linux/arch/x86/kernel/cpu/perf_event_intel.c
<<
>>
Prefs
   1/*
   2 * Per core/cpu state
   3 *
   4 * Used to coordinate shared registers between HT threads or
   5 * among events on a single PMU.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/stddef.h>
  11#include <linux/types.h>
  12#include <linux/init.h>
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/nmi.h>
  16
  17#include <asm/cpufeature.h>
  18#include <asm/hardirq.h>
  19#include <asm/apic.h>
  20
  21#include "perf_event.h"
  22
  23/*
  24 * Intel PerfMon, used on Core and later.
  25 */
  26static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  27{
  28        [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
  29        [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
  30        [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
  31        [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
  32        [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
  33        [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
  34        [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
  35        [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
  36};
  37
  38static struct event_constraint intel_core_event_constraints[] __read_mostly =
  39{
  40        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  41        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  42        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  43        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  44        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  45        INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  46        EVENT_CONSTRAINT_END
  47};
  48
  49static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  50{
  51        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  52        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  53        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  54        INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  55        INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  56        INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  57        INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  58        INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  59        INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  60        INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  61        INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  62        INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  63        INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  64        EVENT_CONSTRAINT_END
  65};
  66
  67static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  68{
  69        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  70        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  71        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  72        INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  73        INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  74        INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  75        INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  76        INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  77        INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  78        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  79        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  80        EVENT_CONSTRAINT_END
  81};
  82
  83static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  84{
  85        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  86        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  87        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  88        EVENT_EXTRA_END
  89};
  90
  91static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  92{
  93        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  94        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  95        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  96        INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  97        INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  98        INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  99        INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
 100        EVENT_CONSTRAINT_END
 101};
 102
 103static struct event_constraint intel_snb_event_constraints[] __read_mostly =
 104{
 105        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 106        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 107        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 108        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 109        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 110        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 111        INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 112        INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 113        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 114        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 115        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
 116        INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 117
 118        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 119        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 120        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 121        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 122
 123        EVENT_CONSTRAINT_END
 124};
 125
 126static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
 127{
 128        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 129        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 130        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 131        INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
 132        INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
 133        INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
 134        INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
 135        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 136        INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
 137        INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
 138        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 139        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 140        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 141
 142        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 143        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 144        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 145        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 146
 147        EVENT_CONSTRAINT_END
 148};
 149
 150static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 151{
 152        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 153        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 154        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 155        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 156        EVENT_EXTRA_END
 157};
 158
 159static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 160{
 161        EVENT_CONSTRAINT_END
 162};
 163
 164static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 165{
 166        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 167        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 168        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 169        EVENT_CONSTRAINT_END
 170};
 171
 172static struct event_constraint intel_slm_event_constraints[] __read_mostly =
 173{
 174        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 175        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 176        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
 177        EVENT_CONSTRAINT_END
 178};
 179
 180struct event_constraint intel_skl_event_constraints[] = {
 181        FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 182        FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 183        FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 184        INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
 185        EVENT_CONSTRAINT_END
 186};
 187
 188static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 189        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 190        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
 191        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
 192        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 193        EVENT_EXTRA_END
 194};
 195
 196static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
 197        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 198        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 199        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 200        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 201        EVENT_EXTRA_END
 202};
 203
 204static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
 205        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
 206        INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
 207        INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
 208        /*
 209         * Note the low 8 bits eventsel code is not a continuous field, containing
 210         * some #GPing bits. These are masked out.
 211         */
 212        INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
 213        EVENT_EXTRA_END
 214};
 215
 216EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
 217EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
 218EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
 219
 220struct attribute *nhm_events_attrs[] = {
 221        EVENT_PTR(mem_ld_nhm),
 222        NULL,
 223};
 224
 225struct attribute *snb_events_attrs[] = {
 226        EVENT_PTR(mem_ld_snb),
 227        EVENT_PTR(mem_st_snb),
 228        NULL,
 229};
 230
 231static struct event_constraint intel_hsw_event_constraints[] = {
 232        FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 233        FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 234        FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 235        INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
 236        INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 237        INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 238        /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
 239        INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
 240        /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
 241        INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
 242        /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
 243        INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
 244
 245        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
 246        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
 247        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
 248        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
 249
 250        EVENT_CONSTRAINT_END
 251};
 252
 253struct event_constraint intel_bdw_event_constraints[] = {
 254        FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
 255        FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
 256        FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
 257        INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
 258        INTEL_UEVENT_CONSTRAINT(0x8a3, 0x4),    /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
 259        EVENT_CONSTRAINT_END
 260};
 261
 262static u64 intel_pmu_event_map(int hw_event)
 263{
 264        return intel_perfmon_event_map[hw_event];
 265}
 266
 267/*
 268 * Notes on the events:
 269 * - data reads do not include code reads (comparable to earlier tables)
 270 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 271 * - remote node access includes remote memory, remote cache, remote mmio.
 272 * - prefetches are not included in the counts.
 273 * - icache miss does not include decoded icache
 274 */
 275
 276#define SKL_DEMAND_DATA_RD              BIT_ULL(0)
 277#define SKL_DEMAND_RFO                  BIT_ULL(1)
 278#define SKL_ANY_RESPONSE                BIT_ULL(16)
 279#define SKL_SUPPLIER_NONE               BIT_ULL(17)
 280#define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
 281#define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
 282#define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
 283#define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
 284#define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
 285                                         SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 286                                         SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 287                                         SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 288#define SKL_SPL_HIT                     BIT_ULL(30)
 289#define SKL_SNOOP_NONE                  BIT_ULL(31)
 290#define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
 291#define SKL_SNOOP_MISS                  BIT_ULL(33)
 292#define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 293#define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 294#define SKL_SNOOP_HITM                  BIT_ULL(36)
 295#define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
 296#define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
 297                                         SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 298                                         SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 299                                         SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
 300#define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
 301#define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
 302                                         SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
 303                                         SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
 304                                         SKL_SNOOP_HITM|SKL_SPL_HIT)
 305#define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
 306#define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
 307#define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
 308                                         SKL_L3_MISS_REMOTE_HOP1_DRAM| \
 309                                         SKL_L3_MISS_REMOTE_HOP2P_DRAM)
 310
 311static __initconst const u64 skl_hw_cache_event_ids
 312                                [PERF_COUNT_HW_CACHE_MAX]
 313                                [PERF_COUNT_HW_CACHE_OP_MAX]
 314                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 315{
 316 [ C(L1D ) ] = {
 317        [ C(OP_READ) ] = {
 318                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 319                [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 320        },
 321        [ C(OP_WRITE) ] = {
 322                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 323                [ C(RESULT_MISS)   ] = 0x0,
 324        },
 325        [ C(OP_PREFETCH) ] = {
 326                [ C(RESULT_ACCESS) ] = 0x0,
 327                [ C(RESULT_MISS)   ] = 0x0,
 328        },
 329 },
 330 [ C(L1I ) ] = {
 331        [ C(OP_READ) ] = {
 332                [ C(RESULT_ACCESS) ] = 0x0,
 333                [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
 334        },
 335        [ C(OP_WRITE) ] = {
 336                [ C(RESULT_ACCESS) ] = -1,
 337                [ C(RESULT_MISS)   ] = -1,
 338        },
 339        [ C(OP_PREFETCH) ] = {
 340                [ C(RESULT_ACCESS) ] = 0x0,
 341                [ C(RESULT_MISS)   ] = 0x0,
 342        },
 343 },
 344 [ C(LL  ) ] = {
 345        [ C(OP_READ) ] = {
 346                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 347                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 348        },
 349        [ C(OP_WRITE) ] = {
 350                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 351                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 352        },
 353        [ C(OP_PREFETCH) ] = {
 354                [ C(RESULT_ACCESS) ] = 0x0,
 355                [ C(RESULT_MISS)   ] = 0x0,
 356        },
 357 },
 358 [ C(DTLB) ] = {
 359        [ C(OP_READ) ] = {
 360                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
 361                [ C(RESULT_MISS)   ] = 0x608,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
 362        },
 363        [ C(OP_WRITE) ] = {
 364                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
 365                [ C(RESULT_MISS)   ] = 0x649,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
 366        },
 367        [ C(OP_PREFETCH) ] = {
 368                [ C(RESULT_ACCESS) ] = 0x0,
 369                [ C(RESULT_MISS)   ] = 0x0,
 370        },
 371 },
 372 [ C(ITLB) ] = {
 373        [ C(OP_READ) ] = {
 374                [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
 375                [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
 376        },
 377        [ C(OP_WRITE) ] = {
 378                [ C(RESULT_ACCESS) ] = -1,
 379                [ C(RESULT_MISS)   ] = -1,
 380        },
 381        [ C(OP_PREFETCH) ] = {
 382                [ C(RESULT_ACCESS) ] = -1,
 383                [ C(RESULT_MISS)   ] = -1,
 384        },
 385 },
 386 [ C(BPU ) ] = {
 387        [ C(OP_READ) ] = {
 388                [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 389                [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 390        },
 391        [ C(OP_WRITE) ] = {
 392                [ C(RESULT_ACCESS) ] = -1,
 393                [ C(RESULT_MISS)   ] = -1,
 394        },
 395        [ C(OP_PREFETCH) ] = {
 396                [ C(RESULT_ACCESS) ] = -1,
 397                [ C(RESULT_MISS)   ] = -1,
 398        },
 399 },
 400 [ C(NODE) ] = {
 401        [ C(OP_READ) ] = {
 402                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 403                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 404        },
 405        [ C(OP_WRITE) ] = {
 406                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 407                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 408        },
 409        [ C(OP_PREFETCH) ] = {
 410                [ C(RESULT_ACCESS) ] = 0x0,
 411                [ C(RESULT_MISS)   ] = 0x0,
 412        },
 413 },
 414};
 415
 416static __initconst const u64 skl_hw_cache_extra_regs
 417                                [PERF_COUNT_HW_CACHE_MAX]
 418                                [PERF_COUNT_HW_CACHE_OP_MAX]
 419                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 420{
 421 [ C(LL  ) ] = {
 422        [ C(OP_READ) ] = {
 423                [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 424                                       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 425                [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 426                                       SKL_L3_MISS|SKL_ANY_SNOOP|
 427                                       SKL_SUPPLIER_NONE,
 428        },
 429        [ C(OP_WRITE) ] = {
 430                [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 431                                       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
 432                [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 433                                       SKL_L3_MISS|SKL_ANY_SNOOP|
