8255                        }
8256                }
8257
8258                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8259                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8260                                dev->features = features;
8261                                err |= vlan_get_rx_stag_filter_info(dev);
8262                        } else {
8263                                vlan_drop_rx_stag_filter_info(dev);
8264                        }
8265                }
8266
8267                dev->features = features;
8268        }
8269
8270        return err < 0 ? 0 : 1;
8271}
8272
8273/**
8274 *      netdev_update_features - recalculate device features
8275 *      @dev: the device to check
8276 *
8277 *      Recalculate dev->features set and send notifications if it
8278 *      has changed. Should be called after driver or hardware dependent
8279 *      conditions might have changed that influence the features.
8280 */
8281void netdev_update_features(struct net_device *dev)
8282{
8283        if (__netdev_update_features(dev))
8284                netdev_features_change(dev);
8285}
8286EXPORT_SYMBOL(netdev_update_features);
8287
8288/**
8289 *      netdev_change_features - recalculate device features
8290 *      @dev: the device to check
8291 *
8292 *      Recalculate dev->features set and send notifications even
8293 *      if they have not changed. Should be called instead of
8294 *      netdev_update_features() if also dev->vlan_features might
8295 *      have changed to allow the changes to be propagated to stacked
8296 *      VLAN devices.
8297 */
8298void netdev_change_features(struct net_device *dev)
8299{
8300        __netdev_update_features(dev);
8301        netdev_features_change(dev);
8302}
8303EXPORT_SYMBOL(netdev_change_features);
8304
8305/**
8306 *      netif_stacked_transfer_operstate -      transfer operstate
8307 *      @rootdev: the root or lower level device to transfer state from
8308 *      @dev: the device to transfer operstate to
8309 *
8310 *      Transfer operational state from root to device. This is normally
8311 *      called when a stacking relationship exists between the root
8312 *      device and the device(a leaf device).
8313 */
8314void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8315                                        struct net_device *dev)
8316{
8317        if (rootdev->operstate == IF_OPER_DORMANT)
8318                netif_dormant_on(dev);
8319        else
8320                netif_dormant_off(dev);
8321
8322        if (netif_carrier_ok(rootdev))
8323                netif_carrier_on(dev);
8324        else
8325                netif_carrier_off(dev);
8326}
8327EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8328
8329static int netif_alloc_rx_queues(struct net_device *dev)
8330{
8331        unsigned int i, count = dev->num_rx_queues;
8332        struct netdev_rx_queue *rx;
8333        size_t sz = count * sizeof(*rx);
8334        int err = 0;
8335
8336        BUG_ON(count < 1);
8337
8338        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8339        if (!rx)
8340                return -ENOMEM;
8341
8342        dev->_rx = rx;
8343
8344        for (i = 0; i < count; i++) {
8345                rx[i].dev = dev;
8346
8347                /* XDP RX-queue setup */
8348                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8349                if (err < 0)
8350                        goto err_rxq_info;
8351        }
8352        return 0;
8353
8354err_rxq_info:
8355        /* Rollback successful reg's and free other resources */
8356        while (i--)
8357                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8358        kvfree(dev->_rx);
8359        dev->_rx = NULL;
8360        return err;
8361}
8362
8363static void netif_free_rx_queues(struct net_device *dev)
8364{
8365        unsigned int i, count = dev->num_rx_queues;
8366
8367        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8368        if (!dev->_rx)
8369                return;
8370
8371        for (i = 0; i < count; i++)
8372                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8373
8374        kvfree(dev->_rx);
8375}
8376
8377static void netdev_init_one_queue(struct net_device *dev,
8378                                  struct netdev_queue *queue, void *_unused)
8379{
8380        /* Initialize queue lock */
8381        spin_lock_init(&queue->_xmit_lock);
8382        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8383        queue->xmit_lock_owner = -1;
8384        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8385        queue->dev = dev;
8386#ifdef CONFIG_BQL
8387        dql_init(&queue->dql, HZ);
8388#endif
8389}
8390
8391static void netif_free_tx_queues(struct net_device *dev)
8392{
8393        kvfree(dev->_tx);
8394}
8395
8396static int netif_alloc_netdev_queues(struct net_device *dev)
8397{
8398        unsigned int count = dev->num_tx_queues;
8399        struct netdev_queue *tx;
8400        size_t sz = count * sizeof(*tx);
8401
8402        if (count < 1 || count > 0xffff)
8403                return -EINVAL;
8404
8405        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8406        if (!tx)
8407                return -ENOMEM;
8408
8409        dev->_tx = tx;
8410
8411        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8412        spin_lock_init(&dev->tx_global_lock);
8413
8414        return 0;
8415}
8416
8417void netif_tx_stop_all_queues(struct net_device *dev)
8418{
8419        unsigned int i;
8420
8421        for (i = 0; i < dev->num_tx_queues; i++) {
8422                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8423
8424                netif_tx_stop_queue(txq);
8425        }
8426}
8427EXPORT_SYMBOL(netif_tx_stop_all_queues);
8428
8429/**
8430 *      register_netdevice      - register a network device
8431 *      @dev: device to register
8432 *
8433 *      Take a completed network device structure and add it to the kernel
8434 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8435 *      chain. 0 is returned on success. A negative errno code is returned
8436 *      on a failure to set up the device, or if the name is a duplicate.
8437 *
8438 *      Callers must hold the rtnl semaphore. You may want
8439 *      register_netdev() instead of this.
8440 *
8441 *      BUGS:
8442 *      The locking appears insufficient to guarantee two parallel registers
8443 *      will not get the same name.
