linux/arch/x86/kernel/process.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/errno.h>
   4#include <linux/kernel.h>
   5#include <linux/mm.h>
   6#include <linux/smp.h>
   7#include <linux/prctl.h>
   8#include <linux/slab.h>
   9#include <linux/sched.h>
  10#include <linux/module.h>
  11#include <linux/pm.h>
  12#include <linux/tick.h>
  13#include <linux/random.h>
  14#include <linux/user-return-notifier.h>
  15#include <linux/dmi.h>
  16#include <linux/utsname.h>
  17#include <linux/stackprotector.h>
  18#include <linux/tick.h>
  19#include <linux/cpuidle.h>
  20#include <trace/events/power.h>
  21#include <linux/hw_breakpoint.h>
  22#include <asm/cpu.h>
  23#include <asm/apic.h>
  24#include <asm/syscalls.h>
  25#include <asm/idle.h>
  26#include <asm/uaccess.h>
  27#include <asm/mwait.h>
  28#include <asm/fpu/internal.h>
  29#include <asm/debugreg.h>
  30#include <asm/nmi.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mce.h>
  33#include <asm/vm86.h>
  34
  35/*
  36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  38 * so they are allowed to end up in the .data..cacheline_aligned
  39 * section. Since TSS's are completely CPU-local, we want them
  40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  41 */
  42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  43        .x86_tss = {
  44                .sp0 = TOP_OF_INIT_STACK,
  45#ifdef CONFIG_X86_32
  46                .ss0 = __KERNEL_DS,
  47                .ss1 = __KERNEL_CS,
  48                .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  49#endif
  50         },
  51#ifdef CONFIG_X86_32
  52         /*
  53          * Note that the .io_bitmap member must be extra-big. This is because
  54          * the CPU will access an additional byte beyond the end of the IO
  55          * permission bitmap. The extra byte must be all 1 bits, and must
  56          * be within the limit.
  57          */
  58        .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
  59#endif
  60};
  61EXPORT_PER_CPU_SYMBOL(cpu_tss);
  62
  63#ifdef CONFIG_X86_64
  64static DEFINE_PER_CPU(unsigned char, is_idle);
  65static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  66
  67void idle_notifier_register(struct notifier_block *n)
  68{
  69        atomic_notifier_chain_register(&idle_notifier, n);
  70}
  71EXPORT_SYMBOL_GPL(idle_notifier_register);
  72
  73void idle_notifier_unregister(struct notifier_block *n)
  74{
  75        atomic_notifier_chain_unregister(&idle_notifier, n);
  76}
  77EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  78#endif
  79
  80/*
  81 * this gets called so that we can store lazy state into memory and copy the
  82 * current task into the new thread.
  83 */
  84int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  85{
  86        memcpy(dst, src, arch_task_struct_size);
  87#ifdef CONFIG_VM86
  88        dst->thread.vm86 = NULL;
  89#endif
  90
  91        return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  92}
  93
  94/*
  95 * Free current thread data structures etc..
  96 */
  97void exit_thread(void)
  98{
  99        struct task_struct *me = current;
 100        struct thread_struct *t = &me->thread;
 101        unsigned long *bp = t->io_bitmap_ptr;
 102        struct fpu *fpu = &t->fpu;
 103
 104        if (bp) {
 105                struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 106
 107                t->io_bitmap_ptr = NULL;
 108                clear_thread_flag(TIF_IO_BITMAP);
 109                /*
 110                 * Careful, clear this in the TSS too:
 111                 */
 112                memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 113                t->io_bitmap_max = 0;
 114                put_cpu();
 115                kfree(bp);
 116        }
 117
 118        free_vm86(t);
 119
 120        fpu__drop(fpu);
 121}
 122
 123void flush_thread(void)
 124{
 125        struct task_struct *tsk = current;
 126
 127        flush_ptrace_hw_breakpoint(tsk);
 128        memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 129
 130        fpu__clear(&tsk->thread.fpu);
 131}
 132
 133static void hard_disable_TSC(void)
 134{
 135        cr4_set_bits(X86_CR4_TSD);
 136}
 137
 138void disable_TSC(void)
 139{
 140        preempt_disable();
 141        if (!test_and_set_thread_flag(TIF_NOTSC))
 142                /*
 143                 * Must flip the CPU state synchronously with
 144                 * TIF_NOTSC in the current running context.
