linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/genalloc.h>
  16#include <linux/gfp.h>
  17#include <linux/errno.h>
  18#include <linux/list.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45/*
  46 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  47 * is either exclusively owned by the CPU (and therefore may be accessed
  48 * by it) or exclusively owned by the DMA device.  These helper functions
  49 * represent the transitions between these two ownership states.
  50 *
  51 * Note, however, that on later ARMs, this notion does not work due to
  52 * speculative prefetches.  We model our approach on the assumption that
  53 * the CPU does do speculative prefetches, which means we clean caches
  54 * before transfers and delay cache invalidation until transfer completion.
  55 *
  56 */
  57static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  58                size_t, enum dma_data_direction);
  59static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  60                size_t, enum dma_data_direction);
  61
  62/**
  63 * arm_dma_map_page - map a portion of a page for streaming DMA
  64 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  65 * @page: page that buffer resides in
  66 * @offset: offset into page for start of buffer
  67 * @size: size of buffer to map
  68 * @dir: DMA transfer direction
  69 *
  70 * Ensure that any data held in the cache is appropriately discarded
  71 * or written back.
  72 *
  73 * The device owns this memory once this call has completed.  The CPU
  74 * can regain ownership by calling dma_unmap_page().
  75 */
  76static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  77             unsigned long offset, size_t size, enum dma_data_direction dir,
  78             struct dma_attrs *attrs)
  79{
  80        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  81                __dma_page_cpu_to_dev(page, offset, size, dir);
  82        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  83}
  84
  85static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  86             unsigned long offset, size_t size, enum dma_data_direction dir,
  87             struct dma_attrs *attrs)
  88{
  89        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  90}
  91
  92/**
  93 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  95 * @handle: DMA address of buffer
  96 * @size: size of buffer (same as passed to dma_map_page)
  97 * @dir: DMA transfer direction (same as passed to dma_map_page)
  98 *
  99 * Unmap a page streaming mode DMA translation.  The handle and size
 100 * must match what was provided in the previous dma_map_page() call.
 101 * All other usages are undefined.
 102 *
 103 * After this call, reads by the CPU to the buffer are guaranteed to see
 104 * whatever the device wrote there.
 105 */
 106static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 107                size_t size, enum dma_data_direction dir,
 108                struct dma_attrs *attrs)
 109{
 110        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 111                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 112                                      handle & ~PAGE_MASK, size, dir);
 113}
 114
 115static void arm_dma_sync_single_for_cpu(struct device *dev,
 116                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 117{
 118        unsigned int offset = handle & (PAGE_SIZE - 1);
 119        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 120        __dma_page_dev_to_cpu(page, offset, size, dir);
 121}
 122
 123static void arm_dma_sync_single_for_device(struct device *dev,
 124                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 125{
 126        unsigned int offset = handle & (PAGE_SIZE - 1);
 127        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 128        __dma_page_cpu_to_dev(page, offset, size, dir);
 129}
 130
 131struct dma_map_ops arm_dma_ops = {
 132        .alloc                  = arm_dma_alloc,
 133        .free                   = arm_dma_free,
 134        .mmap                   = arm_dma_mmap,
 135        .get_sgtable            = arm_dma_get_sgtable,
 136        .map_page               = arm_dma_map_page,
 137        .unmap_page             = arm_dma_unmap_page,
 138        .map_sg                 = arm_dma_map_sg,
 139        .unmap_sg               = arm_dma_unmap_sg,
 140        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 141        .sync_single_for_device = arm_dma_sync_single_for_device,
 142        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 143        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 144        .set_dma_mask           = arm_dma_set_mask,
 145};
 146EXPORT_SYMBOL(arm_dma_ops);
 147
 148static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 149        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 150static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 151                                  dma_addr_t handle, struct dma_attrs *attrs);
 152static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 153                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 154                 struct dma_attrs *attrs);
 155
 156struct dma_map_ops arm_coherent_dma_ops = {
 157        .alloc                  = arm_coherent_dma_alloc,
 158        .free                   = arm_coherent_dma_free,
 159        .mmap                   = arm_coherent_dma_mmap,
 160        .get_sgtable            = arm_dma_get_sgtable,
 161        .map_page               = arm_coherent_dma_map_page,
 162        .map_sg                 = arm_dma_map_sg,
 163        .set_dma_mask           = arm_dma_set_mask,
 164};
 165EXPORT_SYMBOL(arm_coherent_dma_ops);
 166
 167static int __dma_supported(struct device *dev, u64 mask, bool warn)
 168{
 169        unsigned long max_dma_pfn;
 170
 171        /*
 172         * If the mask allows for more memory than we can address,
 173         * and we actually have that much memory, then we must
 174         * indicate that DMA to this device is not supported.
 175         */
 176        if (sizeof(mask) != sizeof(dma_addr_t) &&
 177            mask > (dma_addr_t)~0 &&
 178            dma_to_pfn(dev, ~0) < max_pfn - 1) {
 179                if (warn) {
 180                        dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 181                                 mask);
 182                        dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 183                }
 184                return 0;
 185        }
 186
 187        max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 188
 189        /*
 190         * Translate the device's DMA mask to a PFN limit.  This
 191         * PFN number includes the page which we can DMA to.
 192         */
 193        if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 194                if (warn)
 195                        dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 196                                 mask,
 197                                 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 198                                 max_dma_pfn + 1);
 199                return 0;
 200        }
 201
 202        return 1;
 203}
 204
 205static u64 get_coherent_dma_mask(struct device *dev)
 206{
 207        u64 mask = (u64)DMA_BIT_MASK(32);
 208
 209        if (dev) {
 210                mask = dev->coherent_dma_mask;
 211
 212                /*
 213                 * Sanity check the DMA mask - it must be non-zero, and
 214                 * must be able to be satisfied by a DMA allocation.
 215                 */
 216                if (mask == 0) {
 217                        dev_warn(dev, "coherent DMA mask is unset\n");
 218                        return 0;
 219                }
 220
 221                if (!__dma_supported(dev, mask, true))
 222                        return 0;
 223        }
 224
 225        return mask;
 226}
 227
 228static void __dma_clear_buffer(struct page *page, size_t size)
 229{
 230        /*
 231         * Ensure that the allocated pages are zeroed, and that any data
 232         * lurking in the kernel direct-mapped region is invalidated.
 233         */
 234        if (PageHighMem(page)) {
 235                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 236                phys_addr_t end = base + size;
 237                while (size > 0) {
 238                        void *ptr = kmap_atomic(page);
 239                        memset(ptr, 0, PAGE_SIZE);
 240                        dmac_flush_range(ptr, ptr + PAGE_SIZE);
 241                        kunmap_atomic(ptr);
 242                        page++;
 243                        size -= PAGE_SIZE;
 244                }
 245                outer_flush_range(base, end);
 246        } else {
 247                void *ptr = page_address(page);
 248                memset(ptr, 0, size);
 249                dmac_flush_range(ptr, ptr + size);
 250                outer_flush_range(__pa(ptr), __pa(ptr) + size);
 251        }
 252}
 253
 254/*
 255 * Allocate a DMA buffer for 'dev' of size 'size' using the
 256 * specified gfp mask.  Note that 'size' must be page aligned.
 257 */
 258static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 259{
 260        unsigned long order = get_order(size);
 261        struct page *page, *p, *e;
 262
 263        page = alloc_pages(gfp, order);
 264        if (!page)
 265                return NULL;
 266
 267        /*
 268         * Now split the huge page and free the excess pages
 269         */
 270        split_page(page, order);
 271        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 272                __free_page(p);
 273
 274        __dma_clear_buffer(page, size);
 275
 276        return page;
 277}
 278
 279/*
 280 * Free a DMA buffer.  'size' must be page aligned.
