linux/arch/x86/include/asm/uv/uv_hub.h
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * SGI UV architectural definitions
   7 *
   8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
   9 */
  10
  11#ifndef _ASM_X86_UV_UV_HUB_H
  12#define _ASM_X86_UV_UV_HUB_H
  13
  14#ifdef CONFIG_X86_64
  15#include <linux/numa.h>
  16#include <linux/percpu.h>
  17#include <linux/timer.h>
  18#include <linux/io.h>
  19#include <asm/types.h>
  20#include <asm/percpu.h>
  21#include <asm/uv/uv_mmrs.h>
  22#include <asm/irq_vectors.h>
  23#include <asm/io_apic.h>
  24
  25
  26/*
  27 * Addressing Terminology
  28 *
  29 *      M       - The low M bits of a physical address represent the offset
  30 *                into the blade local memory. RAM memory on a blade is physically
  31 *                contiguous (although various IO spaces may punch holes in
  32 *                it)..
  33 *
  34 *      N       - Number of bits in the node portion of a socket physical
  35 *                address.
  36 *
  37 *      NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
  38 *                routers always have low bit of 1, C/MBricks have low bit
  39 *                equal to 0. Most addressing macros that target UV hub chips
  40 *                right shift the NASID by 1 to exclude the always-zero bit.
  41 *                NASIDs contain up to 15 bits.
  42 *
  43 *      GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  44 *                of nasids.
  45 *
  46 *      PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
  47 *                of the nasid for socket usage.
  48 *
  49 *      GPA     - (global physical address) a socket physical address converted
  50 *                so that it can be used by the GRU as a global address. Socket
  51 *                physical addresses 1) need additional NASID (node) bits added
  52 *                to the high end of the address, and 2) unaliased if the
  53 *                partition does not have a physical address 0. In addition, on
  54 *                UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
  55 *
  56 *
  57 *  NumaLink Global Physical Address Format:
  58 *  +--------------------------------+---------------------+
  59 *  |00..000|      GNODE             |      NodeOffset     |
  60 *  +--------------------------------+---------------------+
  61 *          |<-------53 - M bits --->|<--------M bits ----->
  62 *
  63 *      M - number of node offset bits (35 .. 40)
  64 *
  65 *
  66 *  Memory/UV-HUB Processor Socket Address Format:
  67 *  +----------------+---------------+---------------------+
  68 *  |00..000000000000|   PNODE       |      NodeOffset     |
  69 *  +----------------+---------------+---------------------+
  70 *                   <--- N bits --->|<--------M bits ----->
  71 *
  72 *      M - number of node offset bits (35 .. 40)
  73 *      N - number of PNODE bits (0 .. 10)
  74 *
  75 *              Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  76 *              The actual values are configuration dependent and are set at
  77 *              boot time. M & N values are set by the hardware/BIOS at boot.
  78 *
  79 *
  80 * APICID format
  81 *      NOTE!!!!!! This is the current format of the APICID. However, code
  82 *      should assume that this will change in the future. Use functions
  83 *      in this file for all APICID bit manipulations and conversion.
  84 *
  85 *              1111110000000000
  86 *              5432109876543210
  87 *              pppppppppplc0cch        Nehalem-EX (12 bits in hdw reg)
  88 *              ppppppppplcc0cch        Westmere-EX (12 bits in hdw reg)
  89 *              pppppppppppcccch        SandyBridge (15 bits in hdw reg)
  90 *              sssssssssss
  91 *
  92 *                      p  = pnode bits
  93 *                      l =  socket number on board
  94 *                      c  = core
  95 *                      h  = hyperthread
  96 *                      s  = bits that are in the SOCKET_ID CSR
  97 *
  98 *      Note: Processor may support fewer bits in the APICID register. The ACPI
  99 *            tables hold all 16 bits. Software needs to be aware of this.
 100 *
 101 *            Unless otherwise specified, all references to APICID refer to
 102 *            the FULL value contained in ACPI tables, not the subset in the
 103 *            processor APICID register.
