linux/arch/tile/include/asm/page.h
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#ifndef _ASM_TILE_PAGE_H
  16#define _ASM_TILE_PAGE_H
  17
  18#include <linux/const.h>
  19#include <hv/hypervisor.h>
  20#include <arch/chip.h>
  21
  22/* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
  23#if defined(CONFIG_PAGE_SIZE_16KB)
  24#define PAGE_SHIFT      14
  25#define CTX_PAGE_FLAG   HV_CTX_PG_SM_16K
  26#elif defined(CONFIG_PAGE_SIZE_64KB)
  27#define PAGE_SHIFT      16
  28#define CTX_PAGE_FLAG   HV_CTX_PG_SM_64K
  29#else
  30#define PAGE_SHIFT      HV_LOG2_DEFAULT_PAGE_SIZE_SMALL
  31#define CTX_PAGE_FLAG   0
  32#endif
  33#define HPAGE_SHIFT     HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
  34
  35#define PAGE_SIZE       (_AC(1, UL) << PAGE_SHIFT)
  36#define HPAGE_SIZE      (_AC(1, UL) << HPAGE_SHIFT)
  37
  38#define PAGE_MASK       (~(PAGE_SIZE - 1))
  39#define HPAGE_MASK      (~(HPAGE_SIZE - 1))
  40
  41/*
  42 * If the Kconfig doesn't specify, set a maximum zone order that
  43 * is enough so that we can create huge pages from small pages given
  44 * the respective sizes of the two page types.  See <linux/mmzone.h>.
  45 */
  46#ifndef CONFIG_FORCE_MAX_ZONEORDER
  47#define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
  48#endif
  49
  50#ifndef __ASSEMBLY__
  51
  52#include <linux/types.h>
  53#include <linux/string.h>
  54
  55struct page;
  56
  57static inline void clear_page(void *page)
  58{
  59        memset(page, 0, PAGE_SIZE);
  60}
  61
  62static inline void copy_page(void *to, void *from)
  63{
  64        memcpy(to, from, PAGE_SIZE);
  65}
  66
  67static inline void clear_user_page(void *page, unsigned long vaddr,
  68                                struct page *pg)
  69{
  70        clear_page(page);
  71}
  72
  73static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
  74                                struct page *topage)
  75{
  76        copy_page(to, from);
  77}
  78
  79/*
  80 * Hypervisor page tables are made of the same basic structure.
  81 */
  82
  83typedef HV_PTE pte_t;
  84typedef HV_PTE pgd_t;
  85typedef HV_PTE pgprot_t;
  86
  87/*
  88 * User L2 page tables are managed as one L2 page table per page,
  89 * because we use the page allocator for them.  This keeps the allocation
  90 * simple, but it's also inefficient, since L2 page tables are much smaller
  91 * than pages (currently 2KB vs 64KB).  So we should revisit this.
  92 */
  93typedef struct page *pgtable_t;
  94
  95/* Must be a macro since it is used to create constants. */
  96#define __pgprot(val) hv_pte(val)
  97
  98/* Rarely-used initializers, typically with a "zero" value. */
  99#define __pte(x) hv_pte(x)
 100#define __pgd(x) hv_pte(x)
 101
 102static inline u64 pgprot_val(pgprot_t pgprot)
 103{
 104        return hv_pte_val(pgprot);
 105}
 106
 107static inline u64 pte_val(pte_t pte)
 108{
 109        return hv_pte_val(pte);
 110}
 111
 112static inline u64 pgd_val(pgd_t pgd)
 113{
 114        return hv_pte_val(pgd);
 115}
 116
 117#ifdef __tilegx__
 118
 119typedef HV_PTE pmd_t;
 120
 121#define __pmd(x) hv_pte(x)
 122
 123static inline u64 pmd_val(pmd_t pmd)
 124{
 125        return hv_pte_val(pmd);
 126}
 127
 128#endif
 129
 130static inline __attribute_const__ int get_order(unsigned long size)
 131{
 132        return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
 133}
 134
 135#endif /* !__ASSEMBLY__ */
 136
 137#define HUGETLB_PAGE_ORDER      (HPAGE_SHIFT - PAGE_SHIFT)
 138
 139#define HUGE_MAX_HSTATE         6
 140
 141#ifdef CONFIG_HUGETLB_PAGE
 142#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 143#endif
 144
 145/* Allow overriding how much VA or PA the kernel will use. */
 146#define MAX_PA_WIDTH CHIP_PA_WIDTH()
 147#define MAX_VA_WIDTH CHIP_VA_WIDTH()
 148
 149/* Each memory controller has PAs distinct in their high bits. */
 150#define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS())
 151#define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
 152#define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
 153#define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
 154
 155#ifdef __tilegx__
 156
 157/*
 158 * We reserve the lower half of memory for user-space programs, and the
 159 * upper half for system code.  We re-map all of physical memory in the
 160 * upper half, which takes a quarter of our VA space.  Then we have
 161 * the vmalloc regions.  The supervisor code lives at the highest address,
 162 * with the hypervisor above that.
 163 *
 164 * Loadable kernel modules are placed immediately after the static
 165 * supervisor code, with each being allocated a 256MB region of
 166 * address space, so we don't have to worry about the range of "jal"
 167 * and other branch instructions.
 168 *
 169 * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
 170 * Similarly, for now we don't play any struct page mapping games.
 171 */
 172
 173#if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH
 174# error Too much PA to map with the VA available!