8444 */
8445
8446int register_netdevice(struct net_device *dev)
8447{
8448        int ret;
8449        struct net *net = dev_net(dev);
8450
8451        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8452                     NETDEV_FEATURE_COUNT);
8453        BUG_ON(dev_boot_phase);
8454        ASSERT_RTNL();
8455
8456        might_sleep();
8457
8458        /* When net_device's are persistent, this will be fatal. */
8459        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8460        BUG_ON(!net);
8461
8462        spin_lock_init(&dev->addr_list_lock);
8463        netdev_set_addr_lockdep_class(dev);
8464
8465        ret = dev_get_valid_name(net, dev, dev->name);
8466        if (ret < 0)
8467                goto out;
8468
8469        /* Init, if this function is available */
8470        if (dev->netdev_ops->ndo_init) {
8471                ret = dev->netdev_ops->ndo_init(dev);
8472                if (ret) {
8473                        if (ret > 0)
8474                                ret = -EIO;
8475                        goto out;
8476                }
8477        }
8478
8479        if (((dev->hw_features | dev->features) &
8480             NETIF_F_HW_VLAN_CTAG_FILTER) &&
8481            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8482             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8483                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8484                ret = -EINVAL;
8485                goto err_uninit;
8486        }
8487
8488        ret = -EBUSY;
8489        if (!dev->ifindex)
8490                dev->ifindex = dev_new_index(net);
8491        else if (__dev_get_by_index(net, dev->ifindex))
8492                goto err_uninit;
8493
8494        /* Transfer changeable features to wanted_features and enable
8495         * software offloads (GSO and GRO).
8496         */
8497        dev->hw_features |= NETIF_F_SOFT_FEATURES;
8498        dev->features |= NETIF_F_SOFT_FEATURES;
8499
8500        if (dev->netdev_ops->ndo_udp_tunnel_add) {
8501                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8502                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8503        }
8504
8505        dev->wanted_features = dev->features & dev->hw_features;
8506
8507        if (!(dev->flags & IFF_LOOPBACK))
8508                dev->hw_features |= NETIF_F_NOCACHE_COPY;
8509
8510        /* If IPv4 TCP segmentation offload is supported we should also
8511         * allow the device to enable segmenting the frame with the option
8512         * of ignoring a static IP ID value.  This doesn't enable the
8513         * feature itself but allows the user to enable it later.
8514         */
8515        if (dev->hw_features & NETIF_F_TSO)
8516                dev->hw_features |= NETIF_F_TSO_MANGLEID;
8517        if (dev->vlan_features & NETIF_F_TSO)
8518                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8519        if (dev->mpls_features & NETIF_F_TSO)
8520                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8521        if (dev->hw_enc_features & NETIF_F_TSO)
8522                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8523
8524        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8525         */
8526        dev->vlan_features |= NETIF_F_HIGHDMA;
8527
8528        /* Make NETIF_F_SG inheritable to tunnel devices.
8529         */
8530        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8531
8532        /* Make NETIF_F_SG inheritable to MPLS.
8533         */
8534        dev->mpls_features |= NETIF_F_SG;
8535
8536        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8537        ret = notifier_to_errno(ret);
8538        if (ret)
8539                goto err_uninit;
8540
8541        ret = netdev_register_kobject(dev);
8542        if (ret)
8543                goto err_uninit;
8544        dev->reg_state = NETREG_REGISTERED;
8545
8546        __netdev_update_features(dev);
8547
8548        /*
8549         *      Default initial state at registry is that the
8550         *      device is present.
8551         */
8552
8553        set_bit(__LINK_STATE_PRESENT, &dev->state);
8554
8555        linkwatch_init_dev(dev);
8556
8557        dev_init_scheduler(dev);
8558        dev_hold(dev);
8559        list_netdevice(dev);
8560        add_device_randomness(dev->dev_addr, dev->addr_len);
8561
8562        /* If the device has permanent device address, driver should
8563         * set dev_addr and also addr_assign_type should be set to
8564         * NET_ADDR_PERM (default value).
8565         */
8566        if (dev->addr_assign_type == NET_ADDR_PERM)
8567                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8568
8569        /* Notify protocols, that a new device appeared. */
8570        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8571        ret = notifier_to_errno(ret);
8572        if (ret) {
8573                rollback_registered(dev);
8574                dev->reg_state = NETREG_UNREGISTERED;
8575        }
8576        /*
8577         *      Prevent userspace races by waiting until the network
8578         *      device is fully setup before sending notifications.
8579         */
8580        if (!dev->rtnl_link_ops ||
8581            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8582                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8583
8584out:
8585        return ret;
8586
8587err_uninit:
8588        if (dev->netdev_ops->ndo_uninit)
8589                dev->netdev_ops->ndo_uninit(dev);
8590        if (dev->priv_destructor)
8591                dev->priv_destructor(dev);
8592        goto out;
8593}
8594EXPORT_SYMBOL(register_netdevice);
8595
8596/**
8597 *      init_dummy_netdev       - init a dummy network device for NAPI
8598 *      @dev: device to init
8599 *
8600 *      This takes a network device structure and initialize the minimum
8601 *      amount of fields so it can be used to schedule NAPI polls without
8602 *      registering a full blown interface. This is to be used by drivers
8603 *      that need to tie several hardware interfaces to a single NAPI
8604 *      poll scheduler due to HW limitations.
8605 */
8606int init_dummy_netdev(struct net_device *dev)
8607{
8608        /* Clear everything. Note we don't initialize spinlocks
8609         * are they aren't supposed to be taken by any of the
8610         * NAPI code and this dummy netdev is supposed to be
8611         * only ever used for NAPI polls
8612         */
8613        memset(dev, 0, sizeof(struct net_device));
8614
8615        /* make sure we BUG if trying to hit standard
8616         * register/unregister code path
8617         */
8618        dev->reg_state = NETREG_DUMMY;
8619
8620        /* NAPI wants this */
8621        INIT_LIST_HEAD(&dev->napi_list);
8622
8623        /* a dummy interface is started by default */
8624        set_bit(__LINK_STATE_PRESENT, &dev->state);
8625        set_bit(__LINK_STATE_START, &dev->state);
8626
8627        /* Note : We dont allocate pcpu_refcnt for dummy devices,
8628         * because users of this 'device' dont need to change
8629         * its refcount.