 281 */
 282static void __dma_free_buffer(struct page *page, size_t size)
 283{
 284        struct page *e = page + (size >> PAGE_SHIFT);
 285
 286        while (page < e) {
 287                __free_page(page);
 288                page++;
 289        }
 290}
 291
 292#ifdef CONFIG_MMU
 293
 294static void *__alloc_from_contiguous(struct device *dev, size_t size,
 295                                     pgprot_t prot, struct page **ret_page,
 296                                     const void *caller, bool want_vaddr);
 297
 298static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 299                                 pgprot_t prot, struct page **ret_page,
 300                                 const void *caller, bool want_vaddr);
 301
 302static void *
 303__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 304        const void *caller)
 305{
 306        /*
 307         * DMA allocation can be mapped to user space, so lets
 308         * set VM_USERMAP flags too.
 309         */
 310        return dma_common_contiguous_remap(page, size,
 311                        VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 312                        prot, caller);
 313}
 314
 315static void __dma_free_remap(void *cpu_addr, size_t size)
 316{
 317        dma_common_free_remap(cpu_addr, size,
 318                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 319}
 320
 321#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 322static struct gen_pool *atomic_pool;
 323
 324static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
 325
 326static int __init early_coherent_pool(char *p)
 327{
 328        atomic_pool_size = memparse(p, &p);
 329        return 0;
 330}
 331early_param("coherent_pool", early_coherent_pool);
 332
 333void __init init_dma_coherent_pool_size(unsigned long size)
 334{
 335        /*
 336         * Catch any attempt to set the pool size too late.
 337         */
 338        BUG_ON(atomic_pool);
 339
 340        /*
 341         * Set architecture specific coherent pool size only if
 342         * it has not been changed by kernel command line parameter.
 343         */
 344        if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 345                atomic_pool_size = size;
 346}
 347
 348/*
 349 * Initialise the coherent pool for atomic allocations.
 350 */
 351static int __init atomic_pool_init(void)
 352{
 353        pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 354        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 355        struct page *page;
 356        void *ptr;
 357
 358        atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 359        if (!atomic_pool)
 360                goto out;
 361
 362        if (dev_get_cma_area(NULL))
 363                ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 364                                              &page, atomic_pool_init, true);
 365        else
 366                ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 367                                           &page, atomic_pool_init, true);
 368        if (ptr) {
 369                int ret;
 370
 371                ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 372                                        page_to_phys(page),
 373                                        atomic_pool_size, -1);
 374                if (ret)
 375                        goto destroy_genpool;
 376
 377                gen_pool_set_algo(atomic_pool,
 378                                gen_pool_first_fit_order_align,
 379                                (void *)PAGE_SHIFT);
 380                pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
 381                       atomic_pool_size / 1024);
 382                return 0;
 383        }
 384
 385destroy_genpool:
 386        gen_pool_destroy(atomic_pool);
 387        atomic_pool = NULL;
 388out:
 389        pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
 390               atomic_pool_size / 1024);
 391        return -ENOMEM;
 392}
 393/*
 394 * CMA is activated by core_initcall, so we must be called after it.
 395 */
 396postcore_initcall(atomic_pool_init);
 397
 398struct dma_contig_early_reserve {
 399        phys_addr_t base;
 400        unsigned long size;
 401};
 402
 403static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 404
 405static int dma_mmu_remap_num __initdata;
 406
 407void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 408{
 409        dma_mmu_remap[dma_mmu_remap_num].base = base;
 410        dma_mmu_remap[dma_mmu_remap_num].size = size;
 411        dma_mmu_remap_num++;
 412}
 413
 414void __init dma_contiguous_remap(void)
 415{
 416        int i;
 417        for (i = 0; i < dma_mmu_remap_num; i++) {
 418                phys_addr_t start = dma_mmu_remap[i].base;
 419                phys_addr_t end = start + dma_mmu_remap[i].size;
 420                struct map_desc map;
 421                unsigned long addr;
 422
 423                if (end > arm_lowmem_limit)
 424                        end = arm_lowmem_limit;
 425                if (start >= end)
 426                        continue;
 427
 428                map.pfn = __phys_to_pfn(start);
 429                map.virtual = __phys_to_virt(start);
 430                map.length = end - start;
 431                map.type = MT_MEMORY_DMA_READY;
 432
 433                /*
 434                 * Clear previous low-memory mapping to ensure that the
 435                 * TLB does not see any conflicting entries, then flush
 436                 * the TLB of the old entries before creating new mappings.
 437                 *
 438                 * This ensures that any speculatively loaded TLB entries
 439                 * (even though they may be rare) can not cause any problems,
 440                 * and ensures that this code is architecturally compliant.
 441                 */
 442                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 443                     addr += PMD_SIZE)
 444                        pmd_clear(pmd_off_k(addr));
 445
 446                flush_tlb_kernel_range(__phys_to_virt(start),
 447                                       __phys_to_virt(end));
 448
 449                iotable_init(&map, 1);
 450        }
 451}
 452
 453static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 454                            void *data)
 455{
 456        struct page *page = virt_to_page(addr);
 457        pgprot_t prot = *(pgprot_t *)data;
 458
 459        set_pte_ext(pte, mk_pte(page, prot), 0);
 460        return 0;
 461}
 462
 463static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 464{
 465        unsigned long start = (unsigned long) page_address(page);
 466        unsigned end = start + size;
 467
 468        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 469        flush_tlb_kernel_range(start, end);
 470}
 471
 472static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 473                                 pgprot_t prot, struct page **ret_page,
 474                                 const void *caller, bool want_vaddr)
 475{
 476        struct page *page;
 477        void *ptr = NULL;
 478        page = __dma_alloc_buffer(dev, size, gfp);
 479        if (!page)
 480                return NULL;
 481        if (!want_vaddr)
 482                goto out;
 483
 484        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 485        if (!ptr) {
 486                __dma_free_buffer(page, size);
 487                return NULL;
 488        }
 489
 490 out:
 491        *ret_page = page;
 492        return ptr;
 493}
 494
 495static void *__alloc_from_pool(size_t size, struct page **ret_page)
 496{
 497        unsigned long val;
 498        void *ptr = NULL;
 499
 500        if (!atomic_pool) {
 501                WARN(1, "coherent pool not initialised!\n");
 502                return NULL;
 503        }
 504
 505        val = gen_pool_alloc(atomic_pool, size);
 506        if (val) {
 507                phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 508
 509                *ret_page = phys_to_page(phys);
 510                ptr = (void *)val;
 511        }
 512
 513        return ptr;
 514}
 515
 516static bool __in_atomic_pool(void *start, size_t size)
 517{
 518        return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 519}
 520
 521static int __free_from_pool(void *start, size_t size)
 522{
 523        if (!__in_atomic_pool(start, size))
 524                return 0;
 525
 526        gen_pool_free(atomic_pool, (unsigned long)start, size);
 527
 528        return 1;
 529}
 530
 531static void *__alloc_from_contiguous(struct device *dev, size_t size,
 532                                     pgprot_t prot, struct page **ret_page,
 533                                     const void *caller, bool want_vaddr)
 534{
 535        unsigned long order = get_order(size);
 536        size_t count = size >> PAGE_SHIFT;
 537        struct page *page;
 538        void *ptr = NULL;
 539
 540        page = dma_alloc_from_contiguous(dev, count, order);
 541        if (!page)
 542                return NULL;
 543
 544        __dma_clear_buffer(page, size);
 545
 546        if (!want_vaddr)
 547                goto out;
 548
 549        if (PageHighMem(page)) {
 550                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 551                if (!ptr) {
