linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "mm.h"
  42#include "tcm.h"
  43
  44/*
  45 * empty_zero_page is a special page that is used for
  46 * zero-initialized data and COW.
  47 */
  48struct page *empty_zero_page;
  49EXPORT_SYMBOL(empty_zero_page);
  50
  51/*
  52 * The pmd table for the upper-most set of pages.
  53 */
  54pmd_t *top_pmd;
  55
  56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  57
  58#define CPOLICY_UNCACHED        0
  59#define CPOLICY_BUFFERED        1
  60#define CPOLICY_WRITETHROUGH    2
  61#define CPOLICY_WRITEBACK       3
  62#define CPOLICY_WRITEALLOC      4
  63
  64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  65static unsigned int ecc_mask __initdata = 0;
  66pgprot_t pgprot_user;
  67pgprot_t pgprot_kernel;
  68pgprot_t pgprot_hyp_device;
  69pgprot_t pgprot_s2;
  70pgprot_t pgprot_s2_device;
  71
  72EXPORT_SYMBOL(pgprot_user);
  73EXPORT_SYMBOL(pgprot_kernel);
  74
  75struct cachepolicy {
  76        const char      policy[16];
  77        unsigned int    cr_mask;
  78        pmdval_t        pmd;
  79        pteval_t        pte;
  80        pteval_t        pte_s2;
  81};
  82
  83#ifdef CONFIG_ARM_LPAE
  84#define s2_policy(policy)       policy
  85#else
  86#define s2_policy(policy)       0
  87#endif
  88
  89static struct cachepolicy cache_policies[] __initdata = {
  90        {
  91                .policy         = "uncached",
  92                .cr_mask        = CR_W|CR_C,
  93                .pmd            = PMD_SECT_UNCACHED,
  94                .pte            = L_PTE_MT_UNCACHED,
  95                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  96        }, {
  97                .policy         = "buffered",
  98                .cr_mask        = CR_C,
  99                .pmd            = PMD_SECT_BUFFERED,
 100                .pte            = L_PTE_MT_BUFFERABLE,
 101                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
 102        }, {
 103                .policy         = "writethrough",
 104                .cr_mask        = 0,
 105                .pmd            = PMD_SECT_WT,
 106                .pte            = L_PTE_MT_WRITETHROUGH,
 107                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 108        }, {
 109                .policy         = "writeback",
 110                .cr_mask        = 0,
 111                .pmd            = PMD_SECT_WB,
 112                .pte            = L_PTE_MT_WRITEBACK,
 113                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 114        }, {
 115                .policy         = "writealloc",
 116                .cr_mask        = 0,
 117                .pmd            = PMD_SECT_WBWA,
 118                .pte            = L_PTE_MT_WRITEALLOC,
 119                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 120        }
 121};
 122
 123#ifdef CONFIG_CPU_CP15
 124static unsigned long initial_pmd_value __initdata = 0;
 125
 126/*
 127 * Initialise the cache_policy variable with the initial state specified
 128 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 129 * the C code sets the page tables up with the same policy as the head
 130 * assembly code, which avoids an illegal state where the TLBs can get
 131 * confused.  See comments in early_cachepolicy() for more information.
 132 */
 133void __init init_default_cache_policy(unsigned long pmd)
 134{
 135        int i;
 136
 137        initial_pmd_value = pmd;
 138
 139        pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
 140
 141        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 142                if (cache_policies[i].pmd == pmd) {
 143                        cachepolicy = i;
 144                        break;
 145                }
 146
 147        if (i == ARRAY_SIZE(cache_policies))
 148                pr_err("ERROR: could not find cache policy\n");
 149}
 150
 151/*
 152 * These are useful for identifying cache coherency problems by allowing
 153 * the cache or the cache and writebuffer to be turned off.  (Note: the
 154 * write buffer should not be on and the cache off).
 155 */
 156static int __init early_cachepolicy(char *p)
 157{
 158        int i, selected = -1;
 159
 160        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 161                int len = strlen(cache_policies[i].policy);
 162
 163                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 164                        selected = i;
 165                        break;
 166                }
 167        }
 168
 169        if (selected == -1)
 170                pr_err("ERROR: unknown or unsupported cache policy\n");
 171
 172        /*
 173         * This restriction is partly to do with the way we boot; it is
 174         * unpredictable to have memory mapped using two different sets of
 175         * memory attributes (shared, type, and cache attribs).  We can not
 176         * change these attributes once the initial assembly has setup the
 177         * page tables.