8630         */
8631
8632        return 0;
8633}
8634EXPORT_SYMBOL_GPL(init_dummy_netdev);
8635
8636
8637/**
8638 *      register_netdev - register a network device
8639 *      @dev: device to register
8640 *
8641 *      Take a completed network device structure and add it to the kernel
8642 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8643 *      chain. 0 is returned on success. A negative errno code is returned
8644 *      on a failure to set up the device, or if the name is a duplicate.
8645 *
8646 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8647 *      and expands the device name if you passed a format string to
8648 *      alloc_netdev.
8649 */
8650int register_netdev(struct net_device *dev)
8651{
8652        int err;
8653
8654        if (rtnl_lock_killable())
8655                return -EINTR;
8656        err = register_netdevice(dev);
8657        rtnl_unlock();
8658        return err;
8659}
8660EXPORT_SYMBOL(register_netdev);
8661
8662int netdev_refcnt_read(const struct net_device *dev)
8663{
8664        int i, refcnt = 0;
8665
8666        for_each_possible_cpu(i)
8667                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8668        return refcnt;
8669}
8670EXPORT_SYMBOL(netdev_refcnt_read);
8671
8672/**
8673 * netdev_wait_allrefs - wait until all references are gone.
8674 * @dev: target net_device
8675 *
8676 * This is called when unregistering network devices.
8677 *
8678 * Any protocol or device that holds a reference should register
8679 * for netdevice notification, and cleanup and put back the
8680 * reference if they receive an UNREGISTER event.
8681 * We can get stuck here if buggy protocols don't correctly
8682 * call dev_put.
8683 */
8684static void netdev_wait_allrefs(struct net_device *dev)
8685{
8686        unsigned long rebroadcast_time, warning_time;
8687        int refcnt;
8688
8689        linkwatch_forget_dev(dev);
8690
8691        rebroadcast_time = warning_time = jiffies;
8692        refcnt = netdev_refcnt_read(dev);
8693
8694        while (refcnt != 0) {
8695                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8696                        rtnl_lock();
8697
8698                        /* Rebroadcast unregister notification */
8699                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8700
8701                        __rtnl_unlock();
8702                        rcu_barrier();
8703                        rtnl_lock();
8704
8705                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8706                                     &dev->state)) {
8707                                /* We must not have linkwatch events
8708                                 * pending on unregister. If this
8709                                 * happens, we simply run the queue
8710                                 * unscheduled, resulting in a noop
8711                                 * for this device.
8712                                 */
8713                                linkwatch_run_queue();
8714                        }
8715
8716                        __rtnl_unlock();
8717
8718                        rebroadcast_time = jiffies;
8719                }
8720
8721                msleep(250);
8722
8723                refcnt = netdev_refcnt_read(dev);
8724
8725                if (time_after(jiffies, warning_time + 10 * HZ)) {
8726                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8727                                 dev->name, refcnt);
8728                        warning_time = jiffies;
8729                }
8730        }
8731}
8732
8733/* The sequence is:
8734 *
8735 *      rtnl_lock();
8736 *      ...
8737 *      register_netdevice(x1);
8738 *      register_netdevice(x2);
8739 *      ...
8740 *      unregister_netdevice(y1);
8741 *      unregister_netdevice(y2);
8742 *      ...
8743 *      rtnl_unlock();
8744 *      free_netdev(y1);
8745 *      free_netdev(y2);
8746 *
8747 * We are invoked by rtnl_unlock().
8748 * This allows us to deal with problems:
8749 * 1) We can delete sysfs objects which invoke hotplug
8750 *    without deadlocking with linkwatch via keventd.
8751 * 2) Since we run with the RTNL semaphore not held, we can sleep
8752 *    safely in order to wait for the netdev refcnt to drop to zero.
8753 *
8754 * We must not return until all unregister events added during
8755 * the interval the lock was held have been completed.
8756 */
8757void netdev_run_todo(void)
8758{
8759        struct list_head list;
8760
8761        /* Snapshot list, allow later requests */
8762        list_replace_init(&net_todo_list, &list);
8763
8764        __rtnl_unlock();
8765
8766
8767        /* Wait for rcu callbacks to finish before next phase */
8768        if (!list_empty(&list))
8769                rcu_barrier();
8770
8771        while (!list_empty(&list)) {
8772                struct net_device *dev
8773                        = list_first_entry(&list, struct net_device, todo_list);
8774                list_del(&dev->todo_list);
8775
8776                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8777                        pr_err("network todo '%s' but state %d\n",
8778                               dev->name, dev->reg_state);
8779                        dump_stack();
8780                        continue;
8781                }
8782
8783                dev->reg_state = NETREG_UNREGISTERED;
8784
8785                netdev_wait_allrefs(dev);
8786
8787                /* paranoia */
8788                BUG_ON(netdev_refcnt_read(dev));
8789                BUG_ON(!list_empty(&dev->ptype_all));
8790                BUG_ON(!list_empty(&dev->ptype_specific));
8791                WARN_ON(rcu_access_pointer(dev->ip_ptr));
8792                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8793#if IS_ENABLED(CONFIG_DECNET)
8794                WARN_ON(dev->dn_ptr);
8795#endif
8796                if (dev->priv_destructor)
8797                        dev->priv_destructor(dev);
8798                if (dev->needs_free_netdev)
8799                        free_netdev(dev);
8800
8801                /* Report a network device has been unregistered */
8802                rtnl_lock();
8803                dev_net(dev)->dev_unreg_count--;
8804                __rtnl_unlock();
8805                wake_up(&netdev_unregistering_wq);
8806
8807                /* Free network device */
8808                kobject_put(&dev->dev.kobj);
8809        }
8810}
8811
8812/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8813 * all the same fields in the same order as net_device_stats, with only
8814 * the type differing, but rtnl_link_stats64 may have additional fields
8815 * at the end for newer counters.