 552                        dma_release_from_contiguous(dev, page, count);
 553                        return NULL;
 554                }
 555        } else {
 556                __dma_remap(page, size, prot);
 557                ptr = page_address(page);
 558        }
 559
 560 out:
 561        *ret_page = page;
 562        return ptr;
 563}
 564
 565static void __free_from_contiguous(struct device *dev, struct page *page,
 566                                   void *cpu_addr, size_t size, bool want_vaddr)
 567{
 568        if (want_vaddr) {
 569                if (PageHighMem(page))
 570                        __dma_free_remap(cpu_addr, size);
 571                else
 572                        __dma_remap(page, size, PAGE_KERNEL);
 573        }
 574        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 575}
 576
 577static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 578{
 579        prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 580                            pgprot_writecombine(prot) :
 581                            pgprot_dmacoherent(prot);
 582        return prot;
 583}
 584
 585#define nommu() 0
 586
 587#else   /* !CONFIG_MMU */
 588
 589#define nommu() 1
 590
 591#define __get_dma_pgprot(attrs, prot)                           __pgprot(0)
 592#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)  NULL
 593#define __alloc_from_pool(size, ret_page)                       NULL
 594#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)    NULL
 595#define __free_from_pool(cpu_addr, size)                        0
 596#define __free_from_contiguous(dev, page, cpu_addr, size, wv)   do { } while (0)
 597#define __dma_free_remap(cpu_addr, size)                        do { } while (0)
 598
 599#endif  /* CONFIG_MMU */
 600
 601static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 602                                   struct page **ret_page)
 603{
 604        struct page *page;
 605        page = __dma_alloc_buffer(dev, size, gfp);
 606        if (!page)
 607                return NULL;
 608
 609        *ret_page = page;
 610        return page_address(page);
 611}
 612
 613
 614
 615static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 616                         gfp_t gfp, pgprot_t prot, bool is_coherent,
 617                         struct dma_attrs *attrs, const void *caller)
 618{
 619        u64 mask = get_coherent_dma_mask(dev);
 620        struct page *page = NULL;
 621        void *addr;
 622        bool want_vaddr;
 623
 624#ifdef CONFIG_DMA_API_DEBUG
 625        u64 limit = (mask + 1) & ~mask;
 626        if (limit && size >= limit) {
 627                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 628                        size, mask);
 629                return NULL;
 630        }
 631#endif
 632
 633        if (!mask)
 634                return NULL;
 635
 636        if (mask < 0xffffffffULL)
 637                gfp |= GFP_DMA;
 638
 639        /*
 640         * Following is a work-around (a.k.a. hack) to prevent pages
 641         * with __GFP_COMP being passed to split_page() which cannot
 642         * handle them.  The real problem is that this flag probably
 643         * should be 0 on ARM as it is not supported on this
 644         * platform; see CONFIG_HUGETLBFS.
 645         */
 646        gfp &= ~(__GFP_COMP);
 647
 648        *handle = DMA_ERROR_CODE;
 649        size = PAGE_ALIGN(size);
 650        want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
 651
 652        if (nommu())
 653                addr = __alloc_simple_buffer(dev, size, gfp, &page);
 654        else if (dev_get_cma_area(dev) && (gfp & __GFP_WAIT))
 655                addr = __alloc_from_contiguous(dev, size, prot, &page,
 656                                               caller, want_vaddr);
 657        else if (is_coherent)
 658                addr = __alloc_simple_buffer(dev, size, gfp, &page);
 659        else if (!(gfp & __GFP_WAIT))
 660                addr = __alloc_from_pool(size, &page);
 661        else
 662                addr = __alloc_remap_buffer(dev, size, gfp, prot, &page,
 663                                            caller, want_vaddr);
 664
 665        if (page)
 666                *handle = pfn_to_dma(dev, page_to_pfn(page));
 667
 668        return want_vaddr ? addr : page;
 669}
 670
 671/*
 672 * Allocate DMA-coherent memory space and return both the kernel remapped
 673 * virtual and bus address for that space.
 674 */
 675void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 676                    gfp_t gfp, struct dma_attrs *attrs)
 677{
 678        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 679
 680        return __dma_alloc(dev, size, handle, gfp, prot, false,
 681                           attrs, __builtin_return_address(0));
 682}
 683
 684static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 685        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 686{
 687        return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 688                           attrs, __builtin_return_address(0));
 689}
 690
 691static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 692                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 693                 struct dma_attrs *attrs)
 694{
 695        int ret = -ENXIO;
 696#ifdef CONFIG_MMU
 697        unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 698        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 699        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 700        unsigned long off = vma->vm_pgoff;
 701
 702        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 703                return ret;
 704
 705        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 706                ret = remap_pfn_range(vma, vma->vm_start,
 707                                      pfn + off,
 708                                      vma->vm_end - vma->vm_start,
 709                                      vma->vm_page_prot);
 710        }
 711#endif  /* CONFIG_MMU */
 712
 713        return ret;
 714}
 715
 716/*
 717 * Create userspace mapping for the DMA-coherent memory.
 718 */
 719static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 720                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 721                 struct dma_attrs *attrs)
 722{
 723        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 724}
 725
 726int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 727                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 728                 struct dma_attrs *attrs)
 729{
 730#ifdef CONFIG_MMU
 731        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 732#endif  /* CONFIG_MMU */
 733        return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 734}
 735
 736/*
 737 * Free a buffer as defined by the above mapping.
 738 */
 739static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 740                           dma_addr_t handle, struct dma_attrs *attrs,
 741                           bool is_coherent)
 742{
 743        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 744        bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
 745
 746        size = PAGE_ALIGN(size);
 747
 748        if (nommu()) {
 749                __dma_free_buffer(page, size);
 750        } else if (!is_coherent && __free_from_pool(cpu_addr, size)) {
 751                return;
 752        } else if (!dev_get_cma_area(dev)) {
 753                if (want_vaddr && !is_coherent)
 754                        __dma_free_remap(cpu_addr, size);
 755                __dma_free_buffer(page, size);
 756        } else {
 757                /*
 758                 * Non-atomic allocations cannot be freed with IRQs disabled
 759                 */
 760                WARN_ON(irqs_disabled());
 761                __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
 762        }
 763}
 764
 765void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 766                  dma_addr_t handle, struct dma_attrs *attrs)
 767{
 768        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 769}
 770
 771static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 772                                  dma_addr_t handle, struct dma_attrs *attrs)
 773{
 774        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 775}
 776
 777int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 778                 void *cpu_addr, dma_addr_t handle, size_t size,
 779                 struct dma_attrs *attrs)
 780{
 781        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 782        int ret;
 783
 784        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 785        if (unlikely(ret))
 786                return ret;
 787
 788        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 789        return 0;
 790}
 791
 792static void dma_cache_maint_page(struct page *page, unsigned long offset,
 793        size_t size, enum dma_data_direction dir,
 794        void (*op)(const void *, size_t, int))
 795{
 796        unsigned long pfn;
 797        size_t left = size;
 798
 799        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 800        offset %= PAGE_SIZE;
 801
 802        /*
 803         * A single sg entry may refer to multiple physically contiguous
 804         * pages.  But we still need to process highmem pages individually.
