linux/arch/arm/kernel/smp.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/smp.c
   3 *
   4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/spinlock.h>
  14#include <linux/sched.h>
  15#include <linux/interrupt.h>
  16#include <linux/cache.h>
  17#include <linux/profile.h>
  18#include <linux/errno.h>
  19#include <linux/mm.h>
  20#include <linux/err.h>
  21#include <linux/cpu.h>
  22#include <linux/seq_file.h>
  23#include <linux/irq.h>
  24#include <linux/nmi.h>
  25#include <linux/percpu.h>
  26#include <linux/clockchips.h>
  27#include <linux/completion.h>
  28#include <linux/cpufreq.h>
  29#include <linux/irq_work.h>
  30
  31#include <linux/atomic.h>
  32#include <asm/smp.h>
  33#include <asm/cacheflush.h>
  34#include <asm/cpu.h>
  35#include <asm/cputype.h>
  36#include <asm/exception.h>
  37#include <asm/idmap.h>
  38#include <asm/topology.h>
  39#include <asm/mmu_context.h>
  40#include <asm/pgtable.h>
  41#include <asm/pgalloc.h>
  42#include <asm/processor.h>
  43#include <asm/sections.h>
  44#include <asm/tlbflush.h>
  45#include <asm/ptrace.h>
  46#include <asm/smp_plat.h>
  47#include <asm/virt.h>
  48#include <asm/mach/arch.h>
  49#include <asm/mpu.h>
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/ipi.h>
  53
  54/*
  55 * as from 2.5, kernels no longer have an init_tasks structure
  56 * so we need some other way of telling a new secondary core
  57 * where to place its SVC stack
  58 */
  59struct secondary_data secondary_data;
  60
  61/*
  62 * control for which core is the next to come out of the secondary
  63 * boot "holding pen"
  64 */
  65volatile int pen_release = -1;
  66
  67enum ipi_msg_type {
  68        IPI_WAKEUP,
  69        IPI_TIMER,
  70        IPI_RESCHEDULE,
  71        IPI_CALL_FUNC,
  72        IPI_CALL_FUNC_SINGLE,
  73        IPI_CPU_STOP,
  74        IPI_IRQ_WORK,
  75        IPI_COMPLETION,
  76        IPI_CPU_BACKTRACE = 15,
  77};
  78
  79static DECLARE_COMPLETION(cpu_running);
  80
  81static struct smp_operations smp_ops;
  82
  83void __init smp_set_ops(struct smp_operations *ops)
  84{
  85        if (ops)
  86                smp_ops = *ops;
  87};
  88
  89static unsigned long get_arch_pgd(pgd_t *pgd)
  90{
  91#ifdef CONFIG_ARM_LPAE
  92        return __phys_to_pfn(virt_to_phys(pgd));
  93#else
  94        return virt_to_phys(pgd);
  95#endif
  96}
  97
  98int __cpu_up(unsigned int cpu, struct task_struct *idle)
  99{
 100        int ret;
 101
 102        if (!smp_ops.smp_boot_secondary)
 103                return -ENOSYS;
 104
 105        /*
 106         * We need to tell the secondary core where to find
 107         * its stack and the page tables.
 108         */
 109        secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
 110#ifdef CONFIG_ARM_MPU
 111        secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
 112#endif
 113
 114#ifdef CONFIG_MMU
 115        secondary_data.pgdir = virt_to_phys(idmap_pgd);
 116        secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
 117#endif
 118        sync_cache_w(&secondary_data);
 119
 120        /*
 121         * Now bring the CPU into our world.
 122         */
 123        ret = smp_ops.smp_boot_secondary(cpu, idle);
 124        if (ret == 0) {
 125                /*
 126                 * CPU was successfully started, wait for it
 127                 * to come online or time out.
