linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "cpuid.h"
  22
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/sched.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/trace_events.h>
  32#include <linux/slab.h>
  33#include <linux/tboot.h>
  34#include <linux/hrtimer.h>
  35#include "kvm_cache_regs.h"
  36#include "x86.h"
  37
  38#include <asm/io.h>
  39#include <asm/desc.h>
  40#include <asm/vmx.h>
  41#include <asm/virtext.h>
  42#include <asm/mce.h>
  43#include <asm/fpu/internal.h>
  44#include <asm/perf_event.h>
  45#include <asm/debugreg.h>
  46#include <asm/kexec.h>
  47#include <asm/apic.h>
  48
  49#include "trace.h"
  50#include "pmu.h"
  51
  52#define __ex(x) __kvm_handle_fault_on_reboot(x)
  53#define __ex_clear(x, reg) \
  54        ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  55
  56MODULE_AUTHOR("Qumranet");
  57MODULE_LICENSE("GPL");
  58
  59static const struct x86_cpu_id vmx_cpu_id[] = {
  60        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  61        {}
  62};
  63MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  64
  65static bool __read_mostly enable_vpid = 1;
  66module_param_named(vpid, enable_vpid, bool, 0444);
  67
  68static bool __read_mostly flexpriority_enabled = 1;
  69module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  70
  71static bool __read_mostly enable_ept = 1;
  72module_param_named(ept, enable_ept, bool, S_IRUGO);
  73
  74static bool __read_mostly enable_unrestricted_guest = 1;
  75module_param_named(unrestricted_guest,
  76                        enable_unrestricted_guest, bool, S_IRUGO);
  77
  78static bool __read_mostly enable_ept_ad_bits = 1;
  79module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  80
  81static bool __read_mostly emulate_invalid_guest_state = true;
  82module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  83
  84static bool __read_mostly vmm_exclusive = 1;
  85module_param(vmm_exclusive, bool, S_IRUGO);
  86
  87static bool __read_mostly fasteoi = 1;
  88module_param(fasteoi, bool, S_IRUGO);
  89
  90static bool __read_mostly enable_apicv = 1;
  91module_param(enable_apicv, bool, S_IRUGO);
  92
  93static bool __read_mostly enable_shadow_vmcs = 1;
  94module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  95/*
  96 * If nested=1, nested virtualization is supported, i.e., guests may use
  97 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  98 * use VMX instructions.
  99 */
 100static bool __read_mostly nested = 0;
 101module_param(nested, bool, S_IRUGO);
 102
 103static u64 __read_mostly host_xss;
 104
 105static bool __read_mostly enable_pml = 1;
 106module_param_named(pml, enable_pml, bool, S_IRUGO);
 107
 108#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 109#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
 110#define KVM_VM_CR0_ALWAYS_ON                                            \
 111        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 112#define KVM_CR4_GUEST_OWNED_BITS                                      \
 113        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 114         | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
 115
 116#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 117#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 118
 119#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 120
 121#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 122
 123/*
 124 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 125 * ple_gap:    upper bound on the amount of time between two successive
 126 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 127 *             According to test, this time is usually smaller than 128 cycles.
 128 * ple_window: upper bound on the amount of time a guest is allowed to execute
 129 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 130 *             less than 2^12 cycles
 131 * Time is measured based on a counter that runs at the same rate as the TSC,
 132 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 133 */
 134#define KVM_VMX_DEFAULT_PLE_GAP           128
 135#define KVM_VMX_DEFAULT_PLE_WINDOW        4096
 136#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
 137#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
 138#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
 139                INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
 140
 141static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 142module_param(ple_gap, int, S_IRUGO);
 143
 144static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 145module_param(ple_window, int, S_IRUGO);
 146
 147/* Default doubles per-vcpu window every exit. */
 148static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
 149module_param(ple_window_grow, int, S_IRUGO);
 150
 151/* Default resets per-vcpu window every exit to ple_window. */
 152static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
 153module_param(ple_window_shrink, int, S_IRUGO);
 154
 155/* Default is to compute the maximum so we can never overflow. */
 156static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 157static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 158module_param(ple_window_max, int, S_IRUGO);
 159
 160extern const ulong vmx_return;
 161
 162#define NR_AUTOLOAD_MSRS 8
 163#define VMCS02_POOL_SIZE 1
 164
 165struct vmcs {
 166        u32 revision_id;
 167        u32 abort;
 168        char data[0];
 169};
 170
 171/*
 172 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 173 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 174 * loaded on this CPU (so we can clear them if the CPU goes down).
 175 */
 176struct loaded_vmcs {
 177        struct vmcs *vmcs;
 178        int cpu;
 179        int launched;
 180        struct list_head loaded_vmcss_on_cpu_link;
 181};
 182
 183struct shared_msr_entry {
 184        unsigned index;
 185        u64 data;
 186        u64 mask;
 187};
 188
 189/*
 190 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 191 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 192 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 193 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 194 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 195 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 196 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 197 * underlying hardware which will be used to run L2.
 198 * This structure is packed to ensure that its layout is identical across
 199 * machines (necessary for live migration).
 200 * If there are changes in this struct, VMCS12_REVISION must be changed.
 201 */
 202typedef u64 natural_width;
 203struct __packed vmcs12 {
 204        /* According to the Intel spec, a VMCS region must start with the
 205         * following two fields. Then follow implementation-specific data.
 206         */
 207        u32 revision_id;
 208        u32 abort;
 209
 210        u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 211        u32 padding[7]; /* room for future expansion */
 212
 213        u64 io_bitmap_a;
 214        u64 io_bitmap_b;
 215        u64 msr_bitmap;
 216        u64 vm_exit_msr_store_addr;
 217        u64 vm_exit_msr_load_addr;
 218        u64 vm_entry_msr_load_addr;
 219        u64 tsc_offset;
 220        u64 virtual_apic_page_addr;
 221        u64 apic_access_addr;
 222        u64 posted_intr_desc_addr;
 223        u64 ept_pointer;
 224        u64 eoi_exit_bitmap0;
 225        u64 eoi_exit_bitmap1;
 226        u64 eoi_exit_bitmap2;
 227        u64 eoi_exit_bitmap3;
 228        u64 xss_exit_bitmap;
 229        u64 guest_physical_address;
 230        u64 vmcs_link_pointer;
 231        u64 guest_ia32_debugctl;
 232        u64 guest_ia32_pat;
 233        u64 guest_ia32_efer;
 234        u64 guest_ia32_perf_global_ctrl;
 235        u64 guest_pdptr0;
 236        u64 guest_pdptr1;
 237        u64 guest_pdptr2;
 238        u64 guest_pdptr3;
 239        u64 guest_bndcfgs;
 240        u64 host_ia32_pat;
 241        u64 host_ia32_efer;
 242        u64 host_ia32_perf_global_ctrl;
 243        u64 padding64[8]; /* room for future expansion */
 244        /*
 245         * To allow migration of L1 (complete with its L2 guests) between
 246         * machines of different natural widths (32 or 64 bit), we cannot have
 247         * unsigned long fields with no explict size. We use u64 (aliased
 248         * natural_width) instead. Luckily, x86 is little-endian.
 249         */
 250        natural_width cr0_guest_host_mask;
 251        natural_width cr4_guest_host_mask;
 252        natural_width cr0_read_shadow;
 253        natural_width cr4_read_shadow;
 254        natural_width cr3_target_value0;
 255        natural_width cr3_target_value1;
 256        natural_width cr3_target_value2;
 257        natural_width cr3_target_value3;
 258        natural_width exit_qualification;
 259        natural_width guest_linear_address;
 260        natural_width guest_cr0;
 261        natural_width guest_cr3;
 262        natural_width guest_cr4;
 263        natural_width guest_es_base;
 264        natural_width guest_cs_base;
 265        natural_width guest_ss_base;
 266        natural_width guest_ds_base;
 267        natural_width guest_fs_base;
 268        natural_width guest_gs_base;
 269        natural_width guest_ldtr_base;
 270        natural_width guest_tr_base;
 271        natural_width guest_gdtr_base;
 272        natural_width guest_idtr_base;
 273        natural_width guest_dr7;
 274        natural_width guest_rsp;
 275        natural_width guest_rip;
 276        natural_width guest_rflags;
 277        natural_width guest_pending_dbg_exceptions;
 278        natural_width guest_sysenter_esp;
 279        natural_width guest_sysenter_eip;
 280        natural_width host_cr0;
 281        natural_width host_cr3;
 282        natural_width host_cr4;
 283        natural_width host_fs_base;
 284        natural_width host_gs_base;
 285        natural_width host_tr_base;
 286        natural_width host_gdtr_base;
 287        natural_width host_idtr_base;
 288        natural_width host_ia32_sysenter_esp;
 289        natural_width host_ia32_sysenter_eip;
 290        natural_width host_rsp;
 291        natural_width host_rip;
 292        natural_width paddingl[8]; /* room for future expansion */
 293        u32 pin_based_vm_exec_control;
 294        u32 cpu_based_vm_exec_control;
 295        u32 exception_bitmap;
 296        u32 page_fault_error_code_mask;
 297        u32 page_fault_error_code_match;
 298        u32 cr3_target_count;
 299        u32 vm_exit_controls;
 300        u32 vm_exit_msr_store_count;
 301        u32 vm_exit_msr_load_count;
 302        u32 vm_entry_controls;
 303        u32 vm_entry_msr_load_count;
 304        u32 vm_entry_intr_info_field;
 305        u32 vm_entry_exception_error_code;
 306        u32 vm_entry_instruction_len;
 307        u32 tpr_threshold;
 308        u32 secondary_vm_exec_control;
 309        u32 vm_instruction_error;
 310        u32 vm_exit_reason;
 311        u32 vm_exit_intr_info;
 312        u32 vm_exit_intr_error_code;
 313        u32 idt_vectoring_info_field;
 314        u32 idt_vectoring_error_code;
 315        u32 vm_exit_instruction_len;
 316        u32 vmx_instruction_info;
 317        u32 guest_es_limit;
 318        u32 guest_cs_limit;
 319        u32 guest_ss_limit;
 320        u32 guest_ds_limit;
 321        u32 guest_fs_limit;
 322        u32 guest_gs_limit;
 323        u32 guest_ldtr_limit;
 324        u32 guest_tr_limit;
 325        u32 guest_gdtr_limit;
 326        u32 guest_idtr_limit;
 327        u32 guest_es_ar_bytes;
 328        u32 guest_cs_ar_bytes;
 329        u32 guest_ss_ar_bytes;
 330        u32 guest_ds_ar_bytes;
 331        u32 guest_fs_ar_bytes;
 332        u32 guest_gs_ar_bytes;
 333        u32 guest_ldtr_ar_bytes;
 334        u32 guest_tr_ar_bytes;
 335        u32 guest_interruptibility_info;
 336        u32 guest_activity_state;
 337        u32 guest_sysenter_cs;
 338        u32 host_ia32_sysenter_cs;
 339        u32 vmx_preemption_timer_value;
 340        u32 padding32[7]; /* room for future expansion */
 341        u16 virtual_processor_id;
 342        u16 posted_intr_nv;
 343        u16 guest_es_selector;
 344        u16 guest_cs_selector;
 345        u16 guest_ss_selector;
 346        u16 guest_ds_selector;
 347        u16 guest_fs_selector;
 348        u16 guest_gs_selector;
 349        u16 guest_ldtr_selector;
 350        u16 guest_tr_selector;
 351        u16 guest_intr_status;
 352        u16 host_es_selector;
 353        u16 host_cs_selector;
 354        u16 host_ss_selector;
 355        u16 host_ds_selector;
 356        u16 host_fs_selector;
 357        u16 host_gs_selector;
 358        u16 host_tr_selector;
 359};
 360
 361/*
 362 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 363 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 364 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 365 */
 366#define VMCS12_REVISION 0x11e57ed0
 367
 368/*
 369 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 370 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 371 * current implementation, 4K are reserved to avoid future complications.
 372 */
 373#define VMCS12_SIZE 0x1000
 374
 375/* Used to remember the last vmcs02 used for some recently used vmcs12s */
 376struct vmcs02_list {
 377        struct list_head list;
 378        gpa_t vmptr;
 379        struct loaded_vmcs vmcs02;
 380};
 381
 382/*
 383 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 384 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 385 */
 386struct nested_vmx {
 387        /* Has the level1 guest done vmxon? */
 388        bool vmxon;
 389        gpa_t vmxon_ptr;
 390
 391        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 392        gpa_t current_vmptr;
 393        /* The host-usable pointer to the above */
 394        struct page *current_vmcs12_page;
 395        struct vmcs12 *current_vmcs12;
 396        struct vmcs *current_shadow_vmcs;
 397        /*
 398         * Indicates if the shadow vmcs must be updated with the
 399         * data hold by vmcs12
 400         */
 401        bool sync_shadow_vmcs;
 402
 403        /* vmcs02_list cache of VMCSs recently used to run L2 guests */
 404        struct list_head vmcs02_pool;
 405        int vmcs02_num;
 406        u64 vmcs01_tsc_offset;
 407        /* L2 must run next, and mustn't decide to exit to L1. */
 408        bool nested_run_pending;
 409        /*
 410         * Guest pages referred to in vmcs02 with host-physical pointers, so
 411         * we must keep them pinned while L2 runs.
 412         */
 413        struct page *apic_access_page;
 414        struct page *virtual_apic_page;
 415        struct page *pi_desc_page;
 416        struct pi_desc *pi_desc;
 417        bool pi_pending;
 418        u16 posted_intr_nv;
 419        u64 msr_ia32_feature_control;
 420
 421        struct hrtimer preemption_timer;
 422        bool preemption_timer_expired;
 423
 424        /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
 425        u64 vmcs01_debugctl;
 426
 427        u32 nested_vmx_procbased_ctls_low;
 428        u32 nested_vmx_procbased_ctls_high;
 429        u32 nested_vmx_true_procbased_ctls_low;
 430        u32 nested_vmx_secondary_ctls_low;
 431        u32 nested_vmx_secondary_ctls_high;
 432        u32 nested_vmx_pinbased_ctls_low;
 433        u32 nested_vmx_pinbased_ctls_high;
 434        u32 nested_vmx_exit_ctls_low;
 435        u32 nested_vmx_exit_ctls_high;
 436        u32 nested_vmx_true_exit_ctls_low;
 437        u32 nested_vmx_entry_ctls_low;
 438        u32 nested_vmx_entry_ctls_high;
 439        u32 nested_vmx_true_entry_ctls_low;
 440        u32 nested_vmx_misc_low;
 441        u32 nested_vmx_misc_high;
 442        u32 nested_vmx_ept_caps;
 443};
 444
 445#define POSTED_INTR_ON  0
 446/* Posted-Interrupt Descriptor */
 447struct pi_desc {
 448        u32 pir[8];     /* Posted interrupt requested */
 449        u32 control;    /* bit 0 of control is outstanding notification bit */
 450        u32 rsvd[7];
 451} __aligned(64);
 452
 453static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 454{
 455        return test_and_set_bit(POSTED_INTR_ON,
 456                        (unsigned long *)&pi_desc->control);
 457}
 458
 459static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 460{
 461        return test_and_clear_bit(POSTED_INTR_ON,
 462                        (unsigned long *)&pi_desc->control);
 463}
 464
 465static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 466{
 467        return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 468}
 469
 470struct vcpu_vmx {
 471        struct kvm_vcpu       vcpu;
 472        unsigned long         host_rsp;
 473        u8                    fail;
 474        bool                  nmi_known_unmasked;
 475        u32                   exit_intr_info;
 476        u32                   idt_vectoring_info;
 477        ulong                 rflags;
 478        struct shared_msr_entry *guest_msrs;
 479        int                   nmsrs;
 480        int                   save_nmsrs;
 481        unsigned long         host_idt_base;
 482#ifdef CONFIG_X86_64
 483        u64                   msr_host_kernel_gs_base;
 484        u64                   msr_guest_kernel_gs_base;
 485#endif
 486        u32 vm_entry_controls_shadow;
 487        u32 vm_exit_controls_shadow;
 488        /*
 489         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 490         * non-nested (L1) guest, it always points to vmcs01. For a nested
 491         * guest (L2), it points to a different VMCS.