 145                 */
 146                hard_disable_TSC();
 147        preempt_enable();
 148}
 149
 150static void hard_enable_TSC(void)
 151{
 152        cr4_clear_bits(X86_CR4_TSD);
 153}
 154
 155static void enable_TSC(void)
 156{
 157        preempt_disable();
 158        if (test_and_clear_thread_flag(TIF_NOTSC))
 159                /*
 160                 * Must flip the CPU state synchronously with
 161                 * TIF_NOTSC in the current running context.
 162                 */
 163                hard_enable_TSC();
 164        preempt_enable();
 165}
 166
 167int get_tsc_mode(unsigned long adr)
 168{
 169        unsigned int val;
 170
 171        if (test_thread_flag(TIF_NOTSC))
 172                val = PR_TSC_SIGSEGV;
 173        else
 174                val = PR_TSC_ENABLE;
 175
 176        return put_user(val, (unsigned int __user *)adr);
 177}
 178
 179int set_tsc_mode(unsigned int val)
 180{
 181        if (val == PR_TSC_SIGSEGV)
 182                disable_TSC();
 183        else if (val == PR_TSC_ENABLE)
 184                enable_TSC();
 185        else
 186                return -EINVAL;
 187
 188        return 0;
 189}
 190
 191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 192                      struct tss_struct *tss)
 193{
 194        struct thread_struct *prev, *next;
 195
 196        prev = &prev_p->thread;
 197        next = &next_p->thread;
 198
 199        if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
 200            test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
 201                unsigned long debugctl = get_debugctlmsr();
 202
 203                debugctl &= ~DEBUGCTLMSR_BTF;
 204                if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
 205                        debugctl |= DEBUGCTLMSR_BTF;
 206
 207                update_debugctlmsr(debugctl);
 208        }
 209
 210        if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 211            test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 212                /* prev and next are different */
 213                if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 214                        hard_disable_TSC();
 215                else
 216                        hard_enable_TSC();
 217        }
 218
 219        if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 220                /*
 221                 * Copy the relevant range of the IO bitmap.
 222                 * Normally this is 128 bytes or less:
 223                 */
 224                memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 225                       max(prev->io_bitmap_max, next->io_bitmap_max));
 226        } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 227                /*
 228                 * Clear any possible leftover bits:
 229                 */
 230                memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 231        }
 232        propagate_user_return_notify(prev_p, next_p);
 233}
 234
 235/*
 236 * Idle related variables and functions
 237 */
 238unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 239EXPORT_SYMBOL(boot_option_idle_override);
 240
 241static void (*x86_idle)(void);
 242
 243#ifndef CONFIG_SMP
 244static inline void play_dead(void)
 245{
 246        BUG();
 247}
 248#endif
 249
 250#ifdef CONFIG_X86_64
 251void enter_idle(void)
 252{
 253        this_cpu_write(is_idle, 1);
 254        atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 255}
 256
 257static void __exit_idle(void)
 258{
 259        if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
 260                return;
 261        atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 262}
 263
 264/* Called from interrupts to signify idle end */
 265void exit_idle(void)
 266{
 267        /* idle loop has pid 0 */
 268        if (current->pid)
 269                return;
 270        __exit_idle();
 271}
 272#endif
 273
 274void arch_cpu_idle_enter(void)
 275{
 276        local_touch_nmi();
 277        enter_idle();
 278}
 279
 280void arch_cpu_idle_exit(void)
 281{
 282        __exit_idle();
 283}
 284
 285void arch_cpu_idle_dead(void)
 286{
 287        play_dead();
 288}
 289
 290/*
 291 * Called from the generic idle code.
 292 */
 293void arch_cpu_idle(void)
 294{
 295        x86_idle();
 296}
 297
 298/*
 299 * We use this if we don't have any better idle routine..
