linux/arch/x86/kernel/machine_kexec_64.c
<<
>>
Prefs
   1/*
   2 * handle transition of Linux booting another kernel
   3 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#define pr_fmt(fmt)     "kexec: " fmt
  10
  11#include <linux/mm.h>
  12#include <linux/kexec.h>
  13#include <linux/string.h>
  14#include <linux/gfp.h>
  15#include <linux/reboot.h>
  16#include <linux/numa.h>
  17#include <linux/ftrace.h>
  18#include <linux/io.h>
  19#include <linux/suspend.h>
  20#include <linux/vmalloc.h>
  21
  22#include <asm/init.h>
  23#include <asm/pgtable.h>
  24#include <asm/tlbflush.h>
  25#include <asm/mmu_context.h>
  26#include <asm/io_apic.h>
  27#include <asm/debugreg.h>
  28#include <asm/kexec-bzimage64.h>
  29#include <asm/setup.h>
  30
  31#ifdef CONFIG_KEXEC_FILE
  32static struct kexec_file_ops *kexec_file_loaders[] = {
  33                &kexec_bzImage64_ops,
  34};
  35#endif
  36
  37static void free_transition_pgtable(struct kimage *image)
  38{
  39        free_page((unsigned long)image->arch.pud);
  40        free_page((unsigned long)image->arch.pmd);
  41        free_page((unsigned long)image->arch.pte);
  42}
  43
  44static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
  45{
  46        pud_t *pud;
  47        pmd_t *pmd;
  48        pte_t *pte;
  49        unsigned long vaddr, paddr;
  50        int result = -ENOMEM;
  51
  52        vaddr = (unsigned long)relocate_kernel;
  53        paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
  54        pgd += pgd_index(vaddr);
  55        if (!pgd_present(*pgd)) {
  56                pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
  57                if (!pud)
  58                        goto err;
  59                image->arch.pud = pud;
  60                set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
  61        }
  62        pud = pud_offset(pgd, vaddr);
  63        if (!pud_present(*pud)) {
  64                pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
  65                if (!pmd)
  66                        goto err;
  67                image->arch.pmd = pmd;
  68                set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
  69        }
  70        pmd = pmd_offset(pud, vaddr);
  71        if (!pmd_present(*pmd)) {
  72                pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
  73                if (!pte)
  74                        goto err;
  75                image->arch.pte = pte;
  76                set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
  77        }
  78        pte = pte_offset_kernel(pmd, vaddr);
  79        set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
  80        return 0;
  81err:
  82        free_transition_pgtable(image);
  83        return result;
  84}
  85
  86static void *alloc_pgt_page(void *data)
  87{
  88        struct kimage *image = (struct kimage *)data;
  89        struct page *page;
  90        void *p = NULL;
  91
  92        page = kimage_alloc_control_pages(image, 0);
  93        if (page) {
  94                p = page_address(page);
  95                clear_page(p);
  96        }
  97
  98        return p;
  99}
 100
 101static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
 102{
 103        struct x86_mapping_info info = {
 104                .alloc_pgt_page = alloc_pgt_page,
 105                .context        = image,
 106                .pmd_flag       = __PAGE_KERNEL_LARGE_EXEC,
 107        };
 108        unsigned long mstart, mend;
 109        pgd_t *level4p;
 110        int result;
 111        int i;
 112
 113        level4p = (pgd_t *)__va(start_pgtable);
 114        clear_page(level4p);
 115        for (i = 0; i < nr_pfn_mapped; i++) {
 116                mstart = pfn_mapped[i].start << PAGE_SHIFT;
 117                mend   = pfn_mapped[i].end << PAGE_SHIFT;
 118
 119                result = kernel_ident_mapping_init(&info,
 120                                                 level4p, mstart, mend);
 121                if (result)
 122                        return result;
 123        }
 124
 125        /*
 126         * segments's mem ranges could be outside 0 ~ max_pfn,
 127         * for example when jump back to original kernel from kexeced kernel.
 128         * or first kernel is booted with user mem map, and second kernel
 129         * could be loaded out of that range.
