linux/arch/tile/mm/fault.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 *
  14 * From i386 code copyright (C) 1995  Linus Torvalds
  15 */
  16
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/smp.h>
  27#include <linux/interrupt.h>
  28#include <linux/init.h>
  29#include <linux/tty.h>
  30#include <linux/vt_kern.h>              /* For unblank_screen() */
  31#include <linux/highmem.h>
  32#include <linux/module.h>
  33#include <linux/kprobes.h>
  34#include <linux/hugetlb.h>
  35#include <linux/syscalls.h>
  36#include <linux/uaccess.h>
  37#include <linux/kdebug.h>
  38#include <linux/context_tracking.h>
  39
  40#include <asm/pgalloc.h>
  41#include <asm/sections.h>
  42#include <asm/traps.h>
  43#include <asm/syscalls.h>
  44
  45#include <arch/interrupts.h>
  46
  47static noinline void force_sig_info_fault(const char *type, int si_signo,
  48                                          int si_code, unsigned long address,
  49                                          int fault_num,
  50                                          struct task_struct *tsk,
  51                                          struct pt_regs *regs)
  52{
  53        siginfo_t info;
  54
  55        if (unlikely(tsk->pid < 2)) {
  56                panic("Signal %d (code %d) at %#lx sent to %s!",
  57                      si_signo, si_code & 0xffff, address,
  58                      is_idle_task(tsk) ? "the idle task" : "init");
  59        }
  60
  61        info.si_signo = si_signo;
  62        info.si_errno = 0;
  63        info.si_code = si_code;
  64        info.si_addr = (void __user *)address;
  65        info.si_trapno = fault_num;
  66        trace_unhandled_signal(type, regs, address, si_signo);
  67        force_sig_info(si_signo, &info, tsk);
  68}
  69
  70#ifndef __tilegx__
  71/*
  72 * Synthesize the fault a PL0 process would get by doing a word-load of
  73 * an unaligned address or a high kernel address.
  74 */
  75SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
  76{
  77        struct pt_regs *regs = current_pt_regs();
  78
  79        if (address >= PAGE_OFFSET)
  80                force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
  81                                     address, INT_DTLB_MISS, current, regs);
  82        else
  83                force_sig_info_fault("atomic alignment fault", SIGBUS,
  84                                     BUS_ADRALN, address,
  85                                     INT_UNALIGN_DATA, current, regs);
  86
  87        /*
  88         * Adjust pc to point at the actual instruction, which is unusual
  89         * for syscalls normally, but is appropriate when we are claiming
  90         * that a syscall swint1 caused a page fault or bus error.
  91         */
  92        regs->pc -= 8;
  93
  94        /*
  95         * Mark this as a caller-save interrupt, like a normal page fault,
  96         * so that when we go through the signal handler path we will
  97         * properly restore r0, r1, and r2 for the signal handler arguments.
  98         */
  99        regs->flags |= PT_FLAGS_CALLER_SAVES;
 100
 101        return 0;
 102}
 103#endif
 104
 105static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 106{
 107        unsigned index = pgd_index(address);
 108        pgd_t *pgd_k;
 109        pud_t *pud, *pud_k;
 110        pmd_t *pmd, *pmd_k;
 111
 112        pgd += index;
 113        pgd_k = init_mm.pgd + index;
 114
 115        if (!pgd_present(*pgd_k))
 116                return NULL;
 117
 118        pud = pud_offset(pgd, address);
 119        pud_k = pud_offset(pgd_k, address);
 120        if (!pud_present(*pud_k))
 121                return NULL;
 122
 123        pmd = pmd_offset(pud, address);
 124        pmd_k = pmd_offset(pud_k, address);
 125        if (!pmd_present(*pmd_k))
 126                return NULL;
 127        if (!pmd_present(*pmd))
 128                set_pmd(pmd, *pmd_k);
 129        else
 130                BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
 131        return pmd_k;
 132}
 133
 134/*
 135 * Handle a fault on the vmalloc area.