 492         */
 493        struct loaded_vmcs    vmcs01;
 494        struct loaded_vmcs   *loaded_vmcs;
 495        bool                  __launched; /* temporary, used in vmx_vcpu_run */
 496        struct msr_autoload {
 497                unsigned nr;
 498                struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 499                struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 500        } msr_autoload;
 501        struct {
 502                int           loaded;
 503                u16           fs_sel, gs_sel, ldt_sel;
 504#ifdef CONFIG_X86_64
 505                u16           ds_sel, es_sel;
 506#endif
 507                int           gs_ldt_reload_needed;
 508                int           fs_reload_needed;
 509                u64           msr_host_bndcfgs;
 510                unsigned long vmcs_host_cr4;    /* May not match real cr4 */
 511        } host_state;
 512        struct {
 513                int vm86_active;
 514                ulong save_rflags;
 515                struct kvm_segment segs[8];
 516        } rmode;
 517        struct {
 518                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 519                struct kvm_save_segment {
 520                        u16 selector;
 521                        unsigned long base;
 522                        u32 limit;
 523                        u32 ar;
 524                } seg[8];
 525        } segment_cache;
 526        int vpid;
 527        bool emulation_required;
 528
 529        /* Support for vnmi-less CPUs */
 530        int soft_vnmi_blocked;
 531        ktime_t entry_time;
 532        s64 vnmi_blocked_time;
 533        u32 exit_reason;
 534
 535        bool rdtscp_enabled;
 536
 537        /* Posted interrupt descriptor */
 538        struct pi_desc pi_desc;
 539
 540        /* Support for a guest hypervisor (nested VMX) */
 541        struct nested_vmx nested;
 542
 543        /* Dynamic PLE window. */
 544        int ple_window;
 545        bool ple_window_dirty;
 546
 547        /* Support for PML */
 548#define PML_ENTITY_NUM          512
 549        struct page *pml_pg;
 550};
 551
 552enum segment_cache_field {
 553        SEG_FIELD_SEL = 0,
 554        SEG_FIELD_BASE = 1,
 555        SEG_FIELD_LIMIT = 2,
 556        SEG_FIELD_AR = 3,
 557
 558        SEG_FIELD_NR = 4
 559};
 560
 561static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 562{
 563        return container_of(vcpu, struct vcpu_vmx, vcpu);
 564}
 565
 566#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 567#define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
 568#define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
 569                                [number##_HIGH] = VMCS12_OFFSET(name)+4
 570
 571
 572static unsigned long shadow_read_only_fields[] = {
 573        /*
 574         * We do NOT shadow fields that are modified when L0
 575         * traps and emulates any vmx instruction (e.g. VMPTRLD,
 576         * VMXON...) executed by L1.
 577         * For example, VM_INSTRUCTION_ERROR is read
 578         * by L1 if a vmx instruction fails (part of the error path).
 579         * Note the code assumes this logic. If for some reason
 580         * we start shadowing these fields then we need to
 581         * force a shadow sync when L0 emulates vmx instructions
 582         * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
 583         * by nested_vmx_failValid)
 584         */
 585        VM_EXIT_REASON,
 586        VM_EXIT_INTR_INFO,
 587        VM_EXIT_INSTRUCTION_LEN,
 588        IDT_VECTORING_INFO_FIELD,
 589        IDT_VECTORING_ERROR_CODE,
 590        VM_EXIT_INTR_ERROR_CODE,
 591        EXIT_QUALIFICATION,
 592        GUEST_LINEAR_ADDRESS,
 593        GUEST_PHYSICAL_ADDRESS
 594};
 595static int max_shadow_read_only_fields =
 596        ARRAY_SIZE(shadow_read_only_fields);
 597
 598static unsigned long shadow_read_write_fields[] = {
 599        TPR_THRESHOLD,
 600        GUEST_RIP,
 601        GUEST_RSP,
 602        GUEST_CR0,
 603        GUEST_CR3,
 604        GUEST_CR4,
 605        GUEST_INTERRUPTIBILITY_INFO,
 606        GUEST_RFLAGS,
 607        GUEST_CS_SELECTOR,
 608        GUEST_CS_AR_BYTES,
 609        GUEST_CS_LIMIT,
 610        GUEST_CS_BASE,
 611        GUEST_ES_BASE,
 612        GUEST_BNDCFGS,
 613        CR0_GUEST_HOST_MASK,
 614        CR0_READ_SHADOW,
 615        CR4_READ_SHADOW,
 616        TSC_OFFSET,
 617        EXCEPTION_BITMAP,
 618        CPU_BASED_VM_EXEC_CONTROL,
 619        VM_ENTRY_EXCEPTION_ERROR_CODE,
 620        VM_ENTRY_INTR_INFO_FIELD,
 621        VM_ENTRY_INSTRUCTION_LEN,
 622        VM_ENTRY_EXCEPTION_ERROR_CODE,
 623        HOST_FS_BASE,
 624        HOST_GS_BASE,
 625        HOST_FS_SELECTOR,
 626        HOST_GS_SELECTOR
 627};
 628static int max_shadow_read_write_fields =
 629        ARRAY_SIZE(shadow_read_write_fields);
 630
 631static const unsigned short vmcs_field_to_offset_table[] = {
 632        FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 633        FIELD(POSTED_INTR_NV, posted_intr_nv),
 634        FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 635        FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 636        FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 637        FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 638        FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 639        FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 640        FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 641        FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 642        FIELD(GUEST_INTR_STATUS, guest_intr_status),
 643        FIELD(HOST_ES_SELECTOR, host_es_selector),
 644        FIELD(HOST_CS_SELECTOR, host_cs_selector),
 645        FIELD(HOST_SS_SELECTOR, host_ss_selector),
 646        FIELD(HOST_DS_SELECTOR, host_ds_selector),
 647        FIELD(HOST_FS_SELECTOR, host_fs_selector),
 648        FIELD(HOST_GS_SELECTOR, host_gs_selector),
 649        FIELD(HOST_TR_SELECTOR, host_tr_selector),
 650        FIELD64(IO_BITMAP_A, io_bitmap_a),
 651        FIELD64(IO_BITMAP_B, io_bitmap_b),
 652        FIELD64(MSR_BITMAP, msr_bitmap),
 653        FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 654        FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 655        FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 656        FIELD64(TSC_OFFSET, tsc_offset),
 657        FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 658        FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 659        FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
 660        FIELD64(EPT_POINTER, ept_pointer),
 661        FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
 662        FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
 663        FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
 664        FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
 665        FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
 666        FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 667        FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 668        FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 669        FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 670        FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 671        FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 672        FIELD64(GUEST_PDPTR0, guest_pdptr0),
 673        FIELD64(GUEST_PDPTR1, guest_pdptr1),
 674        FIELD64(GUEST_PDPTR2, guest_pdptr2),
 675        FIELD64(GUEST_PDPTR3, guest_pdptr3),
 676        FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
 677        FIELD64(HOST_IA32_PAT, host_ia32_pat),
 678        FIELD64(HOST_IA32_EFER, host_ia32_efer),
 679        FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 680        FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 681        FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 682        FIELD(EXCEPTION_BITMAP, exception_bitmap),
 683        FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 684        FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 685        FIELD(CR3_TARGET_COUNT, cr3_target_count),
 686        FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 687        FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 688        FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 689        FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 690        FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 691        FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 692        FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 693        FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 694        FIELD(TPR_THRESHOLD, tpr_threshold),
 695        FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 696        FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 697        FIELD(VM_EXIT_REASON, vm_exit_reason),
 698        FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 699        FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 700        FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 701        FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 702        FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 703        FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 704        FIELD(GUEST_ES_LIMIT, guest_es_limit),
 705        FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 706        FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 707        FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 708        FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 709        FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 710        FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 711        FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 712        FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 713        FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 714        FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 715        FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 716        FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 717        FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 718        FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 719        FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 720        FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 721        FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 722        FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 723        FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 724        FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 725        FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 726        FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 727        FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 728        FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 729        FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 730        FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 731        FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 732        FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 733        FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 734        FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 735        FIELD(EXIT_QUALIFICATION, exit_qualification),
 736        FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 737        FIELD(GUEST_CR0, guest_cr0),
 738        FIELD(GUEST_CR3, guest_cr3),
 739        FIELD(GUEST_CR4, guest_cr4),
 740        FIELD(GUEST_ES_BASE, guest_es_base),
 741        FIELD(GUEST_CS_BASE, guest_cs_base),
 742        FIELD(GUEST_SS_BASE, guest_ss_base),
 743        FIELD(GUEST_DS_BASE, guest_ds_base),
 744        FIELD(GUEST_FS_BASE, guest_fs_base),
 745        FIELD(GUEST_GS_BASE, guest_gs_base),
 746        FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 747        FIELD(GUEST_TR_BASE, guest_tr_base),
 748        FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 749        FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 750        FIELD(GUEST_DR7, guest_dr7),
 751        FIELD(GUEST_RSP, guest_rsp),
 752        FIELD(GUEST_RIP, guest_rip),
 753        FIELD(GUEST_RFLAGS, guest_rflags),
 754        FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 755        FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 756        FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 757        FIELD(HOST_CR0, host_cr0),
 758        FIELD(HOST_CR3, host_cr3),
 759        FIELD(HOST_CR4, host_cr4),
 760        FIELD(HOST_FS_BASE, host_fs_base),
 761        FIELD(HOST_GS_BASE, host_gs_base),
 762        FIELD(HOST_TR_BASE, host_tr_base),
 763        FIELD(HOST_GDTR_BASE, host_gdtr_base),
 764        FIELD(HOST_IDTR_BASE, host_idtr_base),
 765        FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 766        FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 767        FIELD(HOST_RSP, host_rsp),
 768        FIELD(HOST_RIP, host_rip),
 769};
 770
 771static inline short vmcs_field_to_offset(unsigned long field)
 772{
 773        BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
 774
 775        if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
 776            vmcs_field_to_offset_table[field] == 0)
 777                return -ENOENT;
 778
 779        return vmcs_field_to_offset_table[field];
 780}
 781
 782static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 783{
 784        return to_vmx(vcpu)->nested.current_vmcs12;
 785}
 786
 787static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
 788{
 789        struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
 790        if (is_error_page(page))
 791                return NULL;
 792
 793        return page;
 794}
 795
 796static void nested_release_page(struct page *page)
 797{
 798        kvm_release_page_dirty(page);
 799}
 800
 801static void nested_release_page_clean(struct page *page)
 802{
 803        kvm_release_page_clean(page);
 804}
 805
 806static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
 807static u64 construct_eptp(unsigned long root_hpa);
 808static void kvm_cpu_vmxon(u64 addr);
 809static void kvm_cpu_vmxoff(void);
 810static bool vmx_mpx_supported(void);
 811static bool vmx_xsaves_supported(void);
 812static int vmx_vm_has_apicv(struct kvm *kvm);
 813static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
 814static void vmx_set_segment(struct kvm_vcpu *vcpu,
 815                            struct kvm_segment *var, int seg);
 816static void vmx_get_segment(struct kvm_vcpu *vcpu,
 817                            struct kvm_segment *var, int seg);
 818static bool guest_state_valid(struct kvm_vcpu *vcpu);
 819static u32 vmx_segment_access_rights(struct kvm_segment *var);
 820static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
 821static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
 822static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 823static int alloc_identity_pagetable(struct kvm *kvm);
 824
 825static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 826static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 827/*
 828 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 829 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 830 */
 831static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 832static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
 833
 834static unsigned long *vmx_io_bitmap_a;
 835static unsigned long *vmx_io_bitmap_b;
 836static unsigned long *vmx_msr_bitmap_legacy;
 837static unsigned long *vmx_msr_bitmap_longmode;
 838static unsigned long *vmx_msr_bitmap_legacy_x2apic;
 839static unsigned long *vmx_msr_bitmap_longmode_x2apic;
 840static unsigned long *vmx_msr_bitmap_nested;
 841static unsigned long *vmx_vmread_bitmap;
 842static unsigned long *vmx_vmwrite_bitmap;
 843
 844static bool cpu_has_load_ia32_efer;
 845static bool cpu_has_load_perf_global_ctrl;
 846
 847static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 848static DEFINE_SPINLOCK(vmx_vpid_lock);
 849
 850static struct vmcs_config {
 851        int size;
 852        int order;
 853        u32 revision_id;
 854        u32 pin_based_exec_ctrl;
 855        u32 cpu_based_exec_ctrl;
 856        u32 cpu_based_2nd_exec_ctrl;
 857        u32 vmexit_ctrl;
 858        u32 vmentry_ctrl;
 859} vmcs_config;
 860
 861static struct vmx_capability {
 862        u32 ept;
 863        u32 vpid;
 864} vmx_capability;
 865
 866#define VMX_SEGMENT_FIELD(seg)                                  \
 867        [VCPU_SREG_##seg] = {                                   \
 868                .selector = GUEST_##seg##_SELECTOR,             \
 869                .base = GUEST_##seg##_BASE,                     \
 870                .limit = GUEST_##seg##_LIMIT,                   \
 871                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 872        }
 873
 874static const struct kvm_vmx_segment_field {
 875        unsigned selector;
 876        unsigned base;
 877        unsigned limit;
 878        unsigned ar_bytes;
 879} kvm_vmx_segment_fields[] = {
 880        VMX_SEGMENT_FIELD(CS),
 881        VMX_SEGMENT_FIELD(DS),
 882        VMX_SEGMENT_FIELD(ES),
 883        VMX_SEGMENT_FIELD(FS),
 884        VMX_SEGMENT_FIELD(GS),
 885        VMX_SEGMENT_FIELD(SS),
 886        VMX_SEGMENT_FIELD(TR),
 887        VMX_SEGMENT_FIELD(LDTR),
 888};
 889
 890static u64 host_efer;
 891
 892static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 893
 894/*
 895 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
 896 * away by decrementing the array size.