 104 */
 105
 106
 107/*
 108 * Maximum number of bricks in all partitions and in all coherency domains.
 109 * This is the total number of bricks accessible in the numalink fabric. It
 110 * includes all C & M bricks. Routers are NOT included.
 111 *
 112 * This value is also the value of the maximum number of non-router NASIDs
 113 * in the numalink fabric.
 114 *
 115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 116 */
 117#define UV_MAX_NUMALINK_BLADES  16384
 118
 119/*
 120 * Maximum number of C/Mbricks within a software SSI (hardware may support
 121 * more).
 122 */
 123#define UV_MAX_SSI_BLADES       256
 124
 125/*
 126 * The largest possible NASID of a C or M brick (+ 2)
 127 */
 128#define UV_MAX_NASID_VALUE      (UV_MAX_NUMALINK_BLADES * 2)
 129
 130struct uv_scir_s {
 131        struct timer_list timer;
 132        unsigned long   offset;
 133        unsigned long   last;
 134        unsigned long   idle_on;
 135        unsigned long   idle_off;
 136        unsigned char   state;
 137        unsigned char   enabled;
 138};
 139
 140/*
 141 * The following defines attributes of the HUB chip. These attributes are
 142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 143 * They are kept together in a struct to minimize cache misses.
 144 */
 145struct uv_hub_info_s {
 146        unsigned long           global_mmr_base;
 147        unsigned long           gpa_mask;
 148        unsigned int            gnode_extra;
 149        unsigned char           hub_revision;
 150        unsigned char           apic_pnode_shift;
 151        unsigned char           m_shift;
 152        unsigned char           n_lshift;
 153        unsigned long           gnode_upper;
 154        unsigned long           lowmem_remap_top;
 155        unsigned long           lowmem_remap_base;
 156        unsigned short          pnode;
 157        unsigned short          pnode_mask;
 158        unsigned short          coherency_domain_number;
 159        unsigned short          numa_blade_id;
 160        unsigned char           blade_processor_id;
 161        unsigned char           m_val;
 162        unsigned char           n_val;
 163        struct uv_scir_s        scir;
 164};
 165
 166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
 167#define uv_hub_info             this_cpu_ptr(&__uv_hub_info)
 168#define uv_cpu_hub_info(cpu)    (&per_cpu(__uv_hub_info, cpu))
 169
 170/*
 171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
 172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
 173 * This is a software convention - NOT the hardware revision numbers in
 174 * the hub chip.
 175 */
 176#define UV1_HUB_REVISION_BASE           1
 177#define UV2_HUB_REVISION_BASE           3
 178#define UV3_HUB_REVISION_BASE           5
 179
 180static inline int is_uv1_hub(void)
 181{
 182        return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
 183}
 184
 185static inline int is_uv2_hub(void)
 186{
 187        return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
 188                (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
 189}
 190
 191static inline int is_uv3_hub(void)
 192{
 193        return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
 194}
 195
 196static inline int is_uv_hub(void)
 197{
 198        return uv_hub_info->hub_revision;
 199}
 200
 201/* code common to uv2 and uv3 only */
 202static inline int is_uvx_hub(void)
 203{
 204        return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
 205}
 206
 207union uvh_apicid {
 208    unsigned long       v;
 209    struct uvh_apicid_s {
 210        unsigned long   local_apic_mask  : 24;
 211        unsigned long   local_apic_shift :  5;
 212        unsigned long   unused1          :  3;
 213        unsigned long   pnode_mask       : 24;
 214        unsigned long   pnode_shift      :  5;
 215        unsigned long   unused2          :  3;
 216    } s;
 217};
 218
 219/*
 220 * Local & Global MMR space macros.
 221 *      Note: macros are intended to be used ONLY by inline functions
 222 *      in this file - not by other kernel code.