 136 */
 137static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
 138{
 139        pmd_t *pmd_k;
 140        pte_t *pte_k;
 141
 142        /* Make sure we are in vmalloc area */
 143        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 144                return -1;
 145
 146        /*
 147         * Synchronize this task's top level page-table
 148         * with the 'reference' page table.
 149         */
 150        pmd_k = vmalloc_sync_one(pgd, address);
 151        if (!pmd_k)
 152                return -1;
 153        pte_k = pte_offset_kernel(pmd_k, address);
 154        if (!pte_present(*pte_k))
 155                return -1;
 156        return 0;
 157}
 158
 159/* Wait until this PTE has completed migration. */
 160static void wait_for_migration(pte_t *pte)
 161{
 162        if (pte_migrating(*pte)) {
 163                /*
 164                 * Wait until the migrater fixes up this pte.
 165                 * We scale the loop count by the clock rate so we'll wait for
 166                 * a few seconds here.
 167                 */
 168                int retries = 0;
 169                int bound = get_clock_rate();
 170                while (pte_migrating(*pte)) {
 171                        barrier();
 172                        if (++retries > bound)
 173                                panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
 174                                      pte->val, pte_pfn(*pte));
 175                }
 176        }
 177}
 178
 179/*
 180 * It's not generally safe to use "current" to get the page table pointer,
 181 * since we might be running an oprofile interrupt in the middle of a
 182 * task switch.
 183 */
 184static pgd_t *get_current_pgd(void)
 185{
 186        HV_Context ctx = hv_inquire_context();
 187        unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
 188        struct page *pgd_page = pfn_to_page(pgd_pfn);
 189        BUG_ON(PageHighMem(pgd_page));
 190        return (pgd_t *) __va(ctx.page_table);
 191}
 192
 193/*
 194 * We can receive a page fault from a migrating PTE at any time.
 195 * Handle it by just waiting until the fault resolves.
 196 *
 197 * It's also possible to get a migrating kernel PTE that resolves
 198 * itself during the downcall from hypervisor to Linux.  We just check
 199 * here to see if the PTE seems valid, and if so we retry it.
 200 *
 201 * NOTE! We MUST NOT take any locks for this case.  We may be in an
 202 * interrupt or a critical region, and must do as little as possible.
 203 * Similarly, we can't use atomic ops here, since we may be handling a
 204 * fault caused by an atomic op access.
 205 *
 206 * If we find a migrating PTE while we're in an NMI context, and we're
 207 * at a PC that has a registered exception handler, we don't wait,
 208 * since this thread may (e.g.) have been interrupted while migrating
 209 * its own stack, which would then cause us to self-deadlock.
 210 */
 211static int handle_migrating_pte(pgd_t *pgd, int fault_num,
 212                                unsigned long address, unsigned long pc,
 213                                int is_kernel_mode, int write)
 214{
 215        pud_t *pud;
 216        pmd_t *pmd;
 217        pte_t *pte;
 218        pte_t pteval;
 219
 220        if (pgd_addr_invalid(address))
 221                return 0;
 222
 223        pgd += pgd_index(address);
 224        pud = pud_offset(pgd, address);
 225        if (!pud || !pud_present(*pud))
 226                return 0;
 227        pmd = pmd_offset(pud, address);
 228        if (!pmd || !pmd_present(*pmd))
 229                return 0;
 230        pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
 231                pte_offset_kernel(pmd, address);
 232        pteval = *pte;
 233        if (pte_migrating(pteval)) {
 234                if (in_nmi() && search_exception_tables(pc))
 235                        return 0;
 236                wait_for_migration(pte);
 237                return 1;
 238        }
 239
 240        if (!is_kernel_mode || !pte_present(pteval))
 241                return 0;
 242        if (fault_num == INT_ITLB_MISS) {
 243                if (pte_exec(pteval))
 244                        return 1;
 245        } else if (write) {
 246                if (pte_write(pteval))
 247                        return 1;
 248        } else {
 249                if (pte_read(pteval))
 250                        return 1;
 251        }
 252
 253        return 0;
 254}
 255
 256/*
 257 * This routine is responsible for faulting in user pages.