 128                 */
 129                wait_for_completion_timeout(&cpu_running,
 130                                                 msecs_to_jiffies(1000));
 131
 132                if (!cpu_online(cpu)) {
 133                        pr_crit("CPU%u: failed to come online\n", cpu);
 134                        ret = -EIO;
 135                }
 136        } else {
 137                pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
 138        }
 139
 140
 141        memset(&secondary_data, 0, sizeof(secondary_data));
 142        return ret;
 143}
 144
 145/* platform specific SMP operations */
 146void __init smp_init_cpus(void)
 147{
 148        if (smp_ops.smp_init_cpus)
 149                smp_ops.smp_init_cpus();
 150}
 151
 152int platform_can_secondary_boot(void)
 153{
 154        return !!smp_ops.smp_boot_secondary;
 155}
 156
 157int platform_can_cpu_hotplug(void)
 158{
 159#ifdef CONFIG_HOTPLUG_CPU
 160        if (smp_ops.cpu_kill)
 161                return 1;
 162#endif
 163
 164        return 0;
 165}
 166
 167#ifdef CONFIG_HOTPLUG_CPU
 168static int platform_cpu_kill(unsigned int cpu)
 169{
 170        if (smp_ops.cpu_kill)
 171                return smp_ops.cpu_kill(cpu);
 172        return 1;
 173}
 174
 175static int platform_cpu_disable(unsigned int cpu)
 176{
 177        if (smp_ops.cpu_disable)
 178                return smp_ops.cpu_disable(cpu);
 179
 180        return 0;
 181}
 182
 183int platform_can_hotplug_cpu(unsigned int cpu)
 184{
 185        /* cpu_die must be specified to support hotplug */
 186        if (!smp_ops.cpu_die)
 187                return 0;
 188
 189        if (smp_ops.cpu_can_disable)
 190                return smp_ops.cpu_can_disable(cpu);
 191
 192        /*
 193         * By default, allow disabling all CPUs except the first one,
 194         * since this is special on a lot of platforms, e.g. because
 195         * of clock tick interrupts.
 196         */
 197        return cpu != 0;
 198}
 199
 200/*
 201 * __cpu_disable runs on the processor to be shutdown.
 202 */
 203int __cpu_disable(void)
 204{
 205        unsigned int cpu = smp_processor_id();
 206        int ret;
 207
 208        ret = platform_cpu_disable(cpu);
 209        if (ret)
 210                return ret;
 211
 212        /*
 213         * Take this CPU offline.  Once we clear this, we can't return,
 214         * and we must not schedule until we're ready to give up the cpu.
 215         */
 216        set_cpu_online(cpu, false);
 217
 218        /*
 219         * OK - migrate IRQs away from this CPU
 220         */
 221        migrate_irqs();
 222
 223        /*
 224         * Flush user cache and TLB mappings, and then remove this CPU
 225         * from the vm mask set of all processes.
 226         *
 227         * Caches are flushed to the Level of Unification Inner Shareable
 228         * to write-back dirty lines to unified caches shared by all CPUs.
 229         */
 230        flush_cache_louis();
 231        local_flush_tlb_all();
 232
 233        clear_tasks_mm_cpumask(cpu);
 234
 235        return 0;
 236}
 237
 238static DECLARE_COMPLETION(cpu_died);
 239
 240/*
 241 * called on the thread which is asking for a CPU to be shutdown -
 242 * waits until shutdown has completed, or it is timed out.
 243 */
 244void __cpu_die(unsigned int cpu)
 245{
 246        if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
 247                pr_err("CPU%u: cpu didn't die\n", cpu);
 248                return;
 249        }
 250        pr_notice("CPU%u: shutdown\n", cpu);
 251
 252        /*
 253         * platform_cpu_kill() is generally expected to do the powering off
 254         * and/or cutting of clocks to the dying CPU.  Optionally, this may
 255         * be done by the CPU which is dying in preference to supporting
 256         * this call, but that means there is _no_ synchronisation between
 257         * the requesting CPU and the dying CPU actually losing power.
 258         */
 259        if (!platform_cpu_kill(cpu))
 260                pr_err("CPU%u: unable to kill\n", cpu);
 261}
 262
 263/*
 264 * Called from the idle thread for the CPU which has been shutdown.