 434                                       SKL_SUPPLIER_NONE,
 435        },
 436        [ C(OP_PREFETCH) ] = {
 437                [ C(RESULT_ACCESS) ] = 0x0,
 438                [ C(RESULT_MISS)   ] = 0x0,
 439        },
 440 },
 441 [ C(NODE) ] = {
 442        [ C(OP_READ) ] = {
 443                [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
 444                                       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 445                [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
 446                                       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 447        },
 448        [ C(OP_WRITE) ] = {
 449                [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
 450                                       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
 451                [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
 452                                       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
 453        },
 454        [ C(OP_PREFETCH) ] = {
 455                [ C(RESULT_ACCESS) ] = 0x0,
 456                [ C(RESULT_MISS)   ] = 0x0,
 457        },
 458 },
 459};
 460
 461#define SNB_DMND_DATA_RD        (1ULL << 0)
 462#define SNB_DMND_RFO            (1ULL << 1)
 463#define SNB_DMND_IFETCH         (1ULL << 2)
 464#define SNB_DMND_WB             (1ULL << 3)
 465#define SNB_PF_DATA_RD          (1ULL << 4)
 466#define SNB_PF_RFO              (1ULL << 5)
 467#define SNB_PF_IFETCH           (1ULL << 6)
 468#define SNB_LLC_DATA_RD         (1ULL << 7)
 469#define SNB_LLC_RFO             (1ULL << 8)
 470#define SNB_LLC_IFETCH          (1ULL << 9)
 471#define SNB_BUS_LOCKS           (1ULL << 10)
 472#define SNB_STRM_ST             (1ULL << 11)
 473#define SNB_OTHER               (1ULL << 15)
 474#define SNB_RESP_ANY            (1ULL << 16)
 475#define SNB_NO_SUPP             (1ULL << 17)
 476#define SNB_LLC_HITM            (1ULL << 18)
 477#define SNB_LLC_HITE            (1ULL << 19)
 478#define SNB_LLC_HITS            (1ULL << 20)
 479#define SNB_LLC_HITF            (1ULL << 21)
 480#define SNB_LOCAL               (1ULL << 22)
 481#define SNB_REMOTE              (0xffULL << 23)
 482#define SNB_SNP_NONE            (1ULL << 31)
 483#define SNB_SNP_NOT_NEEDED      (1ULL << 32)
 484#define SNB_SNP_MISS            (1ULL << 33)
 485#define SNB_NO_FWD              (1ULL << 34)
 486#define SNB_SNP_FWD             (1ULL << 35)
 487#define SNB_HITM                (1ULL << 36)
 488#define SNB_NON_DRAM            (1ULL << 37)
 489
 490#define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
 491#define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
 492#define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
 493
 494#define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
 495                                 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
 496                                 SNB_HITM)
 497
 498#define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
 499#define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
 500
 501#define SNB_L3_ACCESS           SNB_RESP_ANY
 502#define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
 503
 504static __initconst const u64 snb_hw_cache_extra_regs
 505                                [PERF_COUNT_HW_CACHE_MAX]
 506                                [PERF_COUNT_HW_CACHE_OP_MAX]
 507                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 508{
 509 [ C(LL  ) ] = {
 510        [ C(OP_READ) ] = {
 511                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
 512                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
 513        },
 514        [ C(OP_WRITE) ] = {
 515                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
 516                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
 517        },
 518        [ C(OP_PREFETCH) ] = {
 519                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
 520                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
 521        },
 522 },
 523 [ C(NODE) ] = {
 524        [ C(OP_READ) ] = {
 525                [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
 526                [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
 527        },
 528        [ C(OP_WRITE) ] = {
 529                [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
 530                [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
 531        },
 532        [ C(OP_PREFETCH) ] = {
 533                [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
 534                [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
 535        },
 536 },
 537};
 538
 539static __initconst const u64 snb_hw_cache_event_ids
 540                                [PERF_COUNT_HW_CACHE_MAX]
 541                                [PERF_COUNT_HW_CACHE_OP_MAX]
 542                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 543{
 544 [ C(L1D) ] = {
 545        [ C(OP_READ) ] = {
 546                [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 547                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 548        },
 549        [ C(OP_WRITE) ] = {
 550                [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 551                [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 552        },
 553        [ C(OP_PREFETCH) ] = {
 554                [ C(RESULT_ACCESS) ] = 0x0,
 555                [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 556        },
 557 },
 558 [ C(L1I ) ] = {
 559        [ C(OP_READ) ] = {
 560                [ C(RESULT_ACCESS) ] = 0x0,
 561                [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 562        },
 563        [ C(OP_WRITE) ] = {
 564                [ C(RESULT_ACCESS) ] = -1,
 565                [ C(RESULT_MISS)   ] = -1,
 566        },
 567        [ C(OP_PREFETCH) ] = {
 568                [ C(RESULT_ACCESS) ] = 0x0,
 569                [ C(RESULT_MISS)   ] = 0x0,
 570        },
 571 },
 572 [ C(LL  ) ] = {
 573        [ C(OP_READ) ] = {
 574                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 575                [ C(RESULT_ACCESS) ] = 0x01b7,
 576                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 577                [ C(RESULT_MISS)   ] = 0x01b7,
 578        },
 579        [ C(OP_WRITE) ] = {
 580                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 581                [ C(RESULT_ACCESS) ] = 0x01b7,
 582                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 583                [ C(RESULT_MISS)   ] = 0x01b7,
 584        },
 585        [ C(OP_PREFETCH) ] = {
 586                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 587                [ C(RESULT_ACCESS) ] = 0x01b7,
 588                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 589                [ C(RESULT_MISS)   ] = 0x01b7,
 590        },
 591 },
 592 [ C(DTLB) ] = {
 593        [ C(OP_READ) ] = {
 594                [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 595                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 596        },
 597        [ C(OP_WRITE) ] = {
 598                [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 599                [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 600        },
 601        [ C(OP_PREFETCH) ] = {
 602                [ C(RESULT_ACCESS) ] = 0x0,
 603                [ C(RESULT_MISS)   ] = 0x0,
 604        },
 605 },
 606 [ C(ITLB) ] = {
 607        [ C(OP_READ) ] = {
 608                [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 609                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 610        },
 611        [ C(OP_WRITE) ] = {
 612                [ C(RESULT_ACCESS) ] = -1,
 613                [ C(RESULT_MISS)   ] = -1,
 614        },
 615        [ C(OP_PREFETCH) ] = {
 616                [ C(RESULT_ACCESS) ] = -1,
 617                [ C(RESULT_MISS)   ] = -1,
 618        },
 619 },
 620 [ C(BPU ) ] = {
 621        [ C(OP_READ) ] = {
 622                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 623                [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 624        },
 625        [ C(OP_WRITE) ] = {
 626                [ C(RESULT_ACCESS) ] = -1,
 627                [ C(RESULT_MISS)   ] = -1,
 628        },
 629        [ C(OP_PREFETCH) ] = {
 630                [ C(RESULT_ACCESS) ] = -1,
 631                [ C(RESULT_MISS)   ] = -1,
 632        },
 633 },
 634 [ C(NODE) ] = {
 635        [ C(OP_READ) ] = {
 636                [ C(RESULT_ACCESS) ] = 0x01b7,
 637                [ C(RESULT_MISS)   ] = 0x01b7,
 638        },
 639        [ C(OP_WRITE) ] = {
 640                [ C(RESULT_ACCESS) ] = 0x01b7,
 641                [ C(RESULT_MISS)   ] = 0x01b7,
 642        },
 643        [ C(OP_PREFETCH) ] = {
 644                [ C(RESULT_ACCESS) ] = 0x01b7,
 645                [ C(RESULT_MISS)   ] = 0x01b7,
 646        },
 647 },
 648
 649};
 650
 651/*
 652 * Notes on the events:
 653 * - data reads do not include code reads (comparable to earlier tables)
 654 * - data counts include speculative execution (except L1 write, dtlb, bpu)
 655 * - remote node access includes remote memory, remote cache, remote mmio.
 656 * - prefetches are not included in the counts because they are not
 657 *   reliably counted.
 658 */
 659
 660#define HSW_DEMAND_DATA_RD              BIT_ULL(0)
 661#define HSW_DEMAND_RFO                  BIT_ULL(1)
 662#define HSW_ANY_RESPONSE                BIT_ULL(16)
 663#define HSW_SUPPLIER_NONE               BIT_ULL(17)
 664#define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
 665#define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
 666#define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
 667#define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
 668#define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
 669                                         HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 670                                         HSW_L3_MISS_REMOTE_HOP2P)
 671#define HSW_SNOOP_NONE                  BIT_ULL(31)
 672#define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
 673#define HSW_SNOOP_MISS                  BIT_ULL(33)
 674#define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
 675#define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
 676#define HSW_SNOOP_HITM                  BIT_ULL(36)
 677#define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
 678#define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
 679                                         HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
 680                                         HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
 681                                         HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
 682#define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
 683#define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
 684#define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
 685#define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
 686                                         HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
 687#define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
 688
 689#define BDW_L3_MISS_LOCAL               BIT(26)
 690#define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
 691                                         HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
 692                                         HSW_L3_MISS_REMOTE_HOP2P)
 693
 694
 695static __initconst const u64 hsw_hw_cache_event_ids
 696                                [PERF_COUNT_HW_CACHE_MAX]
 697                                [PERF_COUNT_HW_CACHE_OP_MAX]
 698                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 699{
 700 [ C(L1D ) ] = {
 701        [ C(OP_READ) ] = {
 702                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 703                [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
 704        },
 705        [ C(OP_WRITE) ] = {
 706                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 707                [ C(RESULT_MISS)   ] = 0x0,
 708        },
 709        [ C(OP_PREFETCH) ] = {
 710                [ C(RESULT_ACCESS) ] = 0x0,
 711                [ C(RESULT_MISS)   ] = 0x0,
 712        },
 713 },
 714 [ C(L1I ) ] = {
 715        [ C(OP_READ) ] = {
 716                [ C(RESULT_ACCESS) ] = 0x0,
 717                [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
 718        },
 719        [ C(OP_WRITE) ] = {
 720                [ C(RESULT_ACCESS) ] = -1,
 721                [ C(RESULT_MISS)   ] = -1,
 722        },
 723        [ C(OP_PREFETCH) ] = {
 724                [ C(RESULT_ACCESS) ] = 0x0,
 725                [ C(RESULT_MISS)   ] = 0x0,
 726        },
 727 },
 728 [ C(LL  ) ] = {
 729        [ C(OP_READ) ] = {
 730                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 731                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 732        },
 733        [ C(OP_WRITE) ] = {
 734                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 735                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 736        },
 737        [ C(OP_PREFETCH) ] = {
 738                [ C(RESULT_ACCESS) ] = 0x0,
 739                [ C(RESULT_MISS)   ] = 0x0,
 740        },
 741 },
 742 [ C(DTLB) ] = {
 743        [ C(OP_READ) ] = {
 744                [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
 745                [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
 746        },
 747        [ C(OP_WRITE) ] = {
 748                [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
 749                [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 750        },
 751        [ C(OP_PREFETCH) ] = {
 752                [ C(RESULT_ACCESS) ] = 0x0,
 753                [ C(RESULT_MISS)   ] = 0x0,
 754        },
 755 },
 756 [ C(ITLB) ] = {
 757        [ C(OP_READ) ] = {
 758                [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
 759                [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
 760        },
 761        [ C(OP_WRITE) ] = {
 762                [ C(RESULT_ACCESS) ] = -1,
 763                [ C(RESULT_MISS)   ] = -1,
 764        },
 765        [ C(OP_PREFETCH) ] = {
 766                [ C(RESULT_ACCESS) ] = -1,
 767                [ C(RESULT_MISS)   ] = -1,
 768        },
 769 },
 770 [ C(BPU ) ] = {
 771        [ C(OP_READ) ] = {
 772                [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
 773                [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
 774        },
 775        [ C(OP_WRITE) ] = {
 776                [ C(RESULT_ACCESS) ] = -1,
 777                [ C(RESULT_MISS)   ] = -1,
 778        },
 779        [ C(OP_PREFETCH) ] = {
 780                [ C(RESULT_ACCESS) ] = -1,
 781                [ C(RESULT_MISS)   ] = -1,
 782        },
 783 },
 784 [ C(NODE) ] = {
 785        [ C(OP_READ) ] = {
 786                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 787                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 788        },
 789        [ C(OP_WRITE) ] = {
 790                [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
 791                [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
 792        },
 793        [ C(OP_PREFETCH) ] = {
 794                [ C(RESULT_ACCESS) ] = 0x0,
 795                [ C(RESULT_MISS)   ] = 0x0,
 796        },
 797 },
 798};
 799
 800static __initconst const u64 hsw_hw_cache_extra_regs
 801                                [PERF_COUNT_HW_CACHE_MAX]
 802                                [PERF_COUNT_HW_CACHE_OP_MAX]
 803                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 804{
 805 [ C(LL  ) ] = {
 806        [ C(OP_READ) ] = {
 807                [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 808                                       HSW_LLC_ACCESS,
 809                [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 810                                       HSW_L3_MISS|HSW_ANY_SNOOP,
 811        },
 812        [ C(OP_WRITE) ] = {
 813                [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 814                                       HSW_LLC_ACCESS,
 815                [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 816                                       HSW_L3_MISS|HSW_ANY_SNOOP,
 817        },
 818        [ C(OP_PREFETCH) ] = {
 819                [ C(RESULT_ACCESS) ] = 0x0,
 820                [ C(RESULT_MISS)   ] = 0x0,
 821        },
 822 },
 823 [ C(NODE) ] = {
 824        [ C(OP_READ) ] = {
 825                [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
 826                                       HSW_L3_MISS_LOCAL_DRAM|
 827                                       HSW_SNOOP_DRAM,
 828                [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
 829                                       HSW_L3_MISS_REMOTE|
 830                                       HSW_SNOOP_DRAM,
 831        },
 832        [ C(OP_WRITE) ] = {
 833                [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
 834                                       HSW_L3_MISS_LOCAL_DRAM|
 835                                       HSW_SNOOP_DRAM,
 836                [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
 837                                       HSW_L3_MISS_REMOTE|
 838                                       HSW_SNOOP_DRAM,
 839        },
 840        [ C(OP_PREFETCH) ] = {
 841                [ C(RESULT_ACCESS) ] = 0x0,
 842                [ C(RESULT_MISS)   ] = 0x0,
 843        },
 844 },
 845};
 846
 847static __initconst const u64 westmere_hw_cache_event_ids
 848                                [PERF_COUNT_HW_CACHE_MAX]
 849                                [PERF_COUNT_HW_CACHE_OP_MAX]
 850                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 851{
 852 [ C(L1D) ] = {
 853        [ C(OP_READ) ] = {
 854                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 855                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 856        },
 857        [ C(OP_WRITE) ] = {
 858                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 859                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 860        },
 861        [ C(OP_PREFETCH) ] = {
 862                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 863                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 864        },
 865 },
 866 [ C(L1I ) ] = {
 867        [ C(OP_READ) ] = {
 868                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 869                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 870        },
 871        [ C(OP_WRITE) ] = {
 872                [ C(RESULT_ACCESS) ] = -1,
 873                [ C(RESULT_MISS)   ] = -1,
 874        },
 875        [ C(OP_PREFETCH) ] = {
 876                [ C(RESULT_ACCESS) ] = 0x0,
 877                [ C(RESULT_MISS)   ] = 0x0,
 878        },
 879 },
 880 [ C(LL  ) ] = {
 881        [ C(OP_READ) ] = {
 882                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 883                [ C(RESULT_ACCESS) ] = 0x01b7,
 884                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 885                [ C(RESULT_MISS)   ] = 0x01b7,
 886        },
 887        /*
 888         * Use RFO, not WRITEBACK, because a write miss would typically occur
 889         * on RFO.