8816 */
8817void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8818                             const struct net_device_stats *netdev_stats)
8819{
8820#if BITS_PER_LONG == 64
8821        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8822        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8823        /* zero out counters that only exist in rtnl_link_stats64 */
8824        memset((char *)stats64 + sizeof(*netdev_stats), 0,
8825               sizeof(*stats64) - sizeof(*netdev_stats));
8826#else
8827        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8828        const unsigned long *src = (const unsigned long *)netdev_stats;
8829        u64 *dst = (u64 *)stats64;
8830
8831        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8832        for (i = 0; i < n; i++)
8833                dst[i] = src[i];
8834        /* zero out counters that only exist in rtnl_link_stats64 */
8835        memset((char *)stats64 + n * sizeof(u64), 0,
8836               sizeof(*stats64) - n * sizeof(u64));
8837#endif
8838}
8839EXPORT_SYMBOL(netdev_stats_to_stats64);
8840
8841/**
8842 *      dev_get_stats   - get network device statistics
8843 *      @dev: device to get statistics from
8844 *      @storage: place to store stats
8845 *
8846 *      Get network statistics from device. Return @storage.
8847 *      The device driver may provide its own method by setting
8848 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8849 *      otherwise the internal statistics structure is used.
8850 */
8851struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8852                                        struct rtnl_link_stats64 *storage)
8853{
8854        const struct net_device_ops *ops = dev->netdev_ops;
8855
8856        if (ops->ndo_get_stats64) {
8857                memset(storage, 0, sizeof(*storage));
8858                ops->ndo_get_stats64(dev, storage);
8859        } else if (ops->ndo_get_stats) {
8860                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8861        } else {
8862                netdev_stats_to_stats64(storage, &dev->stats);
8863        }
8864        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8865        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8866        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8867        return storage;
8868}
8869EXPORT_SYMBOL(dev_get_stats);
8870
8871struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8872{
8873        struct netdev_queue *queue = dev_ingress_queue(dev);
8874
8875#ifdef CONFIG_NET_CLS_ACT
8876        if (queue)
8877                return queue;
8878        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8879        if (!queue)
8880                return NULL;
8881        netdev_init_one_queue(dev, queue, NULL);
8882        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8883        queue->qdisc_sleeping = &noop_qdisc;
8884        rcu_assign_pointer(dev->ingress_queue, queue);
8885#endif
8886        return queue;
8887}
8888
8889static const struct ethtool_ops default_ethtool_ops;
8890
8891void netdev_set_default_ethtool_ops(struct net_device *dev,
8892                                    const struct ethtool_ops *ops)
8893{
8894        if (dev->ethtool_ops == &default_ethtool_ops)
8895                dev->ethtool_ops = ops;
8896}
8897EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8898
8899void netdev_freemem(struct net_device *dev)
8900{
8901        char *addr = (char *)dev - dev->padded;
8902
8903        kvfree(addr);
8904}
8905
8906/**
8907 * alloc_netdev_mqs - allocate network device
8908 * @sizeof_priv: size of private data to allocate space for
8909 * @name: device name format string
8910 * @name_assign_type: origin of device name
8911 * @setup: callback to initialize device
8912 * @txqs: the number of TX subqueues to allocate
8913 * @rxqs: the number of RX subqueues to allocate
8914 *
8915 * Allocates a struct net_device with private data area for driver use
8916 * and performs basic initialization.  Also allocates subqueue structs
8917 * for each queue on the device.
8918 */
8919struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8920                unsigned char name_assign_type,
8921                void (*setup)(struct net_device *),
8922                unsigned int txqs, unsigned int rxqs)
8923{
8924        struct net_device *dev;
8925        unsigned int alloc_size;
8926        struct net_device *p;
8927
8928        BUG_ON(strlen(name) >= sizeof(dev->name));
8929
8930        if (txqs < 1) {
8931                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8932                return NULL;
8933        }
8934
8935        if (rxqs < 1) {
8936                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8937                return NULL;
8938        }
8939
8940        alloc_size = sizeof(struct net_device);
8941        if (sizeof_priv) {
8942                /* ensure 32-byte alignment of private area */
8943                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8944                alloc_size += sizeof_priv;
8945        }
8946        /* ensure 32-byte alignment of whole construct */
8947        alloc_size += NETDEV_ALIGN - 1;
8948
8949        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8950        if (!p)
8951                return NULL;
8952
8953        dev = PTR_ALIGN(p, NETDEV_ALIGN);
8954        dev->padded = (char *)dev - (char *)p;
8955
8956        dev->pcpu_refcnt = alloc_percpu(int);
8957        if (!dev->pcpu_refcnt)
8958                goto free_dev;
8959
8960        if (dev_addr_init(dev))
8961                goto free_pcpu;
8962
8963        dev_mc_init(dev);
8964        dev_uc_init(dev);
8965
8966        dev_net_set(dev, &init_net);
8967
8968        dev->gso_max_size = GSO_MAX_SIZE;
8969        dev->gso_max_segs = GSO_MAX_SEGS;
8970
8971        INIT_LIST_HEAD(&dev->napi_list);
8972        INIT_LIST_HEAD(&dev->unreg_list);
8973        INIT_LIST_HEAD(&dev->close_list);
