linux/arch/x86/kernel/vm86_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994  Linus Torvalds
   3 *
   4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
   5 *                stack - Manfred Spraul <manfred@colorfullife.com>
   6 *
   7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
   8 *                them correctly. Now the emulation will be in a
   9 *                consistent state after stackfaults - Kasper Dupont
  10 *                <kasperd@daimi.au.dk>
  11 *
  12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  13 *                <kasperd@daimi.au.dk>
  14 *
  15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  16 *                caused by Kasper Dupont's changes - Stas Sergeev
  17 *
  18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  19 *                Kasper Dupont <kasperd@daimi.au.dk>
  20 *
  21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  22 *                Kasper Dupont <kasperd@daimi.au.dk>
  23 *
  24 *   9 apr 2002 - Changed stack access macros to jump to a label
  25 *                instead of returning to userspace. This simplifies
  26 *                do_int, and is needed by handle_vm6_fault. Kasper
  27 *                Dupont <kasperd@daimi.au.dk>
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/capability.h>
  34#include <linux/errno.h>
  35#include <linux/interrupt.h>
  36#include <linux/syscalls.h>
  37#include <linux/sched.h>
  38#include <linux/kernel.h>
  39#include <linux/signal.h>
  40#include <linux/string.h>
  41#include <linux/mm.h>
  42#include <linux/smp.h>
  43#include <linux/highmem.h>
  44#include <linux/ptrace.h>
  45#include <linux/audit.h>
  46#include <linux/stddef.h>
  47#include <linux/slab.h>
  48#include <linux/security.h>
  49
  50#include <asm/uaccess.h>
  51#include <asm/io.h>
  52#include <asm/tlbflush.h>
  53#include <asm/irq.h>
  54#include <asm/traps.h>
  55#include <asm/vm86.h>
  56
  57/*
  58 * Known problems:
  59 *
  60 * Interrupt handling is not guaranteed:
  61 * - a real x86 will disable all interrupts for one instruction
  62 *   after a "mov ss,xx" to make stack handling atomic even without
  63 *   the 'lss' instruction. We can't guarantee this in v86 mode,
  64 *   as the next instruction might result in a page fault or similar.
  65 * - a real x86 will have interrupts disabled for one instruction
  66 *   past the 'sti' that enables them. We don't bother with all the
  67 *   details yet.
  68 *
  69 * Let's hope these problems do not actually matter for anything.
  70 */
  71
  72
  73/*
  74 * 8- and 16-bit register defines..
  75 */
  76#define AL(regs)        (((unsigned char *)&((regs)->pt.ax))[0])
  77#define AH(regs)        (((unsigned char *)&((regs)->pt.ax))[1])
  78#define IP(regs)        (*(unsigned short *)&((regs)->pt.ip))
  79#define SP(regs)        (*(unsigned short *)&((regs)->pt.sp))
  80
  81/*
  82 * virtual flags (16 and 32-bit versions)
  83 */
  84#define VFLAGS  (*(unsigned short *)&(current->thread.vm86->veflags))
  85#define VEFLAGS (current->thread.vm86->veflags)
  86
  87#define set_flags(X, new, mask) \
  88((X) = ((X) & ~(mask)) | ((new) & (mask)))
  89
  90#define SAFE_MASK       (0xDD5)
  91#define RETURN_MASK     (0xDFF)
  92
  93void save_v86_state(struct kernel_vm86_regs *regs, int retval)
  94{
  95        struct tss_struct *tss;
  96        struct task_struct *tsk = current;
  97        struct vm86plus_struct __user *user;
  98        struct vm86 *vm86 = current->thread.vm86;
  99        long err = 0;
 100
 101        /*
 102         * This gets called from entry.S with interrupts disabled, but
 103         * from process context. Enable interrupts here, before trying
 104         * to access user space.