 897 */
 898static const u32 vmx_msr_index[] = {
 899#ifdef CONFIG_X86_64
 900        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 901#endif
 902        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 903};
 904
 905static inline bool is_page_fault(u32 intr_info)
 906{
 907        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 908                             INTR_INFO_VALID_MASK)) ==
 909                (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
 910}
 911
 912static inline bool is_no_device(u32 intr_info)
 913{
 914        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 915                             INTR_INFO_VALID_MASK)) ==
 916                (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
 917}
 918
 919static inline bool is_invalid_opcode(u32 intr_info)
 920{
 921        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 922                             INTR_INFO_VALID_MASK)) ==
 923                (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
 924}
 925
 926static inline bool is_external_interrupt(u32 intr_info)
 927{
 928        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 929                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 930}
 931
 932static inline bool is_machine_check(u32 intr_info)
 933{
 934        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 935                             INTR_INFO_VALID_MASK)) ==
 936                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 937}
 938
 939static inline bool cpu_has_vmx_msr_bitmap(void)
 940{
 941        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 942}
 943
 944static inline bool cpu_has_vmx_tpr_shadow(void)
 945{
 946        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 947}
 948
 949static inline bool vm_need_tpr_shadow(struct kvm *kvm)
 950{
 951        return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
 952}
 953
 954static inline bool cpu_has_secondary_exec_ctrls(void)
 955{
 956        return vmcs_config.cpu_based_exec_ctrl &
 957                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 958}
 959
 960static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 961{
 962        return vmcs_config.cpu_based_2nd_exec_ctrl &
 963                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 964}
 965
 966static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
 967{
 968        return vmcs_config.cpu_based_2nd_exec_ctrl &
 969                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 970}
 971
 972static inline bool cpu_has_vmx_apic_register_virt(void)
 973{
 974        return vmcs_config.cpu_based_2nd_exec_ctrl &
 975                SECONDARY_EXEC_APIC_REGISTER_VIRT;
 976}
 977
 978static inline bool cpu_has_vmx_virtual_intr_delivery(void)
 979{
 980        return vmcs_config.cpu_based_2nd_exec_ctrl &
 981                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
 982}
 983
 984static inline bool cpu_has_vmx_posted_intr(void)
 985{
 986        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
 987}
 988
 989static inline bool cpu_has_vmx_apicv(void)
 990{
 991        return cpu_has_vmx_apic_register_virt() &&
 992                cpu_has_vmx_virtual_intr_delivery() &&
 993                cpu_has_vmx_posted_intr();
 994}
 995
 996static inline bool cpu_has_vmx_flexpriority(void)
 997{
 998        return cpu_has_vmx_tpr_shadow() &&
 999                cpu_has_vmx_virtualize_apic_accesses();
1000}
1001
1002static inline bool cpu_has_vmx_ept_execute_only(void)
1003{
1004        return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1005}
1006
1007static inline bool cpu_has_vmx_ept_2m_page(void)
1008{
1009        return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1010}
1011
1012static inline bool cpu_has_vmx_ept_1g_page(void)
1013{
1014        return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1015}
1016
1017static inline bool cpu_has_vmx_ept_4levels(void)
1018{
1019        return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1020}
1021
1022static inline bool cpu_has_vmx_ept_ad_bits(void)
1023{
1024        return vmx_capability.ept & VMX_EPT_AD_BIT;
1025}
1026
1027static inline bool cpu_has_vmx_invept_context(void)
1028{
1029        return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1030}
1031
1032static inline bool cpu_has_vmx_invept_global(void)
1033{
1034        return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1035}
1036
1037static inline bool cpu_has_vmx_invvpid_single(void)
1038{
1039        return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1040}
1041
1042static inline bool cpu_has_vmx_invvpid_global(void)
1043{
1044        return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1045}
1046
1047static inline bool cpu_has_vmx_ept(void)
1048{
1049        return vmcs_config.cpu_based_2nd_exec_ctrl &
1050                SECONDARY_EXEC_ENABLE_EPT;
1051}
1052
1053static inline bool cpu_has_vmx_unrestricted_guest(void)
1054{
1055        return vmcs_config.cpu_based_2nd_exec_ctrl &
1056                SECONDARY_EXEC_UNRESTRICTED_GUEST;
1057}
1058
1059static inline bool cpu_has_vmx_ple(void)
1060{
1061        return vmcs_config.cpu_based_2nd_exec_ctrl &
1062                SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1063}
1064
1065static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1066{
1067        return flexpriority_enabled && irqchip_in_kernel(kvm);
1068}
1069
1070static inline bool cpu_has_vmx_vpid(void)
1071{
1072        return vmcs_config.cpu_based_2nd_exec_ctrl &
1073                SECONDARY_EXEC_ENABLE_VPID;
1074}
1075
1076static inline bool cpu_has_vmx_rdtscp(void)
1077{
1078        return vmcs_config.cpu_based_2nd_exec_ctrl &
1079                SECONDARY_EXEC_RDTSCP;
1080}
1081
1082static inline bool cpu_has_vmx_invpcid(void)
1083{
1084        return vmcs_config.cpu_based_2nd_exec_ctrl &
1085                SECONDARY_EXEC_ENABLE_INVPCID;
1086}
1087
1088static inline bool cpu_has_virtual_nmis(void)
1089{
1090        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1091}
1092
1093static inline bool cpu_has_vmx_wbinvd_exit(void)
1094{
1095        return vmcs_config.cpu_based_2nd_exec_ctrl &
1096                SECONDARY_EXEC_WBINVD_EXITING;
1097}
1098
1099static inline bool cpu_has_vmx_shadow_vmcs(void)
1100{
1101        u64 vmx_msr;
1102        rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1103        /* check if the cpu supports writing r/o exit information fields */
1104        if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1105                return false;
1106
1107        return vmcs_config.cpu_based_2nd_exec_ctrl &
1108                SECONDARY_EXEC_SHADOW_VMCS;
1109}
1110
1111static inline bool cpu_has_vmx_pml(void)
1112{
1113        return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1114}
1115
1116static inline bool report_flexpriority(void)
1117{
1118        return flexpriority_enabled;
1119}
1120
1121static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1122{
1123        return vmcs12->cpu_based_vm_exec_control & bit;
1124}
1125
1126static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1127{
1128        return (vmcs12->cpu_based_vm_exec_control &
1129                        CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1130                (vmcs12->secondary_vm_exec_control & bit);
1131}
1132
1133static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1134{
1135        return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1136}
1137
1138static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1139{
1140        return vmcs12->pin_based_vm_exec_control &
1141                PIN_BASED_VMX_PREEMPTION_TIMER;
1142}
1143
1144static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1145{
1146        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1147}
1148
1149static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1150{
1151        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1152                vmx_xsaves_supported();
1153}
1154
1155static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1156{
1157        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1158}
1159
1160static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1161{
1162        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1163}
1164
1165static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1166{
1167        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1168}
1169
1170static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1171{
1172        return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1173}
1174
1175static inline bool is_exception(u32 intr_info)
1176{
1177        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1178                == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1179}
1180
1181static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1182                              u32 exit_intr_info,
1183                              unsigned long exit_qualification);
1184static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1185                        struct vmcs12 *vmcs12,
1186                        u32 reason, unsigned long qualification);
1187
1188static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1189{
1190        int i;
1191
1192        for (i = 0; i < vmx->nmsrs; ++i)
1193                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1194                        return i;
1195        return -1;
1196}
1197
1198static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1199{
1200    struct {
1201        u64 vpid : 16;
1202        u64 rsvd : 48;
1203        u64 gva;
1204    } operand = { vpid, 0, gva };
1205
1206    asm volatile (__ex(ASM_VMX_INVVPID)
1207                  /* CF==1 or ZF==1 --> rc = -1 */
1208                  "; ja 1f ; ud2 ; 1:"
1209                  : : "a"(&operand), "c"(ext) : "cc", "memory");
1210}
1211
1212static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1213{
1214        struct {
1215                u64 eptp, gpa;
1216        } operand = {eptp, gpa};
1217
1218        asm volatile (__ex(ASM_VMX_INVEPT)
1219                        /* CF==1 or ZF==1 --> rc = -1 */
1220                        "; ja 1f ; ud2 ; 1:\n"
1221                        : : "a" (&operand), "c" (ext) : "cc", "memory");
1222}
1223
1224static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1225{
1226        int i;
1227
1228        i = __find_msr_index(vmx, msr);
1229        if (i >= 0)
1230                return &vmx->guest_msrs[i];
1231        return NULL;
1232}
1233
1234static void vmcs_clear(struct vmcs *vmcs)
1235{
1236        u64 phys_addr = __pa(vmcs);
1237        u8 error;
1238
1239        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1240                      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1241                      : "cc", "memory");
1242        if (error)
1243                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1244                       vmcs, phys_addr);
1245}
1246
1247static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1248{
1249        vmcs_clear(loaded_vmcs->vmcs);
1250        loaded_vmcs->cpu = -1;
1251        loaded_vmcs->launched = 0;
1252}
1253
1254static void vmcs_load(struct vmcs *vmcs)
1255{
1256        u64 phys_addr = __pa(vmcs);
1257        u8 error;
1258
1259        asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1260                        : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1261                        : "cc", "memory");
1262        if (error)
1263                printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1264                       vmcs, phys_addr);
1265}
1266
1267#ifdef CONFIG_KEXEC_CORE
1268/*
1269 * This bitmap is used to indicate whether the vmclear
1270 * operation is enabled on all cpus. All disabled by
1271 * default.
1272 */
1273static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1274
1275static inline void crash_enable_local_vmclear(int cpu)
1276{
1277        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1278}
1279
1280static inline void crash_disable_local_vmclear(int cpu)
1281{
1282        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1283}
1284
1285static inline int crash_local_vmclear_enabled(int cpu)
1286{
1287        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1288}
1289
1290static void crash_vmclear_local_loaded_vmcss(void)
1291{
1292        int cpu = raw_smp_processor_id();
1293        struct loaded_vmcs *v;
1294
1295        if (!crash_local_vmclear_enabled(cpu))
1296                return;
1297
1298        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1299                            loaded_vmcss_on_cpu_link)
1300                vmcs_clear(v->vmcs);
1301}
1302#else
1303static inline void crash_enable_local_vmclear(int cpu) { }
1304static inline void crash_disable_local_vmclear(int cpu) { }
1305#endif /* CONFIG_KEXEC_CORE */
1306
1307static void __loaded_vmcs_clear(void *arg)
1308{
1309        struct loaded_vmcs *loaded_vmcs = arg;
1310        int cpu = raw_smp_processor_id();
1311
1312        if (loaded_vmcs->cpu != cpu)
1313                return; /* vcpu migration can race with cpu offline */
1314        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1315                per_cpu(current_vmcs, cpu) = NULL;
1316        crash_disable_local_vmclear(cpu);
1317        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1318
1319        /*
1320         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1321         * is before setting loaded_vmcs->vcpu to -1 which is done in
1322         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1323         * then adds the vmcs into percpu list before it is deleted.
1324         */
1325        smp_wmb();
1326
1327        loaded_vmcs_init(loaded_vmcs);
1328        crash_enable_local_vmclear(cpu);
1329}
1330
1331static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1332{
1333        int cpu = loaded_vmcs->cpu;
1334
1335        if (cpu != -1)
1336                smp_call_function_single(cpu,
1337                         __loaded_vmcs_clear, loaded_vmcs, 1);
1338}
1339
1340static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1341{
1342        if (vmx->vpid == 0)
1343                return;
1344
1345        if (cpu_has_vmx_invvpid_single())
1346                __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1347}
1348
1349static inline void vpid_sync_vcpu_global(void)
1350{
1351        if (cpu_has_vmx_invvpid_global())
1352                __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1353}
1354
1355static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1356{
1357        if (cpu_has_vmx_invvpid_single())
1358                vpid_sync_vcpu_single(vmx);
1359        else
1360                vpid_sync_vcpu_global();
1361}
1362
1363static inline void ept_sync_global(void)
1364{
1365        if (cpu_has_vmx_invept_global())
1366                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1367}
1368
1369static inline void ept_sync_context(u64 eptp)
1370{
1371        if (enable_ept) {
1372                if (cpu_has_vmx_invept_context())
1373                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1374                else
1375                        ept_sync_global();
1376        }
1377}
1378
1379static __always_inline unsigned long vmcs_readl(unsigned long field)
1380{
1381        unsigned long value;
1382
1383        asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1384                      : "=a"(value) : "d"(field) : "cc");
1385        return value;
1386}
1387
1388static __always_inline u16 vmcs_read16(unsigned long field)
1389{
1390        return vmcs_readl(field);
1391}
1392
1393static __always_inline u32 vmcs_read32(unsigned long field)
1394{
1395        return vmcs_readl(field);
1396}
1397
1398static __always_inline u64 vmcs_read64(unsigned long field)
1399{
1400#ifdef CONFIG_X86_64
1401        return vmcs_readl(field);
1402#else
1403        return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1404#endif
1405}
1406
1407static noinline void vmwrite_error(unsigned long field, unsigned long value)
1408{
1409        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1410               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1411        dump_stack();
1412}
1413
1414static void vmcs_writel(unsigned long field, unsigned long value)
1415{
1416        u8 error;
1417
1418        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1419                       : "=q"(error) : "a"(value), "d"(field) : "cc");
1420        if (unlikely(error))
1421                vmwrite_error(field, value);
1422}
1423
1424static void vmcs_write16(unsigned long field, u16 value)
1425{
1426        vmcs_writel(field, value);
1427}
1428
1429static void vmcs_write32(unsigned long field, u32 value)
1430{
1431        vmcs_writel(field, value);
1432}
1433
1434static void vmcs_write64(unsigned long field, u64 value)
1435{
1436        vmcs_writel(field, value);
1437#ifndef CONFIG_X86_64
1438        asm volatile ("");
1439        vmcs_writel(field+1, value >> 32);
1440#endif
1441}
1442
1443static void vmcs_clear_bits(unsigned long field, u32 mask)
1444{
1445        vmcs_writel(field, vmcs_readl(field) & ~mask);
1446}
1447
1448static void vmcs_set_bits(unsigned long field, u32 mask)
1449{
1450        vmcs_writel(field, vmcs_readl(field) | mask);
1451}
1452
1453static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1454{
1455        vmcs_write32(VM_ENTRY_CONTROLS, val);
1456        vmx->vm_entry_controls_shadow = val;
1457}
1458
1459static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1460{
1461        if (vmx->vm_entry_controls_shadow != val)
1462                vm_entry_controls_init(vmx, val);
1463}
1464
1465static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1466{
1467        return vmx->vm_entry_controls_shadow;
1468}
1469
1470
1471static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1472{
1473        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1474}
1475
1476static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1477{
1478        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1479}
1480
1481static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1482{
1483        vmcs_write32(VM_EXIT_CONTROLS, val);
1484        vmx->vm_exit_controls_shadow = val;
1485}
1486
1487static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1488{
1489        if (vmx->vm_exit_controls_shadow != val)
1490                vm_exit_controls_init(vmx, val);
1491}
1492
1493static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1494{
1495        return vmx->vm_exit_controls_shadow;
1496}
1497
1498
1499static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1500{
1501        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1502}
1503
1504static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1505{
1506        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1507}
1508
1509static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1510{
1511        vmx->segment_cache.bitmask = 0;
1512}
1513
1514static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1515                                       unsigned field)
1516{
1517        bool ret;
1518        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1519
1520        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1521                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1522                vmx->segment_cache.bitmask = 0;
1523        }
1524        ret = vmx->segment_cache.bitmask & mask;
1525        vmx->segment_cache.bitmask |= mask;
1526        return ret;
1527}
1528
1529static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1530{
1531        u16 *p = &vmx->segment_cache.seg[seg].selector;
1532
1533        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1534                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1535        return *p;
1536}
1537
1538static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1539{
1540        ulong *p = &vmx->segment_cache.seg[seg].base;
1541
1542        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1543                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1544        return *p;
1545}
1546
1547static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1548{
1549        u32 *p = &vmx->segment_cache.seg[seg].limit;
1550
1551        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1552                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1553        return *p;
1554}
1555
1556static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1557{
1558        u32 *p = &vmx->segment_cache.seg[seg].ar;
1559
1560        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1561                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1562        return *p;
1563}
1564
1565static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1566{
1567        u32 eb;
1568
1569        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1570             (1u << NM_VECTOR) | (1u << DB_VECTOR);
1571        if ((vcpu->guest_debug &
1572             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1573            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1574                eb |= 1u << BP_VECTOR;
1575        if (to_vmx(vcpu)->rmode.vm86_active)
1576                eb = ~0;
1577        if (enable_ept)
1578                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1579        if (vcpu->fpu_active)
1580                eb &= ~(1u << NM_VECTOR);
1581
1582        /* When we are running a nested L2 guest and L1 specified for it a
1583         * certain exception bitmap, we must trap the same exceptions and pass
1584         * them to L1. When running L2, we will only handle the exceptions
1585         * specified above if L1 did not want them.