 300 */
 301void default_idle(void)
 302{
 303        trace_cpu_idle_rcuidle(1, smp_processor_id());
 304        safe_halt();
 305        trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 306}
 307#ifdef CONFIG_APM_MODULE
 308EXPORT_SYMBOL(default_idle);
 309#endif
 310
 311#ifdef CONFIG_XEN
 312bool xen_set_default_idle(void)
 313{
 314        bool ret = !!x86_idle;
 315
 316        x86_idle = default_idle;
 317
 318        return ret;
 319}
 320#endif
 321void stop_this_cpu(void *dummy)
 322{
 323        local_irq_disable();
 324        /*
 325         * Remove this CPU:
 326         */
 327        set_cpu_online(smp_processor_id(), false);
 328        disable_local_APIC();
 329        mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 330
 331        for (;;)
 332                halt();
 333}
 334
 335bool amd_e400_c1e_detected;
 336EXPORT_SYMBOL(amd_e400_c1e_detected);
 337
 338static cpumask_var_t amd_e400_c1e_mask;
 339
 340void amd_e400_remove_cpu(int cpu)
 341{
 342        if (amd_e400_c1e_mask != NULL)
 343                cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 344}
 345
 346/*
 347 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
 348 * pending message MSR. If we detect C1E, then we handle it the same
 349 * way as C3 power states (local apic timer and TSC stop)
 350 */
 351static void amd_e400_idle(void)
 352{
 353        if (!amd_e400_c1e_detected) {
 354                u32 lo, hi;
 355
 356                rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 357
 358                if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 359                        amd_e400_c1e_detected = true;
 360                        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 361                                mark_tsc_unstable("TSC halt in AMD C1E");
 362                        pr_info("System has AMD C1E enabled\n");
 363                }
 364        }
 365
 366        if (amd_e400_c1e_detected) {
 367                int cpu = smp_processor_id();
 368
 369                if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
 370                        cpumask_set_cpu(cpu, amd_e400_c1e_mask);
 371                        /* Force broadcast so ACPI can not interfere. */
 372                        tick_broadcast_force();
 373                        pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 374                }
 375                tick_broadcast_enter();
 376
 377                default_idle();
 378
 379                /*
 380                 * The switch back from broadcast mode needs to be
 381                 * called with interrupts disabled.
 382                 */
 383                local_irq_disable();
 384                tick_broadcast_exit();
 385                local_irq_enable();
 386        } else
 387                default_idle();
 388}
 389
 390/*
 391 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 392 * We can't rely on cpuidle installing MWAIT, because it will not load
 393 * on systems that support only C1 -- so the boot default must be MWAIT.
 394 *
 395 * Some AMD machines are the opposite, they depend on using HALT.
 396 *
 397 * So for default C1, which is used during boot until cpuidle loads,
 398 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 399 */
 400static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 401{
 402        if (c->x86_vendor != X86_VENDOR_INTEL)
 403                return 0;
 404
 405        if (!cpu_has(c, X86_FEATURE_MWAIT))
 406                return 0;
 407
 408        return 1;
 409}
 410
 411/*
 412 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 413 * with interrupts enabled and no flags, which is backwards compatible with the
 414 * original MWAIT implementation.