 890         */
 891        [ C(OP_WRITE) ] = {
 892                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 893                [ C(RESULT_ACCESS) ] = 0x01b7,
 894                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 895                [ C(RESULT_MISS)   ] = 0x01b7,
 896        },
 897        [ C(OP_PREFETCH) ] = {
 898                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 899                [ C(RESULT_ACCESS) ] = 0x01b7,
 900                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 901                [ C(RESULT_MISS)   ] = 0x01b7,
 902        },
 903 },
 904 [ C(DTLB) ] = {
 905        [ C(OP_READ) ] = {
 906                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 907                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 908        },
 909        [ C(OP_WRITE) ] = {
 910                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 911                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 912        },
 913        [ C(OP_PREFETCH) ] = {
 914                [ C(RESULT_ACCESS) ] = 0x0,
 915                [ C(RESULT_MISS)   ] = 0x0,
 916        },
 917 },
 918 [ C(ITLB) ] = {
 919        [ C(OP_READ) ] = {
 920                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 921                [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
 922        },
 923        [ C(OP_WRITE) ] = {
 924                [ C(RESULT_ACCESS) ] = -1,
 925                [ C(RESULT_MISS)   ] = -1,
 926        },
 927        [ C(OP_PREFETCH) ] = {
 928                [ C(RESULT_ACCESS) ] = -1,
 929                [ C(RESULT_MISS)   ] = -1,
 930        },
 931 },
 932 [ C(BPU ) ] = {
 933        [ C(OP_READ) ] = {
 934                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 935                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 936        },
 937        [ C(OP_WRITE) ] = {
 938                [ C(RESULT_ACCESS) ] = -1,
 939                [ C(RESULT_MISS)   ] = -1,
 940        },
 941        [ C(OP_PREFETCH) ] = {
 942                [ C(RESULT_ACCESS) ] = -1,
 943                [ C(RESULT_MISS)   ] = -1,
 944        },
 945 },
 946 [ C(NODE) ] = {
 947        [ C(OP_READ) ] = {
 948                [ C(RESULT_ACCESS) ] = 0x01b7,
 949                [ C(RESULT_MISS)   ] = 0x01b7,
 950        },
 951        [ C(OP_WRITE) ] = {
 952                [ C(RESULT_ACCESS) ] = 0x01b7,
 953                [ C(RESULT_MISS)   ] = 0x01b7,
 954        },
 955        [ C(OP_PREFETCH) ] = {
 956                [ C(RESULT_ACCESS) ] = 0x01b7,
 957                [ C(RESULT_MISS)   ] = 0x01b7,
 958        },
 959 },
 960};
 961
 962/*
 963 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 964 * See IA32 SDM Vol 3B 30.6.1.3
 965 */
 966
 967#define NHM_DMND_DATA_RD        (1 << 0)
 968#define NHM_DMND_RFO            (1 << 1)
 969#define NHM_DMND_IFETCH         (1 << 2)
 970#define NHM_DMND_WB             (1 << 3)
 971#define NHM_PF_DATA_RD          (1 << 4)
 972#define NHM_PF_DATA_RFO         (1 << 5)
 973#define NHM_PF_IFETCH           (1 << 6)
 974#define NHM_OFFCORE_OTHER       (1 << 7)
 975#define NHM_UNCORE_HIT          (1 << 8)
 976#define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
 977#define NHM_OTHER_CORE_HITM     (1 << 10)
 978                                /* reserved */
 979#define NHM_REMOTE_CACHE_FWD    (1 << 12)
 980#define NHM_REMOTE_DRAM         (1 << 13)
 981#define NHM_LOCAL_DRAM          (1 << 14)
 982#define NHM_NON_DRAM            (1 << 15)
 983
 984#define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
 985#define NHM_REMOTE              (NHM_REMOTE_DRAM)
 986
 987#define NHM_DMND_READ           (NHM_DMND_DATA_RD)
 988#define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
 989#define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
 990
 991#define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
 992#define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
 993#define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
 994
 995static __initconst const u64 nehalem_hw_cache_extra_regs
 996                                [PERF_COUNT_HW_CACHE_MAX]
 997                                [PERF_COUNT_HW_CACHE_OP_MAX]
 998                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
 999{
1000 [ C(LL  ) ] = {
1001        [ C(OP_READ) ] = {
1002                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1003                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1004        },
1005        [ C(OP_WRITE) ] = {
1006                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1007                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1008        },
1009        [ C(OP_PREFETCH) ] = {
1010                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1011                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1012        },
1013 },
1014 [ C(NODE) ] = {
1015        [ C(OP_READ) ] = {
1016                [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1017                [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1018        },
1019        [ C(OP_WRITE) ] = {
1020                [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1021                [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1022        },
1023        [ C(OP_PREFETCH) ] = {
1024                [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1025                [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1026        },
1027 },
1028};
1029
1030static __initconst const u64 nehalem_hw_cache_event_ids
1031                                [PERF_COUNT_HW_CACHE_MAX]
1032                                [PERF_COUNT_HW_CACHE_OP_MAX]
1033                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1034{
1035 [ C(L1D) ] = {
1036        [ C(OP_READ) ] = {
1037                [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1038                [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1039        },
1040        [ C(OP_WRITE) ] = {
1041                [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1042                [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1043        },
1044        [ C(OP_PREFETCH) ] = {
1045                [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1046                [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1047        },
1048 },
1049 [ C(L1I ) ] = {
1050        [ C(OP_READ) ] = {
1051                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1052                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1053        },
1054        [ C(OP_WRITE) ] = {
1055                [ C(RESULT_ACCESS) ] = -1,
1056                [ C(RESULT_MISS)   ] = -1,
1057        },
1058        [ C(OP_PREFETCH) ] = {
1059                [ C(RESULT_ACCESS) ] = 0x0,
1060                [ C(RESULT_MISS)   ] = 0x0,
1061        },
1062 },
1063 [ C(LL  ) ] = {
1064        [ C(OP_READ) ] = {
1065                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1066                [ C(RESULT_ACCESS) ] = 0x01b7,
1067                /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1068                [ C(RESULT_MISS)   ] = 0x01b7,
1069        },
1070        /*
1071         * Use RFO, not WRITEBACK, because a write miss would typically occur
1072         * on RFO.
1073         */
1074        [ C(OP_WRITE) ] = {
1075                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1076                [ C(RESULT_ACCESS) ] = 0x01b7,
1077                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1078                [ C(RESULT_MISS)   ] = 0x01b7,
1079        },
1080        [ C(OP_PREFETCH) ] = {
1081                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1082                [ C(RESULT_ACCESS) ] = 0x01b7,
1083                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1084                [ C(RESULT_MISS)   ] = 0x01b7,
1085        },
1086 },
1087 [ C(DTLB) ] = {
1088        [ C(OP_READ) ] = {
1089                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1090                [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1091        },
1092        [ C(OP_WRITE) ] = {
1093                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1094                [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1095        },
1096        [ C(OP_PREFETCH) ] = {
1097                [ C(RESULT_ACCESS) ] = 0x0,
1098                [ C(RESULT_MISS)   ] = 0x0,
1099        },
1100 },
1101 [ C(ITLB) ] = {
1102        [ C(OP_READ) ] = {
1103                [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1104                [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1105        },
1106        [ C(OP_WRITE) ] = {
1107                [ C(RESULT_ACCESS) ] = -1,
1108                [ C(RESULT_MISS)   ] = -1,
1109        },
1110        [ C(OP_PREFETCH) ] = {
1111                [ C(RESULT_ACCESS) ] = -1,
1112                [ C(RESULT_MISS)   ] = -1,
1113        },
1114 },
1115 [ C(BPU ) ] = {
1116        [ C(OP_READ) ] = {
1117                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1118                [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1119        },
1120        [ C(OP_WRITE) ] = {
1121                [ C(RESULT_ACCESS) ] = -1,
1122                [ C(RESULT_MISS)   ] = -1,
1123        },
1124        [ C(OP_PREFETCH) ] = {
1125                [ C(RESULT_ACCESS) ] = -1,
1126                [ C(RESULT_MISS)   ] = -1,
1127        },
1128 },
1129 [ C(NODE) ] = {
1130        [ C(OP_READ) ] = {
1131                [ C(RESULT_ACCESS) ] = 0x01b7,
1132                [ C(RESULT_MISS)   ] = 0x01b7,
1133        },
1134        [ C(OP_WRITE) ] = {
1135                [ C(RESULT_ACCESS) ] = 0x01b7,
1136                [ C(RESULT_MISS)   ] = 0x01b7,
1137        },
1138        [ C(OP_PREFETCH) ] = {
1139                [ C(RESULT_ACCESS) ] = 0x01b7,
1140                [ C(RESULT_MISS)   ] = 0x01b7,
1141        },
1142 },
1143};
1144
1145static __initconst const u64 core2_hw_cache_event_ids
1146                                [PERF_COUNT_HW_CACHE_MAX]
1147                                [PERF_COUNT_HW_CACHE_OP_MAX]
1148                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1149{
1150 [ C(L1D) ] = {
1151        [ C(OP_READ) ] = {
1152                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1153                [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1154        },
1155        [ C(OP_WRITE) ] = {
1156                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1157                [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1158        },
1159        [ C(OP_PREFETCH) ] = {
1160                [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1161                [ C(RESULT_MISS)   ] = 0,
1162        },
1163 },
1164 [ C(L1I ) ] = {
1165        [ C(OP_READ) ] = {
1166                [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1167                [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1168        },
1169        [ C(OP_WRITE) ] = {
1170                [ C(RESULT_ACCESS) ] = -1,
1171                [ C(RESULT_MISS)   ] = -1,
1172        },
1173        [ C(OP_PREFETCH) ] = {
1174                [ C(RESULT_ACCESS) ] = 0,
1175                [ C(RESULT_MISS)   ] = 0,
1176        },
1177 },
1178 [ C(LL  ) ] = {
1179        [ C(OP_READ) ] = {
1180                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1181                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1182        },
1183        [ C(OP_WRITE) ] = {
1184                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1185                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1186        },
1187        [ C(OP_PREFETCH) ] = {
1188                [ C(RESULT_ACCESS) ] = 0,
1189                [ C(RESULT_MISS)   ] = 0,
1190        },
1191 },
1192 [ C(DTLB) ] = {
1193        [ C(OP_READ) ] = {
1194                [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1195                [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1196        },
1197        [ C(OP_WRITE) ] = {
1198                [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1199                [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1200        },
1201        [ C(OP_PREFETCH) ] = {
1202                [ C(RESULT_ACCESS) ] = 0,
1203                [ C(RESULT_MISS)   ] = 0,
1204        },
1205 },
1206 [ C(ITLB) ] = {
1207        [ C(OP_READ) ] = {
1208                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1209                [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1210        },
1211        [ C(OP_WRITE) ] = {
1212                [ C(RESULT_ACCESS) ] = -1,
1213                [ C(RESULT_MISS)   ] = -1,
1214        },
1215        [ C(OP_PREFETCH) ] = {
1216                [ C(RESULT_ACCESS) ] = -1,
1217                [ C(RESULT_MISS)   ] = -1,
1218        },
1219 },
1220 [ C(BPU ) ] = {
1221        [ C(OP_READ) ] = {
1222                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1223                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1224        },
1225        [ C(OP_WRITE) ] = {
1226                [ C(RESULT_ACCESS) ] = -1,
1227                [ C(RESULT_MISS)   ] = -1,
1228        },
1229        [ C(OP_PREFETCH) ] = {
1230                [ C(RESULT_ACCESS) ] = -1,
1231                [ C(RESULT_MISS)   ] = -1,
1232        },
1233 },
1234};
1235
1236static __initconst const u64 atom_hw_cache_event_ids
1237                                [PERF_COUNT_HW_CACHE_MAX]
1238                                [PERF_COUNT_HW_CACHE_OP_MAX]
1239                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1240{
1241 [ C(L1D) ] = {
1242        [ C(OP_READ) ] = {
1243                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1244                [ C(RESULT_MISS)   ] = 0,
1245        },
1246        [ C(OP_WRITE) ] = {
1247                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1248                [ C(RESULT_MISS)   ] = 0,
1249        },
1250        [ C(OP_PREFETCH) ] = {
1251                [ C(RESULT_ACCESS) ] = 0x0,
1252                [ C(RESULT_MISS)   ] = 0,
1253        },
1254 },
1255 [ C(L1I ) ] = {
1256        [ C(OP_READ) ] = {
1257                [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1258                [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1259        },
1260        [ C(OP_WRITE) ] = {
1261                [ C(RESULT_ACCESS) ] = -1,
1262                [ C(RESULT_MISS)   ] = -1,
1263        },
1264        [ C(OP_PREFETCH) ] = {
1265                [ C(RESULT_ACCESS) ] = 0,
1266                [ C(RESULT_MISS)   ] = 0,
1267        },
1268 },
1269 [ C(LL  ) ] = {
1270        [ C(OP_READ) ] = {
1271                [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1272                [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1273        },
1274        [ C(OP_WRITE) ] = {
1275                [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1276                [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1277        },
1278        [ C(OP_PREFETCH) ] = {
1279                [ C(RESULT_ACCESS) ] = 0,
1280                [ C(RESULT_MISS)   ] = 0,
1281        },
1282 },
1283 [ C(DTLB) ] = {
1284        [ C(OP_READ) ] = {
1285                [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1286                [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1287        },
1288        [ C(OP_WRITE) ] = {
1289                [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1290                [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1291        },
1292        [ C(OP_PREFETCH) ] = {
1293                [ C(RESULT_ACCESS) ] = 0,
1294                [ C(RESULT_MISS)   ] = 0,
1295        },
1296 },
1297 [ C(ITLB) ] = {
1298        [ C(OP_READ) ] = {
1299                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1300                [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1301        },
1302        [ C(OP_WRITE) ] = {
1303                [ C(RESULT_ACCESS) ] = -1,
1304                [ C(RESULT_MISS)   ] = -1,
1305        },
1306        [ C(OP_PREFETCH) ] = {
1307                [ C(RESULT_ACCESS) ] = -1,
1308                [ C(RESULT_MISS)   ] = -1,
1309        },
1310 },
1311 [ C(BPU ) ] = {
1312        [ C(OP_READ) ] = {
1313                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1314                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1315        },
1316        [ C(OP_WRITE) ] = {
1317                [ C(RESULT_ACCESS) ] = -1,
1318                [ C(RESULT_MISS)   ] = -1,
1319        },
1320        [ C(OP_PREFETCH) ] = {
1321                [ C(RESULT_ACCESS) ] = -1,
1322                [ C(RESULT_MISS)   ] = -1,
1323        },
1324 },
1325};
1326
1327static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1328{
1329        /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1330        INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1331        INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1332        EVENT_EXTRA_END
1333};
1334
1335#define SLM_DMND_READ           SNB_DMND_DATA_RD
1336#define SLM_DMND_WRITE          SNB_DMND_RFO
1337#define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1338