 130         */
 131        for (i = 0; i < image->nr_segments; i++) {
 132                mstart = image->segment[i].mem;
 133                mend   = mstart + image->segment[i].memsz;
 134
 135                result = kernel_ident_mapping_init(&info,
 136                                                 level4p, mstart, mend);
 137
 138                if (result)
 139                        return result;
 140        }
 141
 142        return init_transition_pgtable(image, level4p);
 143}
 144
 145static void set_idt(void *newidt, u16 limit)
 146{
 147        struct desc_ptr curidt;
 148
 149        /* x86-64 supports unaliged loads & stores */
 150        curidt.size    = limit;
 151        curidt.address = (unsigned long)newidt;
 152
 153        __asm__ __volatile__ (
 154                "lidtq %0\n"
 155                : : "m" (curidt)
 156                );
 157};
 158
 159
 160static void set_gdt(void *newgdt, u16 limit)
 161{
 162        struct desc_ptr curgdt;
 163
 164        /* x86-64 supports unaligned loads & stores */
 165        curgdt.size    = limit;
 166        curgdt.address = (unsigned long)newgdt;
 167
 168        __asm__ __volatile__ (
 169                "lgdtq %0\n"
 170                : : "m" (curgdt)
 171                );
 172};
 173
 174static void load_segments(void)
 175{
 176        __asm__ __volatile__ (
 177                "\tmovl %0,%%ds\n"
 178                "\tmovl %0,%%es\n"
 179                "\tmovl %0,%%ss\n"
 180                "\tmovl %0,%%fs\n"
 181                "\tmovl %0,%%gs\n"
 182                : : "a" (__KERNEL_DS) : "memory"
 183                );
 184}
 185
 186#ifdef CONFIG_KEXEC_FILE
 187/* Update purgatory as needed after various image segments have been prepared */
 188static int arch_update_purgatory(struct kimage *image)
 189{
 190        int ret = 0;
 191
 192        if (!image->file_mode)
 193                return 0;
 194
 195        /* Setup copying of backup region */
 196        if (image->type == KEXEC_TYPE_CRASH) {
 197                ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
 198                                &image->arch.backup_load_addr,
 199                                sizeof(image->arch.backup_load_addr), 0);
 200                if (ret)
 201                        return ret;
 202
 203                ret = kexec_purgatory_get_set_symbol(image, "backup_src",
 204                                &image->arch.backup_src_start,
 205                                sizeof(image->arch.backup_src_start), 0);
 206                if (ret)
 207                        return ret;
 208
 209                ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
 210                                &image->arch.backup_src_sz,
 211                                sizeof(image->arch.backup_src_sz), 0);
 212                if (ret)
 213                        return ret;
 214        }
 215
 216        return ret;
 217}
 218#else /* !CONFIG_KEXEC_FILE */
 219static inline int arch_update_purgatory(struct kimage *image)
 220{
 221        return 0;
 222}
 223#endif /* CONFIG_KEXEC_FILE */
 224
 225int machine_kexec_prepare(struct kimage *image)
 226{
 227        unsigned long start_pgtable;
 228        int result;
 229
 230        /* Calculate the offsets */
 231        start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
 232
 233        /* Setup the identity mapped 64bit page table */
 234        result = init_pgtable(image, start_pgtable);
 235        if (result)
 236                return result;
 237
 238        /* update purgatory as needed */
 239        result = arch_update_purgatory(image);
 240        if (result)
 241                return result;
 242
 243        return 0;
 244}
 245
 246void machine_kexec_cleanup(struct kimage *image)
 247{
 248        free_transition_pgtable(image);
 249}
 250
 251/*
 252 * Do not allocate memory (or fail in any way) in machine_kexec().
 253 * We are past the point of no return, committed to rebooting now.
 254 */
 255void machine_kexec(struct kimage *image)
 256{
 257        unsigned long page_list[PAGES_NR];
 258        void *control_page;
 259        int save_ftrace_enabled;
 260
 261#ifdef CONFIG_KEXEC_JUMP
 262        if (image->preserve_context)
 263                save_processor_state();
 264#endif
 265
 266        save_ftrace_enabled = __ftrace_enabled_save();
 267
 268        /* Interrupts aren't acceptable while we reboot */
 269        local_irq_disable();
 270        hw_breakpoint_disable();
 271
 272        if (image->preserve_context) {
 273#ifdef CONFIG_X86_IO_APIC
 274                /*
 275                 * We need to put APICs in legacy mode so that we can
 276                 * get timer interrupts in second kernel. kexec/kdump
 277                 * paths already have calls to disable_IO_APIC() in
 278                 * one form or other. kexec jump path also need
 279                 * one.