 265 *
 266 * Note that we disable IRQs here, but do not re-enable them
 267 * before returning to the caller. This is also the behaviour
 268 * of the other hotplug-cpu capable cores, so presumably coming
 269 * out of idle fixes this.
 270 */
 271void arch_cpu_idle_dead(void)
 272{
 273        unsigned int cpu = smp_processor_id();
 274
 275        idle_task_exit();
 276
 277        local_irq_disable();
 278
 279        /*
 280         * Flush the data out of the L1 cache for this CPU.  This must be
 281         * before the completion to ensure that data is safely written out
 282         * before platform_cpu_kill() gets called - which may disable
 283         * *this* CPU and power down its cache.
 284         */
 285        flush_cache_louis();
 286
 287        /*
 288         * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
 289         * this returns, power and/or clocks can be removed at any point
 290         * from this CPU and its cache by platform_cpu_kill().
 291         */
 292        complete(&cpu_died);
 293
 294        /*
 295         * Ensure that the cache lines associated with that completion are
 296         * written out.  This covers the case where _this_ CPU is doing the
 297         * powering down, to ensure that the completion is visible to the
 298         * CPU waiting for this one.
 299         */
 300        flush_cache_louis();
 301
 302        /*
 303         * The actual CPU shutdown procedure is at least platform (if not
 304         * CPU) specific.  This may remove power, or it may simply spin.
 305         *
 306         * Platforms are generally expected *NOT* to return from this call,
 307         * although there are some which do because they have no way to
 308         * power down the CPU.  These platforms are the _only_ reason we
 309         * have a return path which uses the fragment of assembly below.
 310         *
 311         * The return path should not be used for platforms which can
 312         * power off the CPU.
 313         */
 314        if (smp_ops.cpu_die)
 315                smp_ops.cpu_die(cpu);
 316
 317        pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
 318                cpu);
 319
 320        /*
 321         * Do not return to the idle loop - jump back to the secondary
 322         * cpu initialisation.  There's some initialisation which needs
 323         * to be repeated to undo the effects of taking the CPU offline.
 324         */
 325        __asm__("mov    sp, %0\n"
 326        "       mov     fp, #0\n"
 327        "       b       secondary_start_kernel"
 328                :
 329                : "r" (task_stack_page(current) + THREAD_SIZE - 8));
 330}
 331#endif /* CONFIG_HOTPLUG_CPU */
 332
 333/*
 334 * Called by both boot and secondaries to move global data into
 335 * per-processor storage.
 336 */
 337static void smp_store_cpu_info(unsigned int cpuid)
 338{
 339        struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
 340
 341        cpu_info->loops_per_jiffy = loops_per_jiffy;
 342        cpu_info->cpuid = read_cpuid_id();
 343
 344        store_cpu_topology(cpuid);
 345}
 346
 347/*
 348 * This is the secondary CPU boot entry.  We're using this CPUs
 349 * idle thread stack, but a set of temporary page tables.
 350 */
 351asmlinkage void secondary_start_kernel(void)
 352{
 353        struct mm_struct *mm = &init_mm;
 354        unsigned int cpu;
 355
 356        /*
 357         * The identity mapping is uncached (strongly ordered), so
 358         * switch away from it before attempting any exclusive accesses.
 359         */
 360        cpu_switch_mm(mm->pgd, mm);
 361        local_flush_bp_all();
 362        enter_lazy_tlb(mm, current);
 363        local_flush_tlb_all();
 364
 365        /*
 366         * All kernel threads share the same mm context; grab a
 367         * reference and switch to it.
 368         */
 369        cpu = smp_processor_id();
 370        atomic_inc(&mm->mm_count);
 371        current->active_mm = mm;
 372        cpumask_set_cpu(cpu, mm_cpumask(mm));
 373
 374        cpu_init();
 375
 376        pr_debug("CPU%u: Booted secondary processor\n", cpu);
 377
 378        preempt_disable();
 379        trace_hardirqs_off();
 380
 381        /*
 382         * Give the platform a chance to do its own initialisation.
