linux/arch/powerpc/include/asm/dma.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_DMA_H
   2#define _ASM_POWERPC_DMA_H
   3#ifdef __KERNEL__
   4
   5/*
   6 * Defines for using and allocating dma channels.
   7 * Written by Hennus Bergman, 1992.
   8 * High DMA channel support & info by Hannu Savolainen
   9 * and John Boyd, Nov. 1992.
  10 * Changes for ppc sound by Christoph Nadig
  11 */
  12
  13/*
  14 * Note: Adapted for PowerPC by Gary Thomas
  15 * Modified by Cort Dougan <cort@cs.nmt.edu>
  16 *
  17 * None of this really applies for Power Macintoshes.  There is
  18 * basically just enough here to get kernel/dma.c to compile.
  19 */
  20
  21#include <asm/io.h>
  22#include <linux/spinlock.h>
  23
  24#ifndef MAX_DMA_CHANNELS
  25#define MAX_DMA_CHANNELS        8
  26#endif
  27
  28/* The maximum address that we can perform a DMA transfer to on this platform */
  29/* Doesn't really apply... */
  30#define MAX_DMA_ADDRESS         (~0UL)
  31
  32#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
  33#define dma_outb        outb_p
  34#else
  35#define dma_outb        outb
  36#endif
  37
  38#define dma_inb         inb
  39
  40/*
  41 * NOTES about DMA transfers:
  42 *
  43 *  controller 1: channels 0-3, byte operations, ports 00-1F
  44 *  controller 2: channels 4-7, word operations, ports C0-DF
  45 *
  46 *  - ALL registers are 8 bits only, regardless of transfer size
  47 *  - channel 4 is not used - cascades 1 into 2.
  48 *  - channels 0-3 are byte - addresses/counts are for physical bytes
  49 *  - channels 5-7 are word - addresses/counts are for physical words
  50 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
  51 *  - transfer count loaded to registers is 1 less than actual count
  52 *  - controller 2 offsets are all even (2x offsets for controller 1)
  53 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
  54 *  - page registers for 0-3 use bit 0, represent 64K pages
  55 *
  56 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
  57 * Note that addresses loaded into registers must be _physical_ addresses,
  58 * not logical addresses (which may differ if paging is active).
  59 *
  60 *  Address mapping for channels 0-3:
  61 *
  62 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
  63 *    |  ...  |   |  ... |   |  ... |
  64 *    |  ...  |   |  ... |   |  ... |
  65 *    |  ...  |   |  ... |   |  ... |
  66 *   P7  ...  P0  A7 ... A0  A7 ... A0
  67 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
  68 *
  69 *  Address mapping for channels 5-7:
  70 *
  71 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
  72 *    |  ...  |   \   \   ... \  \  \  ... \  \
  73 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
  74 *    |  ...  |     \   \   ... \  \  \  ... \
  75 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
  76 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
  77 *
  78 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
  79 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
  80 * the hardware level, so odd-byte transfers aren't possible).
  81 *
  82 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
  83 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
  84 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
  85 *
  86 */
  87
  88/* 8237 DMA controllers */
  89#define IO_DMA1_BASE    0x00    /* 8 bit slave DMA, channels 0..3 */
  90#define IO_DMA2_BASE    0xC0    /* 16 bit master DMA, ch 4(=slave input)..7 */
  91
  92/* DMA controller registers */
  93#define DMA1_CMD_REG            0x08    /* command register (w) */
  94#define DMA1_STAT_REG           0x08    /* status register (r) */
  95#define DMA1_REQ_REG            0x09    /* request register (w) */
  96#define DMA1_MASK_REG           0x0A    /* single-channel mask (w) */
  97#define DMA1_MODE_REG           0x0B    /* mode register (w) */
  98#define DMA1_CLEAR_FF_REG       0x0C    /* clear pointer flip-flop (w) */
  99#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
 100#define DMA1_RESET_REG          0x0D    /* Master Clear (w) */
 101#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