1339#define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1340#define SLM_LLC_ACCESS          SNB_RESP_ANY
1341#define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1342
1343static __initconst const u64 slm_hw_cache_extra_regs
1344                                [PERF_COUNT_HW_CACHE_MAX]
1345                                [PERF_COUNT_HW_CACHE_OP_MAX]
1346                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1347{
1348 [ C(LL  ) ] = {
1349        [ C(OP_READ) ] = {
1350                [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1351                [ C(RESULT_MISS)   ] = 0,
1352        },
1353        [ C(OP_WRITE) ] = {
1354                [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1355                [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1356        },
1357        [ C(OP_PREFETCH) ] = {
1358                [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1359                [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1360        },
1361 },
1362};
1363
1364static __initconst const u64 slm_hw_cache_event_ids
1365                                [PERF_COUNT_HW_CACHE_MAX]
1366                                [PERF_COUNT_HW_CACHE_OP_MAX]
1367                                [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1368{
1369 [ C(L1D) ] = {
1370        [ C(OP_READ) ] = {
1371                [ C(RESULT_ACCESS) ] = 0,
1372                [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1373        },
1374        [ C(OP_WRITE) ] = {
1375                [ C(RESULT_ACCESS) ] = 0,
1376                [ C(RESULT_MISS)   ] = 0,
1377        },
1378        [ C(OP_PREFETCH) ] = {
1379                [ C(RESULT_ACCESS) ] = 0,
1380                [ C(RESULT_MISS)   ] = 0,
1381        },
1382 },
1383 [ C(L1I ) ] = {
1384        [ C(OP_READ) ] = {
1385                [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1386                [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1387        },
1388        [ C(OP_WRITE) ] = {
1389                [ C(RESULT_ACCESS) ] = -1,
1390                [ C(RESULT_MISS)   ] = -1,
1391        },
1392        [ C(OP_PREFETCH) ] = {
1393                [ C(RESULT_ACCESS) ] = 0,
1394                [ C(RESULT_MISS)   ] = 0,
1395        },
1396 },
1397 [ C(LL  ) ] = {
1398        [ C(OP_READ) ] = {
1399                /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1400                [ C(RESULT_ACCESS) ] = 0x01b7,
1401                [ C(RESULT_MISS)   ] = 0,
1402        },
1403        [ C(OP_WRITE) ] = {
1404                /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1405                [ C(RESULT_ACCESS) ] = 0x01b7,
1406                /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1407                [ C(RESULT_MISS)   ] = 0x01b7,
1408        },
1409        [ C(OP_PREFETCH) ] = {
1410                /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1411                [ C(RESULT_ACCESS) ] = 0x01b7,
1412                /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1413                [ C(RESULT_MISS)   ] = 0x01b7,
1414        },
1415 },
1416 [ C(DTLB) ] = {
1417        [ C(OP_READ) ] = {
1418                [ C(RESULT_ACCESS) ] = 0,
1419                [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1420        },
1421        [ C(OP_WRITE) ] = {
1422                [ C(RESULT_ACCESS) ] = 0,
1423                [ C(RESULT_MISS)   ] = 0,
1424        },
1425        [ C(OP_PREFETCH) ] = {
1426                [ C(RESULT_ACCESS) ] = 0,
1427                [ C(RESULT_MISS)   ] = 0,
1428        },
1429 },
1430 [ C(ITLB) ] = {
1431        [ C(OP_READ) ] = {
1432                [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1433                [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1434        },
1435        [ C(OP_WRITE) ] = {
1436                [ C(RESULT_ACCESS) ] = -1,
1437                [ C(RESULT_MISS)   ] = -1,
1438        },
1439        [ C(OP_PREFETCH) ] = {
1440                [ C(RESULT_ACCESS) ] = -1,
1441                [ C(RESULT_MISS)   ] = -1,
1442        },
1443 },
1444 [ C(BPU ) ] = {
1445        [ C(OP_READ) ] = {
1446                [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1447                [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1448        },
1449        [ C(OP_WRITE) ] = {
1450                [ C(RESULT_ACCESS) ] = -1,
1451                [ C(RESULT_MISS)   ] = -1,
1452        },
1453        [ C(OP_PREFETCH) ] = {
1454                [ C(RESULT_ACCESS) ] = -1,
1455                [ C(RESULT_MISS)   ] = -1,
1456        },
1457 },
1458};
1459
1460/*
1461 * Use from PMIs where the LBRs are already disabled.
1462 */
1463static void __intel_pmu_disable_all(void)
1464{
1465        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1466
1467        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1468
1469        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1470                intel_pmu_disable_bts();
1471        else
1472                intel_bts_disable_local();
1473
1474        intel_pmu_pebs_disable_all();
1475}
1476
1477static void intel_pmu_disable_all(void)
1478{
1479        __intel_pmu_disable_all();
1480        intel_pmu_lbr_disable_all();
1481}
1482
1483static void __intel_pmu_enable_all(int added, bool pmi)
1484{
1485        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1486
1487        intel_pmu_pebs_enable_all();
1488        intel_pmu_lbr_enable_all(pmi);
1489        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1490                        x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1491
1492        if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1493                struct perf_event *event =
1494                        cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1495
1496                if (WARN_ON_ONCE(!event))
1497                        return;
1498
1499                intel_pmu_enable_bts(event->hw.config);
1500        } else
1501                intel_bts_enable_local();
1502}
1503
1504static void intel_pmu_enable_all(int added)
1505{
1506        __intel_pmu_enable_all(added, false);
1507}
1508
1509/*
1510 * Workaround for:
1511 *   Intel Errata AAK100 (model 26)
1512 *   Intel Errata AAP53  (model 30)
1513 *   Intel Errata BD53   (model 44)
1514 *
1515 * The official story:
1516 *   These chips need to be 'reset' when adding counters by programming the
1517 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1518 *   in sequence on the same PMC or on different PMCs.
1519 *
1520 * In practise it appears some of these events do in fact count, and
1521 * we need to programm all 4 events.
1522 */
1523static void intel_pmu_nhm_workaround(void)
1524{
1525        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1526        static const unsigned long nhm_magic[4] = {
1527                0x4300B5,
1528                0x4300D2,
1529                0x4300B1,
1530                0x4300B1
1531        };
1532        struct perf_event *event;
1533        int i;
1534
1535        /*
1536         * The Errata requires below steps:
1537         * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1538         * 2) Configure 4 PERFEVTSELx with the magic events and clear
1539         *    the corresponding PMCx;
1540         * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1541         * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1542         * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1543         */
1544
1545        /*
1546         * The real steps we choose are a little different from above.
1547         * A) To reduce MSR operations, we don't run step 1) as they
1548         *    are already cleared before this function is called;
1549         * B) Call x86_perf_event_update to save PMCx before configuring
1550         *    PERFEVTSELx with magic number;
1551         * C) With step 5), we do clear only when the PERFEVTSELx is
1552         *    not used currently.
1553         * D) Call x86_perf_event_set_period to restore PMCx;
1554         */
1555
1556        /* We always operate 4 pairs of PERF Counters */
1557        for (i = 0; i < 4; i++) {
1558                event = cpuc->events[i];
1559                if (event)
1560                        x86_perf_event_update(event);
1561        }
1562
1563        for (i = 0; i < 4; i++) {
1564                wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1565                wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1566        }
1567
1568        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1569        wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1570
1571        for (i = 0; i < 4; i++) {
1572                event = cpuc->events[i];
1573
1574                if (event) {
1575                        x86_perf_event_set_period(event);
1576                        __x86_pmu_enable_event(&event->hw,
1577                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1578                } else
1579                        wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1580        }
1581}
1582
1583static void intel_pmu_nhm_enable_all(int added)
1584{
1585        if (added)
1586                intel_pmu_nhm_workaround();
1587        intel_pmu_enable_all(added);
1588}
1589
1590static inline u64 intel_pmu_get_status(void)
1591{
1592        u64 status;
1593
1594        rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1595
1596        return status;
1597}
1598
1599static inline void intel_pmu_ack_status(u64 ack)
1600{
1601        wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1602}
1603
1604static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1605{
1606        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1607        u64 ctrl_val, mask;
1608
1609        mask = 0xfULL << (idx * 4);
1610
1611        rdmsrl(hwc->config_base, ctrl_val);
1612        ctrl_val &= ~mask;
1613        wrmsrl(hwc->config_base, ctrl_val);
1614}
1615
1616static inline bool event_is_checkpointed(struct perf_event *event)
1617{
1618        return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1619}
1620
1621static void intel_pmu_disable_event(struct perf_event *event)
1622{
1623        struct hw_perf_event *hwc = &event->hw;
1624        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1625
1626        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1627                intel_pmu_disable_bts();
1628                intel_pmu_drain_bts_buffer();
1629                return;
1630        }
1631
1632        cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1633        cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1634        cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1635
1636        /*
1637         * must disable before any actual event
1638         * because any event may be combined with LBR
1639         */
1640        if (needs_branch_stack(event))
1641                intel_pmu_lbr_disable(event);
1642
1643        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1644                intel_pmu_disable_fixed(hwc);
1645                return;
1646        }
1647
1648        x86_pmu_disable_event(event);
1649
1650        if (unlikely(event->attr.precise_ip))
1651                intel_pmu_pebs_disable(event);
1652}
1653
1654static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1655{
1656        int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1657        u64 ctrl_val, bits, mask;
1658
1659        /*
1660         * Enable IRQ generation (0x8),
1661         * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1662         * if requested:
1663         */
1664        bits = 0x8ULL;
1665        if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1666                bits |= 0x2;
1667        if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1668                bits |= 0x1;
1669
1670        /*
1671         * ANY bit is supported in v3 and up
1672         */
1673        if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1674                bits |= 0x4;
1675
1676        bits <<= (idx * 4);
1677        mask = 0xfULL << (idx * 4);
1678
1679        rdmsrl(hwc->config_base, ctrl_val);
1680        ctrl_val &= ~mask;
1681        ctrl_val |= bits;
1682        wrmsrl(hwc->config_base, ctrl_val);
1683}
1684
1685static void intel_pmu_enable_event(struct perf_event *event)
1686{
1687        struct hw_perf_event *hwc = &event->hw;
1688        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1689
1690        if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1691                if (!__this_cpu_read(cpu_hw_events.enabled))
1692                        return;
1693
1694                intel_pmu_enable_bts(hwc->config);
1695                return;
1696        }
1697        /*
1698         * must enabled before any actual event
1699         * because any event may be combined with LBR
1700         */
1701        if (needs_branch_stack(event))
1702                intel_pmu_lbr_enable(event);
1703
1704        if (event->attr.exclude_host)
1705                cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1706        if (event->attr.exclude_guest)
1707                cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1708
1709        if (unlikely(event_is_checkpointed(event)))
1710                cpuc->intel_cp_status |= (1ull << hwc->idx);
1711
1712        if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1713                intel_pmu_enable_fixed(hwc);
1714                return;
1715        }
1716
1717        if (unlikely(event->attr.precise_ip))
1718                intel_pmu_pebs_enable(event);
1719
1720        __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1721}
1722
1723/*
1724 * Save and restart an expired event. Called by NMI contexts,
1725 * so it has to be careful about preempting normal event ops:
1726 */
1727int intel_pmu_save_and_restart(struct perf_event *event)
1728{
1729        x86_perf_event_update(event);
1730        /*
1731         * For a checkpointed counter always reset back to 0.  This
1732         * avoids a situation where the counter overflows, aborts the
1733         * transaction and is then set back to shortly before the
1734         * overflow, and overflows and aborts again.
1735         */
1736        if (unlikely(event_is_checkpointed(event))) {
1737                /* No race with NMIs because the counter should not be armed */
1738                wrmsrl(event->hw.event_base, 0);
1739                local64_set(&event->hw.prev_count, 0);
1740        }
1741        return x86_perf_event_set_period(event);
1742}
1743
1744static void intel_pmu_reset(void)
1745{
1746        struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1747        unsigned long flags;
1748        int idx;
1749
1750        if (!x86_pmu.num_counters)
1751                return;
1752
1753        local_irq_save(flags);
1754
1755        pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1756
1757        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1758                wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1759                wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1760        }
1761        for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1762                wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1763
1764        if (ds)
1765                ds->bts_index = ds->bts_buffer_base;
1766
1767        /* Ack all overflows and disable fixed counters */
1768        if (x86_pmu.version >= 2) {
1769                intel_pmu_ack_status(intel_pmu_get_status());
1770                wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1771        }
1772
1773        /* Reset LBRs and LBR freezing */
1774        if (x86_pmu.lbr_nr) {
1775                update_debugctlmsr(get_debugctlmsr() &
1776                        ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1777        }
1778
1779        local_irq_restore(flags);
1780}
1781
1782/*
1783 * This handler is triggered by the local APIC, so the APIC IRQ handling
1784 * rules apply:
1785 */
1786static int intel_pmu_handle_irq(struct pt_regs *regs)
1787{
1788        struct perf_sample_data data;
1789        struct cpu_hw_events *cpuc;
1790        int bit, loops;
1791        u64 status;
1792        int handled;
1793
1794        cpuc = this_cpu_ptr(&cpu_hw_events);
1795
1796        /*
1797         * No known reason to not always do late ACK,
1798         * but just in case do it opt-in.
1799         */
1800        if (!x86_pmu.late_ack)
1801                apic_write(APIC_LVTPC, APIC_DM_NMI);
1802        __intel_pmu_disable_all();
1803        handled = intel_pmu_drain_bts_buffer();
1804        handled += intel_bts_interrupt();
1805        status = intel_pmu_get_status();
1806        if (!status)
1807                goto done;
1808
1809        loops = 0;
1810again:
1811        intel_pmu_lbr_read();
1812        intel_pmu_ack_status(status);
1813        if (++loops > 100) {
1814                static bool warned = false;
1815                if (!warned) {
1816                        WARN(1, "perfevents: irq loop stuck!\n");
1817                        perf_event_print_debug();
1818                        warned = true;
1819                }
1820                intel_pmu_reset();
1821                goto done;
1822        }
1823
1824        inc_irq_stat(apic_perf_irqs);
1825
1826
1827        /*
1828         * Ignore a range of extra bits in status that do not indicate
1829         * overflow by themselves.