 383         */
 384        if (smp_ops.smp_secondary_init)
 385                smp_ops.smp_secondary_init(cpu);
 386
 387        notify_cpu_starting(cpu);
 388
 389        calibrate_delay();
 390
 391        smp_store_cpu_info(cpu);
 392
 393        /*
 394         * OK, now it's safe to let the boot CPU continue.  Wait for
 395         * the CPU migration code to notice that the CPU is online
 396         * before we continue - which happens after __cpu_up returns.
 397         */
 398        set_cpu_online(cpu, true);
 399        complete(&cpu_running);
 400
 401        local_irq_enable();
 402        local_fiq_enable();
 403
 404        /*
 405         * OK, it's off to the idle thread for us
 406         */
 407        cpu_startup_entry(CPUHP_ONLINE);
 408}
 409
 410void __init smp_cpus_done(unsigned int max_cpus)
 411{
 412        int cpu;
 413        unsigned long bogosum = 0;
 414
 415        for_each_online_cpu(cpu)
 416                bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
 417
 418        printk(KERN_INFO "SMP: Total of %d processors activated "
 419               "(%lu.%02lu BogoMIPS).\n",
 420               num_online_cpus(),
 421               bogosum / (500000/HZ),
 422               (bogosum / (5000/HZ)) % 100);
 423
 424        hyp_mode_check();
 425}
 426
 427void __init smp_prepare_boot_cpu(void)
 428{
 429        set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
 430}
 431
 432void __init smp_prepare_cpus(unsigned int max_cpus)
 433{
 434        unsigned int ncores = num_possible_cpus();
 435
 436        init_cpu_topology();
 437
 438        smp_store_cpu_info(smp_processor_id());
 439
 440        /*
 441         * are we trying to boot more cores than exist?
 442         */
 443        if (max_cpus > ncores)
 444                max_cpus = ncores;
 445        if (ncores > 1 && max_cpus) {
 446                /*
 447                 * Initialise the present map, which describes the set of CPUs
 448                 * actually populated at the present time. A platform should
 449                 * re-initialize the map in the platforms smp_prepare_cpus()
 450                 * if present != possible (e.g. physical hotplug).
 451                 */
 452                init_cpu_present(cpu_possible_mask);
 453
 454                /*
 455                 * Initialise the SCU if there are more than one CPU
 456                 * and let them know where to start.
 457                 */
 458                if (smp_ops.smp_prepare_cpus)
 459                        smp_ops.smp_prepare_cpus(max_cpus);
 460        }
 461}
 462
 463static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
 464
 465void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
 466{
 467        if (!__smp_cross_call)
 468                __smp_cross_call = fn;
 469}
 470
 471static const char *ipi_types[NR_IPI] __tracepoint_string = {
 472#define S(x,s)  [x] = s
 473        S(IPI_WAKEUP, "CPU wakeup interrupts"),
 474        S(IPI_TIMER, "Timer broadcast interrupts"),
 475        S(IPI_RESCHEDULE, "Rescheduling interrupts"),
 476        S(IPI_CALL_FUNC, "Function call interrupts"),
 477        S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
 478        S(IPI_CPU_STOP, "CPU stop interrupts"),
 479        S(IPI_IRQ_WORK, "IRQ work interrupts"),
 480        S(IPI_COMPLETION, "completion interrupts"),
 481};
 482
 483static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
 484{
 485        trace_ipi_raise(target, ipi_types[ipinr]);
 486        __smp_cross_call(target, ipinr);
 487}
 488
 489void show_ipi_list(struct seq_file *p, int prec)
 490{
 491        unsigned int cpu, i;
 492
 493        for (i = 0; i < NR_IPI; i++) {
 494                seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
 495
 496                for_each_online_cpu(cpu)
 497                        seq_printf(p, "%10u ",