1586         */
1587        if (is_guest_mode(vcpu))
1588                eb |= get_vmcs12(vcpu)->exception_bitmap;
1589
1590        vmcs_write32(EXCEPTION_BITMAP, eb);
1591}
1592
1593static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1594                unsigned long entry, unsigned long exit)
1595{
1596        vm_entry_controls_clearbit(vmx, entry);
1597        vm_exit_controls_clearbit(vmx, exit);
1598}
1599
1600static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1601{
1602        unsigned i;
1603        struct msr_autoload *m = &vmx->msr_autoload;
1604
1605        switch (msr) {
1606        case MSR_EFER:
1607                if (cpu_has_load_ia32_efer) {
1608                        clear_atomic_switch_msr_special(vmx,
1609                                        VM_ENTRY_LOAD_IA32_EFER,
1610                                        VM_EXIT_LOAD_IA32_EFER);
1611                        return;
1612                }
1613                break;
1614        case MSR_CORE_PERF_GLOBAL_CTRL:
1615                if (cpu_has_load_perf_global_ctrl) {
1616                        clear_atomic_switch_msr_special(vmx,
1617                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1618                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1619                        return;
1620                }
1621                break;
1622        }
1623
1624        for (i = 0; i < m->nr; ++i)
1625                if (m->guest[i].index == msr)
1626                        break;
1627
1628        if (i == m->nr)
1629                return;
1630        --m->nr;
1631        m->guest[i] = m->guest[m->nr];
1632        m->host[i] = m->host[m->nr];
1633        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1634        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1635}
1636
1637static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1638                unsigned long entry, unsigned long exit,
1639                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1640                u64 guest_val, u64 host_val)
1641{
1642        vmcs_write64(guest_val_vmcs, guest_val);
1643        vmcs_write64(host_val_vmcs, host_val);
1644        vm_entry_controls_setbit(vmx, entry);
1645        vm_exit_controls_setbit(vmx, exit);
1646}
1647
1648static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1649                                  u64 guest_val, u64 host_val)
1650{
1651        unsigned i;
1652        struct msr_autoload *m = &vmx->msr_autoload;
1653
1654        switch (msr) {
1655        case MSR_EFER:
1656                if (cpu_has_load_ia32_efer) {
1657                        add_atomic_switch_msr_special(vmx,
1658                                        VM_ENTRY_LOAD_IA32_EFER,
1659                                        VM_EXIT_LOAD_IA32_EFER,
1660                                        GUEST_IA32_EFER,
1661                                        HOST_IA32_EFER,
1662                                        guest_val, host_val);
1663                        return;
1664                }
1665                break;
1666        case MSR_CORE_PERF_GLOBAL_CTRL:
1667                if (cpu_has_load_perf_global_ctrl) {
1668                        add_atomic_switch_msr_special(vmx,
1669                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1670                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1671                                        GUEST_IA32_PERF_GLOBAL_CTRL,
1672                                        HOST_IA32_PERF_GLOBAL_CTRL,
1673                                        guest_val, host_val);
1674                        return;
1675                }
1676                break;
1677        }
1678
1679        for (i = 0; i < m->nr; ++i)
1680                if (m->guest[i].index == msr)
1681                        break;
1682
1683        if (i == NR_AUTOLOAD_MSRS) {
1684                printk_once(KERN_WARNING "Not enough msr switch entries. "
1685                                "Can't add msr %x\n", msr);
1686                return;
1687        } else if (i == m->nr) {
1688                ++m->nr;
1689                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1690                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1691        }
1692
1693        m->guest[i].index = msr;
1694        m->guest[i].value = guest_val;
1695        m->host[i].index = msr;
1696        m->host[i].value = host_val;
1697}
1698
1699static void reload_tss(void)
1700{
1701        /*
1702         * VT restores TR but not its size.  Useless.
1703         */
1704        struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1705        struct desc_struct *descs;
1706
1707        descs = (void *)gdt->address;
1708        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1709        load_TR_desc();
1710}
1711
1712static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1713{
1714        u64 guest_efer;
1715        u64 ignore_bits;
1716
1717        guest_efer = vmx->vcpu.arch.efer;
1718
1719        /*
1720         * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1721         * outside long mode
1722         */
1723        ignore_bits = EFER_NX | EFER_SCE;
1724#ifdef CONFIG_X86_64
1725        ignore_bits |= EFER_LMA | EFER_LME;
1726        /* SCE is meaningful only in long mode on Intel */
1727        if (guest_efer & EFER_LMA)
1728                ignore_bits &= ~(u64)EFER_SCE;
1729#endif
1730        guest_efer &= ~ignore_bits;
1731        guest_efer |= host_efer & ignore_bits;
1732        vmx->guest_msrs[efer_offset].data = guest_efer;
1733        vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1734
1735        clear_atomic_switch_msr(vmx, MSR_EFER);
1736
1737        /*
1738         * On EPT, we can't emulate NX, so we must switch EFER atomically.
1739         * On CPUs that support "load IA32_EFER", always switch EFER
1740         * atomically, since it's faster than switching it manually.
1741         */
1742        if (cpu_has_load_ia32_efer ||
1743            (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1744                guest_efer = vmx->vcpu.arch.efer;
1745                if (!(guest_efer & EFER_LMA))
1746                        guest_efer &= ~EFER_LME;
1747                if (guest_efer != host_efer)
1748                        add_atomic_switch_msr(vmx, MSR_EFER,
1749                                              guest_efer, host_efer);
1750                return false;
1751        }
1752
1753        return true;
1754}
1755
1756static unsigned long segment_base(u16 selector)
1757{
1758        struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1759        struct desc_struct *d;
1760        unsigned long table_base;
1761        unsigned long v;
1762
1763        if (!(selector & ~3))
1764                return 0;
1765
1766        table_base = gdt->address;
1767
1768        if (selector & 4) {           /* from ldt */
1769                u16 ldt_selector = kvm_read_ldt();
1770
1771                if (!(ldt_selector & ~3))
1772                        return 0;
1773
1774                table_base = segment_base(ldt_selector);
1775        }
1776        d = (struct desc_struct *)(table_base + (selector & ~7));
1777        v = get_desc_base(d);
1778#ifdef CONFIG_X86_64
1779       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1780               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1781#endif
1782        return v;
1783}
1784
1785static inline unsigned long kvm_read_tr_base(void)
1786{
1787        u16 tr;
1788        asm("str %0" : "=g"(tr));
1789        return segment_base(tr);
1790}
1791
1792static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1793{
1794        struct vcpu_vmx *vmx = to_vmx(vcpu);
1795        int i;
1796
1797        if (vmx->host_state.loaded)
1798                return;
1799
1800        vmx->host_state.loaded = 1;
1801        /*
1802         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1803         * allow segment selectors with cpl > 0 or ti == 1.
1804         */
1805        vmx->host_state.ldt_sel = kvm_read_ldt();
1806        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1807        savesegment(fs, vmx->host_state.fs_sel);
1808        if (!(vmx->host_state.fs_sel & 7)) {
1809                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1810                vmx->host_state.fs_reload_needed = 0;
1811        } else {
1812                vmcs_write16(HOST_FS_SELECTOR, 0);
1813                vmx->host_state.fs_reload_needed = 1;
1814        }
1815        savesegment(gs, vmx->host_state.gs_sel);
1816        if (!(vmx->host_state.gs_sel & 7))
1817                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1818        else {
1819                vmcs_write16(HOST_GS_SELECTOR, 0);
1820                vmx->host_state.gs_ldt_reload_needed = 1;
1821        }
1822
1823#ifdef CONFIG_X86_64
1824        savesegment(ds, vmx->host_state.ds_sel);
1825        savesegment(es, vmx->host_state.es_sel);
1826#endif
1827
1828#ifdef CONFIG_X86_64
1829        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1830        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1831#else
1832        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1833        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1834#endif
1835
1836#ifdef CONFIG_X86_64
1837        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1838        if (is_long_mode(&vmx->vcpu))
1839                wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1840#endif
1841        if (boot_cpu_has(X86_FEATURE_MPX))
1842                rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1843        for (i = 0; i < vmx->save_nmsrs; ++i)
1844                kvm_set_shared_msr(vmx->guest_msrs[i].index,
1845                                   vmx->guest_msrs[i].data,
1846                                   vmx->guest_msrs[i].mask);
1847}
1848
1849static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1850{
1851        if (!vmx->host_state.loaded)
1852                return;
1853
1854        ++vmx->vcpu.stat.host_state_reload;
1855        vmx->host_state.loaded = 0;
1856#ifdef CONFIG_X86_64
1857        if (is_long_mode(&vmx->vcpu))
1858                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1859#endif
1860        if (vmx->host_state.gs_ldt_reload_needed) {
1861                kvm_load_ldt(vmx->host_state.ldt_sel);
1862#ifdef CONFIG_X86_64
1863                load_gs_index(vmx->host_state.gs_sel);
1864#else
1865                loadsegment(gs, vmx->host_state.gs_sel);
1866#endif
1867        }
1868        if (vmx->host_state.fs_reload_needed)
1869                loadsegment(fs, vmx->host_state.fs_sel);
1870#ifdef CONFIG_X86_64
1871        if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1872                loadsegment(ds, vmx->host_state.ds_sel);
1873                loadsegment(es, vmx->host_state.es_sel);
1874        }
1875#endif
1876        reload_tss();
1877#ifdef CONFIG_X86_64
1878        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1879#endif
1880        if (vmx->host_state.msr_host_bndcfgs)
1881                wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1882        /*
1883         * If the FPU is not active (through the host task or
1884         * the guest vcpu), then restore the cr0.TS bit.
1885         */
1886        if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
1887                stts();
1888        load_gdt(this_cpu_ptr(&host_gdt));
1889}
1890
1891static void vmx_load_host_state(struct vcpu_vmx *vmx)
1892{
1893        preempt_disable();
1894        __vmx_load_host_state(vmx);
1895        preempt_enable();
1896}
1897
1898/*
1899 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1900 * vcpu mutex is already taken.
1901 */
1902static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1903{
1904        struct vcpu_vmx *vmx = to_vmx(vcpu);
1905        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1906
1907        if (!vmm_exclusive)
1908                kvm_cpu_vmxon(phys_addr);
1909        else if (vmx->loaded_vmcs->cpu != cpu)
1910                loaded_vmcs_clear(vmx->loaded_vmcs);
1911
1912        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1913                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1914                vmcs_load(vmx->loaded_vmcs->vmcs);
1915        }
1916
1917        if (vmx->loaded_vmcs->cpu != cpu) {
1918                struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1919                unsigned long sysenter_esp;
1920
1921                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1922                local_irq_disable();
1923                crash_disable_local_vmclear(cpu);
1924
1925                /*
1926                 * Read loaded_vmcs->cpu should be before fetching
1927                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1928                 * See the comments in __loaded_vmcs_clear().
1929                 */
1930                smp_rmb();
1931
1932                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1933                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1934                crash_enable_local_vmclear(cpu);
1935                local_irq_enable();
1936
1937                /*
1938                 * Linux uses per-cpu TSS and GDT, so set these when switching
1939                 * processors.
1940                 */
1941                vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1942                vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1943
1944                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1945                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1946                vmx->loaded_vmcs->cpu = cpu;
1947        }
1948}
1949
1950static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1951{
1952        __vmx_load_host_state(to_vmx(vcpu));
1953        if (!vmm_exclusive) {
1954                __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1955                vcpu->cpu = -1;
1956                kvm_cpu_vmxoff();
1957        }
1958}
1959
1960static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1961{
1962        ulong cr0;
1963
1964        if (vcpu->fpu_active)
1965                return;
1966        vcpu->fpu_active = 1;
1967        cr0 = vmcs_readl(GUEST_CR0);
1968        cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1969        cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1970        vmcs_writel(GUEST_CR0, cr0);
1971        update_exception_bitmap(vcpu);
1972        vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1973        if (is_guest_mode(vcpu))
1974                vcpu->arch.cr0_guest_owned_bits &=
1975                        ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1976        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1977}
1978
1979static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1980
1981/*
1982 * Return the cr0 value that a nested guest would read. This is a combination
1983 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1984 * its hypervisor (cr0_read_shadow).
1985 */
1986static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1987{
1988        return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1989                (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1990}
1991static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1992{
1993        return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1994                (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1995}
1996
1997static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1998{
1999        /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2000         * set this *before* calling this function.
2001         */
2002        vmx_decache_cr0_guest_bits(vcpu);
2003        vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2004        update_exception_bitmap(vcpu);
2005        vcpu->arch.cr0_guest_owned_bits = 0;
2006        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2007        if (is_guest_mode(vcpu)) {
2008                /*
2009                 * L1's specified read shadow might not contain the TS bit,
2010                 * so now that we turned on shadowing of this bit, we need to
2011                 * set this bit of the shadow. Like in nested_vmx_run we need
2012                 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2013                 * up-to-date here because we just decached cr0.TS (and we'll
2014                 * only update vmcs12->guest_cr0 on nested exit).
2015                 */
2016                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2017                vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2018                        (vcpu->arch.cr0 & X86_CR0_TS);
2019                vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2020        } else
2021                vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2022}
2023
2024static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2025{
2026        unsigned long rflags, save_rflags;
2027
2028        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2029                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2030                rflags = vmcs_readl(GUEST_RFLAGS);
2031                if (to_vmx(vcpu)->rmode.vm86_active) {
2032                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2033                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2034                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2035                }
2036                to_vmx(vcpu)->rflags = rflags;
2037        }
2038        return to_vmx(vcpu)->rflags;
2039}
2040
2041static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2042{
2043        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2044        to_vmx(vcpu)->rflags = rflags;
2045        if (to_vmx(vcpu)->rmode.vm86_active) {
2046                to_vmx(vcpu)->rmode.save_rflags = rflags;
2047                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2048        }
2049        vmcs_writel(GUEST_RFLAGS, rflags);
2050}
2051
2052static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2053{
2054        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2055        int ret = 0;
2056
2057        if (interruptibility & GUEST_INTR_STATE_STI)
2058                ret |= KVM_X86_SHADOW_INT_STI;
2059        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2060                ret |= KVM_X86_SHADOW_INT_MOV_SS;
2061
2062        return ret;
2063}
2064
2065static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2066{
2067        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2068        u32 interruptibility = interruptibility_old;
2069
2070        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2071
2072        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2073                interruptibility |= GUEST_INTR_STATE_MOV_SS;
2074        else if (mask & KVM_X86_SHADOW_INT_STI)
2075                interruptibility |= GUEST_INTR_STATE_STI;
2076
2077        if ((interruptibility != interruptibility_old))
2078                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2079}
2080
2081static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2082{
2083        unsigned long rip;
2084
2085        rip = kvm_rip_read(vcpu);
2086        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2087        kvm_rip_write(vcpu, rip);
2088
2089        /* skipping an emulated instruction also counts */
2090        vmx_set_interrupt_shadow(vcpu, 0);
2091}
2092
2093/*
2094 * KVM wants to inject page-faults which it got to the guest. This function
2095 * checks whether in a nested guest, we need to inject them to L1 or L2.