 178         */
 179        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 180                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 181                        cache_policies[cachepolicy].policy);
 182                return 0;
 183        }
 184
 185        if (selected != cachepolicy) {
 186                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 187                cachepolicy = selected;
 188                flush_cache_all();
 189                set_cr(cr);
 190        }
 191        return 0;
 192}
 193early_param("cachepolicy", early_cachepolicy);
 194
 195static int __init early_nocache(char *__unused)
 196{
 197        char *p = "buffered";
 198        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 199        early_cachepolicy(p);
 200        return 0;
 201}
 202early_param("nocache", early_nocache);
 203
 204static int __init early_nowrite(char *__unused)
 205{
 206        char *p = "uncached";
 207        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 208        early_cachepolicy(p);
 209        return 0;
 210}
 211early_param("nowb", early_nowrite);
 212
 213#ifndef CONFIG_ARM_LPAE
 214static int __init early_ecc(char *p)
 215{
 216        if (memcmp(p, "on", 2) == 0)
 217                ecc_mask = PMD_PROTECTION;
 218        else if (memcmp(p, "off", 3) == 0)
 219                ecc_mask = 0;
 220        return 0;
 221}
 222early_param("ecc", early_ecc);
 223#endif
 224
 225#else /* ifdef CONFIG_CPU_CP15 */
 226
 227static int __init early_cachepolicy(char *p)
 228{
 229        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 230}
 231early_param("cachepolicy", early_cachepolicy);
 232
 233static int __init noalign_setup(char *__unused)
 234{
 235        pr_warn("noalign kernel parameter not supported without cp15\n");
 236}
 237__setup("noalign", noalign_setup);
 238
 239#endif /* ifdef CONFIG_CPU_CP15 / else */
 240
 241#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 242#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 243#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 244
 245static struct mem_type mem_types[] = {
 246        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 247                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 248                                  L_PTE_SHARED,
 249                .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
 250                                  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 251                                  L_PTE_SHARED,
 252                .prot_l1        = PMD_TYPE_TABLE,
 253                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 254                .domain         = DOMAIN_IO,
 255        },
 256        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 257                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 258                .prot_l1        = PMD_TYPE_TABLE,
 259                .prot_sect      = PROT_SECT_DEVICE,
 260                .domain         = DOMAIN_IO,
 261        },
 262        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 263                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 264                .prot_l1        = PMD_TYPE_TABLE,
 265                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 266                .domain         = DOMAIN_IO,
 267        },
 268        [MT_DEVICE_WC] = {      /* ioremap_wc */
 269                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 270                .prot_l1        = PMD_TYPE_TABLE,
 271                .prot_sect      = PROT_SECT_DEVICE,
 272                .domain         = DOMAIN_IO,
 273        },
 274        [MT_UNCACHED] = {
 275                .prot_pte       = PROT_PTE_DEVICE,
 276                .prot_l1        = PMD_TYPE_TABLE,
 277                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 278                .domain         = DOMAIN_IO,
 279        },
 280        [MT_CACHECLEAN] = {
 281                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 282                .domain    = DOMAIN_KERNEL,
 283        },
 284#ifndef CONFIG_ARM_LPAE
 285        [MT_MINICLEAN] = {
 286                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 287                .domain    = DOMAIN_KERNEL,
 288        },
 289#endif
 290        [MT_LOW_VECTORS] = {
 291                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 292                                L_PTE_RDONLY,
 293                .prot_l1   = PMD_TYPE_TABLE,
 294                .domain    = DOMAIN_VECTORS,
 295        },
 296        [MT_HIGH_VECTORS] = {
 297                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 298                                L_PTE_USER | L_PTE_RDONLY,
 299                .prot_l1   = PMD_TYPE_TABLE,
 300                .domain    = DOMAIN_VECTORS,
 301        },
 302        [MT_MEMORY_RWX] = {
 303                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 304                .prot_l1   = PMD_TYPE_TABLE,
 305                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306                .domain    = DOMAIN_KERNEL,
 307        },
 308        [MT_MEMORY_RW] = {
 309                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 310                             L_PTE_XN,
 311                .prot_l1   = PMD_TYPE_TABLE,
 312                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 313                .domain    = DOMAIN_KERNEL,
 314        },
 315        [MT_ROM] = {
 316                .prot_sect = PMD_TYPE_SECT,
 317                .domain    = DOMAIN_KERNEL,
 318        },
 319        [MT_MEMORY_RWX_NONCACHED] = {
 320                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 321                                L_PTE_MT_BUFFERABLE,
 322                .prot_l1   = PMD_TYPE_TABLE,
 323                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 324                .domain    = DOMAIN_KERNEL,
 325        },
 326        [MT_MEMORY_RW_DTCM] = {
 327                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 328                                L_PTE_XN,
 329                .prot_l1   = PMD_TYPE_TABLE,
 330                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 331                .domain    = DOMAIN_KERNEL,
 332        },
 333        [MT_MEMORY_RWX_ITCM] = {
 334                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 335                .prot_l1   = PMD_TYPE_TABLE,
 336                .domain    = DOMAIN_KERNEL,
 337        },
 338        [MT_MEMORY_RW_SO] = {
 339                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 340                                L_PTE_MT_UNCACHED | L_PTE_XN,
 341                .prot_l1   = PMD_TYPE_TABLE,
 342                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 343                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 344                .domain    = DOMAIN_KERNEL,
 345        },
 346        [MT_MEMORY_DMA_READY] = {
 347                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 348                                L_PTE_XN,
 349                .prot_l1   = PMD_TYPE_TABLE,
 350                .domain    = DOMAIN_KERNEL,
 351        },
 352};
 353
 354const struct mem_type *get_mem_type(unsigned int type)
 355{
 356        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 357}
 358EXPORT_SYMBOL(get_mem_type);
 359
 360static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 361
 362static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 363        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 364
 365static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 366{
 367        return &bm_pte[pte_index(addr)];
 368}
 369
 370static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 371{
 372        return pte_offset_kernel(dir, addr);
 373}
 374
 375static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 376{
 377        pgd_t *pgd = pgd_offset_k(addr);
 378        pud_t *pud = pud_offset(pgd, addr);
 379        pmd_t *pmd = pmd_offset(pud, addr);
 380
 381        return pmd;
 382}
 383
 384void __init early_fixmap_init(void)
 385{
 386        pmd_t *pmd;
 387
 388        /*
 389         * The early fixmap range spans multiple pmds, for which
 390         * we are not prepared:
 391         */
 392        BUILD_BUG_ON((__fix_to_virt(__end_of_permanent_fixed_addresses) >> PMD_SHIFT)
 393                     != FIXADDR_TOP >> PMD_SHIFT);
 394
 395        pmd = fixmap_pmd(FIXADDR_TOP);
 396        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 397
 398        pte_offset_fixmap = pte_offset_early_fixmap;
 399}
 400
 401/*
 402 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 403 * As a result, this can only be called with preemption disabled, as under
 404 * stop_machine().
 405 */
 406void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 407{
 408        unsigned long vaddr = __fix_to_virt(idx);
 409        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 410
 411        /* Make sure fixmap region does not exceed available allocation. */
 412        BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 413                     FIXADDR_END);
 414        BUG_ON(idx >= __end_of_fixed_addresses);
 415
 416        if (pgprot_val(prot))
 417                set_pte_at(NULL, vaddr, pte,
 418                        pfn_pte(phys >> PAGE_SHIFT, prot));
 419        else
 420                pte_clear(NULL, vaddr, pte);
 421        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 422}
 423
 424/*
 425 * Adjust the PMD section entries according to the CPU in use.