 105         */
 106        local_irq_enable();
 107
 108        if (!vm86 || !vm86->user_vm86) {
 109                pr_alert("no user_vm86: BAD\n");
 110                do_exit(SIGSEGV);
 111        }
 112        set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
 113        user = vm86->user_vm86;
 114
 115        if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
 116                       sizeof(struct vm86plus_struct) :
 117                       sizeof(struct vm86_struct))) {
 118                pr_alert("could not access userspace vm86 info\n");
 119                do_exit(SIGSEGV);
 120        }
 121
 122        put_user_try {
 123                put_user_ex(regs->pt.bx, &user->regs.ebx);
 124                put_user_ex(regs->pt.cx, &user->regs.ecx);
 125                put_user_ex(regs->pt.dx, &user->regs.edx);
 126                put_user_ex(regs->pt.si, &user->regs.esi);
 127                put_user_ex(regs->pt.di, &user->regs.edi);
 128                put_user_ex(regs->pt.bp, &user->regs.ebp);
 129                put_user_ex(regs->pt.ax, &user->regs.eax);
 130                put_user_ex(regs->pt.ip, &user->regs.eip);
 131                put_user_ex(regs->pt.cs, &user->regs.cs);
 132                put_user_ex(regs->pt.flags, &user->regs.eflags);
 133                put_user_ex(regs->pt.sp, &user->regs.esp);
 134                put_user_ex(regs->pt.ss, &user->regs.ss);
 135                put_user_ex(regs->es, &user->regs.es);
 136                put_user_ex(regs->ds, &user->regs.ds);
 137                put_user_ex(regs->fs, &user->regs.fs);
 138                put_user_ex(regs->gs, &user->regs.gs);
 139
 140                put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
 141        } put_user_catch(err);
 142        if (err) {
 143                pr_alert("could not access userspace vm86 info\n");
 144                do_exit(SIGSEGV);
 145        }
 146
 147        tss = &per_cpu(cpu_tss, get_cpu());
 148        tsk->thread.sp0 = vm86->saved_sp0;
 149        tsk->thread.sysenter_cs = __KERNEL_CS;
 150        load_sp0(tss, &tsk->thread);
 151        vm86->saved_sp0 = 0;
 152        put_cpu();
 153
 154        memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
 155
 156        lazy_load_gs(vm86->regs32.gs);
 157
 158        regs->pt.ax = retval;
 159}
 160
 161static void mark_screen_rdonly(struct mm_struct *mm)
 162{
 163        pgd_t *pgd;
 164        pud_t *pud;
 165        pmd_t *pmd;
 166        pte_t *pte;
 167        spinlock_t *ptl;
 168        int i;
 169
 170        down_write(&mm->mmap_sem);
 171        pgd = pgd_offset(mm, 0xA0000);
 172        if (pgd_none_or_clear_bad(pgd))
 173                goto out;
 174        pud = pud_offset(pgd, 0xA0000);
 175        if (pud_none_or_clear_bad(pud))
 176                goto out;
 177        pmd = pmd_offset(pud, 0xA0000);
 178        split_huge_page_pmd_mm(mm, 0xA0000, pmd);
 179        if (pmd_none_or_clear_bad(pmd))
 180                goto out;
 181        pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
 182        for (i = 0; i < 32; i++) {
 183                if (pte_present(*pte))
 184                        set_pte(pte, pte_wrprotect(*pte));
 185                pte++;
 186        }
 187        pte_unmap_unlock(pte, ptl);
 188out:
 189        up_write(&mm->mmap_sem);
 190        flush_tlb();
 191}
 192
 193
 194
 195static int do_vm86_irq_handling(int subfunction, int irqnumber);
 196static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
 197
 198SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
 199{
 200        return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
 201}
 202
 203
 204SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
 205{
 206        switch (cmd) {
 207        case VM86_REQUEST_IRQ:
 208        case VM86_FREE_IRQ:
 209        case VM86_GET_IRQ_BITS:
 210        case VM86_GET_AND_RESET_IRQ:
 211                return do_vm86_irq_handling(cmd, (int)arg);
 212        case VM86_PLUS_INSTALL_CHECK:
 213                /*
 214                 * NOTE: on old vm86 stuff this will return the error
 215                 *  from access_ok(), because the subfunction is
 216                 *  interpreted as (invalid) address to vm86_struct.
 217                 *  So the installation check works.