2096 */
2097static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2098{
2099        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2100
2101        if (!(vmcs12->exception_bitmap & (1u << nr)))
2102                return 0;
2103
2104        nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2105                          vmcs_read32(VM_EXIT_INTR_INFO),
2106                          vmcs_readl(EXIT_QUALIFICATION));
2107        return 1;
2108}
2109
2110static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2111                                bool has_error_code, u32 error_code,
2112                                bool reinject)
2113{
2114        struct vcpu_vmx *vmx = to_vmx(vcpu);
2115        u32 intr_info = nr | INTR_INFO_VALID_MASK;
2116
2117        if (!reinject && is_guest_mode(vcpu) &&
2118            nested_vmx_check_exception(vcpu, nr))
2119                return;
2120
2121        if (has_error_code) {
2122                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2123                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2124        }
2125
2126        if (vmx->rmode.vm86_active) {
2127                int inc_eip = 0;
2128                if (kvm_exception_is_soft(nr))
2129                        inc_eip = vcpu->arch.event_exit_inst_len;
2130                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2131                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2132                return;
2133        }
2134
2135        if (kvm_exception_is_soft(nr)) {
2136                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2137                             vmx->vcpu.arch.event_exit_inst_len);
2138                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2139        } else
2140                intr_info |= INTR_TYPE_HARD_EXCEPTION;
2141
2142        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2143}
2144
2145static bool vmx_rdtscp_supported(void)
2146{
2147        return cpu_has_vmx_rdtscp();
2148}
2149
2150static bool vmx_invpcid_supported(void)
2151{
2152        return cpu_has_vmx_invpcid() && enable_ept;
2153}
2154
2155/*
2156 * Swap MSR entry in host/guest MSR entry array.
2157 */
2158static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2159{
2160        struct shared_msr_entry tmp;
2161
2162        tmp = vmx->guest_msrs[to];
2163        vmx->guest_msrs[to] = vmx->guest_msrs[from];
2164        vmx->guest_msrs[from] = tmp;
2165}
2166
2167static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2168{
2169        unsigned long *msr_bitmap;
2170
2171        if (is_guest_mode(vcpu))
2172                msr_bitmap = vmx_msr_bitmap_nested;
2173        else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
2174                if (is_long_mode(vcpu))
2175                        msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2176                else
2177                        msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2178        } else {
2179                if (is_long_mode(vcpu))
2180                        msr_bitmap = vmx_msr_bitmap_longmode;
2181                else
2182                        msr_bitmap = vmx_msr_bitmap_legacy;
2183        }
2184
2185        vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2186}
2187
2188/*
2189 * Set up the vmcs to automatically save and restore system
2190 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2191 * mode, as fiddling with msrs is very expensive.
2192 */
2193static void setup_msrs(struct vcpu_vmx *vmx)
2194{
2195        int save_nmsrs, index;
2196
2197        save_nmsrs = 0;
2198#ifdef CONFIG_X86_64
2199        if (is_long_mode(&vmx->vcpu)) {
2200                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2201                if (index >= 0)
2202                        move_msr_up(vmx, index, save_nmsrs++);
2203                index = __find_msr_index(vmx, MSR_LSTAR);
2204                if (index >= 0)
2205                        move_msr_up(vmx, index, save_nmsrs++);
2206                index = __find_msr_index(vmx, MSR_CSTAR);
2207                if (index >= 0)
2208                        move_msr_up(vmx, index, save_nmsrs++);
2209                index = __find_msr_index(vmx, MSR_TSC_AUX);
2210                if (index >= 0 && vmx->rdtscp_enabled)
2211                        move_msr_up(vmx, index, save_nmsrs++);
2212                /*
2213                 * MSR_STAR is only needed on long mode guests, and only
2214                 * if efer.sce is enabled.
2215                 */
2216                index = __find_msr_index(vmx, MSR_STAR);
2217                if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2218                        move_msr_up(vmx, index, save_nmsrs++);
2219        }
2220#endif
2221        index = __find_msr_index(vmx, MSR_EFER);
2222        if (index >= 0 && update_transition_efer(vmx, index))
2223                move_msr_up(vmx, index, save_nmsrs++);
2224
2225        vmx->save_nmsrs = save_nmsrs;
2226
2227        if (cpu_has_vmx_msr_bitmap())
2228                vmx_set_msr_bitmap(&vmx->vcpu);
2229}
2230
2231/*
2232 * reads and returns guest's timestamp counter "register"
2233 * guest_tsc = host_tsc + tsc_offset    -- 21.3
2234 */
2235static u64 guest_read_tsc(void)
2236{
2237        u64 host_tsc, tsc_offset;
2238
2239        host_tsc = rdtsc();
2240        tsc_offset = vmcs_read64(TSC_OFFSET);
2241        return host_tsc + tsc_offset;
2242}
2243
2244/*
2245 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2246 * counter, even if a nested guest (L2) is currently running.
2247 */
2248static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2249{
2250        u64 tsc_offset;
2251
2252        tsc_offset = is_guest_mode(vcpu) ?
2253                to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2254                vmcs_read64(TSC_OFFSET);
2255        return host_tsc + tsc_offset;
2256}
2257
2258/*
2259 * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2260 * software catchup for faster rates on slower CPUs.
2261 */
2262static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2263{
2264        if (!scale)
2265                return;
2266
2267        if (user_tsc_khz > tsc_khz) {
2268                vcpu->arch.tsc_catchup = 1;
2269                vcpu->arch.tsc_always_catchup = 1;
2270        } else
2271                WARN(1, "user requested TSC rate below hardware speed\n");
2272}
2273
2274static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2275{
2276        return vmcs_read64(TSC_OFFSET);
2277}
2278
2279/*
2280 * writes 'offset' into guest's timestamp counter offset register
2281 */
2282static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2283{
2284        if (is_guest_mode(vcpu)) {
2285                /*
2286                 * We're here if L1 chose not to trap WRMSR to TSC. According
2287                 * to the spec, this should set L1's TSC; The offset that L1
2288                 * set for L2 remains unchanged, and still needs to be added
2289                 * to the newly set TSC to get L2's TSC.
2290                 */
2291                struct vmcs12 *vmcs12;
2292                to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2293                /* recalculate vmcs02.TSC_OFFSET: */
2294                vmcs12 = get_vmcs12(vcpu);
2295                vmcs_write64(TSC_OFFSET, offset +
2296                        (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2297                         vmcs12->tsc_offset : 0));
2298        } else {
2299                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2300                                           vmcs_read64(TSC_OFFSET), offset);
2301                vmcs_write64(TSC_OFFSET, offset);
2302        }
2303}
2304
2305static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2306{
2307        u64 offset = vmcs_read64(TSC_OFFSET);
2308
2309        vmcs_write64(TSC_OFFSET, offset + adjustment);
2310        if (is_guest_mode(vcpu)) {
2311                /* Even when running L2, the adjustment needs to apply to L1 */
2312                to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2313        } else
2314                trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2315                                           offset + adjustment);
2316}
2317
2318static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2319{
2320        return target_tsc - rdtsc();
2321}
2322
2323static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2324{
2325        struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2326        return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2327}
2328
2329/*
2330 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2331 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2332 * all guests if the "nested" module option is off, and can also be disabled
2333 * for a single guest by disabling its VMX cpuid bit.
2334 */
2335static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2336{
2337        return nested && guest_cpuid_has_vmx(vcpu);
2338}
2339
2340/*
2341 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2342 * returned for the various VMX controls MSRs when nested VMX is enabled.
2343 * The same values should also be used to verify that vmcs12 control fields are
2344 * valid during nested entry from L1 to L2.
2345 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2346 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2347 * bit in the high half is on if the corresponding bit in the control field
2348 * may be on. See also vmx_control_verify().
2349 */
2350static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2351{
2352        /*
2353         * Note that as a general rule, the high half of the MSRs (bits in
2354         * the control fields which may be 1) should be initialized by the
2355         * intersection of the underlying hardware's MSR (i.e., features which
2356         * can be supported) and the list of features we want to expose -
2357         * because they are known to be properly supported in our code.
2358         * Also, usually, the low half of the MSRs (bits which must be 1) can
2359         * be set to 0, meaning that L1 may turn off any of these bits. The
2360         * reason is that if one of these bits is necessary, it will appear
2361         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2362         * fields of vmcs01 and vmcs02, will turn these bits off - and
2363         * nested_vmx_exit_handled() will not pass related exits to L1.
2364         * These rules have exceptions below.
2365         */
2366
2367        /* pin-based controls */
2368        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2369                vmx->nested.nested_vmx_pinbased_ctls_low,
2370                vmx->nested.nested_vmx_pinbased_ctls_high);
2371        vmx->nested.nested_vmx_pinbased_ctls_low |=
2372                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2373        vmx->nested.nested_vmx_pinbased_ctls_high &=
2374                PIN_BASED_EXT_INTR_MASK |
2375                PIN_BASED_NMI_EXITING |
2376                PIN_BASED_VIRTUAL_NMIS;
2377        vmx->nested.nested_vmx_pinbased_ctls_high |=
2378                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2379                PIN_BASED_VMX_PREEMPTION_TIMER;
2380        if (vmx_vm_has_apicv(vmx->vcpu.kvm))
2381                vmx->nested.nested_vmx_pinbased_ctls_high |=
2382                        PIN_BASED_POSTED_INTR;
2383
2384        /* exit controls */
2385        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2386                vmx->nested.nested_vmx_exit_ctls_low,
2387                vmx->nested.nested_vmx_exit_ctls_high);
2388        vmx->nested.nested_vmx_exit_ctls_low =
2389                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2390
2391        vmx->nested.nested_vmx_exit_ctls_high &=
2392#ifdef CONFIG_X86_64
2393                VM_EXIT_HOST_ADDR_SPACE_SIZE |
2394#endif
2395                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2396        vmx->nested.nested_vmx_exit_ctls_high |=
2397                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2398                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2399                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2400
2401        if (vmx_mpx_supported())
2402                vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2403
2404        /* We support free control of debug control saving. */
2405        vmx->nested.nested_vmx_true_exit_ctls_low =
2406                vmx->nested.nested_vmx_exit_ctls_low &
2407                ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2408
2409        /* entry controls */
2410        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2411                vmx->nested.nested_vmx_entry_ctls_low,
2412                vmx->nested.nested_vmx_entry_ctls_high);
2413        vmx->nested.nested_vmx_entry_ctls_low =
2414                VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2415        vmx->nested.nested_vmx_entry_ctls_high &=
2416#ifdef CONFIG_X86_64
2417                VM_ENTRY_IA32E_MODE |
2418#endif
2419                VM_ENTRY_LOAD_IA32_PAT;
2420        vmx->nested.nested_vmx_entry_ctls_high |=
2421                (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2422        if (vmx_mpx_supported())
2423                vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2424
2425        /* We support free control of debug control loading. */
2426        vmx->nested.nested_vmx_true_entry_ctls_low =
2427                vmx->nested.nested_vmx_entry_ctls_low &
2428                ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2429
2430        /* cpu-based controls */
2431        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2432                vmx->nested.nested_vmx_procbased_ctls_low,
2433                vmx->nested.nested_vmx_procbased_ctls_high);
2434        vmx->nested.nested_vmx_procbased_ctls_low =
2435                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2436        vmx->nested.nested_vmx_procbased_ctls_high &=
2437                CPU_BASED_VIRTUAL_INTR_PENDING |
2438                CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2439                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2440                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2441                CPU_BASED_CR3_STORE_EXITING |
2442#ifdef CONFIG_X86_64
2443                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2444#endif
2445                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2446                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2447                CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2448                CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2449                CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2450        /*
2451         * We can allow some features even when not supported by the
2452         * hardware. For example, L1 can specify an MSR bitmap - and we
2453         * can use it to avoid exits to L1 - even when L0 runs L2
2454         * without MSR bitmaps.
2455         */
2456        vmx->nested.nested_vmx_procbased_ctls_high |=
2457                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2458                CPU_BASED_USE_MSR_BITMAPS;
2459
2460        /* We support free control of CR3 access interception. */
2461        vmx->nested.nested_vmx_true_procbased_ctls_low =
2462                vmx->nested.nested_vmx_procbased_ctls_low &
2463                ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2464
2465        /* secondary cpu-based controls */
2466        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2467                vmx->nested.nested_vmx_secondary_ctls_low,
2468                vmx->nested.nested_vmx_secondary_ctls_high);
2469        vmx->nested.nested_vmx_secondary_ctls_low = 0;
2470        vmx->nested.nested_vmx_secondary_ctls_high &=
2471                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2472                SECONDARY_EXEC_RDTSCP |
2473                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2475                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2476                SECONDARY_EXEC_WBINVD_EXITING |
2477                SECONDARY_EXEC_XSAVES;
2478
2479        if (enable_ept) {
2480                /* nested EPT: emulate EPT also to L1 */
2481                vmx->nested.nested_vmx_secondary_ctls_high |=
2482                        SECONDARY_EXEC_ENABLE_EPT;
2483                vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2484                         VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2485                         VMX_EPT_INVEPT_BIT;
2486                vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2487                /*
2488                 * For nested guests, we don't do anything specific
2489                 * for single context invalidation. Hence, only advertise
2490                 * support for global context invalidation.
2491                 */
2492                vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2493        } else
2494                vmx->nested.nested_vmx_ept_caps = 0;
2495
2496        if (enable_unrestricted_guest)
2497                vmx->nested.nested_vmx_secondary_ctls_high |=
2498                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
2499
2500        /* miscellaneous data */
2501        rdmsr(MSR_IA32_VMX_MISC,
2502                vmx->nested.nested_vmx_misc_low,
2503                vmx->nested.nested_vmx_misc_high);
2504        vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2505        vmx->nested.nested_vmx_misc_low |=
2506                VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2507                VMX_MISC_ACTIVITY_HLT;
2508        vmx->nested.nested_vmx_misc_high = 0;
2509}
2510
2511static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2512{
2513        /*
2514         * Bits 0 in high must be 0, and bits 1 in low must be 1.
2515         */
2516        return ((control & high) | low) == control;
2517}
2518
2519static inline u64 vmx_control_msr(u32 low, u32 high)
2520{
2521        return low | ((u64)high << 32);
2522}
2523
2524/* Returns 0 on success, non-0 otherwise. */
2525static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2526{
2527        struct vcpu_vmx *vmx = to_vmx(vcpu);
2528
2529        switch (msr_index) {
2530        case MSR_IA32_VMX_BASIC:
2531                /*
2532                 * This MSR reports some information about VMX support. We
2533                 * should return information about the VMX we emulate for the
2534                 * guest, and the VMCS structure we give it - not about the
2535                 * VMX support of the underlying hardware.