 426 */
 427static void __init build_mem_type_table(void)
 428{
 429        struct cachepolicy *cp;
 430        unsigned int cr = get_cr();
 431        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 432        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 433        int cpu_arch = cpu_architecture();
 434        int i;
 435
 436        if (cpu_arch < CPU_ARCH_ARMv6) {
 437#if defined(CONFIG_CPU_DCACHE_DISABLE)
 438                if (cachepolicy > CPOLICY_BUFFERED)
 439                        cachepolicy = CPOLICY_BUFFERED;
 440#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 441                if (cachepolicy > CPOLICY_WRITETHROUGH)
 442                        cachepolicy = CPOLICY_WRITETHROUGH;
 443#endif
 444        }
 445        if (cpu_arch < CPU_ARCH_ARMv5) {
 446                if (cachepolicy >= CPOLICY_WRITEALLOC)
 447                        cachepolicy = CPOLICY_WRITEBACK;
 448                ecc_mask = 0;
 449        }
 450
 451        if (is_smp()) {
 452                if (cachepolicy != CPOLICY_WRITEALLOC) {
 453                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 454                        cachepolicy = CPOLICY_WRITEALLOC;
 455                }
 456                if (!(initial_pmd_value & PMD_SECT_S)) {
 457                        pr_warn("Forcing shared mappings for SMP\n");
 458                        initial_pmd_value |= PMD_SECT_S;
 459                }
 460        }
 461
 462        /*
 463         * Strip out features not present on earlier architectures.
 464         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 465         * without extended page tables don't have the 'Shared' bit.
 466         */
 467        if (cpu_arch < CPU_ARCH_ARMv5)
 468                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 469                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 470        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 471                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 472                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 473
 474        /*
 475         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 476         * "update-able on write" bit on ARM610).  However, Xscale and
 477         * Xscale3 require this bit to be cleared.
 478         */
 479        if (cpu_is_xscale() || cpu_is_xsc3()) {
 480                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 481                        mem_types[i].prot_sect &= ~PMD_BIT4;
 482                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 483                }
 484        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 485                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 486                        if (mem_types[i].prot_l1)
 487                                mem_types[i].prot_l1 |= PMD_BIT4;
 488                        if (mem_types[i].prot_sect)
 489                                mem_types[i].prot_sect |= PMD_BIT4;
 490                }
 491        }
 492
 493        /*
 494         * Mark the device areas according to the CPU/architecture.
 495         */
 496        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 497                if (!cpu_is_xsc3()) {
 498                        /*
 499                         * Mark device regions on ARMv6+ as execute-never
 500                         * to prevent speculative instruction fetches.
 501                         */
 502                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 503                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 504                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 505                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 506
 507                        /* Also setup NX memory mapping */
 508                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 509                }
 510                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 511                        /*
 512                         * For ARMv7 with TEX remapping,
 513                         * - shared device is SXCB=1100
 514                         * - nonshared device is SXCB=0100
 515                         * - write combine device mem is SXCB=0001
 516                         * (Uncached Normal memory)
 517                         */
 518                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 519                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 520                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 521                } else if (cpu_is_xsc3()) {
 522                        /*
 523                         * For Xscale3,
 524                         * - shared device is TEXCB=00101
 525                         * - nonshared device is TEXCB=01000
 526                         * - write combine device mem is TEXCB=00100
 527                         * (Inner/Outer Uncacheable in xsc3 parlance)
 528                         */
 529                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 530                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 531                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 532                } else {
 533                        /*
 534                         * For ARMv6 and ARMv7 without TEX remapping,
 535                         * - shared device is TEXCB=00001
 536                         * - nonshared device is TEXCB=01000
 537                         * - write combine device mem is TEXCB=00100
 538                         * (Uncached Normal in ARMv6 parlance).
 539                         */
 540                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 541                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 542                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 543                }
 544        } else {
 545                /*
 546                 * On others, write combining is "Uncached/Buffered"
 547                 */
 548                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 549        }
 550
 551        /*
 552         * Now deal with the memory-type mappings
 553         */
 554        cp = &cache_policies[cachepolicy];
 555        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 556        s2_pgprot = cp->pte_s2;
 557        hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 558        s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 559
 560#ifndef CONFIG_ARM_LPAE
 561        /*
 562         * We don't use domains on ARMv6 (since this causes problems with
 563         * v6/v7 kernels), so we must use a separate memory type for user
 564         * r/o, kernel r/w to map the vectors page.
 565         */
 566        if (cpu_arch == CPU_ARCH_ARMv6)
 567                vecs_pgprot |= L_PTE_MT_VECTORS;
 568
 569        /*
 570         * Check is it with support for the PXN bit
 571         * in the Short-descriptor translation table format descriptors.
 572         */
 573        if (cpu_arch == CPU_ARCH_ARMv7 &&
 574                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) == 4) {
 575                user_pmd_table |= PMD_PXNTABLE;
 576        }
 577#endif
 578
 579        /*
 580         * ARMv6 and above have extended page tables.
 581         */
 582        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 583#ifndef CONFIG_ARM_LPAE
 584                /*
 585                 * Mark cache clean areas and XIP ROM read only
 586                 * from SVC mode and no access from userspace.
 587                 */
 588                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 589                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 590                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 591#endif
 592
 593                /*
 594                 * If the initial page tables were created with the S bit
 595                 * set, then we need to do the same here for the same
 596                 * reasons given in early_cachepolicy().