 280                 */
 281                disable_IO_APIC();
 282#endif
 283        }
 284
 285        control_page = page_address(image->control_code_page) + PAGE_SIZE;
 286        memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
 287
 288        page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
 289        page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
 290        page_list[PA_TABLE_PAGE] =
 291          (unsigned long)__pa(page_address(image->control_code_page));
 292
 293        if (image->type == KEXEC_TYPE_DEFAULT)
 294                page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
 295                                                << PAGE_SHIFT);
 296
 297        /*
 298         * The segment registers are funny things, they have both a
 299         * visible and an invisible part.  Whenever the visible part is
 300         * set to a specific selector, the invisible part is loaded
 301         * with from a table in memory.  At no other time is the
 302         * descriptor table in memory accessed.
 303         *
 304         * I take advantage of this here by force loading the
 305         * segments, before I zap the gdt with an invalid value.
 306         */
 307        load_segments();
 308        /*
 309         * The gdt & idt are now invalid.
 310         * If you want to load them you must set up your own idt & gdt.
 311         */
 312        set_gdt(phys_to_virt(0), 0);
 313        set_idt(phys_to_virt(0), 0);
 314
 315        /* now call it */
 316        image->start = relocate_kernel((unsigned long)image->head,
 317                                       (unsigned long)page_list,
 318                                       image->start,
 319                                       image->preserve_context);
 320
 321#ifdef CONFIG_KEXEC_JUMP
 322        if (image->preserve_context)
 323                restore_processor_state();
 324#endif
 325
 326        __ftrace_enabled_restore(save_ftrace_enabled);
 327}
 328
 329void arch_crash_save_vmcoreinfo(void)
 330{
 331        VMCOREINFO_SYMBOL(phys_base);
 332        VMCOREINFO_SYMBOL(init_level4_pgt);
 333
 334#ifdef CONFIG_NUMA
 335        VMCOREINFO_SYMBOL(node_data);
 336        VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
 337#endif
 338        vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
 339                              kaslr_offset());
 340}
 341
 342/* arch-dependent functionality related to kexec file-based syscall */
 343
 344#ifdef CONFIG_KEXEC_FILE
 345int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
 346                                  unsigned long buf_len)
 347{
 348        int i, ret = -ENOEXEC;
 349        struct kexec_file_ops *fops;
 350
 351        for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
 352                fops = kexec_file_loaders[i];
 353                if (!fops || !fops->probe)
 354                        continue;
 355
 356                ret = fops->probe(buf, buf_len);
 357                if (!ret) {
 358                        image->fops = fops;
 359                        return ret;
 360                }
 361        }
 362
 363        return ret;
 364}
 365
 366void *arch_kexec_kernel_image_load(struct kimage *image)
 367{
 368        vfree(image->arch.elf_headers);
 369        image->arch.elf_headers = NULL;
 370
 371        if (!image->fops || !image->fops->load)
 372                return ERR_PTR(-ENOEXEC);
 373
 374        return image->fops->load(image, image->kernel_buf,
 375                                 image->kernel_buf_len, image->initrd_buf,
 376                                 image->initrd_buf_len, image->cmdline_buf,
 377                                 image->cmdline_buf_len);
 378}
 379
 380int arch_kimage_file_post_load_cleanup(struct kimage *image)
 381{
 382        if (!image->fops || !image->fops->cleanup)
 383                return 0;
 384
 385        return image->fops->cleanup(image->image_loader_data);
 386}
 387
 388int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
 389                                 unsigned long kernel_len)
 390{
 391        if (!image->fops || !image->fops->verify_sig) {
 392                pr_debug("kernel loader does not support signature verification.");
 393                return -EKEYREJECTED;
 394        }
 395
 396        return image->fops->verify_sig(kernel, kernel_len);
 397}
 398
 399/*
 400 * Apply purgatory relocations.
 401 *
 402 * ehdr: Pointer to elf headers
 403 * sechdrs: Pointer to section headers.
 404 * relsec: section index of SHT_RELA section.