 218                 */
 219                return 0;
 220        }
 221
 222        /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
 223        return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
 224}
 225
 226
 227static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
 228{
 229        struct tss_struct *tss;
 230        struct task_struct *tsk = current;
 231        struct vm86 *vm86 = tsk->thread.vm86;
 232        struct kernel_vm86_regs vm86regs;
 233        struct pt_regs *regs = current_pt_regs();
 234        unsigned long err = 0;
 235
 236        err = security_mmap_addr(0);
 237        if (err) {
 238                /*
 239                 * vm86 cannot virtualize the address space, so vm86 users
 240                 * need to manage the low 1MB themselves using mmap.  Given
 241                 * that BIOS places important data in the first page, vm86
 242                 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
 243                 * for example, won't even bother trying to use vm86 if it
 244                 * can't map a page at virtual address 0.
 245                 *
 246                 * To reduce the available kernel attack surface, simply
 247                 * disallow vm86(old) for users who cannot mmap at va 0.
 248                 *
 249                 * The implementation of security_mmap_addr will allow
 250                 * suitably privileged users to map va 0 even if
 251                 * vm.mmap_min_addr is set above 0, and we want this
 252                 * behavior for vm86 as well, as it ensures that legacy
 253                 * tools like vbetool will not fail just because of
 254                 * vm.mmap_min_addr.
 255                 */
 256                pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
 257                             current->comm, task_pid_nr(current),
 258                             from_kuid_munged(&init_user_ns, current_uid()));
 259                return -EPERM;
 260        }
 261
 262        if (!vm86) {
 263                if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
 264                        return -ENOMEM;
 265                tsk->thread.vm86 = vm86;
 266        }
 267        if (vm86->saved_sp0)
 268                return -EPERM;
 269
 270        if (!access_ok(VERIFY_READ, user_vm86, plus ?
 271                       sizeof(struct vm86_struct) :
 272                       sizeof(struct vm86plus_struct)))
 273                return -EFAULT;
 274
 275        memset(&vm86regs, 0, sizeof(vm86regs));
 276        get_user_try {
 277                unsigned short seg;
 278                get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
 279                get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
 280                get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
 281                get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
 282                get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
 283                get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
 284                get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
 285                get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
 286                get_user_ex(seg, &user_vm86->regs.cs);
 287                vm86regs.pt.cs = seg;
 288                get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
 289                get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
 290                get_user_ex(seg, &user_vm86->regs.ss);
 291                vm86regs.pt.ss = seg;
 292                get_user_ex(vm86regs.es, &user_vm86->regs.es);
 293                get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
 294                get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
 295                get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
 296
 297                get_user_ex(vm86->flags, &user_vm86->flags);
 298                get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
 299                get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
 300        } get_user_catch(err);
 301        if (err)
 302                return err;
 303
 304        if (copy_from_user(&vm86->int_revectored,
 305                           &user_vm86->int_revectored,
 306                           sizeof(struct revectored_struct)))
 307                return -EFAULT;
 308        if (copy_from_user(&vm86->int21_revectored,
 309                           &user_vm86->int21_revectored,
 310                           sizeof(struct revectored_struct)))
 311                return -EFAULT;
 312        if (plus) {
 313                if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
 314                                   sizeof(struct vm86plus_info_struct)))
 315                        return -EFAULT;
 316                vm86->vm86plus.is_vm86pus = 1;
 317        } else
 318                memset(&vm86->vm86plus, 0,
 319                       sizeof(struct vm86plus_info_struct));
 320
 321        memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
 322        vm86->user_vm86 = user_vm86;
 323
 324/*
 325 * The flags register is also special: we cannot trust that the user
 326 * has set it up safely, so this makes sure interrupt etc flags are
 327 * inherited from protected mode.