 597                 */
 598                if (initial_pmd_value & PMD_SECT_S) {
 599                        user_pgprot |= L_PTE_SHARED;
 600                        kern_pgprot |= L_PTE_SHARED;
 601                        vecs_pgprot |= L_PTE_SHARED;
 602                        s2_pgprot |= L_PTE_SHARED;
 603                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 604                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 605                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 606                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 607                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 608                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 609                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 610                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 611                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 612                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 613                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 614                }
 615        }
 616
 617        /*
 618         * Non-cacheable Normal - intended for memory areas that must
 619         * not cause dirty cache line writebacks when used
 620         */
 621        if (cpu_arch >= CPU_ARCH_ARMv6) {
 622                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 623                        /* Non-cacheable Normal is XCB = 001 */
 624                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 625                                PMD_SECT_BUFFERED;
 626                } else {
 627                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 628                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 629                                PMD_SECT_TEX(1);
 630                }
 631        } else {
 632                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 633        }
 634
 635#ifdef CONFIG_ARM_LPAE
 636        /*
 637         * Do not generate access flag faults for the kernel mappings.
 638         */
 639        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 640                mem_types[i].prot_pte |= PTE_EXT_AF;
 641                if (mem_types[i].prot_sect)
 642                        mem_types[i].prot_sect |= PMD_SECT_AF;
 643        }
 644        kern_pgprot |= PTE_EXT_AF;
 645        vecs_pgprot |= PTE_EXT_AF;
 646
 647        /*
 648         * Set PXN for user mappings
 649         */
 650        user_pgprot |= PTE_EXT_PXN;
 651#endif
 652
 653        for (i = 0; i < 16; i++) {
 654                pteval_t v = pgprot_val(protection_map[i]);
 655                protection_map[i] = __pgprot(v | user_pgprot);
 656        }
 657
 658        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 659        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 660
 661        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 662        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 663                                 L_PTE_DIRTY | kern_pgprot);
 664        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 665        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 666        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 667
 668        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 669        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 670        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 671        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 672        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 673        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 674        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 675        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 676        mem_types[MT_ROM].prot_sect |= cp->pmd;
 677
 678        switch (cp->pmd) {
 679        case PMD_SECT_WT:
 680                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 681                break;
 682        case PMD_SECT_WB:
 683        case PMD_SECT_WBWA:
 684                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 685                break;
 686        }
 687        pr_info("Memory policy: %sData cache %s\n",
 688                ecc_mask ? "ECC enabled, " : "", cp->policy);
 689
 690        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 691                struct mem_type *t = &mem_types[i];
 692                if (t->prot_l1)
 693                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 694                if (t->prot_sect)
 695                        t->prot_sect |= PMD_DOMAIN(t->domain);
 696        }
 697}
 698
 699#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 700pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 701                              unsigned long size, pgprot_t vma_prot)
 702{
 703        if (!pfn_valid(pfn))
 704                return pgprot_noncached(vma_prot);
 705        else if (file->f_flags & O_SYNC)
 706                return pgprot_writecombine(vma_prot);
 707        return vma_prot;
 708}
 709EXPORT_SYMBOL(phys_mem_access_prot);
 710#endif
 711
 712#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 713
 714static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 715{
 716        void *ptr = __va(memblock_alloc(sz, align));
 717        memset(ptr, 0, sz);
 718        return ptr;
 719}
 720
 721static void __init *early_alloc(unsigned long sz)
 722{
 723        return early_alloc_aligned(sz, sz);
 724}
 725
 726static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 727{
 728        if (pmd_none(*pmd)) {
 729                pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 730                __pmd_populate(pmd, __pa(pte), prot);
 731        }
 732        BUG_ON(pmd_bad(*pmd));
 733        return pte_offset_kernel(pmd, addr);
 734}
 735
 736static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 737                                  unsigned long end, unsigned long pfn,
 738                                  const struct mem_type *type)
 739{
 740        pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 741        do {
 742                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 743                pfn++;
 744        } while (pte++, addr += PAGE_SIZE, addr != end);
 745}
 746
 747static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 748                        unsigned long end, phys_addr_t phys,
 749                        const struct mem_type *type)
 750{
 751        pmd_t *p = pmd;
 752
 753#ifndef CONFIG_ARM_LPAE
 754        /*
 755         * In classic MMU format, puds and pmds are folded in to
 756         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 757         * group of L1 entries making up one logical pointer to
 758         * an L2 table (2MB), where as PMDs refer to the individual
 759         * L1 entries (1MB). Hence increment to get the correct
 760         * offset for odd 1MB sections.
 761         * (See arch/arm/include/asm/pgtable-2level.h)
 762         */
 763        if (addr & SECTION_SIZE)
 764                pmd++;
 765#endif
 766        do {
 767                *pmd = __pmd(phys | type->prot_sect);
 768                phys += SECTION_SIZE;
 769        } while (pmd++, addr += SECTION_SIZE, addr != end);
 770
 771        flush_pmd_entry(p);
 772}
 773
 774static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 775                                      unsigned long end, phys_addr_t phys,
 776                                      const struct mem_type *type)
 777{
 778        pmd_t *pmd = pmd_offset(pud, addr);
 779        unsigned long next;
 780
 781        do {
 782                /*
 783                 * With LPAE, we must loop over to map
 784                 * all the pmds for the given range.
 785                 */
 786                next = pmd_addr_end(addr, end);
 787
 788                /*
 789                 * Try a section mapping - addr, next and phys must all be
 790                 * aligned to a section boundary.