2536                 */
2537                *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2538                           ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2539                           (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2540                break;
2541        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2542        case MSR_IA32_VMX_PINBASED_CTLS:
2543                *pdata = vmx_control_msr(
2544                        vmx->nested.nested_vmx_pinbased_ctls_low,
2545                        vmx->nested.nested_vmx_pinbased_ctls_high);
2546                break;
2547        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2548                *pdata = vmx_control_msr(
2549                        vmx->nested.nested_vmx_true_procbased_ctls_low,
2550                        vmx->nested.nested_vmx_procbased_ctls_high);
2551                break;
2552        case MSR_IA32_VMX_PROCBASED_CTLS:
2553                *pdata = vmx_control_msr(
2554                        vmx->nested.nested_vmx_procbased_ctls_low,
2555                        vmx->nested.nested_vmx_procbased_ctls_high);
2556                break;
2557        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2558                *pdata = vmx_control_msr(
2559                        vmx->nested.nested_vmx_true_exit_ctls_low,
2560                        vmx->nested.nested_vmx_exit_ctls_high);
2561                break;
2562        case MSR_IA32_VMX_EXIT_CTLS:
2563                *pdata = vmx_control_msr(
2564                        vmx->nested.nested_vmx_exit_ctls_low,
2565                        vmx->nested.nested_vmx_exit_ctls_high);
2566                break;
2567        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2568                *pdata = vmx_control_msr(
2569                        vmx->nested.nested_vmx_true_entry_ctls_low,
2570                        vmx->nested.nested_vmx_entry_ctls_high);
2571                break;
2572        case MSR_IA32_VMX_ENTRY_CTLS:
2573                *pdata = vmx_control_msr(
2574                        vmx->nested.nested_vmx_entry_ctls_low,
2575                        vmx->nested.nested_vmx_entry_ctls_high);
2576                break;
2577        case MSR_IA32_VMX_MISC:
2578                *pdata = vmx_control_msr(
2579                        vmx->nested.nested_vmx_misc_low,
2580                        vmx->nested.nested_vmx_misc_high);
2581                break;
2582        /*
2583         * These MSRs specify bits which the guest must keep fixed (on or off)
2584         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2585         * We picked the standard core2 setting.
2586         */
2587#define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2588#define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2589        case MSR_IA32_VMX_CR0_FIXED0:
2590                *pdata = VMXON_CR0_ALWAYSON;
2591                break;
2592        case MSR_IA32_VMX_CR0_FIXED1:
2593                *pdata = -1ULL;
2594                break;
2595        case MSR_IA32_VMX_CR4_FIXED0:
2596                *pdata = VMXON_CR4_ALWAYSON;
2597                break;
2598        case MSR_IA32_VMX_CR4_FIXED1:
2599                *pdata = -1ULL;
2600                break;
2601        case MSR_IA32_VMX_VMCS_ENUM:
2602                *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2603                break;
2604        case MSR_IA32_VMX_PROCBASED_CTLS2:
2605                *pdata = vmx_control_msr(
2606                        vmx->nested.nested_vmx_secondary_ctls_low,
2607                        vmx->nested.nested_vmx_secondary_ctls_high);
2608                break;
2609        case MSR_IA32_VMX_EPT_VPID_CAP:
2610                /* Currently, no nested vpid support */
2611                *pdata = vmx->nested.nested_vmx_ept_caps;
2612                break;
2613        default:
2614                return 1;
2615        }
2616
2617        return 0;
2618}
2619
2620/*
2621 * Reads an msr value (of 'msr_index') into 'pdata'.
2622 * Returns 0 on success, non-0 otherwise.
2623 * Assumes vcpu_load() was already called.
2624 */
2625static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2626{
2627        struct shared_msr_entry *msr;
2628
2629        switch (msr_info->index) {
2630#ifdef CONFIG_X86_64
2631        case MSR_FS_BASE:
2632                msr_info->data = vmcs_readl(GUEST_FS_BASE);
2633                break;
2634        case MSR_GS_BASE:
2635                msr_info->data = vmcs_readl(GUEST_GS_BASE);
2636                break;
2637        case MSR_KERNEL_GS_BASE:
2638                vmx_load_host_state(to_vmx(vcpu));
2639                msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2640                break;
2641#endif
2642        case MSR_EFER:
2643                return kvm_get_msr_common(vcpu, msr_info);
2644        case MSR_IA32_TSC:
2645                msr_info->data = guest_read_tsc();
2646                break;
2647        case MSR_IA32_SYSENTER_CS:
2648                msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2649                break;
2650        case MSR_IA32_SYSENTER_EIP:
2651                msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2652                break;
2653        case MSR_IA32_SYSENTER_ESP:
2654                msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2655                break;
2656        case MSR_IA32_BNDCFGS:
2657                if (!vmx_mpx_supported())
2658                        return 1;
2659                msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2660                break;
2661        case MSR_IA32_FEATURE_CONTROL:
2662                if (!nested_vmx_allowed(vcpu))
2663                        return 1;
2664                msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2665                break;
2666        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2667                if (!nested_vmx_allowed(vcpu))
2668                        return 1;
2669                return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2670        case MSR_IA32_XSS:
2671                if (!vmx_xsaves_supported())
2672                        return 1;
2673                msr_info->data = vcpu->arch.ia32_xss;
2674                break;
2675        case MSR_TSC_AUX:
2676                if (!to_vmx(vcpu)->rdtscp_enabled)
2677                        return 1;
2678                /* Otherwise falls through */
2679        default:
2680                msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2681                if (msr) {
2682                        msr_info->data = msr->data;
2683                        break;
2684                }
2685                return kvm_get_msr_common(vcpu, msr_info);
2686        }
2687
2688        return 0;
2689}
2690
2691static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2692
2693/*
2694 * Writes msr value into into the appropriate "register".
2695 * Returns 0 on success, non-0 otherwise.
2696 * Assumes vcpu_load() was already called.
2697 */
2698static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2699{
2700        struct vcpu_vmx *vmx = to_vmx(vcpu);
2701        struct shared_msr_entry *msr;
2702        int ret = 0;
2703        u32 msr_index = msr_info->index;
2704        u64 data = msr_info->data;
2705
2706        switch (msr_index) {
2707        case MSR_EFER:
2708                ret = kvm_set_msr_common(vcpu, msr_info);
2709                break;
2710#ifdef CONFIG_X86_64
2711        case MSR_FS_BASE:
2712                vmx_segment_cache_clear(vmx);
2713                vmcs_writel(GUEST_FS_BASE, data);
2714                break;
2715        case MSR_GS_BASE:
2716                vmx_segment_cache_clear(vmx);
2717                vmcs_writel(GUEST_GS_BASE, data);
2718                break;
2719        case MSR_KERNEL_GS_BASE:
2720                vmx_load_host_state(vmx);
2721                vmx->msr_guest_kernel_gs_base = data;
2722                break;
2723#endif
2724        case MSR_IA32_SYSENTER_CS:
2725                vmcs_write32(GUEST_SYSENTER_CS, data);
2726                break;
2727        case MSR_IA32_SYSENTER_EIP:
2728                vmcs_writel(GUEST_SYSENTER_EIP, data);
2729                break;
2730        case MSR_IA32_SYSENTER_ESP:
2731                vmcs_writel(GUEST_SYSENTER_ESP, data);
2732                break;
2733        case MSR_IA32_BNDCFGS:
2734                if (!vmx_mpx_supported())
2735                        return 1;
2736                vmcs_write64(GUEST_BNDCFGS, data);
2737                break;
2738        case MSR_IA32_TSC:
2739                kvm_write_tsc(vcpu, msr_info);
2740                break;
2741        case MSR_IA32_CR_PAT:
2742                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2743                        if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2744                                return 1;
2745                        vmcs_write64(GUEST_IA32_PAT, data);
2746                        vcpu->arch.pat = data;
2747                        break;
2748                }
2749                ret = kvm_set_msr_common(vcpu, msr_info);
2750                break;
2751        case MSR_IA32_TSC_ADJUST:
2752                ret = kvm_set_msr_common(vcpu, msr_info);
2753                break;
2754        case MSR_IA32_FEATURE_CONTROL:
2755                if (!nested_vmx_allowed(vcpu) ||
2756                    (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2757                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2758                        return 1;
2759                vmx->nested.msr_ia32_feature_control = data;
2760                if (msr_info->host_initiated && data == 0)
2761                        vmx_leave_nested(vcpu);
2762                break;
2763        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2764                return 1; /* they are read-only */
2765        case MSR_IA32_XSS:
2766                if (!vmx_xsaves_supported())
2767                        return 1;
2768                /*
2769                 * The only supported bit as of Skylake is bit 8, but
2770                 * it is not supported on KVM.
2771                 */
2772                if (data != 0)
2773                        return 1;
2774                vcpu->arch.ia32_xss = data;
2775                if (vcpu->arch.ia32_xss != host_xss)
2776                        add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2777                                vcpu->arch.ia32_xss, host_xss);
2778                else
2779                        clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2780                break;
2781        case MSR_TSC_AUX:
2782                if (!vmx->rdtscp_enabled)
2783                        return 1;
2784                /* Check reserved bit, higher 32 bits should be zero */
2785                if ((data >> 32) != 0)
2786                        return 1;
2787                /* Otherwise falls through */
2788        default:
2789                msr = find_msr_entry(vmx, msr_index);
2790                if (msr) {
2791                        u64 old_msr_data = msr->data;
2792                        msr->data = data;
2793                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2794                                preempt_disable();
2795                                ret = kvm_set_shared_msr(msr->index, msr->data,
2796                                                         msr->mask);
2797                                preempt_enable();
2798                                if (ret)
2799                                        msr->data = old_msr_data;
2800                        }
2801                        break;
2802                }
2803                ret = kvm_set_msr_common(vcpu, msr_info);
2804        }
2805
2806        return ret;
2807}
2808
2809static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2810{
2811        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2812        switch (reg) {
2813        case VCPU_REGS_RSP:
2814                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2815                break;
2816        case VCPU_REGS_RIP:
2817                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2818                break;
2819        case VCPU_EXREG_PDPTR:
2820                if (enable_ept)
2821                        ept_save_pdptrs(vcpu);
2822                break;
2823        default:
2824                break;
2825        }
2826}
2827
2828static __init int cpu_has_kvm_support(void)
2829{
2830        return cpu_has_vmx();
2831}
2832
2833static __init int vmx_disabled_by_bios(void)
2834{
2835        u64 msr;
2836
2837        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2838        if (msr & FEATURE_CONTROL_LOCKED) {
2839                /* launched w/ TXT and VMX disabled */
2840                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2841                        && tboot_enabled())
2842                        return 1;
2843                /* launched w/o TXT and VMX only enabled w/ TXT */
2844                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2845                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2846                        && !tboot_enabled()) {
2847                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2848                                "activate TXT before enabling KVM\n");
2849                        return 1;
2850                }
2851                /* launched w/o TXT and VMX disabled */
2852                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2853                        && !tboot_enabled())
2854                        return 1;
2855        }
2856
2857        return 0;
2858}
2859
2860static void kvm_cpu_vmxon(u64 addr)
2861{
2862        asm volatile (ASM_VMX_VMXON_RAX
2863                        : : "a"(&addr), "m"(addr)
2864                        : "memory", "cc");
2865}
2866
2867static int hardware_enable(void)
2868{
2869        int cpu = raw_smp_processor_id();
2870        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2871        u64 old, test_bits;
2872
2873        if (cr4_read_shadow() & X86_CR4_VMXE)
2874                return -EBUSY;
2875
2876        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2877
2878        /*
2879         * Now we can enable the vmclear operation in kdump
2880         * since the loaded_vmcss_on_cpu list on this cpu
2881         * has been initialized.
2882         *
2883         * Though the cpu is not in VMX operation now, there
2884         * is no problem to enable the vmclear operation
2885         * for the loaded_vmcss_on_cpu list is empty!
2886         */
2887        crash_enable_local_vmclear(cpu);
2888
2889        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2890
2891        test_bits = FEATURE_CONTROL_LOCKED;
2892        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2893        if (tboot_enabled())
2894                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2895
2896        if ((old & test_bits) != test_bits) {
2897                /* enable and lock */
2898                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2899        }
2900        cr4_set_bits(X86_CR4_VMXE);
2901
2902        if (vmm_exclusive) {
2903                kvm_cpu_vmxon(phys_addr);
2904                ept_sync_global();
2905        }
2906
2907        native_store_gdt(this_cpu_ptr(&host_gdt));
2908
2909        return 0;
2910}
2911
2912static void vmclear_local_loaded_vmcss(void)
2913{
2914        int cpu = raw_smp_processor_id();
2915        struct loaded_vmcs *v, *n;
2916
2917        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2918                                 loaded_vmcss_on_cpu_link)
2919                __loaded_vmcs_clear(v);
2920}
2921
2922
2923/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2924 * tricks.