 223 *              n -  NASID (full 15-bit global nasid)
 224 *              g -  GNODE (full 15-bit global nasid, right shifted 1)
 225 *              p -  PNODE (local part of nsids, right shifted 1)
 226 */
 227#define UV_NASID_TO_PNODE(n)            (((n) >> 1) & uv_hub_info->pnode_mask)
 228#define UV_PNODE_TO_GNODE(p)            ((p) |uv_hub_info->gnode_extra)
 229#define UV_PNODE_TO_NASID(p)            (UV_PNODE_TO_GNODE(p) << 1)
 230
 231#define UV1_LOCAL_MMR_BASE              0xf4000000UL
 232#define UV1_GLOBAL_MMR32_BASE           0xf8000000UL
 233#define UV1_LOCAL_MMR_SIZE              (64UL * 1024 * 1024)
 234#define UV1_GLOBAL_MMR32_SIZE           (64UL * 1024 * 1024)
 235
 236#define UV2_LOCAL_MMR_BASE              0xfa000000UL
 237#define UV2_GLOBAL_MMR32_BASE           0xfc000000UL
 238#define UV2_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 239#define UV2_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 240
 241#define UV3_LOCAL_MMR_BASE              0xfa000000UL
 242#define UV3_GLOBAL_MMR32_BASE           0xfc000000UL
 243#define UV3_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 244#define UV3_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 245
 246#define UV_LOCAL_MMR_BASE               (is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
 247                                        (is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
 248                                                        UV3_LOCAL_MMR_BASE))
 249#define UV_GLOBAL_MMR32_BASE            (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
 250                                        (is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
 251                                                        UV3_GLOBAL_MMR32_BASE))
 252#define UV_LOCAL_MMR_SIZE               (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
 253                                        (is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
 254                                                        UV3_LOCAL_MMR_SIZE))
 255#define UV_GLOBAL_MMR32_SIZE            (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
 256                                        (is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
 257                                                        UV3_GLOBAL_MMR32_SIZE))
 258#define UV_GLOBAL_MMR64_BASE            (uv_hub_info->global_mmr_base)
 259
 260#define UV_GLOBAL_GRU_MMR_BASE          0x4000000
 261
 262#define UV_GLOBAL_MMR32_PNODE_SHIFT     15
 263#define UV_GLOBAL_MMR64_PNODE_SHIFT     26
 264
 265#define UV_GLOBAL_MMR32_PNODE_BITS(p)   ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
 266
 267#define UV_GLOBAL_MMR64_PNODE_BITS(p)                                   \
 268        (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
 269
 270#define UVH_APICID              0x002D0E00L
 271#define UV_APIC_PNODE_SHIFT     6
 272
 273#define UV_APICID_HIBIT_MASK    0xffff0000
 274
 275/* Local Bus from cpu's perspective */
 276#define LOCAL_BUS_BASE          0x1c00000
 277#define LOCAL_BUS_SIZE          (4 * 1024 * 1024)
 278
 279/*
 280 * System Controller Interface Reg
 281 *
 282 * Note there are NO leds on a UV system.  This register is only
 283 * used by the system controller to monitor system-wide operation.
 284 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
 285 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 286 * a node.
 287 *
 288 * The window is located at top of ACPI MMR space
 289 */
 290#define SCIR_WINDOW_COUNT       64
 291#define SCIR_LOCAL_MMR_BASE     (LOCAL_BUS_BASE + \
 292                                 LOCAL_BUS_SIZE - \
 293                                 SCIR_WINDOW_COUNT)
 294
 295#define SCIR_CPU_HEARTBEAT      0x01    /* timer interrupt */
 296#define SCIR_CPU_ACTIVITY       0x02    /* not idle */
 297#define SCIR_CPU_HB_INTERVAL    (HZ)    /* once per second */
 298
 299/* Loop through all installed blades */
 300#define for_each_possible_blade(bid)            \
 301        for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
 302
 303/*
 304 * Macros for converting between kernel virtual addresses, socket local physical
 305 * addresses, and UV global physical addresses.
 306 *      Note: use the standard __pa() & __va() macros for converting
 307 *            between socket virtual and socket physical addresses.