 791                 */
 792                if (type->prot_sect &&
 793                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 794                        __map_init_section(pmd, addr, next, phys, type);
 795                } else {
 796                        alloc_init_pte(pmd, addr, next,
 797                                                __phys_to_pfn(phys), type);
 798                }
 799
 800                phys += next - addr;
 801
 802        } while (pmd++, addr = next, addr != end);
 803}
 804
 805static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 806                                  unsigned long end, phys_addr_t phys,
 807                                  const struct mem_type *type)
 808{
 809        pud_t *pud = pud_offset(pgd, addr);
 810        unsigned long next;
 811
 812        do {
 813                next = pud_addr_end(addr, end);
 814                alloc_init_pmd(pud, addr, next, phys, type);
 815                phys += next - addr;
 816        } while (pud++, addr = next, addr != end);
 817}
 818
 819#ifndef CONFIG_ARM_LPAE
 820static void __init create_36bit_mapping(struct map_desc *md,
 821                                        const struct mem_type *type)
 822{
 823        unsigned long addr, length, end;
 824        phys_addr_t phys;
 825        pgd_t *pgd;
 826
 827        addr = md->virtual;
 828        phys = __pfn_to_phys(md->pfn);
 829        length = PAGE_ALIGN(md->length);
 830
 831        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 832                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 833                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 834                return;
 835        }
 836
 837        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 838         *      Since domain assignments can in fact be arbitrary, the
 839         *      'domain == 0' check below is required to insure that ARMv6
 840         *      supersections are only allocated for domain 0 regardless
 841         *      of the actual domain assignments in use.
 842         */
 843        if (type->domain) {
 844                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 845                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 846                return;
 847        }
 848
 849        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 850                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 851                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 852                return;
 853        }
 854
 855        /*
 856         * Shift bits [35:32] of address into bits [23:20] of PMD
 857         * (See ARMv6 spec).
 858         */
 859        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 860
 861        pgd = pgd_offset_k(addr);
 862        end = addr + length;
 863        do {
 864                pud_t *pud = pud_offset(pgd, addr);
 865                pmd_t *pmd = pmd_offset(pud, addr);
 866                int i;
 867
 868                for (i = 0; i < 16; i++)
 869                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 870
 871                addr += SUPERSECTION_SIZE;
 872                phys += SUPERSECTION_SIZE;
 873                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 874        } while (addr != end);
 875}
 876#endif  /* !CONFIG_ARM_LPAE */
 877
 878/*
 879 * Create the page directory entries and any necessary
 880 * page tables for the mapping specified by `md'.  We
 881 * are able to cope here with varying sizes and address
 882 * offsets, and we take full advantage of sections and
 883 * supersections.
 884 */
 885static void __init create_mapping(struct map_desc *md)
 886{
 887        unsigned long addr, length, end;
 888        phys_addr_t phys;
 889        const struct mem_type *type;
 890        pgd_t *pgd;
 891
 892        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 893                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 894                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 895                return;
 896        }
 897
 898        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 899            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 900            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 901                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 902                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 903        }
 904
 905        type = &mem_types[md->type];
 906
 907#ifndef CONFIG_ARM_LPAE
 908        /*
 909         * Catch 36-bit addresses
 910         */
 911        if (md->pfn >= 0x100000) {
 912                create_36bit_mapping(md, type);
 913                return;
 914        }
 915#endif
 916
 917        addr = md->virtual & PAGE_MASK;
 918        phys = __pfn_to_phys(md->pfn);
 919        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 920
 921        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 922                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 923                        (long long)__pfn_to_phys(md->pfn), addr);
 924                return;
 925        }
 926
 927        pgd = pgd_offset_k(addr);
 928        end = addr + length;
 929        do {
 930                unsigned long next = pgd_addr_end(addr, end);
 931
 932                alloc_init_pud(pgd, addr, next, phys, type);
 933
 934                phys += next - addr;
 935                addr = next;
 936        } while (pgd++, addr != end);
 937}
 938
 939/*
 940 * Create the architecture specific mappings
 941 */
 942void __init iotable_init(struct map_desc *io_desc, int nr)
 943{
 944        struct map_desc *md;
 945        struct vm_struct *vm;
 946        struct static_vm *svm;
 947
 948        if (!nr)
 949                return;
 950
 951        svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 952
 953        for (md = io_desc; nr; md++, nr--) {
 954                create_mapping(md);
 955
 956                vm = &svm->vm;
 957                vm->addr = (void *)(md->virtual & PAGE_MASK);
 958                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 959                vm->phys_addr = __pfn_to_phys(md->pfn);
 960                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 961                vm->flags |= VM_ARM_MTYPE(md->type);
 962                vm->caller = iotable_init;
 963                add_static_vm_early(svm++);
 964        }
 965}
 966
 967void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 968                                  void *caller)
 969{
 970        struct vm_struct *vm;
 971        struct static_vm *svm;
 972
 973        svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 974
 975        vm = &svm->vm;
 976        vm->addr = (void *)addr;
 977        vm->size = size;
 978        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 979        vm->caller = caller;
 980        add_static_vm_early(svm);
 981}
 982
 983#ifndef CONFIG_ARM_LPAE
 984
 985/*
 986 * The Linux PMD is made of two consecutive section entries covering 2MB
 987 * (see definition in include/asm/pgtable-2level.h).  However a call to
 988 * create_mapping() may optimize static mappings by using individual
 989 * 1MB section mappings.  This leaves the actual PMD potentially half
 990 * initialized if the top or bottom section entry isn't used, leaving it
 991 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 992 * the virtual space left free by that unused section entry.
 993 *
 994 * Let's avoid the issue by inserting dummy vm entries covering the unused
 995 * PMD halves once the static mappings are in place.
 996 */
 997
 998static void __init pmd_empty_section_gap(unsigned long addr)
 999{
1000        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1001}
1002
1003static void __init fill_pmd_gaps(void)
1004{
1005        struct static_vm *svm;
1006        struct vm_struct *vm;
1007        unsigned long addr, next = 0;
1008        pmd_t *pmd;
1009
1010        list_for_each_entry(svm, &static_vmlist, list) {
1011                vm = &svm->vm;
1012                addr = (unsigned long)vm->addr;
1013                if (addr < next)
1014                        continue;
1015
1016                /*
1017                 * Check if this vm starts on an odd section boundary.
1018                 * If so and the first section entry for this PMD is free
1019                 * then we block the corresponding virtual address.
1020                 */
1021                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1022                        pmd = pmd_off_k(addr);
1023                        if (pmd_none(*pmd))
1024                                pmd_empty_section_gap(addr & PMD_MASK);
1025                }
1026
1027                /*
1028                 * Then check if this vm ends on an odd section boundary.