2925 */
2926static void kvm_cpu_vmxoff(void)
2927{
2928        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2929}
2930
2931static void hardware_disable(void)
2932{
2933        if (vmm_exclusive) {
2934                vmclear_local_loaded_vmcss();
2935                kvm_cpu_vmxoff();
2936        }
2937        cr4_clear_bits(X86_CR4_VMXE);
2938}
2939
2940static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2941                                      u32 msr, u32 *result)
2942{
2943        u32 vmx_msr_low, vmx_msr_high;
2944        u32 ctl = ctl_min | ctl_opt;
2945
2946        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2947
2948        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2949        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2950
2951        /* Ensure minimum (required) set of control bits are supported. */
2952        if (ctl_min & ~ctl)
2953                return -EIO;
2954
2955        *result = ctl;
2956        return 0;
2957}
2958
2959static __init bool allow_1_setting(u32 msr, u32 ctl)
2960{
2961        u32 vmx_msr_low, vmx_msr_high;
2962
2963        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2964        return vmx_msr_high & ctl;
2965}
2966
2967static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2968{
2969        u32 vmx_msr_low, vmx_msr_high;
2970        u32 min, opt, min2, opt2;
2971        u32 _pin_based_exec_control = 0;
2972        u32 _cpu_based_exec_control = 0;
2973        u32 _cpu_based_2nd_exec_control = 0;
2974        u32 _vmexit_control = 0;
2975        u32 _vmentry_control = 0;
2976
2977        min = CPU_BASED_HLT_EXITING |
2978#ifdef CONFIG_X86_64
2979              CPU_BASED_CR8_LOAD_EXITING |
2980              CPU_BASED_CR8_STORE_EXITING |
2981#endif
2982              CPU_BASED_CR3_LOAD_EXITING |
2983              CPU_BASED_CR3_STORE_EXITING |
2984              CPU_BASED_USE_IO_BITMAPS |
2985              CPU_BASED_MOV_DR_EXITING |
2986              CPU_BASED_USE_TSC_OFFSETING |
2987              CPU_BASED_MWAIT_EXITING |
2988              CPU_BASED_MONITOR_EXITING |
2989              CPU_BASED_INVLPG_EXITING |
2990              CPU_BASED_RDPMC_EXITING;
2991
2992        opt = CPU_BASED_TPR_SHADOW |
2993              CPU_BASED_USE_MSR_BITMAPS |
2994              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2995        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2996                                &_cpu_based_exec_control) < 0)
2997                return -EIO;
2998#ifdef CONFIG_X86_64
2999        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3000                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3001                                           ~CPU_BASED_CR8_STORE_EXITING;
3002#endif
3003        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3004                min2 = 0;
3005                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3006                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3007                        SECONDARY_EXEC_WBINVD_EXITING |
3008                        SECONDARY_EXEC_ENABLE_VPID |
3009                        SECONDARY_EXEC_ENABLE_EPT |
3010                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
3011                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3012                        SECONDARY_EXEC_RDTSCP |
3013                        SECONDARY_EXEC_ENABLE_INVPCID |
3014                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
3015                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3016                        SECONDARY_EXEC_SHADOW_VMCS |
3017                        SECONDARY_EXEC_XSAVES |
3018                        SECONDARY_EXEC_ENABLE_PML;
3019                if (adjust_vmx_controls(min2, opt2,
3020                                        MSR_IA32_VMX_PROCBASED_CTLS2,
3021                                        &_cpu_based_2nd_exec_control) < 0)
3022                        return -EIO;
3023        }
3024#ifndef CONFIG_X86_64
3025        if (!(_cpu_based_2nd_exec_control &
3026                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3027                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3028#endif
3029
3030        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3031                _cpu_based_2nd_exec_control &= ~(
3032                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
3033                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3034                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3035
3036        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3037                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3038                   enabled */
3039                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3040                                             CPU_BASED_CR3_STORE_EXITING |
3041                                             CPU_BASED_INVLPG_EXITING);
3042                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3043                      vmx_capability.ept, vmx_capability.vpid);
3044        }
3045
3046        min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3047#ifdef CONFIG_X86_64
3048        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3049#endif
3050        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3051                VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3052        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3053                                &_vmexit_control) < 0)
3054                return -EIO;
3055
3056        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3057        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3058        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3059                                &_pin_based_exec_control) < 0)
3060                return -EIO;
3061
3062        if (!(_cpu_based_2nd_exec_control &
3063                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3064                !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3065                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3066
3067        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3068        opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3069        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3070                                &_vmentry_control) < 0)
3071                return -EIO;
3072
3073        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3074
3075        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3076        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3077                return -EIO;
3078
3079#ifdef CONFIG_X86_64
3080        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3081        if (vmx_msr_high & (1u<<16))
3082                return -EIO;
3083#endif
3084
3085        /* Require Write-Back (WB) memory type for VMCS accesses. */
3086        if (((vmx_msr_high >> 18) & 15) != 6)
3087                return -EIO;
3088
3089        vmcs_conf->size = vmx_msr_high & 0x1fff;
3090        vmcs_conf->order = get_order(vmcs_config.size);
3091        vmcs_conf->revision_id = vmx_msr_low;
3092
3093        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3094        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3095        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3096        vmcs_conf->vmexit_ctrl         = _vmexit_control;
3097        vmcs_conf->vmentry_ctrl        = _vmentry_control;
3098
3099        cpu_has_load_ia32_efer =
3100                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3101                                VM_ENTRY_LOAD_IA32_EFER)
3102                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3103                                   VM_EXIT_LOAD_IA32_EFER);
3104
3105        cpu_has_load_perf_global_ctrl =
3106                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3107                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3108                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3109                                   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3110
3111        /*
3112         * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3113         * but due to arrata below it can't be used. Workaround is to use
3114         * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3115         *
3116         * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3117         *
3118         * AAK155             (model 26)
3119         * AAP115             (model 30)
3120         * AAT100             (model 37)
3121         * BC86,AAY89,BD102   (model 44)
3122         * BA97               (model 46)
3123         *
3124         */
3125        if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3126                switch (boot_cpu_data.x86_model) {
3127                case 26:
3128                case 30:
3129                case 37:
3130                case 44:
3131                case 46:
3132                        cpu_has_load_perf_global_ctrl = false;
3133                        printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3134                                        "does not work properly. Using workaround\n");
3135                        break;
3136                default:
3137                        break;
3138                }
3139        }
3140
3141        if (cpu_has_xsaves)
3142                rdmsrl(MSR_IA32_XSS, host_xss);
3143
3144        return 0;
3145}
3146
3147static struct vmcs *alloc_vmcs_cpu(int cpu)
3148{
3149        int node = cpu_to_node(cpu);
3150        struct page *pages;
3151        struct vmcs *vmcs;
3152
3153        pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3154        if (!pages)
3155                return NULL;
3156        vmcs = page_address(pages);
3157        memset(vmcs, 0, vmcs_config.size);
3158        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3159        return vmcs;
3160}
3161
3162static struct vmcs *alloc_vmcs(void)
3163{
3164        return alloc_vmcs_cpu(raw_smp_processor_id());
3165}
3166
3167static void free_vmcs(struct vmcs *vmcs)
3168{
3169        free_pages((unsigned long)vmcs, vmcs_config.order);
3170}
3171
3172/*
3173 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3174 */
3175static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3176{
3177        if (!loaded_vmcs->vmcs)
3178                return;
3179        loaded_vmcs_clear(loaded_vmcs);
3180        free_vmcs(loaded_vmcs->vmcs);
3181        loaded_vmcs->vmcs = NULL;
3182}
3183
3184static void free_kvm_area(void)
3185{
3186        int cpu;
3187
3188        for_each_possible_cpu(cpu) {
3189                free_vmcs(per_cpu(vmxarea, cpu));
3190                per_cpu(vmxarea, cpu) = NULL;
3191        }
3192}
3193
3194static void init_vmcs_shadow_fields(void)
3195{
3196        int i, j;
3197
3198        /* No checks for read only fields yet */
3199
3200        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3201                switch (shadow_read_write_fields[i]) {
3202                case GUEST_BNDCFGS:
3203                        if (!vmx_mpx_supported())
3204                                continue;
3205                        break;
3206                default:
3207                        break;
3208                }
3209
3210                if (j < i)
3211                        shadow_read_write_fields[j] =
3212                                shadow_read_write_fields[i];
3213                j++;
3214        }
3215        max_shadow_read_write_fields = j;
3216
3217        /* shadowed fields guest access without vmexit */
3218        for (i = 0; i < max_shadow_read_write_fields; i++) {
3219                clear_bit(shadow_read_write_fields[i],
3220                          vmx_vmwrite_bitmap);
3221                clear_bit(shadow_read_write_fields[i],
3222                          vmx_vmread_bitmap);
3223        }
3224        for (i = 0; i < max_shadow_read_only_fields; i++)
3225                clear_bit(shadow_read_only_fields[i],
3226                          vmx_vmread_bitmap);
3227}
3228
3229static __init int alloc_kvm_area(void)
3230{
3231        int cpu;
3232
3233        for_each_possible_cpu(cpu) {
3234                struct vmcs *vmcs;
3235
3236                vmcs = alloc_vmcs_cpu(cpu);
3237                if (!vmcs) {
3238                        free_kvm_area();
3239                        return -ENOMEM;
3240                }
3241
3242                per_cpu(vmxarea, cpu) = vmcs;
3243        }
3244        return 0;
3245}
3246
3247static bool emulation_required(struct kvm_vcpu *vcpu)
3248{
3249        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3250}
3251
3252static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3253                struct kvm_segment *save)
3254{
3255        if (!emulate_invalid_guest_state) {
3256                /*
3257                 * CS and SS RPL should be equal during guest entry according
3258                 * to VMX spec, but in reality it is not always so. Since vcpu
3259                 * is in the middle of the transition from real mode to
3260                 * protected mode it is safe to assume that RPL 0 is a good
3261                 * default value.
3262                 */
3263                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3264                        save->selector &= ~SEGMENT_RPL_MASK;
3265                save->dpl = save->selector & SEGMENT_RPL_MASK;
3266                save->s = 1;
3267        }
3268        vmx_set_segment(vcpu, save, seg);
3269}
3270
3271static void enter_pmode(struct kvm_vcpu *vcpu)
3272{
3273        unsigned long flags;
3274        struct vcpu_vmx *vmx = to_vmx(vcpu);
3275
3276        /*
3277         * Update real mode segment cache. It may be not up-to-date if sement
3278         * register was written while vcpu was in a guest mode.
3279         */
3280        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3281        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3282        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3283        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3284        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3285        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3286
3287        vmx->rmode.vm86_active = 0;
3288
3289        vmx_segment_cache_clear(vmx);
3290
3291        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3292
3293        flags = vmcs_readl(GUEST_RFLAGS);
3294        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3295        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3296        vmcs_writel(GUEST_RFLAGS, flags);
3297
3298        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3299                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3300
3301        update_exception_bitmap(vcpu);
3302
3303        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3304        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3305        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3306        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3307        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3308        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3309}
3310
3311static void fix_rmode_seg(int seg, struct kvm_segment *save)
3312{
3313        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3314        struct kvm_segment var = *save;
3315
3316        var.dpl = 0x3;
3317        if (seg == VCPU_SREG_CS)
3318                var.type = 0x3;
3319
3320        if (!emulate_invalid_guest_state) {
3321                var.selector = var.base >> 4;
3322                var.base = var.base & 0xffff0;
3323                var.limit = 0xffff;
3324                var.g = 0;
3325                var.db = 0;
3326                var.present = 1;
3327                var.s = 1;
3328                var.l = 0;
3329                var.unusable = 0;
3330                var.type = 0x3;
3331                var.avl = 0;
3332                if (save->base & 0xf)
3333                        printk_once(KERN_WARNING "kvm: segment base is not "
3334                                        "paragraph aligned when entering "
3335                                        "protected mode (seg=%d)", seg);
3336        }
3337
3338        vmcs_write16(sf->selector, var.selector);
3339        vmcs_write32(sf->base, var.base);
3340        vmcs_write32(sf->limit, var.limit);
3341        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3342}
3343
3344static void enter_rmode(struct kvm_vcpu *vcpu)
3345{
3346        unsigned long flags;
3347        struct vcpu_vmx *vmx = to_vmx(vcpu);
3348
3349        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3350        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3351        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3352        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3353        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3354        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3355        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3356
3357        vmx->rmode.vm86_active = 1;
3358
3359        /*
3360         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3361         * vcpu. Warn the user that an update is overdue.
3362         */
3363        if (!vcpu->kvm->arch.tss_addr)
3364                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3365                             "called before entering vcpu\n");
3366
3367        vmx_segment_cache_clear(vmx);
3368
3369        vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3370        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3371        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3372
3373        flags = vmcs_readl(GUEST_RFLAGS);
3374        vmx->rmode.save_rflags = flags;
3375
3376        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3377
3378        vmcs_writel(GUEST_RFLAGS, flags);
3379        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3380        update_exception_bitmap(vcpu);
3381
3382        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3383        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3384        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3385        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3386        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3387        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3388
3389        kvm_mmu_reset_context(vcpu);
3390}
3391
3392static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3393{
3394        struct vcpu_vmx *vmx = to_vmx(vcpu);
3395        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3396
3397        if (!msr)
3398                return;
3399
3400        /*
3401         * Force kernel_gs_base reloading before EFER changes, as control
3402         * of this msr depends on is_long_mode().
3403         */
3404        vmx_load_host_state(to_vmx(vcpu));
3405        vcpu->arch.efer = efer;
3406        if (efer & EFER_LMA) {
3407                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3408                msr->data = efer;
3409        } else {
3410                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3411
3412                msr->data = efer & ~EFER_LME;
3413        }
3414        setup_msrs(vmx);
3415}
3416
3417#ifdef CONFIG_X86_64
3418
3419static void enter_lmode(struct kvm_vcpu *vcpu)
3420{
3421        u32 guest_tr_ar;
3422
3423        vmx_segment_cache_clear(to_vmx(vcpu));
3424
3425        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3426        if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3427                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3428                                     __func__);
3429                vmcs_write32(GUEST_TR_AR_BYTES,
3430                             (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3431                             | VMX_AR_TYPE_BUSY_64_TSS);
3432        }
3433        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3434}
3435
3436static void exit_lmode(struct kvm_vcpu *vcpu)
3437{
3438        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3439        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3440}
3441
3442#endif
3443
3444static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3445{
3446        vpid_sync_context(to_vmx(vcpu));
3447        if (enable_ept) {
3448                if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3449                        return;
3450                ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3451        }
3452}
3453
3454static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3455{
3456        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3457
3458        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3459        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3460}
3461
3462static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3463{
3464        if (enable_ept && is_paging(vcpu))
3465                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3466        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3467}
3468
3469static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3470{
3471        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3472
3473        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3474        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3475}
3476
3477static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3478{
3479        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3480
3481        if (!test_bit(VCPU_EXREG_PDPTR,
3482                      (unsigned long *)&vcpu->arch.regs_dirty))
3483                return;
3484
3485        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3486                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3487                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3488                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3489                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3490        }
3491}
3492
3493static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3494{
3495        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3496
3497        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3498                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3499                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3500                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3501                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3502        }
3503
3504        __set_bit(VCPU_EXREG_PDPTR,
3505                  (unsigned long *)&vcpu->arch.regs_avail);
3506        __set_bit(VCPU_EXREG_PDPTR,
3507                  (unsigned long *)&vcpu->arch.regs_dirty);
3508}
3509
3510static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3511
3512static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3513                                        unsigned long cr0,
3514                                        struct kvm_vcpu *vcpu)
3515{
3516        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3517                vmx_decache_cr3(vcpu);
3518        if (!(cr0 & X86_CR0_PG)) {
3519                /* From paging/starting to nonpaging */
3520                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3521                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3522                             (CPU_BASED_CR3_LOAD_EXITING |
3523                              CPU_BASED_CR3_STORE_EXITING));
3524                vcpu->arch.cr0 = cr0;
3525                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3526        } else if (!is_paging(vcpu)) {
3527                /* From nonpaging to paging */
3528                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3529                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3530                             ~(CPU_BASED_CR3_LOAD_EXITING |
3531                               CPU_BASED_CR3_STORE_EXITING));
3532                vcpu->arch.cr0 = cr0;
3533                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3534        }
3535
3536        if (!(cr0 & X86_CR0_WP))
3537                *hw_cr0 &= ~X86_CR0_WP;
3538}
3539
3540static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3541{
3542        struct vcpu_vmx *vmx = to_vmx(vcpu);
3543        unsigned long hw_cr0;
3544
3545        hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3546        if (enable_unrestricted_guest)
3547                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3548        else {
3549                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3550
3551                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3552                        enter_pmode(vcpu);
3553
3554                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3555                        enter_rmode(vcpu);
3556        }
3557
3558#ifdef CONFIG_X86_64
3559        if (vcpu->arch.efer & EFER_LME) {
3560                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3561                        enter_lmode(vcpu);
3562                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3563                        exit_lmode(vcpu);
3564        }
3565#endif
3566
3567        if (enable_ept)
3568                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3569
3570        if (!vcpu->fpu_active)
3571                hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3572
3573        vmcs_writel(CR0_READ_SHADOW, cr0);
3574        vmcs_writel(GUEST_CR0, hw_cr0);
3575        vcpu->arch.cr0 = cr0;
3576
3577        /* depends on vcpu->arch.cr0 to be set to a new value */
3578        vmx->emulation_required = emulation_required(vcpu);
3579}
3580
3581static u64 construct_eptp(unsigned long root_hpa)
3582{
3583        u64 eptp;
3584
3585        /* TODO write the value reading from MSR */
3586        eptp = VMX_EPT_DEFAULT_MT |
3587                VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3588        if (enable_ept_ad_bits)
3589                eptp |= VMX_EPT_AD_ENABLE_BIT;
3590        eptp |= (root_hpa & PAGE_MASK);
3591
3592        return eptp;
3593}
3594
3595static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3596{
3597        unsigned long guest_cr3;
3598        u64 eptp;
3599
3600        guest_cr3 = cr3;
3601        if (enable_ept) {
3602                eptp = construct_eptp(cr3);
3603                vmcs_write64(EPT_POINTER, eptp);
3604                if (is_paging(vcpu) || is_guest_mode(vcpu))
3605                        guest_cr3 = kvm_read_cr3(vcpu);
3606                else
3607                        guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3608                ept_load_pdptrs(vcpu);
3609        }
3610
3611        vmx_flush_tlb(vcpu);
3612        vmcs_writel(GUEST_CR3, guest_cr3);
3613}
3614
3615static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3616{
3617        /*
3618         * Pass through host's Machine Check Enable value to hw_cr4, which
3619         * is in force while we are in guest mode.  Do not let guests control
3620         * this bit, even if host CR4.MCE == 0.