1830         */
1831        status &= ~(GLOBAL_STATUS_COND_CHG |
1832                    GLOBAL_STATUS_ASIF |
1833                    GLOBAL_STATUS_LBRS_FROZEN);
1834        if (!status)
1835                goto done;
1836
1837        /*
1838         * PEBS overflow sets bit 62 in the global status register
1839         */
1840        if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1841                handled++;
1842                x86_pmu.drain_pebs(regs);
1843        }
1844
1845        /*
1846         * Intel PT
1847         */
1848        if (__test_and_clear_bit(55, (unsigned long *)&status)) {
1849                handled++;
1850                intel_pt_interrupt();
1851        }
1852
1853        /*
1854         * Checkpointed counters can lead to 'spurious' PMIs because the
1855         * rollback caused by the PMI will have cleared the overflow status
1856         * bit. Therefore always force probe these counters.
1857         */
1858        status |= cpuc->intel_cp_status;
1859
1860        for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1861                struct perf_event *event = cpuc->events[bit];
1862
1863                handled++;
1864
1865                if (!test_bit(bit, cpuc->active_mask))
1866                        continue;
1867
1868                if (!intel_pmu_save_and_restart(event))
1869                        continue;
1870
1871                perf_sample_data_init(&data, 0, event->hw.last_period);
1872
1873                if (has_branch_stack(event))
1874                        data.br_stack = &cpuc->lbr_stack;
1875
1876                if (perf_event_overflow(event, &data, regs))
1877                        x86_pmu_stop(event, 0);
1878        }
1879
1880        /*
1881         * Repeat if there is more work to be done:
1882         */
1883        status = intel_pmu_get_status();
1884        if (status)
1885                goto again;
1886
1887done:
1888        __intel_pmu_enable_all(0, true);
1889        /*
1890         * Only unmask the NMI after the overflow counters
1891         * have been reset. This avoids spurious NMIs on
1892         * Haswell CPUs.
1893         */
1894        if (x86_pmu.late_ack)
1895                apic_write(APIC_LVTPC, APIC_DM_NMI);
1896        return handled;
1897}
1898
1899static struct event_constraint *
1900intel_bts_constraints(struct perf_event *event)
1901{
1902        struct hw_perf_event *hwc = &event->hw;
1903        unsigned int hw_event, bts_event;
1904
1905        if (event->attr.freq)
1906                return NULL;
1907
1908        hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1909        bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1910
1911        if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1912                return &bts_constraint;
1913
1914        return NULL;
1915}
1916
1917static int intel_alt_er(int idx, u64 config)
1918{
1919        int alt_idx;
1920        if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
1921                return idx;
1922
1923        if (idx == EXTRA_REG_RSP_0)
1924                alt_idx = EXTRA_REG_RSP_1;
1925
1926        if (idx == EXTRA_REG_RSP_1)
1927                alt_idx = EXTRA_REG_RSP_0;
1928
1929        if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
1930                return idx;
1931
1932        return alt_idx;
1933}
1934
1935static void intel_fixup_er(struct perf_event *event, int idx)
1936{
1937        event->hw.extra_reg.idx = idx;
1938
1939        if (idx == EXTRA_REG_RSP_0) {
1940                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1941                event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
1942                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1943        } else if (idx == EXTRA_REG_RSP_1) {
1944                event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1945                event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
1946                event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1947        }
1948}
1949
1950/*
1951 * manage allocation of shared extra msr for certain events
1952 *
1953 * sharing can be:
1954 * per-cpu: to be shared between the various events on a single PMU
1955 * per-core: per-cpu + shared by HT threads
1956 */
1957static struct event_constraint *
1958__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1959                                   struct perf_event *event,
1960                                   struct hw_perf_event_extra *reg)
1961{
1962        struct event_constraint *c = &emptyconstraint;
1963        struct er_account *era;
1964        unsigned long flags;
1965        int idx = reg->idx;
1966
1967        /*
1968         * reg->alloc can be set due to existing state, so for fake cpuc we
1969         * need to ignore this, otherwise we might fail to allocate proper fake
1970         * state for this extra reg constraint. Also see the comment below.
1971         */
1972        if (reg->alloc && !cpuc->is_fake)
1973                return NULL; /* call x86_get_event_constraint() */
1974
1975again:
1976        era = &cpuc->shared_regs->regs[idx];
1977        /*
1978         * we use spin_lock_irqsave() to avoid lockdep issues when
1979         * passing a fake cpuc
1980         */
1981        raw_spin_lock_irqsave(&era->lock, flags);
1982
1983        if (!atomic_read(&era->ref) || era->config == reg->config) {
1984
1985                /*
1986                 * If its a fake cpuc -- as per validate_{group,event}() we
1987                 * shouldn't touch event state and we can avoid doing so
1988                 * since both will only call get_event_constraints() once
1989                 * on each event, this avoids the need for reg->alloc.
1990                 *
1991                 * Not doing the ER fixup will only result in era->reg being
1992                 * wrong, but since we won't actually try and program hardware
1993                 * this isn't a problem either.
1994                 */
1995                if (!cpuc->is_fake) {
1996                        if (idx != reg->idx)
1997                                intel_fixup_er(event, idx);
1998
1999                        /*
2000                         * x86_schedule_events() can call get_event_constraints()
2001                         * multiple times on events in the case of incremental
2002                         * scheduling(). reg->alloc ensures we only do the ER
2003                         * allocation once.
2004                         */
2005                        reg->alloc = 1;
2006                }
2007
2008                /* lock in msr value */
2009                era->config = reg->config;
2010                era->reg = reg->reg;
2011
2012                /* one more user */
2013                atomic_inc(&era->ref);
2014
2015                /*
2016                 * need to call x86_get_event_constraint()
2017                 * to check if associated event has constraints
2018                 */
2019                c = NULL;
2020        } else {
2021                idx = intel_alt_er(idx, reg->config);
2022                if (idx != reg->idx) {
2023                        raw_spin_unlock_irqrestore(&era->lock, flags);
2024                        goto again;
2025                }
2026        }
2027        raw_spin_unlock_irqrestore(&era->lock, flags);
2028
2029        return c;
2030}
2031
2032static void
2033__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2034                                   struct hw_perf_event_extra *reg)
2035{
2036        struct er_account *era;
2037
2038        /*
2039         * Only put constraint if extra reg was actually allocated. Also takes
2040         * care of event which do not use an extra shared reg.
2041         *
2042         * Also, if this is a fake cpuc we shouldn't touch any event state
2043         * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2044         * either since it'll be thrown out.
2045         */
2046        if (!reg->alloc || cpuc->is_fake)
2047                return;
2048
2049        era = &cpuc->shared_regs->regs[reg->idx];
2050
2051        /* one fewer user */
2052        atomic_dec(&era->ref);
2053
2054        /* allocate again next time */
2055        reg->alloc = 0;
2056}
2057
2058static struct event_constraint *
2059intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2060                              struct perf_event *event)
2061{
2062        struct event_constraint *c = NULL, *d;
2063        struct hw_perf_event_extra *xreg, *breg;
2064
2065        xreg = &event->hw.extra_reg;
2066        if (xreg->idx != EXTRA_REG_NONE) {
2067                c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2068                if (c == &emptyconstraint)
2069                        return c;
2070        }
2071        breg = &event->hw.branch_reg;
2072        if (breg->idx != EXTRA_REG_NONE) {
2073                d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2074                if (d == &emptyconstraint) {
2075                        __intel_shared_reg_put_constraints(cpuc, xreg);
2076                        c = d;
2077                }
2078        }
2079        return c;
2080}
2081
2082struct event_constraint *
2083x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2084                          struct perf_event *event)
2085{
2086        struct event_constraint *c;
2087
2088        if (x86_pmu.event_constraints) {
2089                for_each_event_constraint(c, x86_pmu.event_constraints) {
2090                        if ((event->hw.config & c->cmask) == c->code) {
2091                                event->hw.flags |= c->flags;
2092                                return c;
2093                        }
2094                }
2095        }
2096
2097        return &unconstrained;
2098}
2099
2100static struct event_constraint *
2101__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2102                            struct perf_event *event)
2103{
2104        struct event_constraint *c;
2105
2106        c = intel_bts_constraints(event);
2107        if (c)
2108                return c;
2109
2110        c = intel_shared_regs_constraints(cpuc, event);
2111        if (c)
2112                return c;
2113
2114        c = intel_pebs_constraints(event);
2115        if (c)
2116                return c;
2117
2118        return x86_get_event_constraints(cpuc, idx, event);
2119}
2120
2121static void
2122intel_start_scheduling(struct cpu_hw_events *cpuc)
2123{
2124        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2125        struct intel_excl_states *xl;
2126        int tid = cpuc->excl_thread_id;
2127
2128        /*
2129         * nothing needed if in group validation mode
2130         */
2131        if (cpuc->is_fake || !is_ht_workaround_enabled())
2132                return;
2133
2134        /*
2135         * no exclusion needed
2136         */
2137        if (WARN_ON_ONCE(!excl_cntrs))
2138                return;
2139
2140        xl = &excl_cntrs->states[tid];
2141
2142        xl->sched_started = true;
2143        /*
2144         * lock shared state until we are done scheduling
2145         * in stop_event_scheduling()
2146         * makes scheduling appear as a transaction
2147         */
2148        raw_spin_lock(&excl_cntrs->lock);
2149}
2150
2151static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2152{
2153        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2154        struct event_constraint *c = cpuc->event_constraint[idx];
2155        struct intel_excl_states *xl;
2156        int tid = cpuc->excl_thread_id;
2157
2158        if (cpuc->is_fake || !is_ht_workaround_enabled())
2159                return;
2160
2161        if (WARN_ON_ONCE(!excl_cntrs))
2162                return;
2163
2164        if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2165                return;
2166
2167        xl = &excl_cntrs->states[tid];
2168
2169        lockdep_assert_held(&excl_cntrs->lock);
2170
2171        if (c->flags & PERF_X86_EVENT_EXCL)
2172                xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2173        else
2174                xl->state[cntr] = INTEL_EXCL_SHARED;
2175}
2176
2177static void
2178intel_stop_scheduling(struct cpu_hw_events *cpuc)
2179{
2180        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2181        struct intel_excl_states *xl;
2182        int tid = cpuc->excl_thread_id;
2183
2184        /*
2185         * nothing needed if in group validation mode
2186         */
2187        if (cpuc->is_fake || !is_ht_workaround_enabled())
2188                return;
2189        /*
2190         * no exclusion needed
2191         */
2192        if (WARN_ON_ONCE(!excl_cntrs))
2193                return;
2194
2195        xl = &excl_cntrs->states[tid];
2196
2197        xl->sched_started = false;
2198        /*
2199         * release shared state lock (acquired in intel_start_scheduling())
2200         */
2201        raw_spin_unlock(&excl_cntrs->lock);
2202}
2203
2204static struct event_constraint *
2205intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2206                           int idx, struct event_constraint *c)
2207{
2208        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2209        struct intel_excl_states *xlo;
2210        int tid = cpuc->excl_thread_id;
2211        int is_excl, i;
2212
2213        /*
2214         * validating a group does not require
2215         * enforcing cross-thread  exclusion
2216         */
2217        if (cpuc->is_fake || !is_ht_workaround_enabled())
2218                return c;
2219
2220        /*
2221         * no exclusion needed
2222         */
2223        if (WARN_ON_ONCE(!excl_cntrs))
2224                return c;
2225
2226        /*
2227         * because we modify the constraint, we need
2228         * to make a copy. Static constraints come
2229         * from static const tables.
2230         *
2231         * only needed when constraint has not yet
2232         * been cloned (marked dynamic)
2233         */
2234        if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2235                struct event_constraint *cx;
2236
2237                /*
2238                 * grab pre-allocated constraint entry
2239                 */
2240                cx = &cpuc->constraint_list[idx];
2241
2242                /*
2243                 * initialize dynamic constraint
2244                 * with static constraint
2245                 */
2246                *cx = *c;
2247
2248                /*
2249                 * mark constraint as dynamic, so we
2250                 * can free it later on
2251                 */
2252                cx->flags |= PERF_X86_EVENT_DYNAMIC;
2253                c = cx;
2254        }
2255
2256        /*
2257         * From here on, the constraint is dynamic.