1029                 * If so and the second section entry for this PMD is empty
1030                 * then we block the corresponding virtual address.
1031                 */
1032                addr += vm->size;
1033                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1034                        pmd = pmd_off_k(addr) + 1;
1035                        if (pmd_none(*pmd))
1036                                pmd_empty_section_gap(addr);
1037                }
1038
1039                /* no need to look at any vm entry until we hit the next PMD */
1040                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1041        }
1042}
1043
1044#else
1045#define fill_pmd_gaps() do { } while (0)
1046#endif
1047
1048#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1049static void __init pci_reserve_io(void)
1050{
1051        struct static_vm *svm;
1052
1053        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1054        if (svm)
1055                return;
1056
1057        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1058}
1059#else
1060#define pci_reserve_io() do { } while (0)
1061#endif
1062
1063#ifdef CONFIG_DEBUG_LL
1064void __init debug_ll_io_init(void)
1065{
1066        struct map_desc map;
1067
1068        debug_ll_addr(&map.pfn, &map.virtual);
1069        if (!map.pfn || !map.virtual)
1070                return;
1071        map.pfn = __phys_to_pfn(map.pfn);
1072        map.virtual &= PAGE_MASK;
1073        map.length = PAGE_SIZE;
1074        map.type = MT_DEVICE;
1075        iotable_init(&map, 1);
1076}
1077#endif
1078
1079static void * __initdata vmalloc_min =
1080        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1081
1082/*
1083 * vmalloc=size forces the vmalloc area to be exactly 'size'
1084 * bytes. This can be used to increase (or decrease) the vmalloc
1085 * area - the default is 240m.
1086 */
1087static int __init early_vmalloc(char *arg)
1088{
1089        unsigned long vmalloc_reserve = memparse(arg, NULL);
1090
1091        if (vmalloc_reserve < SZ_16M) {
1092                vmalloc_reserve = SZ_16M;
1093                pr_warn("vmalloc area too small, limiting to %luMB\n",
1094                        vmalloc_reserve >> 20);
1095        }
1096
1097        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1098                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1099                pr_warn("vmalloc area is too big, limiting to %luMB\n",
1100                        vmalloc_reserve >> 20);
1101        }
1102
1103        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1104        return 0;
1105}
1106early_param("vmalloc", early_vmalloc);
1107
1108phys_addr_t arm_lowmem_limit __initdata = 0;
1109
1110void __init sanity_check_meminfo(void)
1111{
1112        phys_addr_t memblock_limit = 0;
1113        int highmem = 0;
1114        phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1115        struct memblock_region *reg;
1116        bool should_use_highmem = false;
1117
1118        for_each_memblock(memory, reg) {
1119                phys_addr_t block_start = reg->base;
1120                phys_addr_t block_end = reg->base + reg->size;
1121                phys_addr_t size_limit = reg->size;
1122
1123                if (reg->base >= vmalloc_limit)
1124                        highmem = 1;
1125                else
1126                        size_limit = vmalloc_limit - reg->base;
1127
1128
1129                if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1130
1131                        if (highmem) {
1132                                pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1133                                          &block_start, &block_end);
1134                                memblock_remove(reg->base, reg->size);
1135                                should_use_highmem = true;
1136                                continue;
1137                        }
1138
1139                        if (reg->size > size_limit) {
1140                                phys_addr_t overlap_size = reg->size - size_limit;
1141
1142                                pr_notice("Truncating RAM at %pa-%pa to -%pa",
1143                                          &block_start, &block_end, &vmalloc_limit);
1144                                memblock_remove(vmalloc_limit, overlap_size);
1145                                block_end = vmalloc_limit;
1146                                should_use_highmem = true;
1147                        }
1148                }
1149
1150                if (!highmem) {
1151                        if (block_end > arm_lowmem_limit) {
1152                                if (reg->size > size_limit)
1153                                        arm_lowmem_limit = vmalloc_limit;
1154                                else
1155                                        arm_lowmem_limit = block_end;
1156                        }
1157
1158                        /*
1159                         * Find the first non-pmd-aligned page, and point
1160                         * memblock_limit at it. This relies on rounding the
1161                         * limit down to be pmd-aligned, which happens at the
1162                         * end of this function.
1163                         *
1164                         * With this algorithm, the start or end of almost any
1165                         * bank can be non-pmd-aligned. The only exception is
1166                         * that the start of the bank 0 must be section-
1167                         * aligned, since otherwise memory would need to be
1168                         * allocated when mapping the start of bank 0, which
1169                         * occurs before any free memory is mapped.
1170                         */
1171                        if (!memblock_limit) {
1172                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1173                                        memblock_limit = block_start;
1174                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1175                                        memblock_limit = arm_lowmem_limit;
1176                        }
1177
1178                }
1179        }
1180
1181        if (should_use_highmem)
1182                pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1183
1184        high_memory = __va(arm_lowmem_limit - 1) + 1;
1185
1186        /*
1187         * Round the memblock limit down to a pmd size.  This
1188         * helps to ensure that we will allocate memory from the
1189         * last full pmd, which should be mapped.
1190         */
1191        if (memblock_limit)
1192                memblock_limit = round_down(memblock_limit, PMD_SIZE);
1193        if (!memblock_limit)
1194                memblock_limit = arm_lowmem_limit;
1195
1196        memblock_set_current_limit(memblock_limit);
1197}
1198
1199static inline void prepare_page_table(void)
1200{
1201        unsigned long addr;
1202        phys_addr_t end;
1203
1204        /*
1205         * Clear out all the mappings below the kernel image.
1206         */
1207        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1208                pmd_clear(pmd_off_k(addr));
1209
1210#ifdef CONFIG_XIP_KERNEL
1211        /* The XIP kernel is mapped in the module area -- skip over it */
1212        addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1213#endif
1214        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1215                pmd_clear(pmd_off_k(addr));
1216
1217        /*
1218         * Find the end of the first block of lowmem.