 405 *
 406 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
 407 */
 408int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
 409                                     Elf64_Shdr *sechdrs, unsigned int relsec)
 410{
 411        unsigned int i;
 412        Elf64_Rela *rel;
 413        Elf64_Sym *sym;
 414        void *location;
 415        Elf64_Shdr *section, *symtabsec;
 416        unsigned long address, sec_base, value;
 417        const char *strtab, *name, *shstrtab;
 418
 419        /*
 420         * ->sh_offset has been modified to keep the pointer to section
 421         * contents in memory
 422         */
 423        rel = (void *)sechdrs[relsec].sh_offset;
 424
 425        /* Section to which relocations apply */
 426        section = &sechdrs[sechdrs[relsec].sh_info];
 427
 428        pr_debug("Applying relocate section %u to %u\n", relsec,
 429                 sechdrs[relsec].sh_info);
 430
 431        /* Associated symbol table */
 432        symtabsec = &sechdrs[sechdrs[relsec].sh_link];
 433
 434        /* String table */
 435        if (symtabsec->sh_link >= ehdr->e_shnum) {
 436                /* Invalid strtab section number */
 437                pr_err("Invalid string table section index %d\n",
 438                       symtabsec->sh_link);
 439                return -ENOEXEC;
 440        }
 441
 442        strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
 443
 444        /* section header string table */
 445        shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
 446
 447        for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
 448
 449                /*
 450                 * rel[i].r_offset contains byte offset from beginning
 451                 * of section to the storage unit affected.
 452                 *
 453                 * This is location to update (->sh_offset). This is temporary
 454                 * buffer where section is currently loaded. This will finally
 455                 * be loaded to a different address later, pointed to by
 456                 * ->sh_addr. kexec takes care of moving it
 457                 *  (kexec_load_segment()).
 458                 */
 459                location = (void *)(section->sh_offset + rel[i].r_offset);
 460
 461                /* Final address of the location */
 462                address = section->sh_addr + rel[i].r_offset;
 463
 464                /*
 465                 * rel[i].r_info contains information about symbol table index
 466                 * w.r.t which relocation must be made and type of relocation
 467                 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
 468                 * these respectively.
 469                 */
 470                sym = (Elf64_Sym *)symtabsec->sh_offset +
 471                                ELF64_R_SYM(rel[i].r_info);
 472
 473                if (sym->st_name)
 474                        name = strtab + sym->st_name;
 475                else
 476                        name = shstrtab + sechdrs[sym->st_shndx].sh_name;
 477
 478                pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
 479                         name, sym->st_info, sym->st_shndx, sym->st_value,
 480                         sym->st_size);
 481
 482                if (sym->st_shndx == SHN_UNDEF) {
 483                        pr_err("Undefined symbol: %s\n", name);
 484                        return -ENOEXEC;
 485                }
 486
 487                if (sym->st_shndx == SHN_COMMON) {
 488                        pr_err("symbol '%s' in common section\n", name);
 489                        return -ENOEXEC;
 490                }
 491
 492                if (sym->st_shndx == SHN_ABS)
 493                        sec_base = 0;
 494                else if (sym->st_shndx >= ehdr->e_shnum) {
 495                        pr_err("Invalid section %d for symbol %s\n",
 496                               sym->st_shndx, name);
 497                        return -ENOEXEC;
 498                } else
 499                        sec_base = sechdrs[sym->st_shndx].sh_addr;
 500
 501                value = sym->st_value;
 502                value += sec_base;
 503                value += rel[i].r_addend;
 504
 505                switch (ELF64_R_TYPE(rel[i].r_info)) {
 506                case R_X86_64_NONE:
 507                        break;
 508                case R_X86_64_64:
 509                        *(u64 *)location = value;
 510                        break;
 511                case R_X86_64_32:
 512                        *(u32 *)location = value;
 513                        if (value != *(u32 *)location)
 514                                goto overflow;
 515                        break;
 516                case R_X86_64_32S:
 517                        *(s32 *)location = value;
 518                        if ((s64)value != *(s32 *)location)
 519                                goto overflow;
 520                        break;
 521                case R_X86_64_PC32:
 522                        value -= (u64)address;
 523                        *(u32 *)location = value;
 524                        break;
 525                default:
 526                        pr_err("Unknown rela relocation: %llu\n",
 527                               ELF64_R_TYPE(rel[i].r_info));
 528                        return -ENOEXEC;
 529                }
 530        }
 531        return 0;
 532
 533overflow:
 534        pr_err("Overflow in relocation type %d value 0x%lx\n",
 535               (int)ELF64_R_TYPE(rel[i].r_info), value);
 536        return -ENOEXEC;
 537}
 538#endif /* CONFIG_KEXEC_FILE */
 539