 308 */
 309
 310/* socket phys RAM --> UV global physical address */
 311static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
 312{
 313        if (paddr < uv_hub_info->lowmem_remap_top)
 314                paddr |= uv_hub_info->lowmem_remap_base;
 315        paddr |= uv_hub_info->gnode_upper;
 316        paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
 317                ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
 318        return paddr;
 319}
 320
 321
 322/* socket virtual --> UV global physical address */
 323static inline unsigned long uv_gpa(void *v)
 324{
 325        return uv_soc_phys_ram_to_gpa(__pa(v));
 326}
 327
 328/* Top two bits indicate the requested address is in MMR space.  */
 329static inline int
 330uv_gpa_in_mmr_space(unsigned long gpa)
 331{
 332        return (gpa >> 62) == 0x3UL;
 333}
 334
 335/* UV global physical address --> socket phys RAM */
 336static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
 337{
 338        unsigned long paddr;
 339        unsigned long remap_base = uv_hub_info->lowmem_remap_base;
 340        unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
 341
 342        gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
 343                ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
 344        paddr = gpa & uv_hub_info->gpa_mask;
 345        if (paddr >= remap_base && paddr < remap_base + remap_top)
 346                paddr -= remap_base;
 347        return paddr;
 348}
 349
 350
 351/* gpa -> pnode */
 352static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
 353{
 354        return gpa >> uv_hub_info->n_lshift;
 355}
 356
 357/* gpa -> pnode */
 358static inline int uv_gpa_to_pnode(unsigned long gpa)
 359{
 360        unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
 361
 362        return uv_gpa_to_gnode(gpa) & n_mask;
 363}
 364
 365/* gpa -> node offset*/
 366static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
 367{
 368        return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
 369}
 370
 371/* pnode, offset --> socket virtual */
 372static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
 373{
 374        return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
 375}
 376
 377
 378/*
 379 * Extract a PNODE from an APICID (full apicid, not processor subset)
 380 */
 381static inline int uv_apicid_to_pnode(int apicid)
 382{
 383        return (apicid >> uv_hub_info->apic_pnode_shift);
 384}
 385
 386/*
 387 * Convert an apicid to the socket number on the blade
 388 */
 389static inline int uv_apicid_to_socket(int apicid)
 390{
 391        if (is_uv1_hub())
 392                return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
 393        else
 394                return 0;
 395}
 396
 397/*
 398 * Access global MMRs using the low memory MMR32 space. This region supports
 399 * faster MMR access but not all MMRs are accessible in this space.
 400 */
 401static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
 402{
 403        return __va(UV_GLOBAL_MMR32_BASE |
 404                       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
 405}
 406
 407static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
 408{
 409        writeq(val, uv_global_mmr32_address(pnode, offset));
 410}
 411
 412static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
 413{
 414        return readq(uv_global_mmr32_address(pnode, offset));
 415}
 416
 417/*
 418 * Access Global MMR space using the MMR space located at the top of physical
 419 * memory.
 420 */
 421static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
 422{
 423        return __va(UV_GLOBAL_MMR64_BASE |
 424                    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
 425}
 426
 427static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
 428{
 429        writeq(val, uv_global_mmr64_address(pnode, offset));
 430}
 431
 432static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
 433{
 434        return readq(uv_global_mmr64_address(pnode, offset));
 435}
 436
 437/*
 438 * Global MMR space addresses when referenced by the GRU. (GRU does
 439 * NOT use socket addressing).
 440 */
 441static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
 442{
 443        return UV_GLOBAL_GRU_MMR_BASE | offset |
 444                ((unsigned long)pnode << uv_hub_info->m_val);
 445}
 446
 447static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
 448{
 449        writeb(val, uv_global_mmr64_address(pnode, offset));
 450}
 451
 452static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
 453{
 454        return readb(uv_global_mmr64_address(pnode, offset));
 455}
 456
 457/*
 458 * Access hub local MMRs. Faster than using global space but only local MMRs
 459 * are accessible.