1219         */
1220        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1221        if (end >= arm_lowmem_limit)
1222                end = arm_lowmem_limit;
1223
1224        /*
1225         * Clear out all the kernel space mappings, except for the first
1226         * memory bank, up to the vmalloc region.
1227         */
1228        for (addr = __phys_to_virt(end);
1229             addr < VMALLOC_START; addr += PMD_SIZE)
1230                pmd_clear(pmd_off_k(addr));
1231}
1232
1233#ifdef CONFIG_ARM_LPAE
1234/* the first page is reserved for pgd */
1235#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1236                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1237#else
1238#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1239#endif
1240
1241/*
1242 * Reserve the special regions of memory
1243 */
1244void __init arm_mm_memblock_reserve(void)
1245{
1246        /*
1247         * Reserve the page tables.  These are already in use,
1248         * and can only be in node 0.
1249         */
1250        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1251
1252#ifdef CONFIG_SA1111
1253        /*
1254         * Because of the SA1111 DMA bug, we want to preserve our
1255         * precious DMA-able memory...
1256         */
1257        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1258#endif
1259}
1260
1261/*
1262 * Set up the device mappings.  Since we clear out the page tables for all
1263 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1264 * device mappings.  This means earlycon can be used to debug this function
1265 * Any other function or debugging method which may touch any device _will_
1266 * crash the kernel.
1267 */
1268static void __init devicemaps_init(const struct machine_desc *mdesc)
1269{
1270        struct map_desc map;
1271        unsigned long addr;
1272        void *vectors;
1273
1274        /*
1275         * Allocate the vector page early.
1276         */
1277        vectors = early_alloc(PAGE_SIZE * 2);
1278
1279        early_trap_init(vectors);
1280
1281        /*
1282         * Clear page table except top pmd used by early fixmaps
1283         */
1284        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1285                pmd_clear(pmd_off_k(addr));
1286
1287        /*
1288         * Map the kernel if it is XIP.
1289         * It is always first in the modulearea.
1290         */
1291#ifdef CONFIG_XIP_KERNEL
1292        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1293        map.virtual = MODULES_VADDR;
1294        map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1295        map.type = MT_ROM;
1296        create_mapping(&map);
1297#endif
1298
1299        /*
1300         * Map the cache flushing regions.
1301         */
1302#ifdef FLUSH_BASE
1303        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1304        map.virtual = FLUSH_BASE;
1305        map.length = SZ_1M;
1306        map.type = MT_CACHECLEAN;
1307        create_mapping(&map);
1308#endif
1309#ifdef FLUSH_BASE_MINICACHE
1310        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1311        map.virtual = FLUSH_BASE_MINICACHE;
1312        map.length = SZ_1M;
1313        map.type = MT_MINICLEAN;
1314        create_mapping(&map);
1315#endif
1316
1317        /*
1318         * Create a mapping for the machine vectors at the high-vectors
1319         * location (0xffff0000).  If we aren't using high-vectors, also
1320         * create a mapping at the low-vectors virtual address.
1321         */
1322        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1323        map.virtual = 0xffff0000;
1324        map.length = PAGE_SIZE;
1325#ifdef CONFIG_KUSER_HELPERS
1326        map.type = MT_HIGH_VECTORS;
1327#else
1328        map.type = MT_LOW_VECTORS;
1329#endif
1330        create_mapping(&map);
1331
1332        if (!vectors_high()) {
1333                map.virtual = 0;
1334                map.length = PAGE_SIZE * 2;
1335                map.type = MT_LOW_VECTORS;
1336                create_mapping(&map);
1337        }
1338
1339        /* Now create a kernel read-only mapping */
1340        map.pfn += 1;
1341        map.virtual = 0xffff0000 + PAGE_SIZE;
1342        map.length = PAGE_SIZE;
1343        map.type = MT_LOW_VECTORS;
1344        create_mapping(&map);
1345
1346        /*
1347         * Ask the machine support to map in the statically mapped devices.
1348         */
1349        if (mdesc->map_io)
1350                mdesc->map_io();
1351        else
1352                debug_ll_io_init();
1353        fill_pmd_gaps();
1354
1355        /* Reserve fixed i/o space in VMALLOC region */
1356        pci_reserve_io();
1357
1358        /*
1359         * Finally flush the caches and tlb to ensure that we're in a
1360         * consistent state wrt the writebuffer.  This also ensures that
1361         * any write-allocated cache lines in the vector page are written
1362         * back.  After this point, we can start to touch devices again.