8974        INIT_LIST_HEAD(&dev->link_watch_list);
8975        INIT_LIST_HEAD(&dev->adj_list.upper);
8976        INIT_LIST_HEAD(&dev->adj_list.lower);
8977        INIT_LIST_HEAD(&dev->ptype_all);
8978        INIT_LIST_HEAD(&dev->ptype_specific);
8979#ifdef CONFIG_NET_SCHED
8980        hash_init(dev->qdisc_hash);
8981#endif
8982        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8983        setup(dev);
8984
8985        if (!dev->tx_queue_len) {
8986                dev->priv_flags |= IFF_NO_QUEUE;
8987                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8988        }
8989
8990        dev->num_tx_queues = txqs;
8991        dev->real_num_tx_queues = txqs;
8992        if (netif_alloc_netdev_queues(dev))
8993                goto free_all;
8994
8995        dev->num_rx_queues = rxqs;
8996        dev->real_num_rx_queues = rxqs;
8997        if (netif_alloc_rx_queues(dev))
8998                goto free_all;
8999
9000        strcpy(dev->name, name);
9001        dev->name_assign_type = name_assign_type;
9002        dev->group = INIT_NETDEV_GROUP;
9003        if (!dev->ethtool_ops)
9004                dev->ethtool_ops = &default_ethtool_ops;
9005
9006        nf_hook_ingress_init(dev);
9007
9008        return dev;
9009
9010free_all:
9011        free_netdev(dev);
9012        return NULL;
9013
9014free_pcpu:
9015        free_percpu(dev->pcpu_refcnt);
9016free_dev:
9017        netdev_freemem(dev);
9018        return NULL;
9019}
9020EXPORT_SYMBOL(alloc_netdev_mqs);
9021
9022/**
9023 * free_netdev - free network device
9024 * @dev: device
9025 *
9026 * This function does the last stage of destroying an allocated device
9027 * interface. The reference to the device object is released. If this
9028 * is the last reference then it will be freed.Must be called in process
9029 * context.
9030 */
9031void free_netdev(struct net_device *dev)
9032{
9033        struct napi_struct *p, *n;
9034
9035        might_sleep();
9036        netif_free_tx_queues(dev);
9037        netif_free_rx_queues(dev);
9038
9039        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9040
9041        /* Flush device addresses */
9042        dev_addr_flush(dev);
9043
9044        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9045                netif_napi_del(p);
9046
9047        free_percpu(dev->pcpu_refcnt);
9048        dev->pcpu_refcnt = NULL;
9049
9050        /*  Compatibility with error handling in drivers */
9051        if (dev->reg_state == NETREG_UNINITIALIZED) {
9052                netdev_freemem(dev);
9053                return;
9054        }
9055
9056        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9057        dev->reg_state = NETREG_RELEASED;
9058
9059        /* will free via device release */
9060        put_device(&dev->dev);
9061}
9062EXPORT_SYMBOL(free_netdev);
9063
9064/**
9065 *      synchronize_net -  Synchronize with packet receive processing
9066 *
9067 *      Wait for packets currently being received to be done.
9068 *      Does not block later packets from starting.
9069 */
9070void synchronize_net(void)
9071{
9072        might_sleep();
9073        if (rtnl_is_locked())
9074                synchronize_rcu_expedited();
9075        else
9076                synchronize_rcu();
9077}
9078EXPORT_SYMBOL(synchronize_net);
9079
9080/**
9081 *      unregister_netdevice_queue - remove device from the kernel
9082 *      @dev: device
9083 *      @head: list
9084 *
9085 *      This function shuts down a device interface and removes it
9086 *      from the kernel tables.
9087 *      If head not NULL, device is queued to be unregistered later.
9088 *
9089 *      Callers must hold the rtnl semaphore.  You may want
9090 *      unregister_netdev() instead of this.
9091 */
9092
9093void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9094{
9095        ASSERT_RTNL();
9096
9097        if (head) {
9098                list_move_tail(&dev->unreg_list, head);
9099        } else {
9100                rollback_registered(dev);
9101                /* Finish processing unregister after unlock */
9102                net_set_todo(dev);
9103        }
9104}
9105EXPORT_SYMBOL(unregister_netdevice_queue);
9106
9107/**
9108 *      unregister_netdevice_many - unregister many devices
9109 *      @head: list of devices
9110 *
9111 *  Note: As most callers use a stack allocated list_head,
9112 *  we force a list_del() to make sure stack wont be corrupted later.
9113 */
9114void unregister_netdevice_many(struct list_head *head)
9115{
9116        struct net_device *dev;
9117
9118        if (!list_empty(head)) {
9119                rollback_registered_many(head);
9120                list_for_each_entry(dev, head, unreg_list)
9121                        net_set_todo(dev);
9122                list_del(head);
9123        }
9124}
9125EXPORT_SYMBOL(unregister_netdevice_many);
9126
9127/**
9128 *      unregister_netdev - remove device from the kernel
9129 *      @dev: device
9130 *
9131 *      This function shuts down a device interface and removes it
9132 *      from the kernel tables.
9133 *
9134 *      This is just a wrapper for unregister_netdevice that takes
9135 *      the rtnl semaphore.  In general you want to use this and not
9136 *      unregister_netdevice.
9137 */
9138void unregister_netdev(struct net_device *dev)
9139{
9140        rtnl_lock();
9141        unregister_netdevice(dev);
9142        rtnl_unlock();
9143}
9144EXPORT_SYMBOL(unregister_netdev);
9145
9146/**
9147 *      dev_change_net_namespace - move device to different nethost namespace
9148 *      @dev: device
9149 *      @net: network namespace
9150 *      @pat: If not NULL name pattern to try if the current device name
9151 *            is already taken in the destination network namespace.
9152 *
9153 *      This function shuts down a device interface and moves it
9154 *      to a new network namespace. On success 0 is returned, on
9155 *      a failure a netagive errno code is returned.