 460 */
 461static inline unsigned long *uv_local_mmr_address(unsigned long offset)
 462{
 463        return __va(UV_LOCAL_MMR_BASE | offset);
 464}
 465
 466static inline unsigned long uv_read_local_mmr(unsigned long offset)
 467{
 468        return readq(uv_local_mmr_address(offset));
 469}
 470
 471static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
 472{
 473        writeq(val, uv_local_mmr_address(offset));
 474}
 475
 476static inline unsigned char uv_read_local_mmr8(unsigned long offset)
 477{
 478        return readb(uv_local_mmr_address(offset));
 479}
 480
 481static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
 482{
 483        writeb(val, uv_local_mmr_address(offset));
 484}
 485
 486/*
 487 * Structures and definitions for converting between cpu, node, pnode, and blade
 488 * numbers.
 489 */
 490struct uv_blade_info {
 491        unsigned short  nr_possible_cpus;
 492        unsigned short  nr_online_cpus;
 493        unsigned short  pnode;
 494        short           memory_nid;
 495        spinlock_t      nmi_lock;       /* obsolete, see uv_hub_nmi */
 496        unsigned long   nmi_count;      /* obsolete, see uv_hub_nmi */
 497};
 498extern struct uv_blade_info *uv_blade_info;
 499extern short *uv_node_to_blade;
 500extern short *uv_cpu_to_blade;
 501extern short uv_possible_blades;
 502
 503/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
 504static inline int uv_blade_processor_id(void)
 505{
 506        return uv_hub_info->blade_processor_id;
 507}
 508
 509/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
 510static inline int uv_numa_blade_id(void)
 511{
 512        return uv_hub_info->numa_blade_id;
 513}
 514
 515/* Convert a cpu number to the the UV blade number */
 516static inline int uv_cpu_to_blade_id(int cpu)
 517{
 518        return uv_cpu_to_blade[cpu];
 519}
 520
 521/* Convert linux node number to the UV blade number */
 522static inline int uv_node_to_blade_id(int nid)
 523{
 524        return uv_node_to_blade[nid];
 525}
 526
 527/* Convert a blade id to the PNODE of the blade */
 528static inline int uv_blade_to_pnode(int bid)
 529{
 530        return uv_blade_info[bid].pnode;
 531}
 532
 533/* Nid of memory node on blade. -1 if no blade-local memory */
 534static inline int uv_blade_to_memory_nid(int bid)
 535{
 536        return uv_blade_info[bid].memory_nid;
 537}
 538
 539/* Determine the number of possible cpus on a blade */
 540static inline int uv_blade_nr_possible_cpus(int bid)
 541{
 542        return uv_blade_info[bid].nr_possible_cpus;
 543}
 544
 545/* Determine the number of online cpus on a blade */
 546static inline int uv_blade_nr_online_cpus(int bid)
 547{
 548        return uv_blade_info[bid].nr_online_cpus;
 549}
 550
 551/* Convert a cpu id to the PNODE of the blade containing the cpu */
 552static inline int uv_cpu_to_pnode(int cpu)
 553{
 554        return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
 555}
 556
 557/* Convert a linux node number to the PNODE of the blade */
 558static inline int uv_node_to_pnode(int nid)
 559{
 560        return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
 561}
 562
 563/* Maximum possible number of blades */
 564static inline int uv_num_possible_blades(void)
 565{
 566        return uv_possible_blades;
 567}
 568
 569/* Per Hub NMI support */
 570extern void uv_nmi_setup(void);
 571
 572/* BMC sets a bit this MMR non-zero before sending an NMI */
 573#define UVH_NMI_MMR             UVH_SCRATCH5
 574#define UVH_NMI_MMR_CLEAR       UVH_SCRATCH5_ALIAS
 575#define UVH_NMI_MMR_SHIFT       63
 576#define UVH_NMI_MMR_TYPE        "SCRATCH5"
 577
 578/* Newer SMM NMI handler, not present in all systems */
 579#define UVH_NMI_MMRX            UVH_EVENT_OCCURRED0
 580#define UVH_NMI_MMRX_CLEAR      UVH_EVENT_OCCURRED0_ALIAS
 581#define UVH_NMI_MMRX_SHIFT      (is_uv1_hub() ? \