2258         * Either it was just allocated above, or it
2259         * was allocated during a earlier invocation
2260         * of this function
2261         */
2262
2263        /*
2264         * state of sibling HT
2265         */
2266        xlo = &excl_cntrs->states[tid ^ 1];
2267
2268        /*
2269         * event requires exclusive counter access
2270         * across HT threads
2271         */
2272        is_excl = c->flags & PERF_X86_EVENT_EXCL;
2273        if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2274                event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2275                if (!cpuc->n_excl++)
2276                        WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2277        }
2278
2279        /*
2280         * Modify static constraint with current dynamic
2281         * state of thread
2282         *
2283         * EXCLUSIVE: sibling counter measuring exclusive event
2284         * SHARED   : sibling counter measuring non-exclusive event
2285         * UNUSED   : sibling counter unused
2286         */
2287        for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2288                /*
2289                 * exclusive event in sibling counter
2290                 * our corresponding counter cannot be used
2291                 * regardless of our event
2292                 */
2293                if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2294                        __clear_bit(i, c->idxmsk);
2295                /*
2296                 * if measuring an exclusive event, sibling
2297                 * measuring non-exclusive, then counter cannot
2298                 * be used
2299                 */
2300                if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2301                        __clear_bit(i, c->idxmsk);
2302        }
2303
2304        /*
2305         * recompute actual bit weight for scheduling algorithm
2306         */
2307        c->weight = hweight64(c->idxmsk64);
2308
2309        /*
2310         * if we return an empty mask, then switch
2311         * back to static empty constraint to avoid
2312         * the cost of freeing later on
2313         */
2314        if (c->weight == 0)
2315                c = &emptyconstraint;
2316
2317        return c;
2318}
2319
2320static struct event_constraint *
2321intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2322                            struct perf_event *event)
2323{
2324        struct event_constraint *c1 = NULL;
2325        struct event_constraint *c2;
2326
2327        if (idx >= 0) /* fake does < 0 */
2328                c1 = cpuc->event_constraint[idx];
2329
2330        /*
2331         * first time only
2332         * - static constraint: no change across incremental scheduling calls
2333         * - dynamic constraint: handled by intel_get_excl_constraints()
2334         */
2335        c2 = __intel_get_event_constraints(cpuc, idx, event);
2336        if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2337                bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2338                c1->weight = c2->weight;
2339                c2 = c1;
2340        }
2341
2342        if (cpuc->excl_cntrs)
2343                return intel_get_excl_constraints(cpuc, event, idx, c2);
2344
2345        return c2;
2346}
2347
2348static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2349                struct perf_event *event)
2350{
2351        struct hw_perf_event *hwc = &event->hw;
2352        struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2353        int tid = cpuc->excl_thread_id;
2354        struct intel_excl_states *xl;
2355
2356        /*
2357         * nothing needed if in group validation mode
2358         */
2359        if (cpuc->is_fake)
2360                return;
2361
2362        if (WARN_ON_ONCE(!excl_cntrs))
2363                return;
2364
2365        if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2366                hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2367                if (!--cpuc->n_excl)
2368                        WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2369        }
2370
2371        /*
2372         * If event was actually assigned, then mark the counter state as
2373         * unused now.
2374         */
2375        if (hwc->idx >= 0) {
2376                xl = &excl_cntrs->states[tid];
2377
2378                /*
2379                 * put_constraint may be called from x86_schedule_events()
2380                 * which already has the lock held so here make locking
2381                 * conditional.
2382                 */
2383                if (!xl->sched_started)
2384                        raw_spin_lock(&excl_cntrs->lock);
2385
2386                xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2387
2388                if (!xl->sched_started)
2389                        raw_spin_unlock(&excl_cntrs->lock);
2390        }
2391}
2392
2393static void
2394intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2395                                        struct perf_event *event)
2396{
2397        struct hw_perf_event_extra *reg;
2398
2399        reg = &event->hw.extra_reg;
2400        if (reg->idx != EXTRA_REG_NONE)
2401                __intel_shared_reg_put_constraints(cpuc, reg);
2402
2403        reg = &event->hw.branch_reg;
2404        if (reg->idx != EXTRA_REG_NONE)
2405                __intel_shared_reg_put_constraints(cpuc, reg);
2406}
2407
2408static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2409                                        struct perf_event *event)
2410{
2411        intel_put_shared_regs_event_constraints(cpuc, event);
2412
2413        /*
2414         * is PMU has exclusive counter restrictions, then
2415         * all events are subject to and must call the
2416         * put_excl_constraints() routine
2417         */
2418        if (cpuc->excl_cntrs)
2419                intel_put_excl_constraints(cpuc, event);
2420}
2421
2422static void intel_pebs_aliases_core2(struct perf_event *event)
2423{
2424        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2425                /*
2426                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2427                 * (0x003c) so that we can use it with PEBS.
2428                 *
2429                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2430                 * PEBS capable. However we can use INST_RETIRED.ANY_P
2431                 * (0x00c0), which is a PEBS capable event, to get the same
2432                 * count.
2433                 *
2434                 * INST_RETIRED.ANY_P counts the number of cycles that retires
2435                 * CNTMASK instructions. By setting CNTMASK to a value (16)
2436                 * larger than the maximum number of instructions that can be
2437                 * retired per cycle (4) and then inverting the condition, we
2438                 * count all cycles that retire 16 or less instructions, which
2439                 * is every cycle.
2440                 *
2441                 * Thereby we gain a PEBS capable cycle counter.
2442                 */
2443                u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2444
2445                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2446                event->hw.config = alt_config;
2447        }
2448}
2449
2450static void intel_pebs_aliases_snb(struct perf_event *event)
2451{
2452        if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2453                /*
2454                 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2455                 * (0x003c) so that we can use it with PEBS.
2456                 *
2457                 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2458                 * PEBS capable. However we can use UOPS_RETIRED.ALL
2459                 * (0x01c2), which is a PEBS capable event, to get the same
2460                 * count.
2461                 *
2462                 * UOPS_RETIRED.ALL counts the number of cycles that retires
2463                 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2464                 * larger than the maximum number of micro-ops that can be
2465                 * retired per cycle (4) and then inverting the condition, we
2466                 * count all cycles that retire 16 or less micro-ops, which
2467                 * is every cycle.
2468                 *
2469                 * Thereby we gain a PEBS capable cycle counter.
2470                 */
2471                u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2472
2473                alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2474                event->hw.config = alt_config;
2475        }
2476}
2477
2478static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2479{
2480        unsigned long flags = x86_pmu.free_running_flags;
2481
2482        if (event->attr.use_clockid)
2483                flags &= ~PERF_SAMPLE_TIME;
2484        return flags;
2485}
2486
2487static int intel_pmu_hw_config(struct perf_event *event)
2488{
2489        int ret = x86_pmu_hw_config(event);
2490
2491        if (ret)
2492                return ret;
2493
2494        if (event->attr.precise_ip) {
2495                if (!event->attr.freq) {
2496                        event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2497                        if (!(event->attr.sample_type &
2498                              ~intel_pmu_free_running_flags(event)))
2499                                event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2500                }
2501                if (x86_pmu.pebs_aliases)
2502                        x86_pmu.pebs_aliases(event);
2503        }
2504
2505        if (needs_branch_stack(event)) {
2506                ret = intel_pmu_setup_lbr_filter(event);
2507                if (ret)
2508                        return ret;
2509
2510                /*
2511                 * BTS is set up earlier in this path, so don't account twice
2512                 */
2513                if (!intel_pmu_has_bts(event)) {
2514                        /* disallow lbr if conflicting events are present */
2515                        if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2516                                return -EBUSY;
2517
2518                        event->destroy = hw_perf_lbr_event_destroy;
2519                }
2520        }
2521
2522        if (event->attr.type != PERF_TYPE_RAW)
2523                return 0;
2524
2525        if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2526                return 0;
2527
2528        if (x86_pmu.version < 3)
2529                return -EINVAL;
2530
2531        if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2532                return -EACCES;
2533
2534        event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2535
2536        return 0;
2537}
2538
2539struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2540{
2541        if (x86_pmu.guest_get_msrs)
2542                return x86_pmu.guest_get_msrs(nr);
2543        *nr = 0;
2544        return NULL;
2545}
2546EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2547
2548static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2549{
2550        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2551        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2552
2553        arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2554        arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2555        arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2556        /*
2557         * If PMU counter has PEBS enabled it is not enough to disable counter
2558         * on a guest entry since PEBS memory write can overshoot guest entry
2559         * and corrupt guest memory. Disabling PEBS solves the problem.
2560         */
2561        arr[1].msr = MSR_IA32_PEBS_ENABLE;
2562        arr[1].host = cpuc->pebs_enabled;
2563        arr[1].guest = 0;
2564
2565        *nr = 2;
2566        return arr;
2567}
2568
2569static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2570{
2571        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2572        struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2573        int idx;
2574
2575        for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2576                struct perf_event *event = cpuc->events[idx];
2577
2578                arr[idx].msr = x86_pmu_config_addr(idx);
2579                arr[idx].host = arr[idx].guest = 0;
2580
2581                if (!test_bit(idx, cpuc->active_mask))
2582                        continue;
2583
2584                arr[idx].host = arr[idx].guest =
2585                        event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2586
2587                if (event->attr.exclude_host)
2588                        arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2589                else if (event->attr.exclude_guest)
2590                        arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2591        }
2592
2593        *nr = x86_pmu.num_counters;
2594        return arr;
2595}
2596
2597static void core_pmu_enable_event(struct perf_event *event)
2598{
2599        if (!event->attr.exclude_host)
2600                x86_pmu_enable_event(event);
2601}
2602
2603static void core_pmu_enable_all(int added)
2604{
2605        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2606        int idx;
2607
2608        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2609                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2610
2611                if (!test_bit(idx, cpuc->active_mask) ||
2612                                cpuc->events[idx]->attr.exclude_host)
2613                        continue;
2614
2615                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2616        }
2617}
2618
2619static int hsw_hw_config(struct perf_event *event)
2620{
2621        int ret = intel_pmu_hw_config(event);
2622
2623        if (ret)
2624                return ret;
2625        if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2626                return 0;
2627        event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2628
2629        /*
2630         * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2631         * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2632         * this combination.
2633         */
2634        if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2635             ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2636              event->attr.precise_ip > 0))
2637                return -EOPNOTSUPP;
2638
2639        if (event_is_checkpointed(event)) {
2640                /*
2641                 * Sampling of checkpointed events can cause situations where
2642                 * the CPU constantly aborts because of a overflow, which is
2643                 * then checkpointed back and ignored. Forbid checkpointing
2644                 * for sampling.
2645                 *
2646                 * But still allow a long sampling period, so that perf stat
2647                 * from KVM works.
2648                 */
2649                if (event->attr.sample_period > 0 &&
2650                    event->attr.sample_period < 0x7fffffff)
2651                        return -EOPNOTSUPP;
2652        }
2653        return 0;
2654}
2655
2656static struct event_constraint counter2_constraint =
2657                        EVENT_CONSTRAINT(0, 0x4, 0);
2658
2659static struct event_constraint *
2660hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2661                          struct perf_event *event)
2662{
2663        struct event_constraint *c;
2664
2665        c = intel_get_event_constraints(cpuc, idx, event);
2666
2667        /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2668        if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2669                if (c->idxmsk64 & (1U << 2))
2670                        return &counter2_constraint;
2671                return &emptyconstraint;
2672        }
2673
2674        return c;
2675}
2676
2677/*
2678 * Broadwell:
2679 *
2680 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2681 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2682 * the two to enforce a minimum period of 128 (the smallest value that has bits
2683 * 0-5 cleared and >= 100).
2684 *
2685 * Because of how the code in x86_perf_event_set_period() works, the truncation
2686 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2687 * to make up for the 'lost' events due to carrying the 'error' in period_left.
2688 *
2689 * Therefore the effective (average) period matches the requested period,
2690 * despite coarser hardware granularity.
2691 */
2692static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2693{
2694        if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2695                        X86_CONFIG(.event=0xc0, .umask=0x01)) {
2696                if (left < 128)
2697                        left = 128;
2698                left &= ~0x3fu;
2699        }
2700        return left;
2701}
2702
2703PMU_FORMAT_ATTR(event,  "config:0-7"    );
2704PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2705PMU_FORMAT_ATTR(edge,   "config:18"     );
2706PMU_FORMAT_ATTR(pc,     "config:19"     );
2707PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2708PMU_FORMAT_ATTR(inv,    "config:23"     );
2709PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2710PMU_FORMAT_ATTR(in_tx,  "config:32");
2711PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2712
2713static struct attribute *intel_arch_formats_attr[] = {
2714        &format_attr_event.attr,
2715        &format_attr_umask.attr,
2716        &format_attr_edge.attr,
2717        &format_attr_pc.attr,
2718        &format_attr_inv.attr,
2719        &format_attr_cmask.attr,
2720        NULL,
2721};
2722
2723ssize_t intel_event_sysfs_show(char *page, u64 config)
2724{
2725        u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2726
2727        return x86_event_sysfs_show(page, config, event);
2728}
2729
2730struct intel_shared_regs *allocate_shared_regs(int cpu)
2731{
2732        struct intel_shared_regs *regs;
2733        int i;
2734
2735        regs = kzalloc_node(sizeof(struct intel_shared_regs),
2736                            GFP_KERNEL, cpu_to_node(cpu));
2737        if (regs) {
2738                /*
2739                 * initialize the locks to keep lockdep happy
2740                 */
2741                for (i = 0; i < EXTRA_REG_MAX; i++)
2742                        raw_spin_lock_init(&regs->regs[i].lock);
2743
2744                regs->core_id = -1;
2745        }
2746        return regs;
2747}
2748
2749static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2750{
2751        struct intel_excl_cntrs *c;
2752
2753        c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2754                         GFP_KERNEL, cpu_to_node(cpu));
2755        if (c) {
2756                raw_spin_lock_init(&c->lock);
2757                c->core_id = -1;
2758        }
2759        return c;
2760}
2761
2762static int intel_pmu_cpu_prepare(int cpu)
2763{
2764        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2765
2766        if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
2767                cpuc->shared_regs = allocate_shared_regs(cpu);
2768                if (!cpuc->shared_regs)
2769                        goto err;
2770        }
2771
2772        if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2773                size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
2774
2775                cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
2776                if (!cpuc->constraint_list)
2777                        goto err_shared_regs;
2778
2779                cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
2780                if (!cpuc->excl_cntrs)
2781                        goto err_constraint_list;
2782
2783                cpuc->excl_thread_id = 0;
2784        }
2785
2786        return NOTIFY_OK;
2787
2788err_constraint_list:
2789        kfree(cpuc->constraint_list);
2790        cpuc->constraint_list = NULL;
2791
2792err_shared_regs:
2793        kfree(cpuc->shared_regs);
2794        cpuc->shared_regs = NULL;
2795
2796err:
2797        return NOTIFY_BAD;
2798}
2799
2800static void intel_pmu_cpu_starting(int cpu)
2801{
2802        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2803        int core_id = topology_core_id(cpu);
2804        int i;
2805
2806        init_debug_store_on_cpu(cpu);
2807        /*
2808         * Deal with CPUs that don't clear their LBRs on power-up.