1363         */
1364        local_flush_tlb_all();
1365        flush_cache_all();
1366}
1367
1368static void __init kmap_init(void)
1369{
1370#ifdef CONFIG_HIGHMEM
1371        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1372                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1373#endif
1374
1375        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1376                        _PAGE_KERNEL_TABLE);
1377}
1378
1379static void __init map_lowmem(void)
1380{
1381        struct memblock_region *reg;
1382        phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1383        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1384
1385        /* Map all the lowmem memory banks. */
1386        for_each_memblock(memory, reg) {
1387                phys_addr_t start = reg->base;
1388                phys_addr_t end = start + reg->size;
1389                struct map_desc map;
1390
1391                if (end > arm_lowmem_limit)
1392                        end = arm_lowmem_limit;
1393                if (start >= end)
1394                        break;
1395
1396                if (end < kernel_x_start) {
1397                        map.pfn = __phys_to_pfn(start);
1398                        map.virtual = __phys_to_virt(start);
1399                        map.length = end - start;
1400                        map.type = MT_MEMORY_RWX;
1401
1402                        create_mapping(&map);
1403                } else if (start >= kernel_x_end) {
1404                        map.pfn = __phys_to_pfn(start);
1405                        map.virtual = __phys_to_virt(start);
1406                        map.length = end - start;
1407                        map.type = MT_MEMORY_RW;
1408
1409                        create_mapping(&map);
1410                } else {
1411                        /* This better cover the entire kernel */
1412                        if (start < kernel_x_start) {
1413                                map.pfn = __phys_to_pfn(start);
1414                                map.virtual = __phys_to_virt(start);
1415                                map.length = kernel_x_start - start;
1416                                map.type = MT_MEMORY_RW;
1417
1418                                create_mapping(&map);
1419                        }
1420
1421                        map.pfn = __phys_to_pfn(kernel_x_start);
1422                        map.virtual = __phys_to_virt(kernel_x_start);
1423                        map.length = kernel_x_end - kernel_x_start;
1424                        map.type = MT_MEMORY_RWX;
1425
1426                        create_mapping(&map);
1427
1428                        if (kernel_x_end < end) {
1429                                map.pfn = __phys_to_pfn(kernel_x_end);
1430                                map.virtual = __phys_to_virt(kernel_x_end);
1431                                map.length = end - kernel_x_end;
1432                                map.type = MT_MEMORY_RW;
1433
1434                                create_mapping(&map);
1435                        }
1436                }
1437        }
1438}
1439
1440#ifdef CONFIG_ARM_PV_FIXUP
1441extern unsigned long __atags_pointer;
1442typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1443pgtables_remap lpae_pgtables_remap_asm;
1444
1445/*
1446 * early_paging_init() recreates boot time page table setup, allowing machines
1447 * to switch over to a high (>4G) address space on LPAE systems
1448 */
1449void __init early_paging_init(const struct machine_desc *mdesc)
1450{
1451        pgtables_remap *lpae_pgtables_remap;
1452        unsigned long pa_pgd;
1453        unsigned int cr, ttbcr;
1454        long long offset;
1455        void *boot_data;
1456
1457        if (!mdesc->pv_fixup)
1458                return;
1459
1460        offset = mdesc->pv_fixup();
1461        if (offset == 0)
1462                return;
1463
1464        /*
1465         * Get the address of the remap function in the 1:1 identity
1466         * mapping setup by the early page table assembly code.  We
1467         * must get this prior to the pv update.  The following barrier
1468         * ensures that this is complete before we fixup any P:V offsets.
1469         */
1470        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1471        pa_pgd = __pa(swapper_pg_dir);
1472        boot_data = __va(__atags_pointer);
1473        barrier();
1474
1475        pr_info("Switching physical address space to 0x%08llx\n",
1476                (u64)PHYS_OFFSET + offset);
1477
1478        /* Re-set the phys pfn offset, and the pv offset */
1479        __pv_offset += offset;
1480        __pv_phys_pfn_offset += PFN_DOWN(offset);
1481
1482        /* Run the patch stub to update the constants */
1483        fixup_pv_table(&__pv_table_begin,
1484                (&__pv_table_end - &__pv_table_begin) << 2);
1485
1486        /*
1487         * We changing not only the virtual to physical mapping, but also
1488         * the physical addresses used to access memory.  We need to flush
1489         * all levels of cache in the system with caching disabled to
1490         * ensure that all data is written back, and nothing is prefetched
1491         * into the caches.  We also need to prevent the TLB walkers
1492         * allocating into the caches too.  Note that this is ARMv7 LPAE
1493         * specific.
1494         */
1495        cr = get_cr();
1496        set_cr(cr & ~(CR_I | CR_C));
1497        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1498        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1499                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1500        flush_cache_all();
1501
1502        /*
1503         * Fixup the page tables - this must be in the idmap region as
1504         * we need to disable the MMU to do this safely, and hence it
1505         * needs to be assembly.  It's fairly simple, as we're using the
1506         * temporary tables setup by the initial assembly code.
1507         */
1508        lpae_pgtables_remap(offset, pa_pgd, boot_data);
1509
1510        /* Re-enable the caches and cacheable TLB walks */
1511        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1512        set_cr(cr);
1513}
1514
1515#else
1516
1517void __init early_paging_init(const struct machine_desc *mdesc)
1518{
1519        long long offset;
1520
1521        if (!mdesc->pv_fixup)
1522                return;
1523
1524        offset = mdesc->pv_fixup();
1525        if (offset == 0)
1526                return;
1527
1528        pr_crit("Physical address space modification is only to support Keystone2.\n");
1529        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1530        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1531        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1532}
1533
1534#endif
1535
1536static void __init early_fixmap_shutdown(void)
1537{
1538        int i;
1539        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1540
1541        pte_offset_fixmap = pte_offset_late_fixmap;
1542        pmd_clear(fixmap_pmd(va));
1543        local_flush_tlb_kernel_page(va);
1544
1545        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1546                pte_t *pte;
1547                struct map_desc map;
1548
1549                map.virtual = fix_to_virt(i);
1550                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1551
1552                /* Only i/o device mappings are supported ATM */
1553                if (pte_none(*pte) ||
1554                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1555                        continue;
1556
1557                map.pfn = pte_pfn(*pte);
1558                map.type = MT_DEVICE;
1559                map.length = PAGE_SIZE;
1560
1561                create_mapping(&map);
1562        }
1563}
1564
1565/*
1566 * paging_init() sets up the page tables, initialises the zone memory
1567 * maps, and sets up the zero page, bad page and bad page tables.
1568 */
1569void __init paging_init(const struct machine_desc *mdesc)
1570{
1571        void *zero_page;
1572
1573        build_mem_type_table();
1574        prepare_page_table();
1575        map_lowmem();
1576        memblock_set_current_limit(arm_lowmem_limit);
1577        dma_contiguous_remap();
1578        early_fixmap_shutdown();
1579        devicemaps_init(mdesc);
1580        kmap_init();
1581        tcm_init();
1582
1583        top_pmd = pmd_off_k(0xffff0000);
1584
1585        /* allocate the zero page. */
1586        zero_page = early_alloc(PAGE_SIZE);
1587
1588        bootmem_init();
1589
1590        empty_zero_page = virt_to_page(zero_page);
1591        __flush_dcache_page(NULL, empty_zero_page);
1592}
1593