 102#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
 103
 104#define DMA2_CMD_REG            0xD0    /* command register (w) */
 105#define DMA2_STAT_REG           0xD0    /* status register (r) */
 106#define DMA2_REQ_REG            0xD2    /* request register (w) */
 107#define DMA2_MASK_REG           0xD4    /* single-channel mask (w) */
 108#define DMA2_MODE_REG           0xD6    /* mode register (w) */
 109#define DMA2_CLEAR_FF_REG       0xD8    /* clear pointer flip-flop (w) */
 110#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
 111#define DMA2_RESET_REG          0xDA    /* Master Clear (w) */
 112#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
 113#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
 114
 115#define DMA_ADDR_0              0x00    /* DMA address registers */
 116#define DMA_ADDR_1              0x02
 117#define DMA_ADDR_2              0x04
 118#define DMA_ADDR_3              0x06
 119#define DMA_ADDR_4              0xC0
 120#define DMA_ADDR_5              0xC4
 121#define DMA_ADDR_6              0xC8
 122#define DMA_ADDR_7              0xCC
 123
 124#define DMA_CNT_0               0x01    /* DMA count registers */
 125#define DMA_CNT_1               0x03
 126#define DMA_CNT_2               0x05
 127#define DMA_CNT_3               0x07
 128#define DMA_CNT_4               0xC2
 129#define DMA_CNT_5               0xC6
 130#define DMA_CNT_6               0xCA
 131#define DMA_CNT_7               0xCE
 132
 133#define DMA_LO_PAGE_0           0x87    /* DMA page registers */
 134#define DMA_LO_PAGE_1           0x83
 135#define DMA_LO_PAGE_2           0x81
 136#define DMA_LO_PAGE_3           0x82
 137#define DMA_LO_PAGE_5           0x8B
 138#define DMA_LO_PAGE_6           0x89
 139#define DMA_LO_PAGE_7           0x8A
 140
 141#define DMA_HI_PAGE_0           0x487   /* DMA page registers */
 142#define DMA_HI_PAGE_1           0x483
 143#define DMA_HI_PAGE_2           0x481
 144#define DMA_HI_PAGE_3           0x482
 145#define DMA_HI_PAGE_5           0x48B
 146#define DMA_HI_PAGE_6           0x489
 147#define DMA_HI_PAGE_7           0x48A
 148
 149#define DMA1_EXT_REG            0x40B
 150#define DMA2_EXT_REG            0x4D6
 151
 152#ifndef __powerpc64__
 153    /* in arch/ppc/kernel/setup.c -- Cort */
 154    extern unsigned int DMA_MODE_WRITE;
 155    extern unsigned int DMA_MODE_READ;
 156    extern unsigned long ISA_DMA_THRESHOLD;
 157#else
 158    #define DMA_MODE_READ       0x44    /* I/O to memory, no autoinit, increment, single mode */
 159    #define DMA_MODE_WRITE      0x48    /* memory to I/O, no autoinit, increment, single mode */
 160#endif
 161
 162#define DMA_MODE_CASCADE        0xC0    /* pass thru DREQ->HRQ, DACK<-HLDA only */
 163
 164#define DMA_AUTOINIT            0x10
 165
 166extern spinlock_t dma_spin_lock;
 167
 168static __inline__ unsigned long claim_dma_lock(void)
 169{
 170        unsigned long flags;
 171        spin_lock_irqsave(&dma_spin_lock, flags);
 172        return flags;
 173}
 174
 175static __inline__ void release_dma_lock(unsigned long flags)
 176{
 177        spin_unlock_irqrestore(&dma_spin_lock, flags);
 178}
 179
 180/* enable/disable a specific DMA channel */
 181static __inline__ void enable_dma(unsigned int dmanr)
 182{
 183        unsigned char ucDmaCmd = 0x00;
 184
 185        if (dmanr != 4) {
 186                dma_outb(0, DMA2_MASK_REG);     /* This may not be enabled */
 187                dma_outb(ucDmaCmd, DMA2_CMD_REG);       /* Enable group */
 188        }
 189        if (dmanr <= 3) {
 190                dma_outb(dmanr, DMA1_MASK_REG);
 191                dma_outb(ucDmaCmd, DMA1_CMD_REG);       /* Enable group */
 192        } else {
 193                dma_outb(dmanr & 3, DMA2_MASK_REG);
 194        }
 195}
 196
 197static __inline__ void disable_dma(unsigned int dmanr)
 198{
 199        if (dmanr <= 3)
 200                dma_outb(dmanr | 4, DMA1_MASK_REG);
 201        else
 202                dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
 203}
 204
 205/* Clear the 'DMA Pointer Flip Flop'.
 206 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
 207 * Use this once to initialize the FF to a known state.