2809         */
2810        intel_pmu_lbr_reset();
2811
2812        cpuc->lbr_sel = NULL;
2813
2814        if (!cpuc->shared_regs)
2815                return;
2816
2817        if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
2818                void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
2819
2820                for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2821                        struct intel_shared_regs *pc;
2822
2823                        pc = per_cpu(cpu_hw_events, i).shared_regs;
2824                        if (pc && pc->core_id == core_id) {
2825                                *onln = cpuc->shared_regs;
2826                                cpuc->shared_regs = pc;
2827                                break;
2828                        }
2829                }
2830                cpuc->shared_regs->core_id = core_id;
2831                cpuc->shared_regs->refcnt++;
2832        }
2833
2834        if (x86_pmu.lbr_sel_map)
2835                cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
2836
2837        if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
2838                for_each_cpu(i, topology_sibling_cpumask(cpu)) {
2839                        struct intel_excl_cntrs *c;
2840
2841                        c = per_cpu(cpu_hw_events, i).excl_cntrs;
2842                        if (c && c->core_id == core_id) {
2843                                cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
2844                                cpuc->excl_cntrs = c;
2845                                cpuc->excl_thread_id = 1;
2846                                break;
2847                        }
2848                }
2849                cpuc->excl_cntrs->core_id = core_id;
2850                cpuc->excl_cntrs->refcnt++;
2851        }
2852}
2853
2854static void free_excl_cntrs(int cpu)
2855{
2856        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2857        struct intel_excl_cntrs *c;
2858
2859        c = cpuc->excl_cntrs;
2860        if (c) {
2861                if (c->core_id == -1 || --c->refcnt == 0)
2862                        kfree(c);
2863                cpuc->excl_cntrs = NULL;
2864                kfree(cpuc->constraint_list);
2865                cpuc->constraint_list = NULL;
2866        }
2867}
2868
2869static void intel_pmu_cpu_dying(int cpu)
2870{
2871        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
2872        struct intel_shared_regs *pc;
2873
2874        pc = cpuc->shared_regs;
2875        if (pc) {
2876                if (pc->core_id == -1 || --pc->refcnt == 0)
2877                        kfree(pc);
2878                cpuc->shared_regs = NULL;
2879        }
2880
2881        free_excl_cntrs(cpu);
2882
2883        fini_debug_store_on_cpu(cpu);
2884}
2885
2886static void intel_pmu_sched_task(struct perf_event_context *ctx,
2887                                 bool sched_in)
2888{
2889        if (x86_pmu.pebs_active)
2890                intel_pmu_pebs_sched_task(ctx, sched_in);
2891        if (x86_pmu.lbr_nr)
2892                intel_pmu_lbr_sched_task(ctx, sched_in);
2893}
2894
2895PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
2896
2897PMU_FORMAT_ATTR(ldlat, "config1:0-15");
2898
2899PMU_FORMAT_ATTR(frontend, "config1:0-23");
2900
2901static struct attribute *intel_arch3_formats_attr[] = {
2902        &format_attr_event.attr,
2903        &format_attr_umask.attr,
2904        &format_attr_edge.attr,
2905        &format_attr_pc.attr,
2906        &format_attr_any.attr,
2907        &format_attr_inv.attr,
2908        &format_attr_cmask.attr,
2909        &format_attr_in_tx.attr,
2910        &format_attr_in_tx_cp.attr,
2911
2912        &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
2913        &format_attr_ldlat.attr, /* PEBS load latency */
2914        NULL,
2915};
2916
2917static struct attribute *skl_format_attr[] = {
2918        &format_attr_frontend.attr,
2919        NULL,
2920};
2921
2922static __initconst const struct x86_pmu core_pmu = {
2923        .name                   = "core",
2924        .handle_irq             = x86_pmu_handle_irq,
2925        .disable_all            = x86_pmu_disable_all,
2926        .enable_all             = core_pmu_enable_all,
2927        .enable                 = core_pmu_enable_event,
2928        .disable                = x86_pmu_disable_event,
2929        .hw_config              = x86_pmu_hw_config,
2930        .schedule_events        = x86_schedule_events,
2931        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2932        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2933        .event_map              = intel_pmu_event_map,
2934        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2935        .apic                   = 1,
2936        .free_running_flags     = PEBS_FREERUNNING_FLAGS,
2937
2938        /*
2939         * Intel PMCs cannot be accessed sanely above 32-bit width,
2940         * so we install an artificial 1<<31 period regardless of
2941         * the generic event period:
2942         */
2943        .max_period             = (1ULL<<31) - 1,
2944        .get_event_constraints  = intel_get_event_constraints,
2945        .put_event_constraints  = intel_put_event_constraints,
2946        .event_constraints      = intel_core_event_constraints,
2947        .guest_get_msrs         = core_guest_get_msrs,
2948        .format_attrs           = intel_arch_formats_attr,
2949        .events_sysfs_show      = intel_event_sysfs_show,
2950
2951        /*
2952         * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
2953         * together with PMU version 1 and thus be using core_pmu with
2954         * shared_regs. We need following callbacks here to allocate
2955         * it properly.
2956         */
2957        .cpu_prepare            = intel_pmu_cpu_prepare,
2958        .cpu_starting           = intel_pmu_cpu_starting,
2959        .cpu_dying              = intel_pmu_cpu_dying,
2960};
2961
2962static __initconst const struct x86_pmu intel_pmu = {
2963        .name                   = "Intel",
2964        .handle_irq             = intel_pmu_handle_irq,
2965        .disable_all            = intel_pmu_disable_all,
2966        .enable_all             = intel_pmu_enable_all,
2967        .enable                 = intel_pmu_enable_event,
2968        .disable                = intel_pmu_disable_event,
2969        .hw_config              = intel_pmu_hw_config,
2970        .schedule_events        = x86_schedule_events,
2971        .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
2972        .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
2973        .event_map              = intel_pmu_event_map,
2974        .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
2975        .apic                   = 1,
2976        .free_running_flags     = PEBS_FREERUNNING_FLAGS,
2977        /*
2978         * Intel PMCs cannot be accessed sanely above 32 bit width,
2979         * so we install an artificial 1<<31 period regardless of
2980         * the generic event period:
2981         */
2982        .max_period             = (1ULL << 31) - 1,
2983        .get_event_constraints  = intel_get_event_constraints,
2984        .put_event_constraints  = intel_put_event_constraints,
2985        .pebs_aliases           = intel_pebs_aliases_core2,
2986
2987        .format_attrs           = intel_arch3_formats_attr,
2988        .events_sysfs_show      = intel_event_sysfs_show,
2989
2990        .cpu_prepare            = intel_pmu_cpu_prepare,
2991        .cpu_starting           = intel_pmu_cpu_starting,
2992        .cpu_dying              = intel_pmu_cpu_dying,
2993        .guest_get_msrs         = intel_guest_get_msrs,
2994        .sched_task             = intel_pmu_sched_task,
2995};
2996
2997static __init void intel_clovertown_quirk(void)
2998{
2999        /*
3000         * PEBS is unreliable due to:
3001         *
3002         *   AJ67  - PEBS may experience CPL leaks
3003         *   AJ68  - PEBS PMI may be delayed by one event
3004         *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3005         *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3006         *
3007         * AJ67 could be worked around by restricting the OS/USR flags.
3008         * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3009         *
3010         * AJ106 could possibly be worked around by not allowing LBR
3011         *       usage from PEBS, including the fixup.
3012         * AJ68  could possibly be worked around by always programming
3013         *       a pebs_event_reset[0] value and coping with the lost events.
3014         *
3015         * But taken together it might just make sense to not enable PEBS on
3016         * these chips.
3017         */
3018        pr_warn("PEBS disabled due to CPU errata\n");
3019        x86_pmu.pebs = 0;
3020        x86_pmu.pebs_constraints = NULL;
3021}
3022
3023static int intel_snb_pebs_broken(int cpu)
3024{
3025        u32 rev = UINT_MAX; /* default to broken for unknown models */
3026
3027        switch (cpu_data(cpu).x86_model) {
3028        case 42: /* SNB */
3029                rev = 0x28;
3030                break;
3031
3032        case 45: /* SNB-EP */
3033                switch (cpu_data(cpu).x86_mask) {
3034                case 6: rev = 0x618; break;
3035                case 7: rev = 0x70c; break;
3036                }
3037        }
3038
3039        return (cpu_data(cpu).microcode < rev);
3040}
3041
3042static void intel_snb_check_microcode(void)
3043{
3044        int pebs_broken = 0;
3045        int cpu;
3046
3047        get_online_cpus();
3048        for_each_online_cpu(cpu) {
3049                if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3050                        break;
3051        }
3052        put_online_cpus();
3053
3054        if (pebs_broken == x86_pmu.pebs_broken)
3055                return;
3056
3057        /*
3058         * Serialized by the microcode lock..
3059         */
3060        if (x86_pmu.pebs_broken) {
3061                pr_info("PEBS enabled due to microcode update\n");
3062                x86_pmu.pebs_broken = 0;
3063        } else {
3064                pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3065                x86_pmu.pebs_broken = 1;
3066        }
3067}
3068
3069/*
3070 * Under certain circumstances, access certain MSR may cause #GP.
3071 * The function tests if the input MSR can be safely accessed.
3072 */
3073static bool check_msr(unsigned long msr, u64 mask)
3074{
3075        u64 val_old, val_new, val_tmp;
3076
3077        /*
3078         * Read the current value, change it and read it back to see if it
3079         * matches, this is needed to detect certain hardware emulators
3080         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3081         */
3082        if (rdmsrl_safe(msr, &val_old))
3083                return false;
3084
3085        /*
3086         * Only change the bits which can be updated by wrmsrl.
3087         */
3088        val_tmp = val_old ^ mask;
3089        if (wrmsrl_safe(msr, val_tmp) ||
3090            rdmsrl_safe(msr, &val_new))
3091                return false;
3092
3093        if (val_new != val_tmp)
3094                return false;
3095
3096        /* Here it's sure that the MSR can be safely accessed.
3097         * Restore the old value and return.
3098         */
3099        wrmsrl(msr, val_old);
3100
3101        return true;
3102}
3103
3104static __init void intel_sandybridge_quirk(void)
3105{
3106        x86_pmu.check_microcode = intel_snb_check_microcode;
3107        intel_snb_check_microcode();
3108}
3109
3110static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3111        { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3112        { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3113        { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3114        { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3115        { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3116        { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3117        { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3118};
3119
3120static __init void intel_arch_events_quirk(void)
3121{
3122        int bit;
3123
3124        /* disable event that reported as not presend by cpuid */
3125        for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3126                intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3127                pr_warn("CPUID marked event: \'%s\' unavailable\n",
3128                        intel_arch_events_map[bit].name);
3129        }
3130}
3131
3132static __init void intel_nehalem_quirk(void)
3133{
3134        union cpuid10_ebx ebx;
3135
3136        ebx.full = x86_pmu.events_maskl;
3137        if (ebx.split.no_branch_misses_retired) {
3138                /*
3139                 * Erratum AAJ80 detected, we work it around by using
3140                 * the BR_MISP_EXEC.ANY event. This will over-count
3141                 * branch-misses, but it's still much better than the
3142                 * architectural event which is often completely bogus:
3143                 */
3144                intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3145                ebx.split.no_branch_misses_retired = 0;
3146                x86_pmu.events_maskl = ebx.full;
3147                pr_info("CPU erratum AAJ80 worked around\n");
3148        }
3149}
3150
3151/*
3152 * enable software workaround for errata:
3153 * SNB: BJ122
3154 * IVB: BV98
3155 * HSW: HSD29
3156 *
3157 * Only needed when HT is enabled. However detecting
3158 * if HT is enabled is difficult (model specific). So instead,
3159 * we enable the workaround in the early boot, and verify if
3160 * it is needed in a later initcall phase once we have valid
3161 * topology information to check if HT is actually enabled
3162 */
3163static __init void intel_ht_bug(void)
3164{
3165        x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3166
3167        x86_pmu.start_scheduling = intel_start_scheduling;
3168        x86_pmu.commit_scheduling = intel_commit_scheduling;
3169        x86_pmu.stop_scheduling = intel_stop_scheduling;
3170}
3171
3172EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3173EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3174
3175/* Haswell special events */
3176EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3177EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3178EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3179EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3180EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3181EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3182EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3183EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3184EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3185EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3186EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3187EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3188
3189static struct attribute *hsw_events_attrs[] = {
3190        EVENT_PTR(tx_start),
3191        EVENT_PTR(tx_commit),
3192        EVENT_PTR(tx_abort),
3193        EVENT_PTR(tx_capacity),
3194        EVENT_PTR(tx_conflict),
3195        EVENT_PTR(el_start),
3196        EVENT_PTR(el_commit),
3197        EVENT_PTR(el_abort),
3198        EVENT_PTR(el_capacity),
3199        EVENT_PTR(el_conflict),
3200        EVENT_PTR(cycles_t),
3201        EVENT_PTR(cycles_ct),
3202        EVENT_PTR(mem_ld_hsw),
3203        EVENT_PTR(mem_st_hsw),
3204        NULL
3205};
3206
3207__init int intel_pmu_init(void)
3208{
3209        union cpuid10_edx edx;
3210        union cpuid10_eax eax;
3211        union cpuid10_ebx ebx;
3212        struct event_constraint *c;
3213        unsigned int unused;
3214        struct extra_reg *er;
3215        int version, i;
3216
3217        if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3218                switch (boot_cpu_data.x86) {
3219                case 0x6:
3220                        return p6_pmu_init();
3221                case 0xb:
3222                        return knc_pmu_init();
3223                case 0xf:
3224                        return p4_pmu_init();
3225                }
3226                return -ENODEV;
3227        }
3228
3229        /*
3230         * Check whether the Architectural PerfMon supports
3231         * Branch Misses Retired hw_event or not.