 328 */
 329        VEFLAGS = vm86regs.pt.flags;
 330        vm86regs.pt.flags &= SAFE_MASK;
 331        vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
 332        vm86regs.pt.flags |= X86_VM_MASK;
 333
 334        vm86regs.pt.orig_ax = regs->orig_ax;
 335
 336        switch (vm86->cpu_type) {
 337        case CPU_286:
 338                vm86->veflags_mask = 0;
 339                break;
 340        case CPU_386:
 341                vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 342                break;
 343        case CPU_486:
 344                vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 345                break;
 346        default:
 347                vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
 348                break;
 349        }
 350
 351/*
 352 * Save old state
 353 */
 354        vm86->saved_sp0 = tsk->thread.sp0;
 355        lazy_save_gs(vm86->regs32.gs);
 356
 357        tss = &per_cpu(cpu_tss, get_cpu());
 358        /* make room for real-mode segments */
 359        tsk->thread.sp0 += 16;
 360        if (cpu_has_sep)
 361                tsk->thread.sysenter_cs = 0;
 362        load_sp0(tss, &tsk->thread);
 363        put_cpu();
 364
 365        if (vm86->flags & VM86_SCREEN_BITMAP)
 366                mark_screen_rdonly(tsk->mm);
 367
 368        memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
 369        force_iret();
 370        return regs->ax;
 371}
 372
 373static inline void set_IF(struct kernel_vm86_regs *regs)
 374{
 375        VEFLAGS |= X86_EFLAGS_VIF;
 376}
 377
 378static inline void clear_IF(struct kernel_vm86_regs *regs)
 379{
 380        VEFLAGS &= ~X86_EFLAGS_VIF;
 381}
 382
 383static inline void clear_TF(struct kernel_vm86_regs *regs)
 384{
 385        regs->pt.flags &= ~X86_EFLAGS_TF;
 386}
 387
 388static inline void clear_AC(struct kernel_vm86_regs *regs)
 389{
 390        regs->pt.flags &= ~X86_EFLAGS_AC;
 391}
 392
 393/*
 394 * It is correct to call set_IF(regs) from the set_vflags_*
 395 * functions. However someone forgot to call clear_IF(regs)
 396 * in the opposite case.
 397 * After the command sequence CLI PUSHF STI POPF you should
 398 * end up with interrupts disabled, but you ended up with
 399 * interrupts enabled.
 400 *  ( I was testing my own changes, but the only bug I
 401 *    could find was in a function I had not changed. )
 402 * [KD]
 403 */
 404
 405static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
 406{
 407        set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
 408        set_flags(regs->pt.flags, flags, SAFE_MASK);
 409        if (flags & X86_EFLAGS_IF)
 410                set_IF(regs);
 411        else
 412                clear_IF(regs);
 413}
 414
 415static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
 416{
 417        set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
 418        set_flags(regs->pt.flags, flags, SAFE_MASK);
 419        if (flags & X86_EFLAGS_IF)
 420                set_IF(regs);
 421        else
 422                clear_IF(regs);
 423}
 424
 425static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
 426{
 427        unsigned long flags = regs->pt.flags & RETURN_MASK;
 428
 429        if (VEFLAGS & X86_EFLAGS_VIF)
 430                flags |= X86_EFLAGS_IF;
 431        flags |= X86_EFLAGS_IOPL;
 432        return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
 433}
 434
 435static inline int is_revectored(int nr, struct revectored_struct *bitmap)
 436{
 437        __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
 438                :"=r" (nr)
 439                :"m" (*bitmap), "r" (nr));
 440        return nr;
 441}
 442
 443#define val_byte(val, n) (((__u8 *)&val)[n])
 444
 445#define pushb(base, ptr, val, err_label) \
 446        do { \
 447                __u8 __val = val; \
 448                ptr--; \
 449                if (put_user(__val, base + ptr) < 0) \
 450                        goto err_label; \
 451        } while (0)
 452
 453#define pushw(base, ptr, val, err_label) \
 454        do { \
 455                __u16 __val = val; \
 456                ptr--; \
 457                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 458                        goto err_label; \
 459                ptr--; \
 460                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 461                        goto err_label; \
 462        } while (0)
 463
 464#define pushl(base, ptr, val, err_label) \
 465        do { \
 466                __u32 __val = val; \
 467                ptr--; \
 468                if (put_user(val_byte(__val, 3), base + ptr) < 0) \
 469                        goto err_label; \
 470                ptr--; \
 471                if (put_user(val_byte(__val, 2), base + ptr) < 0) \
 472                        goto err_label; \
 473                ptr--; \
 474                if (put_user(val_byte(__val, 1), base + ptr) < 0) \
 475                        goto err_label; \