 805         * If highmem is not configured then the bulk of this loop gets
 806         * optimized out.
 807         */
 808        do {
 809                size_t len = left;
 810                void *vaddr;
 811
 812                page = pfn_to_page(pfn);
 813
 814                if (PageHighMem(page)) {
 815                        if (len + offset > PAGE_SIZE)
 816                                len = PAGE_SIZE - offset;
 817
 818                        if (cache_is_vipt_nonaliasing()) {
 819                                vaddr = kmap_atomic(page);
 820                                op(vaddr + offset, len, dir);
 821                                kunmap_atomic(vaddr);
 822                        } else {
 823                                vaddr = kmap_high_get(page);
 824                                if (vaddr) {
 825                                        op(vaddr + offset, len, dir);
 826                                        kunmap_high(page);
 827                                }
 828                        }
 829                } else {
 830                        vaddr = page_address(page) + offset;
 831                        op(vaddr, len, dir);
 832                }
 833                offset = 0;
 834                pfn++;
 835                left -= len;
 836        } while (left);
 837}
 838
 839/*
 840 * Make an area consistent for devices.
 841 * Note: Drivers should NOT use this function directly, as it will break
 842 * platforms with CONFIG_DMABOUNCE.
 843 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 844 */
 845static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 846        size_t size, enum dma_data_direction dir)
 847{
 848        phys_addr_t paddr;
 849
 850        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 851
 852        paddr = page_to_phys(page) + off;
 853        if (dir == DMA_FROM_DEVICE) {
 854                outer_inv_range(paddr, paddr + size);
 855        } else {
 856                outer_clean_range(paddr, paddr + size);
 857        }
 858        /* FIXME: non-speculating: flush on bidirectional mappings? */
 859}
 860
 861static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 862        size_t size, enum dma_data_direction dir)
 863{
 864        phys_addr_t paddr = page_to_phys(page) + off;
 865
 866        /* FIXME: non-speculating: not required */
 867        /* in any case, don't bother invalidating if DMA to device */
 868        if (dir != DMA_TO_DEVICE) {
 869                outer_inv_range(paddr, paddr + size);
 870
 871                dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 872        }
 873
 874        /*
 875         * Mark the D-cache clean for these pages to avoid extra flushing.
 876         */
 877        if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 878                unsigned long pfn;
 879                size_t left = size;
 880
 881                pfn = page_to_pfn(page) + off / PAGE_SIZE;
 882                off %= PAGE_SIZE;
 883                if (off) {
 884                        pfn++;
 885                        left -= PAGE_SIZE - off;
 886                }
 887                while (left >= PAGE_SIZE) {
 888                        page = pfn_to_page(pfn++);
 889                        set_bit(PG_dcache_clean, &page->flags);
 890                        left -= PAGE_SIZE;
 891                }
 892        }
 893}
 894
 895/**
 896 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 897 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 898 * @sg: list of buffers
 899 * @nents: number of buffers to map
 900 * @dir: DMA transfer direction
 901 *
 902 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 903 * This is the scatter-gather version of the dma_map_single interface.
 904 * Here the scatter gather list elements are each tagged with the
 905 * appropriate dma address and length.  They are obtained via
 906 * sg_dma_{address,length}.
 907 *
 908 * Device ownership issues as mentioned for dma_map_single are the same
 909 * here.
 910 */
 911int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 912                enum dma_data_direction dir, struct dma_attrs *attrs)
 913{
 914        struct dma_map_ops *ops = get_dma_ops(dev);
 915        struct scatterlist *s;
 916        int i, j;
 917
 918        for_each_sg(sg, s, nents, i) {
 919#ifdef CONFIG_NEED_SG_DMA_LENGTH
 920                s->dma_length = s->length;
 921#endif
 922                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 923                                                s->length, dir, attrs);
 924                if (dma_mapping_error(dev, s->dma_address))
 925                        goto bad_mapping;
 926        }
 927        return nents;
 928
 929 bad_mapping:
 930        for_each_sg(sg, s, i, j)
 931                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 932        return 0;
 933}
 934
 935/**
 936 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 938 * @sg: list of buffers
 939 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 941 *
 942 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 943 * rules concerning calls here are the same as for dma_unmap_single().
 944 */
 945void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 946                enum dma_data_direction dir, struct dma_attrs *attrs)
 947{
 948        struct dma_map_ops *ops = get_dma_ops(dev);
 949        struct scatterlist *s;
 950
 951        int i;
 952
 953        for_each_sg(sg, s, nents, i)
 954                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 955}
 956
 957/**
 958 * arm_dma_sync_sg_for_cpu
 959 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 960 * @sg: list of buffers
 961 * @nents: number of buffers to map (returned from dma_map_sg)
 962 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 963 */
 964void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 965                        int nents, enum dma_data_direction dir)
 966{
 967        struct dma_map_ops *ops = get_dma_ops(dev);
 968        struct scatterlist *s;
 969        int i;
 970
 971        for_each_sg(sg, s, nents, i)
 972                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 973                                         dir);
 974}
 975
 976/**
 977 * arm_dma_sync_sg_for_device
 978 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 979 * @sg: list of buffers
 980 * @nents: number of buffers to map (returned from dma_map_sg)
 981 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 982 */
 983void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 984                        int nents, enum dma_data_direction dir)
 985{
 986        struct dma_map_ops *ops = get_dma_ops(dev);
 987        struct scatterlist *s;
 988        int i;
 989
 990        for_each_sg(sg, s, nents, i)
 991                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 992                                            dir);
 993}
 994
 995/*
 996 * Return whether the given device DMA address mask can be supported
 997 * properly.  For example, if your device can only drive the low 24-bits
 998 * during bus mastering, then you would pass 0x00ffffff as the mask
 999 * to this function.
1000 */
1001int dma_supported(struct device *dev, u64 mask)
1002{
1003        return __dma_supported(dev, mask, false);
1004}
1005EXPORT_SYMBOL(dma_supported);
1006
1007int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1008{
1009        if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1010                return -EIO;
1011
1012        *dev->dma_mask = dma_mask;
1013
1014        return 0;
1015}
1016
1017#define PREALLOC_DMA_DEBUG_ENTRIES      4096
1018
1019static int __init dma_debug_do_init(void)
1020{
1021        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1022        return 0;
1023}
1024fs_initcall(dma_debug_do_init);
1025
1026#ifdef CONFIG_ARM_DMA_USE_IOMMU
1027
1028/* IOMMU */
1029
1030static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1031
1032static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1033                                      size_t size)
1034{
1035        unsigned int order = get_order(size);
1036        unsigned int align = 0;
1037        unsigned int count, start;
1038        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1039        unsigned long flags;
1040        dma_addr_t iova;
1041        int i;
1042
1043        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1044                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1045
1046        count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1047        align = (1 << order) - 1;
1048
1049        spin_lock_irqsave(&mapping->lock, flags);
1050        for (i = 0; i < mapping->nr_bitmaps; i++) {
1051                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1052                                mapping->bits, 0, count, align);
1053
1054                if (start > mapping->bits)
1055                        continue;
1056
1057                bitmap_set(mapping->bitmaps[i], start, count);
1058                break;
1059        }
1060
1061        /*
1062         * No unused range found. Try to extend the existing mapping
1063         * and perform a second attempt to reserve an IO virtual
1064         * address range of size bytes.