 258 * It passes the work off to one of the appropriate routines.
 259 * It returns true if the fault was successfully handled.
 260 */
 261static int handle_page_fault(struct pt_regs *regs,
 262                             int fault_num,
 263                             int is_page_fault,
 264                             unsigned long address,
 265                             int write)
 266{
 267        struct task_struct *tsk;
 268        struct mm_struct *mm;
 269        struct vm_area_struct *vma;
 270        unsigned long stack_offset;
 271        int fault;
 272        int si_code;
 273        int is_kernel_mode;
 274        pgd_t *pgd;
 275        unsigned int flags;
 276
 277        /* on TILE, protection faults are always writes */
 278        if (!is_page_fault)
 279                write = 1;
 280
 281        flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 282
 283        is_kernel_mode = !user_mode(regs);
 284
 285        tsk = validate_current();
 286
 287        /*
 288         * Check to see if we might be overwriting the stack, and bail
 289         * out if so.  The page fault code is a relatively likely
 290         * place to get trapped in an infinite regress, and once we
 291         * overwrite the whole stack, it becomes very hard to recover.
 292         */
 293        stack_offset = stack_pointer & (THREAD_SIZE-1);
 294        if (stack_offset < THREAD_SIZE / 8) {
 295                pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
 296                show_regs(regs);
 297                pr_alert("Killing current process %d/%s\n",
 298                         tsk->pid, tsk->comm);
 299                do_group_exit(SIGKILL);
 300        }
 301
 302        /*
 303         * Early on, we need to check for migrating PTE entries;
 304         * see homecache.c.  If we find a migrating PTE, we wait until
 305         * the backing page claims to be done migrating, then we proceed.
 306         * For kernel PTEs, we rewrite the PTE and return and retry.
 307         * Otherwise, we treat the fault like a normal "no PTE" fault,
 308         * rather than trying to patch up the existing PTE.
 309         */
 310        pgd = get_current_pgd();
 311        if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
 312                                 is_kernel_mode, write))
 313                return 1;
 314
 315        si_code = SEGV_MAPERR;
 316
 317        /*
 318         * We fault-in kernel-space virtual memory on-demand. The
 319         * 'reference' page table is init_mm.pgd.
 320         *
 321         * NOTE! We MUST NOT take any locks for this case. We may
 322         * be in an interrupt or a critical region, and should
 323         * only copy the information from the master page table,
 324         * nothing more.
 325         *
 326         * This verifies that the fault happens in kernel space
 327         * and that the fault was not a protection fault.
 328         */
 329        if (unlikely(address >= TASK_SIZE &&
 330                     !is_arch_mappable_range(address, 0))) {
 331                if (is_kernel_mode && is_page_fault &&
 332                    vmalloc_fault(pgd, address) >= 0)
 333                        return 1;
 334                /*
 335                 * Don't take the mm semaphore here. If we fixup a prefetch
 336                 * fault we could otherwise deadlock.
 337                 */
 338                mm = NULL;  /* happy compiler */
 339                vma = NULL;
 340                goto bad_area_nosemaphore;
 341        }
 342
 343        /*
 344         * If we're trying to touch user-space addresses, we must
 345         * be either at PL0, or else with interrupts enabled in the
 346         * kernel, so either way we can re-enable interrupts here
 347         * unless we are doing atomic access to user space with
 348         * interrupts disabled.
 349         */
 350        if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
 351                local_irq_enable();
 352
 353        mm = tsk->mm;
 354
 355        /*
 356         * If we're in an interrupt, have no user context or are running in an
 357         * region with pagefaults disabled then we must not take the fault.
 358         */
 359        if (pagefault_disabled() || !mm) {
 360                vma = NULL;  /* happy compiler */
 361                goto bad_area_nosemaphore;
 362        }
 363
 364        if (!is_kernel_mode)
 365                flags |= FAULT_FLAG_USER;
 366
 367        /*
 368         * When running in the kernel we expect faults to occur only to
 369         * addresses in user space.  All other faults represent errors in the
 370         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 371         * erroneous fault occurring in a code path which already holds mmap_sem
 372         * we will deadlock attempting to validate the fault against the
 373         * address space.  Luckily the kernel only validly references user
 374         * space from well defined areas of code, which are listed in the
 375         * exceptions table.