 498                                   __get_irq_stat(cpu, ipi_irqs[i]));
 499
 500                seq_printf(p, " %s\n", ipi_types[i]);
 501        }
 502}
 503
 504u64 smp_irq_stat_cpu(unsigned int cpu)
 505{
 506        u64 sum = 0;
 507        int i;
 508
 509        for (i = 0; i < NR_IPI; i++)
 510                sum += __get_irq_stat(cpu, ipi_irqs[i]);
 511
 512        return sum;
 513}
 514
 515void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 516{
 517        smp_cross_call(mask, IPI_CALL_FUNC);
 518}
 519
 520void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
 521{
 522        smp_cross_call(mask, IPI_WAKEUP);
 523}
 524
 525void arch_send_call_function_single_ipi(int cpu)
 526{
 527        smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
 528}
 529
 530#ifdef CONFIG_IRQ_WORK
 531void arch_irq_work_raise(void)
 532{
 533        if (arch_irq_work_has_interrupt())
 534                smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
 535}
 536#endif
 537
 538#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 539void tick_broadcast(const struct cpumask *mask)
 540{
 541        smp_cross_call(mask, IPI_TIMER);
 542}
 543#endif
 544
 545static DEFINE_RAW_SPINLOCK(stop_lock);
 546
 547/*
 548 * ipi_cpu_stop - handle IPI from smp_send_stop()
 549 */
 550static void ipi_cpu_stop(unsigned int cpu)
 551{
 552        if (system_state == SYSTEM_BOOTING ||
 553            system_state == SYSTEM_RUNNING) {
 554                raw_spin_lock(&stop_lock);
 555                pr_crit("CPU%u: stopping\n", cpu);
 556                dump_stack();
 557                raw_spin_unlock(&stop_lock);
 558        }
 559
 560        set_cpu_online(cpu, false);
 561
 562        local_fiq_disable();
 563        local_irq_disable();
 564
 565        while (1)
 566                cpu_relax();
 567}
 568
 569static DEFINE_PER_CPU(struct completion *, cpu_completion);
 570
 571int register_ipi_completion(struct completion *completion, int cpu)
 572{
 573        per_cpu(cpu_completion, cpu) = completion;
 574        return IPI_COMPLETION;
 575}
 576
 577static void ipi_complete(unsigned int cpu)
 578{
 579        complete(per_cpu(cpu_completion, cpu));
 580}
 581
 582/*
 583 * Main handler for inter-processor interrupts
 584 */
 585asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
 586{
 587        handle_IPI(ipinr, regs);
 588}
 589
 590void handle_IPI(int ipinr, struct pt_regs *regs)
 591{
 592        unsigned int cpu = smp_processor_id();
 593        struct pt_regs *old_regs = set_irq_regs(regs);
 594
 595        if ((unsigned)ipinr < NR_IPI) {
 596                trace_ipi_entry_rcuidle(ipi_types[ipinr]);
 597                __inc_irq_stat(cpu, ipi_irqs[ipinr]);
 598        }
 599
 600        switch (ipinr) {
 601        case IPI_WAKEUP:
 602                break;
 603
 604#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 605        case IPI_TIMER:
 606                irq_enter();
 607                tick_receive_broadcast();
 608                irq_exit();
 609                break;
 610#endif
 611
 612        case IPI_RESCHEDULE:
 613                scheduler_ipi();
 614                break;
 615
 616        case IPI_CALL_FUNC:
 617                irq_enter();
 618                generic_smp_call_function_interrupt();
 619                irq_exit();
 620                break;
 621
 622        case IPI_CALL_FUNC_SINGLE:
 623                irq_enter();
 624                generic_smp_call_function_single_interrupt();
 625                irq_exit();
 626                break;
 627
 628        case IPI_CPU_STOP:
 629                irq_enter();
 630                ipi_cpu_stop(cpu);
 631                irq_exit();
 632                break;
 633
 634#ifdef CONFIG_IRQ_WORK
 635        case IPI_IRQ_WORK:
 636                irq_enter();
 637                irq_work_run();
 638                irq_exit();
 639                break;