1065         */
1066        if (i == mapping->nr_bitmaps) {
1067                if (extend_iommu_mapping(mapping)) {
1068                        spin_unlock_irqrestore(&mapping->lock, flags);
1069                        return DMA_ERROR_CODE;
1070                }
1071
1072                start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1073                                mapping->bits, 0, count, align);
1074
1075                if (start > mapping->bits) {
1076                        spin_unlock_irqrestore(&mapping->lock, flags);
1077                        return DMA_ERROR_CODE;
1078                }
1079
1080                bitmap_set(mapping->bitmaps[i], start, count);
1081        }
1082        spin_unlock_irqrestore(&mapping->lock, flags);
1083
1084        iova = mapping->base + (mapping_size * i);
1085        iova += start << PAGE_SHIFT;
1086
1087        return iova;
1088}
1089
1090static inline void __free_iova(struct dma_iommu_mapping *mapping,
1091                               dma_addr_t addr, size_t size)
1092{
1093        unsigned int start, count;
1094        size_t mapping_size = mapping->bits << PAGE_SHIFT;
1095        unsigned long flags;
1096        dma_addr_t bitmap_base;
1097        u32 bitmap_index;
1098
1099        if (!size)
1100                return;
1101
1102        bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1103        BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1104
1105        bitmap_base = mapping->base + mapping_size * bitmap_index;
1106
1107        start = (addr - bitmap_base) >> PAGE_SHIFT;
1108
1109        if (addr + size > bitmap_base + mapping_size) {
1110                /*
1111                 * The address range to be freed reaches into the iova
1112                 * range of the next bitmap. This should not happen as
1113                 * we don't allow this in __alloc_iova (at the
1114                 * moment).
1115                 */
1116                BUG();
1117        } else
1118                count = size >> PAGE_SHIFT;
1119
1120        spin_lock_irqsave(&mapping->lock, flags);
1121        bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1122        spin_unlock_irqrestore(&mapping->lock, flags);
1123}
1124
1125static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1126                                          gfp_t gfp, struct dma_attrs *attrs)
1127{
1128        struct page **pages;
1129        int count = size >> PAGE_SHIFT;
1130        int array_size = count * sizeof(struct page *);
1131        int i = 0;
1132
1133        if (array_size <= PAGE_SIZE)
1134                pages = kzalloc(array_size, GFP_KERNEL);
1135        else
1136                pages = vzalloc(array_size);
1137        if (!pages)
1138                return NULL;
1139
1140        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1141        {
1142                unsigned long order = get_order(size);
1143                struct page *page;
1144
1145                page = dma_alloc_from_contiguous(dev, count, order);
1146                if (!page)
1147                        goto error;
1148
1149                __dma_clear_buffer(page, size);
1150
1151                for (i = 0; i < count; i++)
1152                        pages[i] = page + i;
1153
1154                return pages;
1155        }
1156
1157        /*
1158         * IOMMU can map any pages, so himem can also be used here
1159         */
1160        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1161
1162        while (count) {
1163                int j, order;
1164
1165                for (order = __fls(count); order > 0; --order) {
1166                        /*
1167                         * We do not want OOM killer to be invoked as long
1168                         * as we can fall back to single pages, so we force
1169                         * __GFP_NORETRY for orders higher than zero.
1170                         */
1171                        pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1172                        if (pages[i])
1173                                break;
1174                }
1175
1176                if (!pages[i]) {
1177                        /*
1178                         * Fall back to single page allocation.
1179                         * Might invoke OOM killer as last resort.
1180                         */
1181                        pages[i] = alloc_pages(gfp, 0);
1182                        if (!pages[i])
1183                                goto error;
1184                }
1185
1186                if (order) {
1187                        split_page(pages[i], order);
1188                        j = 1 << order;
1189                        while (--j)
1190                                pages[i + j] = pages[i] + j;
1191                }
1192
1193                __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1194                i += 1 << order;
1195                count -= 1 << order;
1196        }
1197
1198        return pages;
1199error:
1200        while (i--)
1201                if (pages[i])
1202                        __free_pages(pages[i], 0);
1203        if (array_size <= PAGE_SIZE)
1204                kfree(pages);
1205        else
1206                vfree(pages);
1207        return NULL;
1208}
1209
1210static int __iommu_free_buffer(struct device *dev, struct page **pages,
1211                               size_t size, struct dma_attrs *attrs)
1212{
1213        int count = size >> PAGE_SHIFT;
1214        int array_size = count * sizeof(struct page *);
1215        int i;
1216
1217        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1218                dma_release_from_contiguous(dev, pages[0], count);
1219        } else {
1220                for (i = 0; i < count; i++)
1221                        if (pages[i])
1222                                __free_pages(pages[i], 0);
1223        }
1224
1225        if (array_size <= PAGE_SIZE)
1226                kfree(pages);
1227        else
1228                vfree(pages);
1229        return 0;
1230}
1231
1232/*
1233 * Create a CPU mapping for a specified pages
1234 */
1235static void *
1236__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1237                    const void *caller)
1238{
1239        return dma_common_pages_remap(pages, size,
1240                        VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1241}
1242
1243/*
1244 * Create a mapping in device IO address space for specified pages
1245 */
1246static dma_addr_t
1247__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1248{
1249        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1250        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1251        dma_addr_t dma_addr, iova;
1252        int i;
1253
1254        dma_addr = __alloc_iova(mapping, size);
1255        if (dma_addr == DMA_ERROR_CODE)
1256                return dma_addr;
1257
1258        iova = dma_addr;
1259        for (i = 0; i < count; ) {
1260                int ret;
1261
1262                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1263                phys_addr_t phys = page_to_phys(pages[i]);
1264                unsigned int len, j;
1265
1266                for (j = i + 1; j < count; j++, next_pfn++)
1267                        if (page_to_pfn(pages[j]) != next_pfn)
1268                                break;
1269
1270                len = (j - i) << PAGE_SHIFT;
1271                ret = iommu_map(mapping->domain, iova, phys, len,
1272                                IOMMU_READ|IOMMU_WRITE);
1273                if (ret < 0)
1274                        goto fail;
1275                iova += len;
1276                i = j;
1277        }
1278        return dma_addr;
1279fail:
1280        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1281        __free_iova(mapping, dma_addr, size);
1282        return DMA_ERROR_CODE;
1283}
1284
1285static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1286{
1287        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1288
1289        /*
1290         * add optional in-page offset from iova to size and align
1291         * result to page size
1292         */
1293        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1294        iova &= PAGE_MASK;
1295
1296        iommu_unmap(mapping->domain, iova, size);
1297        __free_iova(mapping, iova, size);
1298        return 0;
1299}
1300
1301static struct page **__atomic_get_pages(void *addr)
1302{
1303        struct page *page;
1304        phys_addr_t phys;
1305
1306        phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1307        page = phys_to_page(phys);
1308
1309        return (struct page **)page;
1310}
1311
1312static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1313{
1314        struct vm_struct *area;
1315
1316        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1317                return __atomic_get_pages(cpu_addr);
1318
1319        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1320                return cpu_addr;
1321
1322        area = find_vm_area(cpu_addr);
1323        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1324                return area->pages;
1325        return NULL;
1326}
1327
1328static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1329                                  dma_addr_t *handle)
1330{
1331        struct page *page;
1332        void *addr;
1333
1334        addr = __alloc_from_pool(size, &page);
1335        if (!addr)
1336                return NULL;
1337
1338        *handle = __iommu_create_mapping(dev, &page, size);
1339        if (*handle == DMA_ERROR_CODE)
1340                goto err_mapping;
1341
1342        return addr;
1343
1344err_mapping:
1345        __free_from_pool(addr, size);
1346        return NULL;
1347}
1348
1349static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1350                                dma_addr_t handle, size_t size)
1351{
1352        __iommu_remove_mapping(dev, handle, size);
1353        __free_from_pool(cpu_addr, size);
1354}
1355
1356static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1357            dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1358{
1359        pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1360        struct page **pages;
1361        void *addr = NULL;
1362
1363        *handle = DMA_ERROR_CODE;
1364        size = PAGE_ALIGN(size);
1365
1366        if (!(gfp & __GFP_WAIT))
1367                return __iommu_alloc_atomic(dev, size, handle);
1368
1369        /*
1370         * Following is a work-around (a.k.a. hack) to prevent pages
1371         * with __GFP_COMP being passed to split_page() which cannot
1372         * handle them.  The real problem is that this flag probably
1373         * should be 0 on ARM as it is not supported on this
1374         * platform; see CONFIG_HUGETLBFS.