 415 */
 416static void mwait_idle(void)
 417{
 418        if (!current_set_polling_and_test()) {
 419                trace_cpu_idle_rcuidle(1, smp_processor_id());
 420                if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 421                        smp_mb(); /* quirk */
 422                        clflush((void *)&current_thread_info()->flags);
 423                        smp_mb(); /* quirk */
 424                }
 425
 426                __monitor((void *)&current_thread_info()->flags, 0, 0);
 427                if (!need_resched())
 428                        __sti_mwait(0, 0);
 429                else
 430                        local_irq_enable();
 431                trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 432        } else {
 433                local_irq_enable();
 434        }
 435        __current_clr_polling();
 436}
 437
 438void select_idle_routine(const struct cpuinfo_x86 *c)
 439{
 440#ifdef CONFIG_SMP
 441        if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 442                pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 443#endif
 444        if (x86_idle || boot_option_idle_override == IDLE_POLL)
 445                return;
 446
 447        if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 448                /* E400: APIC timer interrupt does not wake up CPU from C1e */
 449                pr_info("using AMD E400 aware idle routine\n");
 450                x86_idle = amd_e400_idle;
 451        } else if (prefer_mwait_c1_over_halt(c)) {
 452                pr_info("using mwait in idle threads\n");
 453                x86_idle = mwait_idle;
 454        } else
 455                x86_idle = default_idle;
 456}
 457
 458void __init init_amd_e400_c1e_mask(void)
 459{
 460        /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
 461        if (x86_idle == amd_e400_idle)
 462                zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 463}
 464
 465static int __init idle_setup(char *str)
 466{
 467        if (!str)
 468                return -EINVAL;
 469
 470        if (!strcmp(str, "poll")) {
 471                pr_info("using polling idle threads\n");
 472                boot_option_idle_override = IDLE_POLL;
 473                cpu_idle_poll_ctrl(true);
 474        } else if (!strcmp(str, "halt")) {
 475                /*
 476                 * When the boot option of idle=halt is added, halt is
 477                 * forced to be used for CPU idle. In such case CPU C2/C3
 478                 * won't be used again.
 479                 * To continue to load the CPU idle driver, don't touch
 480                 * the boot_option_idle_override.
 481                 */
 482                x86_idle = default_idle;
 483                boot_option_idle_override = IDLE_HALT;
 484        } else if (!strcmp(str, "nomwait")) {
 485                /*
 486                 * If the boot option of "idle=nomwait" is added,
 487                 * it means that mwait will be disabled for CPU C2/C3
 488                 * states. In such case it won't touch the variable
 489                 * of boot_option_idle_override.
 490                 */
 491                boot_option_idle_override = IDLE_NOMWAIT;
 492        } else
 493                return -1;
 494
 495        return 0;
 496}
 497early_param("idle", idle_setup);
 498
 499unsigned long arch_align_stack(unsigned long sp)
 500{
 501        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 502                sp -= get_random_int() % 8192;
 503        return sp & ~0xf;
 504}
 505
 506unsigned long arch_randomize_brk(struct mm_struct *mm)
 507{
 508        unsigned long range_end = mm->brk + 0x02000000;
 509        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 510}
 511
 512/*
 513 * Called from fs/proc with a reference on @p to find the function
 514 * which called into schedule(). This needs to be done carefully
 515 * because the task might wake up and we might look at a stack
 516 * changing under us.
 517 */
 518unsigned long get_wchan(struct task_struct *p)
 519{
 520        unsigned long start, bottom, top, sp, fp, ip;
 521        int count = 0;
 522
 523        if (!p || p == current || p->state == TASK_RUNNING)
 524                return 0;
 525
 526        start = (unsigned long)task_stack_page(p);
 527        if (!start)
 528                return 0;
 529
 530        /*
 531         * Layout of the stack page:
 532         *
 533         * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 534         * PADDING
 535         * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 536         * stack
 537         * ----------- bottom = start + sizeof(thread_info)
 538         * thread_info
 539         * ----------- start
 540         *
 541         * The tasks stack pointer points at the location where the
 542         * framepointer is stored. The data on the stack is:
 543         * ... IP FP ... IP FP
 544         *
 545         * We need to read FP and IP, so we need to adjust the upper
 546         * bound by another unsigned long.
 547         */
 548        top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 549        top -= 2 * sizeof(unsigned long);
 550        bottom = start + sizeof(struct thread_info);
 551
 552        sp = READ_ONCE(p->thread.sp);
 553        if (sp < bottom || sp > top)
 554                return 0;
 555
 556        fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
 557        do {
 558                if (fp < bottom || fp > top)
 559                        return 0;
 560                ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 561                if (!in_sched_functions(ip))
 562                        return ip;
 563                fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 564        } while (count++ < 16 && p->state != TASK_RUNNING);
 565        return 0;
 566}
 567