3232         */
3233        cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3234        if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3235                return -ENODEV;
3236
3237        version = eax.split.version_id;
3238        if (version < 2)
3239                x86_pmu = core_pmu;
3240        else
3241                x86_pmu = intel_pmu;
3242
3243        x86_pmu.version                 = version;
3244        x86_pmu.num_counters            = eax.split.num_counters;
3245        x86_pmu.cntval_bits             = eax.split.bit_width;
3246        x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3247
3248        x86_pmu.events_maskl            = ebx.full;
3249        x86_pmu.events_mask_len         = eax.split.mask_length;
3250
3251        x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3252
3253        /*
3254         * Quirk: v2 perfmon does not report fixed-purpose events, so
3255         * assume at least 3 events:
3256         */
3257        if (version > 1)
3258                x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3259
3260        if (boot_cpu_has(X86_FEATURE_PDCM)) {
3261                u64 capabilities;
3262
3263                rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3264                x86_pmu.intel_cap.capabilities = capabilities;
3265        }
3266
3267        intel_ds_init();
3268
3269        x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3270
3271        /*
3272         * Install the hw-cache-events table:
3273         */
3274        switch (boot_cpu_data.x86_model) {
3275        case 14: /* 65nm Core "Yonah" */
3276                pr_cont("Core events, ");
3277                break;
3278
3279        case 15: /* 65nm Core2 "Merom"          */
3280                x86_add_quirk(intel_clovertown_quirk);
3281        case 22: /* 65nm Core2 "Merom-L"        */
3282        case 23: /* 45nm Core2 "Penryn"         */
3283        case 29: /* 45nm Core2 "Dunnington (MP) */
3284                memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3285                       sizeof(hw_cache_event_ids));
3286
3287                intel_pmu_lbr_init_core();
3288
3289                x86_pmu.event_constraints = intel_core2_event_constraints;
3290                x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3291                pr_cont("Core2 events, ");
3292                break;
3293
3294        case 30: /* 45nm Nehalem    */
3295        case 26: /* 45nm Nehalem-EP */
3296        case 46: /* 45nm Nehalem-EX */
3297                memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3298                       sizeof(hw_cache_event_ids));
3299                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3300                       sizeof(hw_cache_extra_regs));
3301
3302                intel_pmu_lbr_init_nhm();
3303
3304                x86_pmu.event_constraints = intel_nehalem_event_constraints;
3305                x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3306                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3307                x86_pmu.extra_regs = intel_nehalem_extra_regs;
3308
3309                x86_pmu.cpu_events = nhm_events_attrs;
3310
3311                /* UOPS_ISSUED.STALLED_CYCLES */
3312                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3313                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3314                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3315                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3316                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3317
3318                x86_add_quirk(intel_nehalem_quirk);
3319
3320                pr_cont("Nehalem events, ");
3321                break;
3322
3323        case 28: /* 45nm Atom "Pineview"   */
3324        case 38: /* 45nm Atom "Lincroft"   */
3325        case 39: /* 32nm Atom "Penwell"    */
3326        case 53: /* 32nm Atom "Cloverview" */
3327        case 54: /* 32nm Atom "Cedarview"  */
3328                memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3329                       sizeof(hw_cache_event_ids));
3330
3331                intel_pmu_lbr_init_atom();
3332
3333                x86_pmu.event_constraints = intel_gen_event_constraints;
3334                x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3335                pr_cont("Atom events, ");
3336                break;
3337
3338        case 55: /* 22nm Atom "Silvermont"                */
3339        case 76: /* 14nm Atom "Airmont"                   */
3340        case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3341                memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3342                        sizeof(hw_cache_event_ids));
3343                memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3344                       sizeof(hw_cache_extra_regs));
3345
3346                intel_pmu_lbr_init_atom();
3347
3348                x86_pmu.event_constraints = intel_slm_event_constraints;
3349                x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3350                x86_pmu.extra_regs = intel_slm_extra_regs;
3351                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3352                pr_cont("Silvermont events, ");
3353                break;
3354
3355        case 37: /* 32nm Westmere    */
3356        case 44: /* 32nm Westmere-EP */
3357        case 47: /* 32nm Westmere-EX */
3358                memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3359                       sizeof(hw_cache_event_ids));
3360                memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3361                       sizeof(hw_cache_extra_regs));
3362
3363                intel_pmu_lbr_init_nhm();
3364
3365                x86_pmu.event_constraints = intel_westmere_event_constraints;
3366                x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3367                x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3368                x86_pmu.extra_regs = intel_westmere_extra_regs;
3369                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3370
3371                x86_pmu.cpu_events = nhm_events_attrs;
3372
3373                /* UOPS_ISSUED.STALLED_CYCLES */
3374                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3375                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3376                /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3377                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3378                        X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3379
3380                pr_cont("Westmere events, ");
3381                break;
3382
3383        case 42: /* 32nm SandyBridge         */
3384        case 45: /* 32nm SandyBridge-E/EN/EP */
3385                x86_add_quirk(intel_sandybridge_quirk);
3386                x86_add_quirk(intel_ht_bug);
3387                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3388                       sizeof(hw_cache_event_ids));
3389                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3390                       sizeof(hw_cache_extra_regs));
3391
3392                intel_pmu_lbr_init_snb();
3393
3394                x86_pmu.event_constraints = intel_snb_event_constraints;
3395                x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3396                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3397                if (boot_cpu_data.x86_model == 45)
3398                        x86_pmu.extra_regs = intel_snbep_extra_regs;
3399                else
3400                        x86_pmu.extra_regs = intel_snb_extra_regs;
3401
3402
3403                /* all extra regs are per-cpu when HT is on */
3404                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3405                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3406
3407                x86_pmu.cpu_events = snb_events_attrs;
3408
3409                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3410                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3411                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3412                /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3413                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3414                        X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3415
3416                pr_cont("SandyBridge events, ");
3417                break;
3418
3419        case 58: /* 22nm IvyBridge       */
3420        case 62: /* 22nm IvyBridge-EP/EX */
3421                x86_add_quirk(intel_ht_bug);
3422                memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3423                       sizeof(hw_cache_event_ids));
3424                /* dTLB-load-misses on IVB is different than SNB */
3425                hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3426
3427                memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3428                       sizeof(hw_cache_extra_regs));
3429
3430                intel_pmu_lbr_init_snb();
3431
3432                x86_pmu.event_constraints = intel_ivb_event_constraints;
3433                x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3434                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3435                if (boot_cpu_data.x86_model == 62)
3436                        x86_pmu.extra_regs = intel_snbep_extra_regs;
3437                else
3438                        x86_pmu.extra_regs = intel_snb_extra_regs;
3439                /* all extra regs are per-cpu when HT is on */
3440                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3441                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3442
3443                x86_pmu.cpu_events = snb_events_attrs;
3444
3445                /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3446                intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3447                        X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3448
3449                pr_cont("IvyBridge events, ");
3450                break;
3451
3452
3453        case 60: /* 22nm Haswell Core */
3454        case 63: /* 22nm Haswell Server */
3455        case 69: /* 22nm Haswell ULT */
3456        case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3457                x86_add_quirk(intel_ht_bug);
3458                x86_pmu.late_ack = true;
3459                memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3460                memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3461
3462                intel_pmu_lbr_init_hsw();
3463
3464                x86_pmu.event_constraints = intel_hsw_event_constraints;
3465                x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3466                x86_pmu.extra_regs = intel_snbep_extra_regs;
3467                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3468                /* all extra regs are per-cpu when HT is on */
3469                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3470                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3471
3472                x86_pmu.hw_config = hsw_hw_config;
3473                x86_pmu.get_event_constraints = hsw_get_event_constraints;
3474                x86_pmu.cpu_events = hsw_events_attrs;
3475                x86_pmu.lbr_double_abort = true;
3476                pr_cont("Haswell events, ");
3477                break;
3478
3479        case 61: /* 14nm Broadwell Core-M */
3480        case 86: /* 14nm Broadwell Xeon D */
3481        case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3482        case 79: /* 14nm Broadwell Server */
3483                x86_pmu.late_ack = true;
3484                memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3485                memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3486
3487                /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3488                hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3489                                                                         BDW_L3_MISS|HSW_SNOOP_DRAM;
3490                hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3491                                                                          HSW_SNOOP_DRAM;
3492                hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3493                                                                             BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3494                hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3495                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3496
3497                intel_pmu_lbr_init_hsw();
3498
3499                x86_pmu.event_constraints = intel_bdw_event_constraints;
3500                x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3501                x86_pmu.extra_regs = intel_snbep_extra_regs;
3502                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3503                /* all extra regs are per-cpu when HT is on */
3504                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3505                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3506
3507                x86_pmu.hw_config = hsw_hw_config;
3508                x86_pmu.get_event_constraints = hsw_get_event_constraints;
3509                x86_pmu.cpu_events = hsw_events_attrs;
3510                x86_pmu.limit_period = bdw_limit_period;
3511                pr_cont("Broadwell events, ");
3512                break;
3513
3514        case 78: /* 14nm Skylake Mobile */
3515        case 94: /* 14nm Skylake Desktop */
3516                x86_pmu.late_ack = true;
3517                memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3518                memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3519                intel_pmu_lbr_init_skl();
3520
3521                x86_pmu.event_constraints = intel_skl_event_constraints;
3522                x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3523                x86_pmu.extra_regs = intel_skl_extra_regs;
3524                x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3525                /* all extra regs are per-cpu when HT is on */
3526                x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3527                x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3528
3529                x86_pmu.hw_config = hsw_hw_config;
3530                x86_pmu.get_event_constraints = hsw_get_event_constraints;
3531                x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3532                                                  skl_format_attr);
3533                WARN_ON(!x86_pmu.format_attrs);
3534                x86_pmu.cpu_events = hsw_events_attrs;
3535                pr_cont("Skylake events, ");
3536                break;
3537
3538        default:
3539                switch (x86_pmu.version) {
3540                case 1:
3541                        x86_pmu.event_constraints = intel_v1_event_constraints;
3542                        pr_cont("generic architected perfmon v1, ");
3543                        break;
3544                default:
3545                        /*
3546                         * default constraints for v2 and up
3547                         */
3548                        x86_pmu.event_constraints = intel_gen_event_constraints;
3549                        pr_cont("generic architected perfmon, ");
3550                        break;
3551                }
3552        }
3553
3554        if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3555                WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3556                     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3557                x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3558        }
3559        x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3560
3561        if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3562                WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3563                     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3564                x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3565        }
3566
3567        x86_pmu.intel_ctrl |=
3568                ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3569
3570        if (x86_pmu.event_constraints) {
3571                /*
3572                 * event on fixed counter2 (REF_CYCLES) only works on this
3573                 * counter, so do not extend mask to generic counters
3574                 */
3575                for_each_event_constraint(c, x86_pmu.event_constraints) {
3576                        if (c->cmask == FIXED_EVENT_FLAGS
3577                            && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3578                                c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3579                        }
3580                        c->idxmsk64 &=
3581                                ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3582                        c->weight = hweight64(c->idxmsk64);
3583                }
3584        }
3585
3586        /*
3587         * Access LBR MSR may cause #GP under certain circumstances.
3588         * E.g. KVM doesn't support LBR MSR
3589         * Check all LBT MSR here.
3590         * Disable LBR access if any LBR MSRs can not be accessed.
3591         */
3592        if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3593                x86_pmu.lbr_nr = 0;
3594        for (i = 0; i < x86_pmu.lbr_nr; i++) {
3595                if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3596                      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3597                        x86_pmu.lbr_nr = 0;
3598        }
3599
3600        /*
3601         * Access extra MSR may cause #GP under certain circumstances.
3602         * E.g. KVM doesn't support offcore event
3603         * Check all extra_regs here.
3604         */
3605        if (x86_pmu.extra_regs) {
3606                for (er = x86_pmu.extra_regs; er->msr; er++) {
3607                        er->extra_msr_access = check_msr(er->msr, 0x11UL);
3608                        /* Disable LBR select mapping */
3609                        if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3610                                x86_pmu.lbr_sel_map = NULL;
3611                }
3612        }
3613
3614        /* Support full width counters using alternative MSR range */
3615        if (x86_pmu.intel_cap.full_width_write) {
3616                x86_pmu.max_period = x86_pmu.cntval_mask;
3617                x86_pmu.perfctr = MSR_IA32_PMC0;
3618                pr_cont("full-width counters, ");
3619        }
3620
3621        return 0;
3622}
3623
3624/*
3625 * HT bug: phase 2 init
3626 * Called once we have valid topology information to check
3627 * whether or not HT is enabled
3628 * If HT is off, then we disable the workaround
3629 */
3630static __init int fixup_ht_bug(void)
3631{
3632        int cpu = smp_processor_id();
3633        int w, c;
3634        /*
3635         * problem not present on this CPU model, nothing to do
3636         */
3637        if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3638                return 0;
3639
3640        w = cpumask_weight(topology_sibling_cpumask(cpu));
3641        if (w > 1) {
3642                pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3643                return 0;
3644        }
3645
3646        if (lockup_detector_suspend() != 0) {
3647                pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3648                return 0;
3649        }
3650
3651        x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3652
3653        x86_pmu.start_scheduling = NULL;
3654        x86_pmu.commit_scheduling = NULL;
3655        x86_pmu.stop_scheduling = NULL;
3656
3657        lockup_detector_resume();
3658
3659        get_online_cpus();
3660
3661        for_each_online_cpu(c) {
3662                free_excl_cntrs(c);
3663        }
3664
3665        put_online_cpus();
3666        pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3667        return 0;
3668}
3669subsys_initcall(fixup_ht_bug)
3670