1375         */
1376        gfp &= ~(__GFP_COMP);
1377
1378        pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1379        if (!pages)
1380                return NULL;
1381
1382        *handle = __iommu_create_mapping(dev, pages, size);
1383        if (*handle == DMA_ERROR_CODE)
1384                goto err_buffer;
1385
1386        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1387                return pages;
1388
1389        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1390                                   __builtin_return_address(0));
1391        if (!addr)
1392                goto err_mapping;
1393
1394        return addr;
1395
1396err_mapping:
1397        __iommu_remove_mapping(dev, *handle, size);
1398err_buffer:
1399        __iommu_free_buffer(dev, pages, size, attrs);
1400        return NULL;
1401}
1402
1403static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1404                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1405                    struct dma_attrs *attrs)
1406{
1407        unsigned long uaddr = vma->vm_start;
1408        unsigned long usize = vma->vm_end - vma->vm_start;
1409        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1410
1411        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1412
1413        if (!pages)
1414                return -ENXIO;
1415
1416        do {
1417                int ret = vm_insert_page(vma, uaddr, *pages++);
1418                if (ret) {
1419                        pr_err("Remapping memory failed: %d\n", ret);
1420                        return ret;
1421                }
1422                uaddr += PAGE_SIZE;
1423                usize -= PAGE_SIZE;
1424        } while (usize > 0);
1425
1426        return 0;
1427}
1428
1429/*
1430 * free a page as defined by the above mapping.
1431 * Must not be called with IRQs disabled.
1432 */
1433void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1434                          dma_addr_t handle, struct dma_attrs *attrs)
1435{
1436        struct page **pages;
1437        size = PAGE_ALIGN(size);
1438
1439        if (__in_atomic_pool(cpu_addr, size)) {
1440                __iommu_free_atomic(dev, cpu_addr, handle, size);
1441                return;
1442        }
1443
1444        pages = __iommu_get_pages(cpu_addr, attrs);
1445        if (!pages) {
1446                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1447                return;
1448        }
1449
1450        if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1451                dma_common_free_remap(cpu_addr, size,
1452                        VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1453        }
1454
1455        __iommu_remove_mapping(dev, handle, size);
1456        __iommu_free_buffer(dev, pages, size, attrs);
1457}
1458
1459static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1460                                 void *cpu_addr, dma_addr_t dma_addr,
1461                                 size_t size, struct dma_attrs *attrs)
1462{
1463        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1464        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1465
1466        if (!pages)
1467                return -ENXIO;
1468
1469        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1470                                         GFP_KERNEL);
1471}
1472
1473static int __dma_direction_to_prot(enum dma_data_direction dir)
1474{
1475        int prot;
1476
1477        switch (dir) {
1478        case DMA_BIDIRECTIONAL:
1479                prot = IOMMU_READ | IOMMU_WRITE;
1480                break;
1481        case DMA_TO_DEVICE:
1482                prot = IOMMU_READ;
1483                break;
1484        case DMA_FROM_DEVICE:
1485                prot = IOMMU_WRITE;
1486                break;
1487        default:
1488                prot = 0;
1489        }
1490
1491        return prot;
1492}
1493
1494/*
1495 * Map a part of the scatter-gather list into contiguous io address space
1496 */
1497static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1498                          size_t size, dma_addr_t *handle,
1499                          enum dma_data_direction dir, struct dma_attrs *attrs,
1500                          bool is_coherent)
1501{
1502        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1503        dma_addr_t iova, iova_base;
1504        int ret = 0;
1505        unsigned int count;
1506        struct scatterlist *s;
1507        int prot;
1508
1509        size = PAGE_ALIGN(size);
1510        *handle = DMA_ERROR_CODE;
1511
1512        iova_base = iova = __alloc_iova(mapping, size);
1513        if (iova == DMA_ERROR_CODE)
1514                return -ENOMEM;
1515
1516        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1517                phys_addr_t phys = sg_phys(s) & PAGE_MASK;
1518                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1519
1520                if (!is_coherent &&
1521                        !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1522                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1523
1524                prot = __dma_direction_to_prot(dir);
1525
1526                ret = iommu_map(mapping->domain, iova, phys, len, prot);
1527                if (ret < 0)
1528                        goto fail;
1529                count += len >> PAGE_SHIFT;
1530                iova += len;
1531        }
1532        *handle = iova_base;
1533
1534        return 0;
1535fail:
1536        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1537        __free_iova(mapping, iova_base, size);
1538        return ret;
1539}
1540
1541static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1542                     enum dma_data_direction dir, struct dma_attrs *attrs,
1543                     bool is_coherent)
1544{
1545        struct scatterlist *s = sg, *dma = sg, *start = sg;
1546        int i, count = 0;
1547        unsigned int offset = s->offset;
1548        unsigned int size = s->offset + s->length;
1549        unsigned int max = dma_get_max_seg_size(dev);
1550
1551        for (i = 1; i < nents; i++) {
1552                s = sg_next(s);
1553
1554                s->dma_address = DMA_ERROR_CODE;
1555                s->dma_length = 0;
1556
1557                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1558                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1559                            dir, attrs, is_coherent) < 0)
1560                                goto bad_mapping;
1561
1562                        dma->dma_address += offset;
1563                        dma->dma_length = size - offset;
1564
1565                        size = offset = s->offset;
1566                        start = s;
1567                        dma = sg_next(dma);
1568                        count += 1;
1569                }
1570                size += s->length;
1571        }
1572        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1573                is_coherent) < 0)
1574                goto bad_mapping;
1575
1576        dma->dma_address += offset;
1577        dma->dma_length = size - offset;
1578
1579        return count+1;
1580
1581bad_mapping:
1582        for_each_sg(sg, s, count, i)
1583                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1584        return 0;
1585}
1586
1587/**
1588 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1589 * @dev: valid struct device pointer
1590 * @sg: list of buffers
1591 * @nents: number of buffers to map
1592 * @dir: DMA transfer direction
1593 *
1594 * Map a set of i/o coherent buffers described by scatterlist in streaming
1595 * mode for DMA. The scatter gather list elements are merged together (if
1596 * possible) and tagged with the appropriate dma address and length. They are
1597 * obtained via sg_dma_{address,length}.
1598 */
1599int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1600                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1601{
1602        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1603}
1604
1605/**
1606 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1607 * @dev: valid struct device pointer
1608 * @sg: list of buffers
1609 * @nents: number of buffers to map
1610 * @dir: DMA transfer direction
1611 *
1612 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1613 * The scatter gather list elements are merged together (if possible) and
1614 * tagged with the appropriate dma address and length. They are obtained via
1615 * sg_dma_{address,length}.