 376         *
 377         * As the vast majority of faults will be valid we will only perform
 378         * the source reference check when there is a possibility of a deadlock.
 379         * Attempt to lock the address space, if we cannot we then validate the
 380         * source.  If this is invalid we can skip the address space check,
 381         * thus avoiding the deadlock.
 382         */
 383        if (!down_read_trylock(&mm->mmap_sem)) {
 384                if (is_kernel_mode &&
 385                    !search_exception_tables(regs->pc)) {
 386                        vma = NULL;  /* happy compiler */
 387                        goto bad_area_nosemaphore;
 388                }
 389
 390retry:
 391                down_read(&mm->mmap_sem);
 392        }
 393
 394        vma = find_vma(mm, address);
 395        if (!vma)
 396                goto bad_area;
 397        if (vma->vm_start <= address)
 398                goto good_area;
 399        if (!(vma->vm_flags & VM_GROWSDOWN))
 400                goto bad_area;
 401        if (regs->sp < PAGE_OFFSET) {
 402                /*
 403                 * accessing the stack below sp is always a bug.
 404                 */
 405                if (address < regs->sp)
 406                        goto bad_area;
 407        }
 408        if (expand_stack(vma, address))
 409                goto bad_area;
 410
 411/*
 412 * Ok, we have a good vm_area for this memory access, so
 413 * we can handle it..
 414 */
 415good_area:
 416        si_code = SEGV_ACCERR;
 417        if (fault_num == INT_ITLB_MISS) {
 418                if (!(vma->vm_flags & VM_EXEC))
 419                        goto bad_area;
 420        } else if (write) {
 421#ifdef TEST_VERIFY_AREA
 422                if (!is_page_fault && regs->cs == KERNEL_CS)
 423                        pr_err("WP fault at " REGFMT "\n", regs->eip);
 424#endif
 425                if (!(vma->vm_flags & VM_WRITE))
 426                        goto bad_area;
 427                flags |= FAULT_FLAG_WRITE;
 428        } else {
 429                if (!is_page_fault || !(vma->vm_flags & VM_READ))
 430                        goto bad_area;
 431        }
 432
 433        /*
 434         * If for any reason at all we couldn't handle the fault,
 435         * make sure we exit gracefully rather than endlessly redo
 436         * the fault.
 437         */
 438        fault = handle_mm_fault(mm, vma, address, flags);
 439
 440        if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
 441                return 0;
 442
 443        if (unlikely(fault & VM_FAULT_ERROR)) {
 444                if (fault & VM_FAULT_OOM)
 445                        goto out_of_memory;
 446                else if (fault & VM_FAULT_SIGSEGV)
 447                        goto bad_area;
 448                else if (fault & VM_FAULT_SIGBUS)
 449                        goto do_sigbus;
 450                BUG();
 451        }
 452        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 453                if (fault & VM_FAULT_MAJOR)
 454                        tsk->maj_flt++;
 455                else
 456                        tsk->min_flt++;
 457                if (fault & VM_FAULT_RETRY) {
 458                        flags &= ~FAULT_FLAG_ALLOW_RETRY;
 459                        flags |= FAULT_FLAG_TRIED;
 460
 461                         /*
 462                          * No need to up_read(&mm->mmap_sem) as we would
 463                          * have already released it in __lock_page_or_retry
 464                          * in mm/filemap.c.
 465                          */
 466                        goto retry;
 467                }
 468        }
 469
 470#if CHIP_HAS_TILE_DMA()
 471        /* If this was a DMA TLB fault, restart the DMA engine. */
 472        switch (fault_num) {
 473        case INT_DMATLB_MISS:
 474        case INT_DMATLB_MISS_DWNCL:
 475        case INT_DMATLB_ACCESS:
 476        case INT_DMATLB_ACCESS_DWNCL:
 477                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
 478                break;
 479        }
 480#endif
 481
 482        up_read(&mm->mmap_sem);
 483        return 1;
 484
 485/*
 486 * Something tried to access memory that isn't in our memory map..