 476                ptr--; \
 477                if (put_user(val_byte(__val, 0), base + ptr) < 0) \
 478                        goto err_label; \
 479        } while (0)
 480
 481#define popb(base, ptr, err_label) \
 482        ({ \
 483                __u8 __res; \
 484                if (get_user(__res, base + ptr) < 0) \
 485                        goto err_label; \
 486                ptr++; \
 487                __res; \
 488        })
 489
 490#define popw(base, ptr, err_label) \
 491        ({ \
 492                __u16 __res; \
 493                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 494                        goto err_label; \
 495                ptr++; \
 496                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 497                        goto err_label; \
 498                ptr++; \
 499                __res; \
 500        })
 501
 502#define popl(base, ptr, err_label) \
 503        ({ \
 504                __u32 __res; \
 505                if (get_user(val_byte(__res, 0), base + ptr) < 0) \
 506                        goto err_label; \
 507                ptr++; \
 508                if (get_user(val_byte(__res, 1), base + ptr) < 0) \
 509                        goto err_label; \
 510                ptr++; \
 511                if (get_user(val_byte(__res, 2), base + ptr) < 0) \
 512                        goto err_label; \
 513                ptr++; \
 514                if (get_user(val_byte(__res, 3), base + ptr) < 0) \
 515                        goto err_label; \
 516                ptr++; \
 517                __res; \
 518        })
 519
 520/* There are so many possible reasons for this function to return
 521 * VM86_INTx, so adding another doesn't bother me. We can expect
 522 * userspace programs to be able to handle it. (Getting a problem
 523 * in userspace is always better than an Oops anyway.) [KD]
 524 */
 525static void do_int(struct kernel_vm86_regs *regs, int i,
 526    unsigned char __user *ssp, unsigned short sp)
 527{
 528        unsigned long __user *intr_ptr;
 529        unsigned long segoffs;
 530        struct vm86 *vm86 = current->thread.vm86;
 531
 532        if (regs->pt.cs == BIOSSEG)
 533                goto cannot_handle;
 534        if (is_revectored(i, &vm86->int_revectored))
 535                goto cannot_handle;
 536        if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
 537                goto cannot_handle;
 538        intr_ptr = (unsigned long __user *) (i << 2);
 539        if (get_user(segoffs, intr_ptr))
 540                goto cannot_handle;
 541        if ((segoffs >> 16) == BIOSSEG)
 542                goto cannot_handle;
 543        pushw(ssp, sp, get_vflags(regs), cannot_handle);
 544        pushw(ssp, sp, regs->pt.cs, cannot_handle);
 545        pushw(ssp, sp, IP(regs), cannot_handle);
 546        regs->pt.cs = segoffs >> 16;
 547        SP(regs) -= 6;
 548        IP(regs) = segoffs & 0xffff;
 549        clear_TF(regs);
 550        clear_IF(regs);
 551        clear_AC(regs);
 552        return;
 553
 554cannot_handle:
 555        save_v86_state(regs, VM86_INTx + (i << 8));
 556}
 557
 558int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
 559{
 560        struct vm86 *vm86 = current->thread.vm86;
 561
 562        if (vm86->vm86plus.is_vm86pus) {
 563                if ((trapno == 3) || (trapno == 1)) {
 564                        save_v86_state(regs, VM86_TRAP + (trapno << 8));
 565                        return 0;
 566                }
 567                do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
 568                return 0;
 569        }
 570        if (trapno != 1)
 571                return 1; /* we let this handle by the calling routine */
 572        current->thread.trap_nr = trapno;
 573        current->thread.error_code = error_code;
 574        force_sig(SIGTRAP, current);
 575        return 0;
 576}
 577
 578void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
 579{
 580        unsigned char opcode;
 581        unsigned char __user *csp;
 582        unsigned char __user *ssp;
 583        unsigned short ip, sp, orig_flags;
 584        int data32, pref_done;
 585        struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
 586
 587#define CHECK_IF_IN_TRAP \
 588        if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
 589                newflags |= X86_EFLAGS_TF
 590
 591        orig_flags = *(unsigned short *)&regs->pt.flags;
 592
 593        csp = (unsigned char __user *) (regs->pt.cs << 4);
 594        ssp = (unsigned char __user *) (regs->pt.ss << 4);
 595        sp = SP(regs);
 596        ip = IP(regs);
 597
 598        data32 = 0;
 599        pref_done = 0;
 600        do {
 601                switch (opcode = popb(csp, ip, simulate_sigsegv)) {
 602                case 0x66:      /* 32-bit data */     data32 = 1; break;
 603                case 0x67:      /* 32-bit address */  break;
 604                case 0x2e:      /* CS */              break;