9156 *
9157 *      Callers must hold the rtnl semaphore.
9158 */
9159
9160int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9161{
9162        int err, new_nsid, new_ifindex;
9163
9164        ASSERT_RTNL();
9165
9166        /* Don't allow namespace local devices to be moved. */
9167        err = -EINVAL;
9168        if (dev->features & NETIF_F_NETNS_LOCAL)
9169                goto out;
9170
9171        /* Ensure the device has been registrered */
9172        if (dev->reg_state != NETREG_REGISTERED)
9173                goto out;
9174
9175        /* Get out if there is nothing todo */
9176        err = 0;
9177        if (net_eq(dev_net(dev), net))
9178                goto out;
9179
9180        /* Pick the destination device name, and ensure
9181         * we can use it in the destination network namespace.
9182         */
9183        err = -EEXIST;
9184        if (__dev_get_by_name(net, dev->name)) {
9185                /* We get here if we can't use the current device name */
9186                if (!pat)
9187                        goto out;
9188                err = dev_get_valid_name(net, dev, pat);
9189                if (err < 0)
9190                        goto out;
9191        }
9192
9193        /*
9194         * And now a mini version of register_netdevice unregister_netdevice.
9195         */
9196
9197        /* If device is running close it first. */
9198        dev_close(dev);
9199
9200        /* And unlink it from device chain */
9201        unlist_netdevice(dev);
9202
9203        synchronize_net();
9204
9205        /* Shutdown queueing discipline. */
9206        dev_shutdown(dev);
9207
9208        /* Notify protocols, that we are about to destroy
9209         * this device. They should clean all the things.
9210         *
9211         * Note that dev->reg_state stays at NETREG_REGISTERED.
9212         * This is wanted because this way 8021q and macvlan know
9213         * the device is just moving and can keep their slaves up.
9214         */
9215        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9216        rcu_barrier();
9217
9218        new_nsid = peernet2id_alloc(dev_net(dev), net);
9219        /* If there is an ifindex conflict assign a new one */
9220        if (__dev_get_by_index(net, dev->ifindex))
9221                new_ifindex = dev_new_index(net);
9222        else
9223                new_ifindex = dev->ifindex;
9224
9225        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9226                            new_ifindex);
9227
9228        /*
9229         *      Flush the unicast and multicast chains
9230         */
9231        dev_uc_flush(dev);
9232        dev_mc_flush(dev);
9233
9234        /* Send a netdev-removed uevent to the old namespace */
9235        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9236        netdev_adjacent_del_links(dev);
9237
9238        /* Actually switch the network namespace */
9239        dev_net_set(dev, net);
9240        dev->ifindex = new_ifindex;
9241
9242        /* Send a netdev-add uevent to the new namespace */
9243        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9244        netdev_adjacent_add_links(dev);
9245
9246        /* Fixup kobjects */
9247        err = device_rename(&dev->dev, dev->name);
9248        WARN_ON(err);
9249
9250        /* Add the device back in the hashes */
9251        list_netdevice(dev);
9252
9253        /* Notify protocols, that a new device appeared. */
9254        call_netdevice_notifiers(NETDEV_REGISTER, dev);
9255
9256        /*
9257         *      Prevent userspace races by waiting until the network
9258         *      device is fully setup before sending notifications.
9259         */
9260        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9261
9262        synchronize_net();
9263        err = 0;
9264out:
9265        return err;
9266}
9267EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9268
9269static int dev_cpu_dead(unsigned int oldcpu)
9270{
9271        struct sk_buff **list_skb;
9272        struct sk_buff *skb;
9273        unsigned int cpu;
9274        struct softnet_data *sd, *oldsd, *remsd = NULL;
9275
9276        local_irq_disable();
9277        cpu = smp_processor_id();
9278        sd = &per_cpu(softnet_data, cpu);
9279        oldsd = &per_cpu(softnet_data, oldcpu);
9280
9281        /* Find end of our completion_queue. */
9282        list_skb = &sd->completion_queue;
9283        while (*list_skb)
9284                list_skb = &(*list_skb)->next;
9285        /* Append completion queue from offline CPU. */
9286        *list_skb = oldsd->completion_queue;
9287        oldsd->completion_queue = NULL;
9288
9289        /* Append output queue from offline CPU. */
9290        if (oldsd->output_queue) {
9291                *sd->output_queue_tailp = oldsd->output_queue;
9292                sd->output_queue_tailp = oldsd->output_queue_tailp;
9293                oldsd->output_queue = NULL;
9294                oldsd->output_queue_tailp = &oldsd->output_queue;
9295        }
9296        /* Append NAPI poll list from offline CPU, with one exception :
9297         * process_backlog() must be called by cpu owning percpu backlog.
9298         * We properly handle process_queue & input_pkt_queue later.
9299         */
9300        while (!list_empty(&oldsd->poll_list)) {
9301                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9302                                                            struct napi_struct,
9303                                                            poll_list);
9304
9305                list_del_init(&napi->poll_list);
9306                if (napi->poll == process_backlog)
9307                        napi->state = 0;
9308                else
9309                        ____napi_schedule(sd, napi);
9310        }
9311
9312        raise_softirq_irqoff(NET_TX_SOFTIRQ);
9313        local_irq_enable();
9314
9315#ifdef CONFIG_RPS
9316        remsd = oldsd->rps_ipi_list;
9317        oldsd->rps_ipi_list = NULL;
9318#endif
9319        /* send out pending IPI's on offline CPU */
9320        net_rps_send_ipi(remsd);
9321
9322        /* Process offline CPU's input_pkt_queue */
9323        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9324                netif_rx_ni(skb);
9325                input_queue_head_incr(oldsd);
9326        }
9327        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9328                netif_rx_ni(skb);
9329                input_queue_head_incr(oldsd);
9330        }
9331
9332        return 0;
9333}
9334
9335/**
9336 *      netdev_increment_features - increment feature set by one
9337 *      @all: current feature set
9338 *      @one: new feature set
9339 *      @mask: mask feature set
9340 *
9341 *      Computes a new feature set after adding a device with feature set
9342 *      @one to the master device with current feature set @all.  Will not
9343 *      enable anything that is off in @mask. Returns the new feature set.