 582                                        UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
 583                                        UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
 584#define UVH_NMI_MMRX_TYPE       "EXTIO_INT0"
 585
 586/* Non-zero indicates newer SMM NMI handler present */
 587#define UVH_NMI_MMRX_SUPPORTED  UVH_EXTIO_INT0_BROADCAST
 588
 589/* Indicates to BIOS that we want to use the newer SMM NMI handler */
 590#define UVH_NMI_MMRX_REQ        UVH_SCRATCH5_ALIAS_2
 591#define UVH_NMI_MMRX_REQ_SHIFT  62
 592
 593struct uv_hub_nmi_s {
 594        raw_spinlock_t  nmi_lock;
 595        atomic_t        in_nmi;         /* flag this node in UV NMI IRQ */
 596        atomic_t        cpu_owner;      /* last locker of this struct */
 597        atomic_t        read_mmr_count; /* count of MMR reads */
 598        atomic_t        nmi_count;      /* count of true UV NMIs */
 599        unsigned long   nmi_value;      /* last value read from NMI MMR */
 600};
 601
 602struct uv_cpu_nmi_s {
 603        struct uv_hub_nmi_s     *hub;
 604        int                     state;
 605        int                     pinging;
 606        int                     queries;
 607        int                     pings;
 608};
 609
 610DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
 611
 612#define uv_hub_nmi                      (uv_cpu_nmi.hub)
 613#define uv_cpu_nmi_per(cpu)             (per_cpu(uv_cpu_nmi, cpu))
 614#define uv_hub_nmi_per(cpu)             (uv_cpu_nmi_per(cpu).hub)
 615
 616/* uv_cpu_nmi_states */
 617#define UV_NMI_STATE_OUT                0
 618#define UV_NMI_STATE_IN                 1
 619#define UV_NMI_STATE_DUMP               2
 620#define UV_NMI_STATE_DUMP_DONE          3
 621
 622/* Update SCIR state */
 623static inline void uv_set_scir_bits(unsigned char value)
 624{
 625        if (uv_hub_info->scir.state != value) {
 626                uv_hub_info->scir.state = value;
 627                uv_write_local_mmr8(uv_hub_info->scir.offset, value);
 628        }
 629}
 630
 631static inline unsigned long uv_scir_offset(int apicid)
 632{
 633        return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
 634}
 635
 636static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
 637{
 638        if (uv_cpu_hub_info(cpu)->scir.state != value) {
 639                uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
 640                                uv_cpu_hub_info(cpu)->scir.offset, value);
 641                uv_cpu_hub_info(cpu)->scir.state = value;
 642        }
 643}
 644
 645extern unsigned int uv_apicid_hibits;
 646static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
 647{
 648        apicid |= uv_apicid_hibits;
 649        return (1UL << UVH_IPI_INT_SEND_SHFT) |
 650                        ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
 651                        (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
 652                        (vector << UVH_IPI_INT_VECTOR_SHFT);
 653}
 654
 655static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
 656{
 657        unsigned long val;
 658        unsigned long dmode = dest_Fixed;
 659
 660        if (vector == NMI_VECTOR)
 661                dmode = dest_NMI;
 662
 663        val = uv_hub_ipi_value(apicid, vector, dmode);
 664        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
 665}
 666
 667/*
 668 * Get the minimum revision number of the hub chips within the partition.
 669 *     1 - UV1 rev 1.0 initial silicon
 670 *     2 - UV1 rev 2.0 production silicon
 671 *     3 - UV2 rev 1.0 initial silicon
 672 *     5 - UV3 rev 1.0 initial silicon
 673 */
 674static inline int uv_get_min_hub_revision_id(void)
 675{
 676        return uv_hub_info->hub_revision;
 677}
 678
 679#endif /* CONFIG_X86_64 */
 680#endif /* _ASM_X86_UV_UV_HUB_H */
 681