 605                case 0x3e:      /* DS */              break;
 606                case 0x26:      /* ES */              break;
 607                case 0x36:      /* SS */              break;
 608                case 0x65:      /* GS */              break;
 609                case 0x64:      /* FS */              break;
 610                case 0xf2:      /* repnz */       break;
 611                case 0xf3:      /* rep */             break;
 612                default: pref_done = 1;
 613                }
 614        } while (!pref_done);
 615
 616        switch (opcode) {
 617
 618        /* pushf */
 619        case 0x9c:
 620                if (data32) {
 621                        pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
 622                        SP(regs) -= 4;
 623                } else {
 624                        pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
 625                        SP(regs) -= 2;
 626                }
 627                IP(regs) = ip;
 628                goto vm86_fault_return;
 629
 630        /* popf */
 631        case 0x9d:
 632                {
 633                unsigned long newflags;
 634                if (data32) {
 635                        newflags = popl(ssp, sp, simulate_sigsegv);
 636                        SP(regs) += 4;
 637                } else {
 638                        newflags = popw(ssp, sp, simulate_sigsegv);
 639                        SP(regs) += 2;
 640                }
 641                IP(regs) = ip;
 642                CHECK_IF_IN_TRAP;
 643                if (data32)
 644                        set_vflags_long(newflags, regs);
 645                else
 646                        set_vflags_short(newflags, regs);
 647
 648                goto check_vip;
 649                }
 650
 651        /* int xx */
 652        case 0xcd: {
 653                int intno = popb(csp, ip, simulate_sigsegv);
 654                IP(regs) = ip;
 655                if (vmpi->vm86dbg_active) {
 656                        if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
 657                                save_v86_state(regs, VM86_INTx + (intno << 8));
 658                                return;
 659                        }
 660                }
 661                do_int(regs, intno, ssp, sp);
 662                return;
 663        }
 664
 665        /* iret */
 666        case 0xcf:
 667                {
 668                unsigned long newip;
 669                unsigned long newcs;
 670                unsigned long newflags;
 671                if (data32) {
 672                        newip = popl(ssp, sp, simulate_sigsegv);
 673                        newcs = popl(ssp, sp, simulate_sigsegv);
 674                        newflags = popl(ssp, sp, simulate_sigsegv);
 675                        SP(regs) += 12;
 676                } else {
 677                        newip = popw(ssp, sp, simulate_sigsegv);
 678                        newcs = popw(ssp, sp, simulate_sigsegv);
 679                        newflags = popw(ssp, sp, simulate_sigsegv);
 680                        SP(regs) += 6;
 681                }
 682                IP(regs) = newip;
 683                regs->pt.cs = newcs;
 684                CHECK_IF_IN_TRAP;
 685                if (data32) {
 686                        set_vflags_long(newflags, regs);
 687                } else {
 688                        set_vflags_short(newflags, regs);
 689                }
 690                goto check_vip;
 691                }
 692
 693        /* cli */
 694        case 0xfa:
 695                IP(regs) = ip;
 696                clear_IF(regs);
 697                goto vm86_fault_return;
 698
 699        /* sti */
 700        /*
 701         * Damn. This is incorrect: the 'sti' instruction should actually
 702         * enable interrupts after the /next/ instruction. Not good.
 703         *
 704         * Probably needs some horsing around with the TF flag. Aiee..
 705         */
 706        case 0xfb:
 707                IP(regs) = ip;
 708                set_IF(regs);
 709                goto check_vip;
 710
 711        default:
 712                save_v86_state(regs, VM86_UNKNOWN);
 713        }
 714
 715        return;
 716
 717check_vip:
 718        if (VEFLAGS & X86_EFLAGS_VIP) {
 719                save_v86_state(regs, VM86_STI);
 720                return;
 721        }
 722
 723vm86_fault_return:
 724        if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
 725                save_v86_state(regs, VM86_PICRETURN);
 726                return;
 727        }
 728        if (orig_flags & X86_EFLAGS_TF)
 729                handle_vm86_trap(regs, 0, X86_TRAP_DB);
 730        return;
 731
 732simulate_sigsegv:
 733        /* FIXME: After a long discussion with Stas we finally
 734         *        agreed, that this is wrong. Here we should
 735         *        really send a SIGSEGV to the user program.