1616 */
1617int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1618                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1619{
1620        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1621}
1622
1623static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1624                int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1625                bool is_coherent)
1626{
1627        struct scatterlist *s;
1628        int i;
1629
1630        for_each_sg(sg, s, nents, i) {
1631                if (sg_dma_len(s))
1632                        __iommu_remove_mapping(dev, sg_dma_address(s),
1633                                               sg_dma_len(s));
1634                if (!is_coherent &&
1635                    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1636                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1637                                              s->length, dir);
1638        }
1639}
1640
1641/**
1642 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1643 * @dev: valid struct device pointer
1644 * @sg: list of buffers
1645 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1646 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1647 *
1648 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1649 * rules concerning calls here are the same as for dma_unmap_single().
1650 */
1651void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1652                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1653{
1654        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1655}
1656
1657/**
1658 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1659 * @dev: valid struct device pointer
1660 * @sg: list of buffers
1661 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1662 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1663 *
1664 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1665 * rules concerning calls here are the same as for dma_unmap_single().
1666 */
1667void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1668                        enum dma_data_direction dir, struct dma_attrs *attrs)
1669{
1670        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1671}
1672
1673/**
1674 * arm_iommu_sync_sg_for_cpu
1675 * @dev: valid struct device pointer
1676 * @sg: list of buffers
1677 * @nents: number of buffers to map (returned from dma_map_sg)
1678 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1679 */
1680void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1681                        int nents, enum dma_data_direction dir)
1682{
1683        struct scatterlist *s;
1684        int i;
1685
1686        for_each_sg(sg, s, nents, i)
1687                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1688
1689}
1690
1691/**
1692 * arm_iommu_sync_sg_for_device
1693 * @dev: valid struct device pointer
1694 * @sg: list of buffers
1695 * @nents: number of buffers to map (returned from dma_map_sg)
1696 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1697 */
1698void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1699                        int nents, enum dma_data_direction dir)
1700{
1701        struct scatterlist *s;
1702        int i;
1703
1704        for_each_sg(sg, s, nents, i)
1705                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1706}
1707
1708
1709/**
1710 * arm_coherent_iommu_map_page
1711 * @dev: valid struct device pointer
1712 * @page: page that buffer resides in
1713 * @offset: offset into page for start of buffer
1714 * @size: size of buffer to map
1715 * @dir: DMA transfer direction
1716 *
1717 * Coherent IOMMU aware version of arm_dma_map_page()
1718 */
1719static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1720             unsigned long offset, size_t size, enum dma_data_direction dir,
1721             struct dma_attrs *attrs)
1722{
1723        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1724        dma_addr_t dma_addr;
1725        int ret, prot, len = PAGE_ALIGN(size + offset);
1726
1727        dma_addr = __alloc_iova(mapping, len);
1728        if (dma_addr == DMA_ERROR_CODE)
1729                return dma_addr;
1730
1731        prot = __dma_direction_to_prot(dir);
1732
1733        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1734        if (ret < 0)
1735                goto fail;
1736
1737        return dma_addr + offset;
1738fail:
1739        __free_iova(mapping, dma_addr, len);
1740        return DMA_ERROR_CODE;
1741}
1742
1743/**
1744 * arm_iommu_map_page
1745 * @dev: valid struct device pointer
1746 * @page: page that buffer resides in
1747 * @offset: offset into page for start of buffer
1748 * @size: size of buffer to map
1749 * @dir: DMA transfer direction
1750 *
1751 * IOMMU aware version of arm_dma_map_page()
1752 */
1753static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1754             unsigned long offset, size_t size, enum dma_data_direction dir,
1755             struct dma_attrs *attrs)
1756{
1757        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1758                __dma_page_cpu_to_dev(page, offset, size, dir);
1759
1760        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1761}
1762
1763/**
1764 * arm_coherent_iommu_unmap_page
1765 * @dev: valid struct device pointer
1766 * @handle: DMA address of buffer
1767 * @size: size of buffer (same as passed to dma_map_page)
1768 * @dir: DMA transfer direction (same as passed to dma_map_page)
1769 *
1770 * Coherent IOMMU aware version of arm_dma_unmap_page()
1771 */
1772static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1773                size_t size, enum dma_data_direction dir,
1774                struct dma_attrs *attrs)
1775{
1776        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1777        dma_addr_t iova = handle & PAGE_MASK;
1778        int offset = handle & ~PAGE_MASK;
1779        int len = PAGE_ALIGN(size + offset);
1780
1781        if (!iova)
1782                return;
1783
1784        iommu_unmap(mapping->domain, iova, len);
1785        __free_iova(mapping, iova, len);
1786}
1787
1788/**
1789 * arm_iommu_unmap_page
1790 * @dev: valid struct device pointer
1791 * @handle: DMA address of buffer
1792 * @size: size of buffer (same as passed to dma_map_page)
1793 * @dir: DMA transfer direction (same as passed to dma_map_page)
1794 *
1795 * IOMMU aware version of arm_dma_unmap_page()
1796 */
1797static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1798                size_t size, enum dma_data_direction dir,
1799                struct dma_attrs *attrs)
1800{
1801        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1802        dma_addr_t iova = handle & PAGE_MASK;
1803        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1804        int offset = handle & ~PAGE_MASK;
1805        int len = PAGE_ALIGN(size + offset);
1806
1807        if (!iova)
1808                return;
1809
1810        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1811                __dma_page_dev_to_cpu(page, offset, size, dir);
1812
1813        iommu_unmap(mapping->domain, iova, len);
1814        __free_iova(mapping, iova, len);
1815}
1816
1817static void arm_iommu_sync_single_for_cpu(struct device *dev,
1818                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1819{
1820        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1821        dma_addr_t iova = handle & PAGE_MASK;
1822        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1823        unsigned int offset = handle & ~PAGE_MASK;
1824
1825        if (!iova)
1826                return;
1827
1828        __dma_page_dev_to_cpu(page, offset, size, dir);
1829}
1830
1831static void arm_iommu_sync_single_for_device(struct device *dev,
1832                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1833{
1834        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1835        dma_addr_t iova = handle & PAGE_MASK;
1836        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1837        unsigned int offset = handle & ~PAGE_MASK;
1838
1839        if (!iova)
1840                return;
1841
1842        __dma_page_cpu_to_dev(page, offset, size, dir);
1843}
1844
1845struct dma_map_ops iommu_ops = {
1846        .alloc          = arm_iommu_alloc_attrs,
1847        .free           = arm_iommu_free_attrs,
1848        .mmap           = arm_iommu_mmap_attrs,
1849        .get_sgtable    = arm_iommu_get_sgtable,
1850
1851        .map_page               = arm_iommu_map_page,
1852        .unmap_page             = arm_iommu_unmap_page,
1853        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1854        .sync_single_for_device = arm_iommu_sync_single_for_device,
1855
1856        .map_sg                 = arm_iommu_map_sg,
1857        .unmap_sg               = arm_iommu_unmap_sg,
1858        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1859        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1860
1861        .set_dma_mask           = arm_dma_set_mask,
1862};
1863
1864struct dma_map_ops iommu_coherent_ops = {
1865        .alloc          = arm_iommu_alloc_attrs,
1866        .free           = arm_iommu_free_attrs,
1867        .mmap           = arm_iommu_mmap_attrs,
1868        .get_sgtable    = arm_iommu_get_sgtable,
1869
1870        .map_page       = arm_coherent_iommu_map_page,
1871        .unmap_page     = arm_coherent_iommu_unmap_page,
1872
1873        .map_sg         = arm_coherent_iommu_map_sg,
1874        .unmap_sg       = arm_coherent_iommu_unmap_sg,
1875
1876        .set_dma_mask   = arm_dma_set_mask,
1877};
1878
1879/**
1880 * arm_iommu_create_mapping
1881 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1882 * @base: start address of the valid IO address space
1883 * @size: maximum size of the valid IO address space
1884 *
1885 * Creates a mapping structure which holds information about used/unused
1886 * IO address ranges, which is required to perform memory allocation and
1887 * mapping with IOMMU aware functions.