 487 * Fix it, but check if it's kernel or user first..
 488 */
 489bad_area:
 490        up_read(&mm->mmap_sem);
 491
 492bad_area_nosemaphore:
 493        /* User mode accesses just cause a SIGSEGV */
 494        if (!is_kernel_mode) {
 495                /*
 496                 * It's possible to have interrupts off here.
 497                 */
 498                local_irq_enable();
 499
 500                force_sig_info_fault("segfault", SIGSEGV, si_code, address,
 501                                     fault_num, tsk, regs);
 502                return 0;
 503        }
 504
 505no_context:
 506        /* Are we prepared to handle this kernel fault?  */
 507        if (fixup_exception(regs))
 508                return 0;
 509
 510/*
 511 * Oops. The kernel tried to access some bad page. We'll have to
 512 * terminate things with extreme prejudice.
 513 */
 514
 515        bust_spinlocks(1);
 516
 517        /* FIXME: no lookup_address() yet */
 518#ifdef SUPPORT_LOOKUP_ADDRESS
 519        if (fault_num == INT_ITLB_MISS) {
 520                pte_t *pte = lookup_address(address);
 521
 522                if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
 523                        pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
 524                                current->uid);
 525        }
 526#endif
 527        if (address < PAGE_SIZE)
 528                pr_alert("Unable to handle kernel NULL pointer dereference\n");
 529        else
 530                pr_alert("Unable to handle kernel paging request\n");
 531        pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
 532                 address, regs->pc);
 533
 534        show_regs(regs);
 535
 536        if (unlikely(tsk->pid < 2)) {
 537                panic("Kernel page fault running %s!",
 538                      is_idle_task(tsk) ? "the idle task" : "init");
 539        }
 540
 541        /*
 542         * More FIXME: we should probably copy the i386 here and
 543         * implement a generic die() routine.  Not today.
 544         */
 545#ifdef SUPPORT_DIE
 546        die("Oops", regs);
 547#endif
 548        bust_spinlocks(1);
 549
 550        do_group_exit(SIGKILL);
 551
 552/*
 553 * We ran out of memory, or some other thing happened to us that made
 554 * us unable to handle the page fault gracefully.
 555 */
 556out_of_memory:
 557        up_read(&mm->mmap_sem);
 558        if (is_kernel_mode)
 559                goto no_context;
 560        pagefault_out_of_memory();
 561        return 0;
 562
 563do_sigbus:
 564        up_read(&mm->mmap_sem);
 565
 566        /* Kernel mode? Handle exceptions or die */
 567        if (is_kernel_mode)
 568                goto no_context;
 569
 570        force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
 571                             fault_num, tsk, regs);
 572        return 0;
 573}
 574
 575#ifndef __tilegx__
 576
 577/* We must release ICS before panicking or we won't get anywhere. */
 578#define ics_panic(fmt, ...)                                     \
 579do {                                                            \
 580        __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0);        \
 581        panic(fmt, ##__VA_ARGS__);                              \
 582} while (0)
 583
 584/*
 585 * When we take an ITLB or DTLB fault or access violation in the
 586 * supervisor while the critical section bit is set, the hypervisor is
 587 * reluctant to write new values into the EX_CONTEXT_K_x registers,
 588 * since that might indicate we have not yet squirreled the SPR
 589 * contents away and can thus safely take a recursive interrupt.
 590 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
 591 *
 592 * Note that this routine is called before homecache_tlb_defer_enter(),
 593 * which means that we can properly unlock any atomics that might
 594 * be used there (good), but also means we must be very sensitive
 595 * to not touch any data structures that might be located in memory
 596 * that could migrate, as we could be entering the kernel on a dataplane
 597 * cpu that has been deferring kernel TLB updates.  This means, for
 598 * example, that we can't migrate init_mm or its pgd.