 640#endif
 641
 642        case IPI_COMPLETION:
 643                irq_enter();
 644                ipi_complete(cpu);
 645                irq_exit();
 646                break;
 647
 648        case IPI_CPU_BACKTRACE:
 649                irq_enter();
 650                nmi_cpu_backtrace(regs);
 651                irq_exit();
 652                break;
 653
 654        default:
 655                pr_crit("CPU%u: Unknown IPI message 0x%x\n",
 656                        cpu, ipinr);
 657                break;
 658        }
 659
 660        if ((unsigned)ipinr < NR_IPI)
 661                trace_ipi_exit_rcuidle(ipi_types[ipinr]);
 662        set_irq_regs(old_regs);
 663}
 664
 665void smp_send_reschedule(int cpu)
 666{
 667        smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
 668}
 669
 670void smp_send_stop(void)
 671{
 672        unsigned long timeout;
 673        struct cpumask mask;
 674
 675        cpumask_copy(&mask, cpu_online_mask);
 676        cpumask_clear_cpu(smp_processor_id(), &mask);
 677        if (!cpumask_empty(&mask))
 678                smp_cross_call(&mask, IPI_CPU_STOP);
 679
 680        /* Wait up to one second for other CPUs to stop */
 681        timeout = USEC_PER_SEC;
 682        while (num_online_cpus() > 1 && timeout--)
 683                udelay(1);
 684
 685        if (num_online_cpus() > 1)
 686                pr_warn("SMP: failed to stop secondary CPUs\n");
 687}
 688
 689/*
 690 * not supported here
 691 */
 692int setup_profiling_timer(unsigned int multiplier)
 693{
 694        return -EINVAL;
 695}
 696
 697#ifdef CONFIG_CPU_FREQ
 698
 699static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
 700static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
 701static unsigned long global_l_p_j_ref;
 702static unsigned long global_l_p_j_ref_freq;
 703
 704static int cpufreq_callback(struct notifier_block *nb,
 705                                        unsigned long val, void *data)
 706{
 707        struct cpufreq_freqs *freq = data;
 708        int cpu = freq->cpu;
 709
 710        if (freq->flags & CPUFREQ_CONST_LOOPS)
 711                return NOTIFY_OK;
 712
 713        if (!per_cpu(l_p_j_ref, cpu)) {
 714                per_cpu(l_p_j_ref, cpu) =
 715                        per_cpu(cpu_data, cpu).loops_per_jiffy;
 716                per_cpu(l_p_j_ref_freq, cpu) = freq->old;
 717                if (!global_l_p_j_ref) {
 718                        global_l_p_j_ref = loops_per_jiffy;
 719                        global_l_p_j_ref_freq = freq->old;
 720                }
 721        }
 722
 723        if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 724            (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 725                loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
 726                                                global_l_p_j_ref_freq,
 727                                                freq->new);
 728                per_cpu(cpu_data, cpu).loops_per_jiffy =
 729                        cpufreq_scale(per_cpu(l_p_j_ref, cpu),
 730                                        per_cpu(l_p_j_ref_freq, cpu),
 731                                        freq->new);
 732        }
 733        return NOTIFY_OK;
 734}
 735
 736static struct notifier_block cpufreq_notifier = {
 737        .notifier_call  = cpufreq_callback,
 738};
 739
 740static int __init register_cpufreq_notifier(void)
 741{
 742        return cpufreq_register_notifier(&cpufreq_notifier,
 743                                                CPUFREQ_TRANSITION_NOTIFIER);
 744}
 745core_initcall(register_cpufreq_notifier);
 746
 747#endif
 748
 749static void raise_nmi(cpumask_t *mask)
 750{
 751        smp_cross_call(mask, IPI_CPU_BACKTRACE);
 752}
 753
 754void arch_trigger_all_cpu_backtrace(bool include_self)
 755{
 756        nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
 757}
 758