 736         *        But how do we create the correct context? We
 737         *        are inside a general protection fault handler
 738         *        and has just returned from a page fault handler.
 739         *        The correct context for the signal handler
 740         *        should be a mixture of the two, but how do we
 741         *        get the information? [KD]
 742         */
 743        save_v86_state(regs, VM86_UNKNOWN);
 744}
 745
 746/* ---------------- vm86 special IRQ passing stuff ----------------- */
 747
 748#define VM86_IRQNAME            "vm86irq"
 749
 750static struct vm86_irqs {
 751        struct task_struct *tsk;
 752        int sig;
 753} vm86_irqs[16];
 754
 755static DEFINE_SPINLOCK(irqbits_lock);
 756static int irqbits;
 757
 758#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
 759        | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
 760        | (1 << SIGUNUSED))
 761
 762static irqreturn_t irq_handler(int intno, void *dev_id)
 763{
 764        int irq_bit;
 765        unsigned long flags;
 766
 767        spin_lock_irqsave(&irqbits_lock, flags);
 768        irq_bit = 1 << intno;
 769        if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
 770                goto out;
 771        irqbits |= irq_bit;
 772        if (vm86_irqs[intno].sig)
 773                send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
 774        /*
 775         * IRQ will be re-enabled when user asks for the irq (whether
 776         * polling or as a result of the signal)
 777         */
 778        disable_irq_nosync(intno);
 779        spin_unlock_irqrestore(&irqbits_lock, flags);
 780        return IRQ_HANDLED;
 781
 782out:
 783        spin_unlock_irqrestore(&irqbits_lock, flags);
 784        return IRQ_NONE;
 785}
 786
 787static inline void free_vm86_irq(int irqnumber)
 788{
 789        unsigned long flags;
 790
 791        free_irq(irqnumber, NULL);
 792        vm86_irqs[irqnumber].tsk = NULL;
 793
 794        spin_lock_irqsave(&irqbits_lock, flags);
 795        irqbits &= ~(1 << irqnumber);
 796        spin_unlock_irqrestore(&irqbits_lock, flags);
 797}
 798
 799void release_vm86_irqs(struct task_struct *task)
 800{
 801        int i;
 802        for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
 803            if (vm86_irqs[i].tsk == task)
 804                free_vm86_irq(i);
 805}
 806
 807static inline int get_and_reset_irq(int irqnumber)
 808{
 809        int bit;
 810        unsigned long flags;
 811        int ret = 0;
 812
 813        if (invalid_vm86_irq(irqnumber)) return 0;
 814        if (vm86_irqs[irqnumber].tsk != current) return 0;
 815        spin_lock_irqsave(&irqbits_lock, flags);
 816        bit = irqbits & (1 << irqnumber);
 817        irqbits &= ~bit;
 818        if (bit) {
 819                enable_irq(irqnumber);
 820                ret = 1;
 821        }
 822
 823        spin_unlock_irqrestore(&irqbits_lock, flags);
 824        return ret;
 825}
 826
 827
 828static int do_vm86_irq_handling(int subfunction, int irqnumber)
 829{
 830        int ret;
 831        switch (subfunction) {
 832                case VM86_GET_AND_RESET_IRQ: {
 833                        return get_and_reset_irq(irqnumber);
 834                }
 835                case VM86_GET_IRQ_BITS: {
 836                        return irqbits;
 837                }
 838                case VM86_REQUEST_IRQ: {
 839                        int sig = irqnumber >> 8;
 840                        int irq = irqnumber & 255;
 841                        if (!capable(CAP_SYS_ADMIN)) return -EPERM;
 842                        if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
 843                        if (invalid_vm86_irq(irq)) return -EPERM;
 844                        if (vm86_irqs[irq].tsk) return -EPERM;
 845                        ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
 846                        if (ret) return ret;
 847                        vm86_irqs[irq].sig = sig;
 848                        vm86_irqs[irq].tsk = current;
 849                        return irq;
 850                }
 851                case  VM86_FREE_IRQ: {
 852                        if (invalid_vm86_irq(irqnumber)) return -EPERM;
 853                        if (!vm86_irqs[irqnumber].tsk) return 0;
 854                        if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
 855                        free_vm86_irq(irqnumber);
 856                        return 0;
 857                }
 858        }
 859        return -EINVAL;
 860}
 861
 862