9344 */
9345netdev_features_t netdev_increment_features(netdev_features_t all,
9346        netdev_features_t one, netdev_features_t mask)
9347{
9348        if (mask & NETIF_F_HW_CSUM)
9349                mask |= NETIF_F_CSUM_MASK;
9350        mask |= NETIF_F_VLAN_CHALLENGED;
9351
9352        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9353        all &= one | ~NETIF_F_ALL_FOR_ALL;
9354
9355        /* If one device supports hw checksumming, set for all. */
9356        if (all & NETIF_F_HW_CSUM)
9357                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9358
9359        return all;
9360}
9361EXPORT_SYMBOL(netdev_increment_features);
9362
9363static struct hlist_head * __net_init netdev_create_hash(void)
9364{
9365        int i;
9366        struct hlist_head *hash;
9367
9368        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9369        if (hash != NULL)
9370                for (i = 0; i < NETDEV_HASHENTRIES; i++)
9371                        INIT_HLIST_HEAD(&hash[i]);
9372
9373        return hash;
9374}
9375
9376/* Initialize per network namespace state */
9377static int __net_init netdev_init(struct net *net)
9378{
9379        BUILD_BUG_ON(GRO_HASH_BUCKETS >
9380                     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9381
9382        if (net != &init_net)
9383                INIT_LIST_HEAD(&net->dev_base_head);
9384
9385        net->dev_name_head = netdev_create_hash();
9386        if (net->dev_name_head == NULL)
9387                goto err_name;
9388
9389        net->dev_index_head = netdev_create_hash();
9390        if (net->dev_index_head == NULL)
9391                goto err_idx;
9392
9393        return 0;
9394
9395err_idx:
9396        kfree(net->dev_name_head);
9397err_name:
9398        return -ENOMEM;
9399}
9400
9401/**
9402 *      netdev_drivername - network driver for the device
9403 *      @dev: network device
9404 *
9405 *      Determine network driver for device.
9406 */
9407const char *netdev_drivername(const struct net_device *dev)
9408{
9409        const struct device_driver *driver;
9410        const struct device *parent;
9411        const char *empty = "";
9412
9413        parent = dev->dev.parent;
9414        if (!parent)
9415                return empty;
9416
9417        driver = parent->driver;
9418        if (driver && driver->name)
9419                return driver->name;
9420        return empty;
9421}
9422
9423static void __netdev_printk(const char *level, const struct net_device *dev,
9424                            struct va_format *vaf)
9425{
9426        if (dev && dev->dev.parent) {
9427                dev_printk_emit(level[1] - '0',
9428                                dev->dev.parent,
9429                                "%s %s %s%s: %pV",
9430                                dev_driver_string(dev->dev.parent),
9431                                dev_name(dev->dev.parent),
9432                                netdev_name(dev), netdev_reg_state(dev),
9433                                vaf);
9434        } else if (dev) {
9435                printk("%s%s%s: %pV",
9436                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9437        } else {
9438                printk("%s(NULL net_device): %pV", level, vaf);
9439        }
9440}
9441
9442void netdev_printk(const char *level, const struct net_device *dev,
9443                   const char *format, ...)
9444{
9445        struct va_format vaf;
9446        va_list args;
9447
9448        va_start(args, format);
9449
9450        vaf.fmt = format;
9451        vaf.va = &args;
9452
9453        __netdev_printk(level, dev, &vaf);
9454
9455        va_end(args);
9456}
9457EXPORT_SYMBOL(netdev_printk);
9458
9459#define define_netdev_printk_level(func, level)                 \
9460void func(const struct net_device *dev, const char *fmt, ...)   \
9461{                                                               \
9462        struct va_format vaf;                                   \
9463        va_list args;                                           \
9464                                                                \
9465        va_start(args, fmt);                                    \
9466                                                                \
9467        vaf.fmt = fmt;                                          \
9468        vaf.va = &args;                                         \
9469                                                                \
9470        __netdev_printk(level, dev, &vaf);                      \
9471                                                                \
9472        va_end(args);                                           \
9473}                                                               \
9474EXPORT_SYMBOL(func);
9475
9476define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9477define_netdev_printk_level(netdev_alert, KERN_ALERT);
9478define_netdev_printk_level(netdev_crit, KERN_CRIT);
9479define_netdev_printk_level(netdev_err, KERN_ERR);
9480define_netdev_printk_level(netdev_warn, KERN_WARNING);
9481define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9482define_netdev_printk_level(netdev_info, KERN_INFO);
9483
9484static void __net_exit netdev_exit(struct net *net)
9485{
9486        kfree(net->dev_name_head);
9487        kfree(net->dev_index_head);
9488        if (net != &init_net)
9489                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9490}
9491
9492static struct pernet_operations __net_initdata netdev_net_ops = {
9493        .init = netdev_init,
9494        .exit = netdev_exit,
9495};
9496
9497static void __net_exit default_device_exit(struct net *net)
9498{
9499        struct net_device *dev, *aux;
9500        /*
9501         * Push all migratable network devices back to the
9502         * initial network namespace
9503         */
9504        rtnl_lock();
9505        for_each_netdev_safe(net, dev, aux) {
9506                int err;
9507                char fb_name[IFNAMSIZ];
9508
9509                /* Ignore unmoveable devices (i.e. loopback) */
9510                if (dev->features & NETIF_F_NETNS_LOCAL)
9511                        continue;
9512
9513                /* Leave virtual devices for the generic cleanup */
9514                if (dev->rtnl_link_ops)
9515                        continue;
9516
9517                /* Push remaining network devices to init_net */
9518                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9519                err = dev_change_net_namespace(dev, &init_net, fb_name);
9520                if (err) {
9521                        pr_emerg("%s: failed to move %s to init_net: %d\n",
9522                                 __func__, dev->name, err);
9523                        BUG();
9524                }
9525        }
9526        rtnl_unlock();
9527}
9528
9529static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9530{
9531        /* Return with the rtnl_lock held when there are no network
9532         * devices unregistering in any network namespace in net_list.