 599 */
 600struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
 601                                      unsigned long address,
 602                                      unsigned long info)
 603{
 604        unsigned long pc = info & ~1;
 605        int write = info & 1;
 606        pgd_t *pgd = get_current_pgd();
 607
 608        /* Retval is 1 at first since we will handle the fault fully. */
 609        struct intvec_state state = {
 610                do_page_fault, fault_num, address, write, 1
 611        };
 612
 613        /* Validate that we are plausibly in the right routine. */
 614        if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
 615            (fault_num != INT_DTLB_MISS &&
 616             fault_num != INT_DTLB_ACCESS)) {
 617                unsigned long old_pc = regs->pc;
 618                regs->pc = pc;
 619                ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
 620                          old_pc, fault_num, write, address);
 621        }
 622
 623        /* We might be faulting on a vmalloc page, so check that first. */
 624        if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
 625                return state;
 626
 627        /*
 628         * If we faulted with ICS set in sys_cmpxchg, we are providing
 629         * a user syscall service that should generate a signal on
 630         * fault.  We didn't set up a kernel stack on initial entry to
 631         * sys_cmpxchg, but instead had one set up by the fault, which
 632         * (because sys_cmpxchg never releases ICS) came to us via the
 633         * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
 634         * still referencing the original user code.  We release the
 635         * atomic lock and rewrite pt_regs so that it appears that we
 636         * came from user-space directly, and after we finish the
 637         * fault we'll go back to user space and re-issue the swint.
 638         * This way the backtrace information is correct if we need to
 639         * emit a stack dump at any point while handling this.
 640         *
 641         * Must match register use in sys_cmpxchg().
 642         */
 643        if (pc >= (unsigned long) sys_cmpxchg &&
 644            pc < (unsigned long) __sys_cmpxchg_end) {
 645#ifdef CONFIG_SMP
 646                /* Don't unlock before we could have locked. */
 647                if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
 648                        int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
 649                        __atomic_fault_unlock(lock_ptr);
 650                }
 651#endif
 652                regs->sp = regs->regs[27];
 653        }
 654
 655        /*
 656         * We can also fault in the atomic assembly, in which
 657         * case we use the exception table to do the first-level fixup.
 658         * We may re-fixup again in the real fault handler if it
 659         * turns out the faulting address is just bad, and not,
 660         * for example, migrating.
 661         */
 662        else if (pc >= (unsigned long) __start_atomic_asm_code &&
 663                   pc < (unsigned long) __end_atomic_asm_code) {
 664                const struct exception_table_entry *fixup;
 665#ifdef CONFIG_SMP
 666                /* Unlock the atomic lock. */
 667                int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
 668                __atomic_fault_unlock(lock_ptr);
 669#endif
 670                fixup = search_exception_tables(pc);
 671                if (!fixup)
 672                        ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
 673                                  pc, fault_num);
 674                regs->pc = fixup->fixup;
 675                regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
 676        }
 677
 678        /*
 679         * Now that we have released the atomic lock (if necessary),
 680         * it's safe to spin if the PTE that caused the fault was migrating.
 681         */
 682        if (fault_num == INT_DTLB_ACCESS)
 683                write = 1;
 684        if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
 685                return state;
 686
 687        /* Return zero so that we continue on with normal fault handling. */
 688        state.retval = 0;
 689        return state;
 690}
 691
 692#endif /* !__tilegx__ */
 693
 694/*
 695 * This routine handles page faults.  It determines the address, and the
 696 * problem, and then passes it handle_page_fault() for normal DTLB and
 697 * ITLB issues, and for DMA or SN processor faults when we are in user
 698 * space.  For the latter, if we're in kernel mode, we just save the
 699 * interrupt away appropriately and return immediately.  We can't do
 700 * page faults for user code while in kernel mode.
 701 */
 702static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
 703                                   unsigned long address, unsigned long write)
 704{
 705        int is_page_fault;
 706
 707#ifdef CONFIG_KPROBES
 708        /*
 709         * This is to notify the fault handler of the kprobes.  The
 710         * exception code is redundant as it is also carried in REGS,
 711         * but we pass it anyhow.