 208 * After that, keep track of it. :-)
 209 * --- In order to do that, the DMA routines below should ---
 210 * --- only be used while interrupts are disabled! ---
 211 */
 212static __inline__ void clear_dma_ff(unsigned int dmanr)
 213{
 214        if (dmanr <= 3)
 215                dma_outb(0, DMA1_CLEAR_FF_REG);
 216        else
 217                dma_outb(0, DMA2_CLEAR_FF_REG);
 218}
 219
 220/* set mode (above) for a specific DMA channel */
 221static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
 222{
 223        if (dmanr <= 3)
 224                dma_outb(mode | dmanr, DMA1_MODE_REG);
 225        else
 226                dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
 227}
 228
 229/* Set only the page register bits of the transfer address.
 230 * This is used for successive transfers when we know the contents of
 231 * the lower 16 bits of the DMA current address register, but a 64k boundary
 232 * may have been crossed.
 233 */
 234static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
 235{
 236        switch (dmanr) {
 237        case 0:
 238                dma_outb(pagenr, DMA_LO_PAGE_0);
 239                dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
 240                break;
 241        case 1:
 242                dma_outb(pagenr, DMA_LO_PAGE_1);
 243                dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
 244                break;
 245        case 2:
 246                dma_outb(pagenr, DMA_LO_PAGE_2);
 247                dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
 248                break;
 249        case 3:
 250                dma_outb(pagenr, DMA_LO_PAGE_3);
 251                dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
 252                break;
 253        case 5:
 254                dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
 255                dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
 256                break;
 257        case 6:
 258                dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
 259                dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
 260                break;
 261        case 7:
 262                dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
 263                dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
 264                break;
 265        }
 266}
 267
 268/* Set transfer address & page bits for specific DMA channel.
 269 * Assumes dma flipflop is clear.
 270 */
 271static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
 272{
 273        if (dmanr <= 3) {
 274                dma_outb(phys & 0xff,
 275                         ((dmanr & 3) << 1) + IO_DMA1_BASE);
 276                dma_outb((phys >> 8) & 0xff,
 277                         ((dmanr & 3) << 1) + IO_DMA1_BASE);
 278        } else {
 279                dma_outb((phys >> 1) & 0xff,
 280                         ((dmanr & 3) << 2) + IO_DMA2_BASE);
 281                dma_outb((phys >> 9) & 0xff,
 282                         ((dmanr & 3) << 2) + IO_DMA2_BASE);
 283        }
 284        set_dma_page(dmanr, phys >> 16);
 285}
 286
 287
 288/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
 289 * a specific DMA channel.
 290 * You must ensure the parameters are valid.
 291 * NOTE: from a manual: "the number of transfers is one more
 292 * than the initial word count"! This is taken into account.
 293 * Assumes dma flip-flop is clear.
 294 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
 295 */
 296static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
 297{
 298        count--;
 299        if (dmanr <= 3) {
 300                dma_outb(count & 0xff,
 301                         ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
 302                dma_outb((count >> 8) & 0xff,
 303                         ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
 304        } else {
 305                dma_outb((count >> 1) & 0xff,
 306                         ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
 307                dma_outb((count >> 9) & 0xff,
 308                         ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
 309        }
 310}
 311
 312
 313/* Get DMA residue count. After a DMA transfer, this
 314 * should return zero. Reading this while a DMA transfer is
 315 * still in progress will return unpredictable results.
 316 * If called before the channel has been used, it may return 1.
 317 * Otherwise, it returns the number of _bytes_ left to transfer.
 318 *
 319 * Assumes DMA flip-flop is clear.
 320 */
 321static __inline__ int get_dma_residue(unsigned int dmanr)
 322{
 323        unsigned int io_port = (dmanr <= 3)
 324            ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
 325            : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
 326
 327        /* using short to get 16-bit wrap around */
 328        unsigned short count;
 329
 330        count = 1 + dma_inb(io_port);
 331        count += dma_inb(io_port) << 8;
 332
 333        return (dmanr <= 3) ? count : (count << 1);
 334}
 335
 336/* These are in kernel/dma.c: */
 337
 338/* reserve a DMA channel */
 339extern int request_dma(unsigned int dmanr, const char *device_id);
 340/* release it again */
 341extern void free_dma(unsigned int dmanr);
 342
 343#ifdef CONFIG_PCI
 344extern int isa_dma_bridge_buggy;
 345#else
 346#define isa_dma_bridge_buggy    (0)
 347#endif
 348
 349#endif /* __KERNEL__ */
 350#endif  /* _ASM_POWERPC_DMA_H */
 351