9533         */
9534        struct net *net;
9535        bool unregistering;
9536        DEFINE_WAIT_FUNC(wait, woken_wake_function);
9537
9538        add_wait_queue(&netdev_unregistering_wq, &wait);
9539        for (;;) {
9540                unregistering = false;
9541                rtnl_lock();
9542                list_for_each_entry(net, net_list, exit_list) {
9543                        if (net->dev_unreg_count > 0) {
9544                                unregistering = true;
9545                                break;
9546                        }
9547                }
9548                if (!unregistering)
9549                        break;
9550                __rtnl_unlock();
9551
9552                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9553        }
9554        remove_wait_queue(&netdev_unregistering_wq, &wait);
9555}
9556
9557static void __net_exit default_device_exit_batch(struct list_head *net_list)
9558{
9559        /* At exit all network devices most be removed from a network
9560         * namespace.  Do this in the reverse order of registration.
9561         * Do this across as many network namespaces as possible to
9562         * improve batching efficiency.
9563         */
9564        struct net_device *dev;
9565        struct net *net;
9566        LIST_HEAD(dev_kill_list);
9567
9568        /* To prevent network device cleanup code from dereferencing
9569         * loopback devices or network devices that have been freed
9570         * wait here for all pending unregistrations to complete,
9571         * before unregistring the loopback device and allowing the
9572         * network namespace be freed.
9573         *
9574         * The netdev todo list containing all network devices
9575         * unregistrations that happen in default_device_exit_batch
9576         * will run in the rtnl_unlock() at the end of
9577         * default_device_exit_batch.
9578         */
9579        rtnl_lock_unregistering(net_list);
9580        list_for_each_entry(net, net_list, exit_list) {
9581                for_each_netdev_reverse(net, dev) {
9582                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9583                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9584                        else
9585                                unregister_netdevice_queue(dev, &dev_kill_list);
9586                }
9587        }
9588        unregister_netdevice_many(&dev_kill_list);
9589        rtnl_unlock();
9590}
9591
9592static struct pernet_operations __net_initdata default_device_ops = {
9593        .exit = default_device_exit,
9594        .exit_batch = default_device_exit_batch,
9595};
9596
9597/*
9598 *      Initialize the DEV module. At boot time this walks the device list and
9599 *      unhooks any devices that fail to initialise (normally hardware not
9600 *      present) and leaves us with a valid list of present and active devices.
9601 *
9602 */
9603
9604/*
9605 *       This is called single threaded during boot, so no need
9606 *       to take the rtnl semaphore.
9607 */
9608static int __init net_dev_init(void)
9609{
9610        int i, rc = -ENOMEM;
9611
9612        BUG_ON(!dev_boot_phase);
9613
9614        if (dev_proc_init())
9615                goto out;
9616
9617        if (netdev_kobject_init())
9618                goto out;
9619
9620        INIT_LIST_HEAD(&ptype_all);
9621        for (i = 0; i < PTYPE_HASH_SIZE; i++)
9622                INIT_LIST_HEAD(&ptype_base[i]);
9623
9624        INIT_LIST_HEAD(&offload_base);
9625
9626        if (register_pernet_subsys(&netdev_net_ops))
9627                goto out;
9628
9629        /*
9630         *      Initialise the packet receive queues.
9631         */
9632
9633        for_each_possible_cpu(i) {
9634                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9635                struct softnet_data *sd = &per_cpu(softnet_data, i);
9636
9637                INIT_WORK(flush, flush_backlog);
9638
9639                skb_queue_head_init(&sd->input_pkt_queue);
9640                skb_queue_head_init(&sd->process_queue);
9641#ifdef CONFIG_XFRM_OFFLOAD
9642                skb_queue_head_init(&sd->xfrm_backlog);
9643#endif
9644                INIT_LIST_HEAD(&sd->poll_list);
9645                sd->output_queue_tailp = &sd->output_queue;
9646#ifdef CONFIG_RPS
9647                sd->csd.func = rps_trigger_softirq;
9648                sd->csd.info = sd;
9649                sd->cpu = i;
9650#endif
9651
9652                init_gro_hash(&sd->backlog);
9653                sd->backlog.poll = process_backlog;
9654                sd->backlog.weight = weight_p;
9655        }
9656
9657        dev_boot_phase = 0;
9658
9659        /* The loopback device is special if any other network devices
9660         * is present in a network namespace the loopback device must
9661         * be present. Since we now dynamically allocate and free the
9662         * loopback device ensure this invariant is maintained by
9663         * keeping the loopback device as the first device on the
9664         * list of network devices.  Ensuring the loopback devices
9665         * is the first device that appears and the last network device
9666         * that disappears.
9667         */
9668        if (register_pernet_device(&loopback_net_ops))
9669                goto out;
9670
9671        if (register_pernet_device(&default_device_ops))
9672                goto out;
9673
9674        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9675        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9676
9677        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9678                                       NULL, dev_cpu_dead);
9679        WARN_ON(rc < 0);
9680        rc = 0;
9681out:
9682        return rc;
9683}
9684
9685subsys_initcall(net_dev_init);
9686