 712         */
 713        if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
 714                       regs->faultnum, SIGSEGV) == NOTIFY_STOP)
 715                return;
 716#endif
 717
 718#ifdef __tilegx__
 719        /*
 720         * We don't need early do_page_fault_ics() support, since unlike
 721         * Pro we don't need to worry about unlocking the atomic locks.
 722         * There is only one current case in GX where we touch any memory
 723         * under ICS other than our own kernel stack, and we handle that
 724         * here.  (If we crash due to trying to touch our own stack,
 725         * we're in too much trouble for C code to help out anyway.)
 726         */
 727        if (write & ~1) {
 728                unsigned long pc = write & ~1;
 729                if (pc >= (unsigned long) __start_unalign_asm_code &&
 730                    pc < (unsigned long) __end_unalign_asm_code) {
 731                        struct thread_info *ti = current_thread_info();
 732                        /*
 733                         * Our EX_CONTEXT is still what it was from the
 734                         * initial unalign exception, but now we've faulted
 735                         * on the JIT page.  We would like to complete the
 736                         * page fault however is appropriate, and then retry
 737                         * the instruction that caused the unalign exception.
 738                         * Our state has been "corrupted" by setting the low
 739                         * bit in "sp", and stashing r0..r3 in the
 740                         * thread_info area, so we revert all of that, then
 741                         * continue as if this were a normal page fault.
 742                         */
 743                        regs->sp &= ~1UL;
 744                        regs->regs[0] = ti->unalign_jit_tmp[0];
 745                        regs->regs[1] = ti->unalign_jit_tmp[1];
 746                        regs->regs[2] = ti->unalign_jit_tmp[2];
 747                        regs->regs[3] = ti->unalign_jit_tmp[3];
 748                        write &= 1;
 749                } else {
 750                        pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
 751                                 current->comm, current->pid, pc, address);
 752                        show_regs(regs);
 753                        do_group_exit(SIGKILL);
 754                }
 755        }
 756#else
 757        /* This case should have been handled by do_page_fault_ics(). */
 758        BUG_ON(write & ~1);
 759#endif
 760
 761#if CHIP_HAS_TILE_DMA()
 762        /*
 763         * If it's a DMA fault, suspend the transfer while we're
 764         * handling the miss; we'll restart after it's handled.  If we
 765         * don't suspend, it's possible that this process could swap
 766         * out and back in, and restart the engine since the DMA is
 767         * still 'running'.
 768         */
 769        if (fault_num == INT_DMATLB_MISS ||
 770            fault_num == INT_DMATLB_ACCESS ||
 771            fault_num == INT_DMATLB_MISS_DWNCL ||
 772            fault_num == INT_DMATLB_ACCESS_DWNCL) {
 773                __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
 774                while (__insn_mfspr(SPR_DMA_USER_STATUS) &
 775                       SPR_DMA_STATUS__BUSY_MASK)
 776                        ;
 777        }
 778#endif
 779
 780        /* Validate fault num and decide if this is a first-time page fault. */
 781        switch (fault_num) {
 782        case INT_ITLB_MISS:
 783        case INT_DTLB_MISS:
 784#if CHIP_HAS_TILE_DMA()
 785        case INT_DMATLB_MISS:
 786        case INT_DMATLB_MISS_DWNCL:
 787#endif
 788                is_page_fault = 1;
 789                break;
 790
 791        case INT_DTLB_ACCESS:
 792#if CHIP_HAS_TILE_DMA()
 793        case INT_DMATLB_ACCESS:
 794        case INT_DMATLB_ACCESS_DWNCL:
 795#endif
 796                is_page_fault = 0;
 797                break;
 798
 799        default:
 800                panic("Bad fault number %d in do_page_fault", fault_num);
 801        }
 802
 803#if CHIP_HAS_TILE_DMA()
 804        if (!user_mode(regs)) {
 805                struct async_tlb *async;
 806                switch (fault_num) {
 807#if CHIP_HAS_TILE_DMA()
 808                case INT_DMATLB_MISS:
 809                case INT_DMATLB_ACCESS:
 810                case INT_DMATLB_MISS_DWNCL:
 811                case INT_DMATLB_ACCESS_DWNCL:
 812                        async = &current->thread.dma_async_tlb;
 813                        break;
 814#endif
 815                default:
 816                        async = NULL;
 817                }
 818                if (async) {
 819
 820                        /*
 821                         * No vmalloc check required, so we can allow
 822                         * interrupts immediately at this point.