1888 *
1889 * The client device need to be attached to the mapping with
1890 * arm_iommu_attach_device function.
1891 */
1892struct dma_iommu_mapping *
1893arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1894{
1895        unsigned int bits = size >> PAGE_SHIFT;
1896        unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1897        struct dma_iommu_mapping *mapping;
1898        int extensions = 1;
1899        int err = -ENOMEM;
1900
1901        /* currently only 32-bit DMA address space is supported */
1902        if (size > DMA_BIT_MASK(32) + 1)
1903                return ERR_PTR(-ERANGE);
1904
1905        if (!bitmap_size)
1906                return ERR_PTR(-EINVAL);
1907
1908        if (bitmap_size > PAGE_SIZE) {
1909                extensions = bitmap_size / PAGE_SIZE;
1910                bitmap_size = PAGE_SIZE;
1911        }
1912
1913        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1914        if (!mapping)
1915                goto err;
1916
1917        mapping->bitmap_size = bitmap_size;
1918        mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1919                                GFP_KERNEL);
1920        if (!mapping->bitmaps)
1921                goto err2;
1922
1923        mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1924        if (!mapping->bitmaps[0])
1925                goto err3;
1926
1927        mapping->nr_bitmaps = 1;
1928        mapping->extensions = extensions;
1929        mapping->base = base;
1930        mapping->bits = BITS_PER_BYTE * bitmap_size;
1931
1932        spin_lock_init(&mapping->lock);
1933
1934        mapping->domain = iommu_domain_alloc(bus);
1935        if (!mapping->domain)
1936                goto err4;
1937
1938        kref_init(&mapping->kref);
1939        return mapping;
1940err4:
1941        kfree(mapping->bitmaps[0]);
1942err3:
1943        kfree(mapping->bitmaps);
1944err2:
1945        kfree(mapping);
1946err:
1947        return ERR_PTR(err);
1948}
1949EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1950
1951static void release_iommu_mapping(struct kref *kref)
1952{
1953        int i;
1954        struct dma_iommu_mapping *mapping =
1955                container_of(kref, struct dma_iommu_mapping, kref);
1956
1957        iommu_domain_free(mapping->domain);
1958        for (i = 0; i < mapping->nr_bitmaps; i++)
1959                kfree(mapping->bitmaps[i]);
1960        kfree(mapping->bitmaps);
1961        kfree(mapping);
1962}
1963
1964static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1965{
1966        int next_bitmap;
1967
1968        if (mapping->nr_bitmaps >= mapping->extensions)
1969                return -EINVAL;
1970
1971        next_bitmap = mapping->nr_bitmaps;
1972        mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1973                                                GFP_ATOMIC);
1974        if (!mapping->bitmaps[next_bitmap])
1975                return -ENOMEM;
1976
1977        mapping->nr_bitmaps++;
1978
1979        return 0;
1980}
1981
1982void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1983{
1984        if (mapping)
1985                kref_put(&mapping->kref, release_iommu_mapping);
1986}
1987EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1988
1989static int __arm_iommu_attach_device(struct device *dev,
1990                                     struct dma_iommu_mapping *mapping)
1991{
1992        int err;
1993
1994        err = iommu_attach_device(mapping->domain, dev);
1995        if (err)
1996                return err;
1997
1998        kref_get(&mapping->kref);
1999        to_dma_iommu_mapping(dev) = mapping;
2000
2001        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2002        return 0;
2003}
2004
2005/**
2006 * arm_iommu_attach_device
2007 * @dev: valid struct device pointer
2008 * @mapping: io address space mapping structure (returned from
2009 *      arm_iommu_create_mapping)
2010 *
2011 * Attaches specified io address space mapping to the provided device.
2012 * This replaces the dma operations (dma_map_ops pointer) with the
2013 * IOMMU aware version.
2014 *
2015 * More than one client might be attached to the same io address space
2016 * mapping.
2017 */
2018int arm_iommu_attach_device(struct device *dev,
2019                            struct dma_iommu_mapping *mapping)
2020{
2021        int err;
2022
2023        err = __arm_iommu_attach_device(dev, mapping);
2024        if (err)
2025                return err;
2026
2027        set_dma_ops(dev, &iommu_ops);
2028        return 0;
2029}
2030EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2031
2032static void __arm_iommu_detach_device(struct device *dev)
2033{
2034        struct dma_iommu_mapping *mapping;
2035
2036        mapping = to_dma_iommu_mapping(dev);
2037        if (!mapping) {
2038                dev_warn(dev, "Not attached\n");
2039                return;
2040        }
2041
2042        iommu_detach_device(mapping->domain, dev);
2043        kref_put(&mapping->kref, release_iommu_mapping);
2044        to_dma_iommu_mapping(dev) = NULL;
2045
2046        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2047}
2048
2049/**
2050 * arm_iommu_detach_device
2051 * @dev: valid struct device pointer
2052 *
2053 * Detaches the provided device from a previously attached map.
2054 * This voids the dma operations (dma_map_ops pointer)
2055 */
2056void arm_iommu_detach_device(struct device *dev)
2057{
2058        __arm_iommu_detach_device(dev);
2059        set_dma_ops(dev, NULL);
2060}
2061EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2062
2063static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2064{
2065        return coherent ? &iommu_coherent_ops : &iommu_ops;
2066}
2067
2068static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2069                                    struct iommu_ops *iommu)
2070{
2071        struct dma_iommu_mapping *mapping;
2072
2073        if (!iommu)
2074                return false;
2075
2076        mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2077        if (IS_ERR(mapping)) {
2078                pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2079                                size, dev_name(dev));
2080                return false;
2081        }
2082
2083        if (__arm_iommu_attach_device(dev, mapping)) {
2084                pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2085                                dev_name(dev));
2086                arm_iommu_release_mapping(mapping);
2087                return false;
2088        }
2089
2090        return true;
2091}
2092
2093static void arm_teardown_iommu_dma_ops(struct device *dev)
2094{
2095        struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2096
2097        if (!mapping)
2098                return;
2099
2100        __arm_iommu_detach_device(dev);
2101        arm_iommu_release_mapping(mapping);
2102}
2103
2104#else
2105
2106static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2107                                    struct iommu_ops *iommu)
2108{
2109        return false;
2110}
2111
2112static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2113
2114#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2115
2116#endif  /* CONFIG_ARM_DMA_USE_IOMMU */
2117
2118static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2119{
2120        return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2121}
2122
2123void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2124                        struct iommu_ops *iommu, bool coherent)
2125{
2126        struct dma_map_ops *dma_ops;
2127
2128        dev->archdata.dma_coherent = coherent;
2129        if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2130                dma_ops = arm_get_iommu_dma_map_ops(coherent);
2131        else
2132                dma_ops = arm_get_dma_map_ops(coherent);
2133
2134        set_dma_ops(dev, dma_ops);
2135}
2136
2137void arch_teardown_dma_ops(struct device *dev)
2138{
2139        arm_teardown_iommu_dma_ops(dev);
2140}
2141