 175#endif
 176
 177#define PAGE_OFFSET             (-(_AC(1, UL) << (MAX_VA_WIDTH - 1)))
 178#define KERNEL_HIGH_VADDR       _AC(0xfffffff800000000, UL)  /* high 32GB */
 179#define FIXADDR_BASE            (KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */
 180#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */
 181#define _VMALLOC_START          FIXADDR_TOP
 182#define MEM_SV_START            (KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */
 183#define MEM_MODULE_START        (MEM_SV_START + (256*1024*1024)) /* 256 MB */
 184#define MEM_MODULE_END          (MEM_MODULE_START + (256*1024*1024))
 185
 186#else /* !__tilegx__ */
 187
 188/*
 189 * A PAGE_OFFSET of 0xC0000000 means that the kernel has
 190 * a virtual address space of one gigabyte, which limits the
 191 * amount of physical memory you can use to about 768MB.
 192 * If you want more physical memory than this then see the CONFIG_HIGHMEM
 193 * option in the kernel configuration.
 194 *
 195 * The top 16MB chunk in the table below is unavailable to Linux.  Since
 196 * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
 197 * (depending on whether the kernel is at PL2 or Pl1), we map all of the
 198 * bottom of RAM at this address with a huge page table entry to minimize
 199 * its ITLB footprint (as well as at PAGE_OFFSET).  The last architected
 200 * requirement is that user interrupt vectors live at 0xfc000000, so we
 201 * make that range of memory available to user processes.  The remaining
 202 * regions are sized as shown; the first four addresses use the PL 1
 203 * values, and after that, we show "typical" values, since the actual
 204 * addresses depend on kernel #defines.
 205 *
 206 * MEM_HV_START                    0xfe000000
 207 * MEM_SV_START  (kernel code)     0xfd000000
 208 * MEM_USER_INTRPT (user vector)   0xfc000000
 209 * FIX_KMAP_xxx                    0xfa000000 (via NR_CPUS * KM_TYPE_NR)
 210 * PKMAP_BASE                      0xf9000000 (via LAST_PKMAP)
 211 * VMALLOC_START                   0xf7000000 (via VMALLOC_RESERVE)
 212 * mapped LOWMEM                   0xc0000000
 213 */
 214
 215#define MEM_USER_INTRPT         _AC(0xfc000000, UL)
 216#define MEM_SV_START            _AC(0xfd000000, UL)
 217#define MEM_HV_START            _AC(0xfe000000, UL)
 218
 219#define INTRPT_SIZE             0x4000
 220
 221/* Tolerate page size larger than the architecture interrupt region size. */
 222#if PAGE_SIZE > INTRPT_SIZE
 223#undef INTRPT_SIZE
 224#define INTRPT_SIZE PAGE_SIZE
 225#endif
 226
 227#define KERNEL_HIGH_VADDR       MEM_USER_INTRPT
 228#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - PAGE_SIZE)
 229
 230#define PAGE_OFFSET             _AC(CONFIG_PAGE_OFFSET, UL)
 231
 232/* On 32-bit architectures we mix kernel modules in with other vmaps. */
 233#define MEM_MODULE_START        VMALLOC_START
 234#define MEM_MODULE_END          VMALLOC_END
 235
 236#endif /* __tilegx__ */
 237
 238#if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD)
 239
 240#ifdef CONFIG_HIGHMEM
 241
 242/* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
 243extern unsigned long pbase_map[];
 244extern void *vbase_map[];
 245
 246static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
 247{
 248        unsigned long kaddr = (unsigned long)_kaddr;
 249        return pbase_map[kaddr >> HPAGE_SHIFT] +
 250                ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
 251}
 252
 253static inline void *pfn_to_kaddr(unsigned long pfn)
 254{
 255        return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
 256}
 257
 258static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 259{
 260        unsigned long pfn = kaddr_to_pfn(kaddr);
 261        return ((phys_addr_t)pfn << PAGE_SHIFT) +
 262                ((unsigned long)kaddr & (PAGE_SIZE-1));
 263}
 264
 265static inline void *phys_to_virt(phys_addr_t paddr)
 266{
 267        return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
 268}
 269
 270/* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
 271static inline int virt_addr_valid(const volatile void *kaddr)
 272{
 273        extern void *high_memory;  /* copied from <linux/mm.h> */
 274        return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
 275}
 276
 277#else /* !CONFIG_HIGHMEM */
 278
 279static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
 280{
 281        return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
 282}
 283
 284static inline void *pfn_to_kaddr(unsigned long pfn)
 285{
 286        return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
 287}
 288
 289static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 290{
 291        return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
 292}
 293
 294static inline void *phys_to_virt(phys_addr_t paddr)
 295{
 296        return (void *)((unsigned long)paddr + PAGE_OFFSET);
 297}
 298
 299/* Check that the given address is within some mapped range of PAs. */
 300#define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
 301
 302#endif /* !CONFIG_HIGHMEM */
 303
 304/* All callers are not consistent in how they call these functions. */
 305#define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
 306#define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
 307
 308extern int devmem_is_allowed(unsigned long pagenr);
 309
 310#ifdef CONFIG_FLATMEM
 311static inline int pfn_valid(unsigned long pfn)
 312{
 313        return pfn < max_mapnr;
 314}
 315#endif
 316
 317/* Provide as macros since these require some other headers included. */
 318#define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
 319#define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
 320#define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
 321
 322struct mm_struct;
 323extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
 324extern pte_t *virt_to_kpte(unsigned long kaddr);
 325
 326#endif /* !__ASSEMBLY__ */
 327
 328#define VM_DATA_DEFAULT_FLAGS \
 329        (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 330
 331#include <asm-generic/memory_model.h>
 332
 333#endif /* _ASM_TILE_PAGE_H */
 334