 823                         */
 824                        local_irq_enable();
 825
 826                        set_thread_flag(TIF_ASYNC_TLB);
 827                        if (async->fault_num != 0) {
 828                                panic("Second async fault %d; old fault was %d (%#lx/%ld)",
 829                                      fault_num, async->fault_num,
 830                                      address, write);
 831                        }
 832                        BUG_ON(fault_num == 0);
 833                        async->fault_num = fault_num;
 834                        async->is_fault = is_page_fault;
 835                        async->is_write = write;
 836                        async->address = address;
 837                        return;
 838                }
 839        }
 840#endif
 841
 842        handle_page_fault(regs, fault_num, is_page_fault, address, write);
 843}
 844
 845void do_page_fault(struct pt_regs *regs, int fault_num,
 846                   unsigned long address, unsigned long write)
 847{
 848        enum ctx_state prev_state = exception_enter();
 849        __do_page_fault(regs, fault_num, address, write);
 850        exception_exit(prev_state);
 851}
 852
 853#if CHIP_HAS_TILE_DMA()
 854/*
 855 * This routine effectively re-issues asynchronous page faults
 856 * when we are returning to user space.
 857 */
 858void do_async_page_fault(struct pt_regs *regs)
 859{
 860        struct async_tlb *async = &current->thread.dma_async_tlb;
 861
 862        /*
 863         * Clear thread flag early.  If we re-interrupt while processing
 864         * code here, we will reset it and recall this routine before
 865         * returning to user space.
 866         */
 867        clear_thread_flag(TIF_ASYNC_TLB);
 868
 869        if (async->fault_num) {
 870                /*
 871                 * Clear async->fault_num before calling the page-fault
 872                 * handler so that if we re-interrupt before returning
 873                 * from the function we have somewhere to put the
 874                 * information from the new interrupt.
 875                 */
 876                int fault_num = async->fault_num;
 877                async->fault_num = 0;
 878                handle_page_fault(regs, fault_num, async->is_fault,
 879                                  async->address, async->is_write);
 880        }
 881}
 882#endif /* CHIP_HAS_TILE_DMA() */
 883
 884
 885void vmalloc_sync_all(void)
 886{
 887#ifdef __tilegx__
 888        /* Currently all L1 kernel pmd's are static and shared. */
 889        BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
 890                     pgd_index(VMALLOC_START));
 891#else
 892        /*
 893         * Note that races in the updates of insync and start aren't
 894         * problematic: insync can only get set bits added, and updates to
 895         * start are only improving performance (without affecting correctness
 896         * if undone).
 897         */
 898        static DECLARE_BITMAP(insync, PTRS_PER_PGD);
 899        static unsigned long start = PAGE_OFFSET;
 900        unsigned long address;
 901
 902        BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
 903        for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
 904                if (!test_bit(pgd_index(address), insync)) {
 905                        unsigned long flags;
 906                        struct list_head *pos;
 907
 908                        spin_lock_irqsave(&pgd_lock, flags);
 909                        list_for_each(pos, &pgd_list)
 910                                if (!vmalloc_sync_one(list_to_pgd(pos),
 911                                                                address)) {
 912                                        /* Must be at first entry in list. */
 913                                        BUG_ON(pos != pgd_list.next);
 914                                        break;
 915                                }
 916                        spin_unlock_irqrestore(&pgd_lock, flags);
 917                        if (pos != pgd_list.next)
 918                                set_bit(pgd_index(address), insync);
 919                }
 920                if (address == start && test_bit(pgd_index(address), insync))
 921                        start = address + PGDIR_SIZE;
 922        }
 923#endif
 924}
 925