3621         */
3622        unsigned long hw_cr4 =
3623                (cr4_read_shadow() & X86_CR4_MCE) |
3624                (cr4 & ~X86_CR4_MCE) |
3625                (to_vmx(vcpu)->rmode.vm86_active ?
3626                 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3627
3628        if (cr4 & X86_CR4_VMXE) {
3629                /*
3630                 * To use VMXON (and later other VMX instructions), a guest
3631                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3632                 * So basically the check on whether to allow nested VMX
3633                 * is here.
3634                 */
3635                if (!nested_vmx_allowed(vcpu))
3636                        return 1;
3637        }
3638        if (to_vmx(vcpu)->nested.vmxon &&
3639            ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3640                return 1;
3641
3642        vcpu->arch.cr4 = cr4;
3643        if (enable_ept) {
3644                if (!is_paging(vcpu)) {
3645                        hw_cr4 &= ~X86_CR4_PAE;
3646                        hw_cr4 |= X86_CR4_PSE;
3647                        /*
3648                         * SMEP/SMAP is disabled if CPU is in non-paging mode
3649                         * in hardware. However KVM always uses paging mode to
3650                         * emulate guest non-paging mode with TDP.
3651                         * To emulate this behavior, SMEP/SMAP needs to be
3652                         * manually disabled when guest switches to non-paging
3653                         * mode.
3654                         */
3655                        hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3656                } else if (!(cr4 & X86_CR4_PAE)) {
3657                        hw_cr4 &= ~X86_CR4_PAE;
3658                }
3659        }
3660
3661        vmcs_writel(CR4_READ_SHADOW, cr4);
3662        vmcs_writel(GUEST_CR4, hw_cr4);
3663        return 0;
3664}
3665
3666static void vmx_get_segment(struct kvm_vcpu *vcpu,
3667                            struct kvm_segment *var, int seg)
3668{
3669        struct vcpu_vmx *vmx = to_vmx(vcpu);
3670        u32 ar;
3671
3672        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3673                *var = vmx->rmode.segs[seg];
3674                if (seg == VCPU_SREG_TR
3675                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3676                        return;
3677                var->base = vmx_read_guest_seg_base(vmx, seg);
3678                var->selector = vmx_read_guest_seg_selector(vmx, seg);
3679                return;
3680        }
3681        var->base = vmx_read_guest_seg_base(vmx, seg);
3682        var->limit = vmx_read_guest_seg_limit(vmx, seg);
3683        var->selector = vmx_read_guest_seg_selector(vmx, seg);
3684        ar = vmx_read_guest_seg_ar(vmx, seg);
3685        var->unusable = (ar >> 16) & 1;
3686        var->type = ar & 15;
3687        var->s = (ar >> 4) & 1;
3688        var->dpl = (ar >> 5) & 3;
3689        /*
3690         * Some userspaces do not preserve unusable property. Since usable
3691         * segment has to be present according to VMX spec we can use present
3692         * property to amend userspace bug by making unusable segment always
3693         * nonpresent. vmx_segment_access_rights() already marks nonpresent
3694         * segment as unusable.
3695         */
3696        var->present = !var->unusable;
3697        var->avl = (ar >> 12) & 1;
3698        var->l = (ar >> 13) & 1;
3699        var->db = (ar >> 14) & 1;
3700        var->g = (ar >> 15) & 1;
3701}
3702
3703static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3704{
3705        struct kvm_segment s;
3706
3707        if (to_vmx(vcpu)->rmode.vm86_active) {
3708                vmx_get_segment(vcpu, &s, seg);
3709                return s.base;
3710        }
3711        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3712}
3713
3714static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3715{
3716        struct vcpu_vmx *vmx = to_vmx(vcpu);
3717
3718        if (unlikely(vmx->rmode.vm86_active))
3719                return 0;
3720        else {
3721                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3722                return VMX_AR_DPL(ar);
3723        }
3724}
3725
3726static u32 vmx_segment_access_rights(struct kvm_segment *var)
3727{
3728        u32 ar;
3729
3730        if (var->unusable || !var->present)
3731                ar = 1 << 16;
3732        else {
3733                ar = var->type & 15;
3734                ar |= (var->s & 1) << 4;
3735                ar |= (var->dpl & 3) << 5;
3736                ar |= (var->present & 1) << 7;
3737                ar |= (var->avl & 1) << 12;
3738                ar |= (var->l & 1) << 13;
3739                ar |= (var->db & 1) << 14;
3740                ar |= (var->g & 1) << 15;
3741        }
3742
3743        return ar;
3744}
3745
3746static void vmx_set_segment(struct kvm_vcpu *vcpu,
3747                            struct kvm_segment *var, int seg)
3748{
3749        struct vcpu_vmx *vmx = to_vmx(vcpu);
3750        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3751
3752        vmx_segment_cache_clear(vmx);
3753
3754        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3755                vmx->rmode.segs[seg] = *var;
3756                if (seg == VCPU_SREG_TR)
3757                        vmcs_write16(sf->selector, var->selector);
3758                else if (var->s)
3759                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3760                goto out;
3761        }
3762
3763        vmcs_writel(sf->base, var->base);
3764        vmcs_write32(sf->limit, var->limit);
3765        vmcs_write16(sf->selector, var->selector);
3766
3767        /*
3768         *   Fix the "Accessed" bit in AR field of segment registers for older
3769         * qemu binaries.
3770         *   IA32 arch specifies that at the time of processor reset the
3771         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3772         * is setting it to 0 in the userland code. This causes invalid guest
3773         * state vmexit when "unrestricted guest" mode is turned on.
3774         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3775         * tree. Newer qemu binaries with that qemu fix would not need this
3776         * kvm hack.
3777         */
3778        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3779                var->type |= 0x1; /* Accessed */
3780
3781        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3782
3783out:
3784        vmx->emulation_required = emulation_required(vcpu);
3785}
3786
3787static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3788{
3789        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3790
3791        *db = (ar >> 14) & 1;
3792        *l = (ar >> 13) & 1;
3793}
3794
3795static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3796{
3797        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3798        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3799}
3800
3801static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3802{
3803        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3804        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3805}
3806
3807static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3808{
3809        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3810        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3811}
3812
3813static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3814{
3815        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3816        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3817}
3818
3819static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3820{
3821        struct kvm_segment var;
3822        u32 ar;
3823
3824        vmx_get_segment(vcpu, &var, seg);
3825        var.dpl = 0x3;
3826        if (seg == VCPU_SREG_CS)
3827                var.type = 0x3;
3828        ar = vmx_segment_access_rights(&var);
3829
3830        if (var.base != (var.selector << 4))
3831                return false;
3832        if (var.limit != 0xffff)
3833                return false;
3834        if (ar != 0xf3)
3835                return false;
3836
3837        return true;
3838}
3839
3840static bool code_segment_valid(struct kvm_vcpu *vcpu)
3841{
3842        struct kvm_segment cs;
3843        unsigned int cs_rpl;
3844
3845        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3846        cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3847
3848        if (cs.unusable)
3849                return false;
3850        if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3851                return false;
3852        if (!cs.s)
3853                return false;
3854        if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3855                if (cs.dpl > cs_rpl)
3856                        return false;
3857        } else {
3858                if (cs.dpl != cs_rpl)
3859                        return false;
3860        }
3861        if (!cs.present)
3862                return false;
3863
3864        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3865        return true;
3866}
3867
3868static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3869{
3870        struct kvm_segment ss;
3871        unsigned int ss_rpl;
3872
3873        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3874        ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3875
3876        if (ss.unusable)
3877                return true;
3878        if (ss.type != 3 && ss.type != 7)
3879                return false;
3880        if (!ss.s)
3881                return false;
3882        if (ss.dpl != ss_rpl) /* DPL != RPL */
3883                return false;
3884        if (!ss.present)
3885                return false;
3886
3887        return true;
3888}
3889
3890static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3891{
3892        struct kvm_segment var;
3893        unsigned int rpl;
3894
3895        vmx_get_segment(vcpu, &var, seg);
3896        rpl = var.selector & SEGMENT_RPL_MASK;
3897
3898        if (var.unusable)
3899                return true;
3900        if (!var.s)
3901                return false;
3902        if (!var.present)
3903                return false;
3904        if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3905                if (var.dpl < rpl) /* DPL < RPL */
3906                        return false;
3907        }
3908
3909        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3910         * rights flags
3911         */
3912        return true;
3913}
3914
3915static bool tr_valid(struct kvm_vcpu *vcpu)
3916{
3917        struct kvm_segment tr;
3918
3919        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3920
3921        if (tr.unusable)
3922                return false;
3923        if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3924                return false;
3925        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3926                return false;
3927        if (!tr.present)
3928                return false;
3929
3930        return true;
3931}
3932
3933static bool ldtr_valid(struct kvm_vcpu *vcpu)
3934{
3935        struct kvm_segment ldtr;
3936
3937        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3938
3939        if (ldtr.unusable)
3940                return true;
3941        if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3942                return false;
3943        if (ldtr.type != 2)
3944                return false;
3945        if (!ldtr.present)
3946                return false;
3947
3948        return true;
3949}
3950
3951static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3952{
3953        struct kvm_segment cs, ss;
3954
3955        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3956        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3957
3958        return ((cs.selector & SEGMENT_RPL_MASK) ==
3959                 (ss.selector & SEGMENT_RPL_MASK));
3960}
3961
3962/*
3963 * Check if guest state is valid. Returns true if valid, false if
3964 * not.
3965 * We assume that registers are always usable
3966 */
3967static bool guest_state_valid(struct kvm_vcpu *vcpu)
3968{
3969        if (enable_unrestricted_guest)
3970                return true;
3971
3972        /* real mode guest state checks */
3973        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3974                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3975                        return false;
3976                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3977                        return false;
3978                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3979                        return false;
3980                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3981                        return false;
3982                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3983                        return false;
3984                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3985                        return false;
3986        } else {
3987        /* protected mode guest state checks */
3988                if (!cs_ss_rpl_check(vcpu))
3989                        return false;
3990                if (!code_segment_valid(vcpu))
3991                        return false;
3992                if (!stack_segment_valid(vcpu))
3993                        return false;
3994                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3995                        return false;
3996                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3997                        return false;
3998                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3999                        return false;
4000                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4001                        return false;
4002                if (!tr_valid(vcpu))
4003                        return false;
4004                if (!ldtr_valid(vcpu))
4005                        return false;
4006        }
4007        /* TODO:
4008         * - Add checks on RIP
4009         * - Add checks on RFLAGS
4010         */
4011
4012        return true;
4013}
4014
4015static int init_rmode_tss(struct kvm *kvm)
4016{
4017        gfn_t fn;
4018        u16 data = 0;
4019        int idx, r;
4020
4021        idx = srcu_read_lock(&kvm->srcu);
4022        fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4023        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4024        if (r < 0)
4025                goto out;
4026        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4027        r = kvm_write_guest_page(kvm, fn++, &data,
4028                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
4029        if (r < 0)
4030                goto out;
4031        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4032        if (r < 0)
4033                goto out;
4034        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4035        if (r < 0)
4036                goto out;
4037        data = ~0;
4038        r = kvm_write_guest_page(kvm, fn, &data,
4039                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4040                                 sizeof(u8));
4041out:
4042        srcu_read_unlock(&kvm->srcu, idx);
4043        return r;
4044}
4045
4046static int init_rmode_identity_map(struct kvm *kvm)
4047{
4048        int i, idx, r = 0;
4049        pfn_t identity_map_pfn;
4050        u32 tmp;
4051
4052        if (!enable_ept)
4053                return 0;
4054
4055        /* Protect kvm->arch.ept_identity_pagetable_done. */
4056        mutex_lock(&kvm->slots_lock);
4057
4058        if (likely(kvm->arch.ept_identity_pagetable_done))
4059                goto out2;
4060
4061        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4062
4063        r = alloc_identity_pagetable(kvm);
4064        if (r < 0)
4065                goto out2;
4066
4067        idx = srcu_read_lock(&kvm->srcu);
4068        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4069        if (r < 0)
4070                goto out;
4071        /* Set up identity-mapping pagetable for EPT in real mode */
4072        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4073                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4074                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4075                r = kvm_write_guest_page(kvm, identity_map_pfn,
4076                                &tmp, i * sizeof(tmp), sizeof(tmp));
4077                if (r < 0)
4078                        goto out;
4079        }
4080        kvm->arch.ept_identity_pagetable_done = true;
4081
4082out:
4083        srcu_read_unlock(&kvm->srcu, idx);
4084
4085out2:
4086        mutex_unlock(&kvm->slots_lock);
4087        return r;
4088}
4089
4090static void seg_setup(int seg)
4091{
4092        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4093        unsigned int ar;
4094
4095        vmcs_write16(sf->selector, 0);
4096        vmcs_writel(sf->base, 0);
4097        vmcs_write32(sf->limit, 0xffff);
4098        ar = 0x93;
4099        if (seg == VCPU_SREG_CS)
4100                ar |= 0x08; /* code segment */
4101
4102        vmcs_write32(sf->ar_bytes, ar);
4103}
4104
4105static int alloc_apic_access_page(struct kvm *kvm)
4106{
4107        struct page *page;
4108        int r = 0;
4109
4110        mutex_lock(&kvm->slots_lock);
4111        if (kvm->arch.apic_access_page_done)
4112                goto out;
4113        r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4114                                    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4115        if (r)
4116                goto out;
4117
4118        page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4119        if (is_error_page(page)) {
4120                r = -EFAULT;
4121                goto out;
4122        }
4123
4124        /*
4125         * Do not pin the page in memory, so that memory hot-unplug
4126         * is able to migrate it.
4127         */
4128        put_page(page);
4129        kvm->arch.apic_access_page_done = true;
4130out:
4131        mutex_unlock(&kvm->slots_lock);
4132        return r;
4133}
4134
4135static int alloc_identity_pagetable(struct kvm *kvm)
4136{
4137        /* Called with kvm->slots_lock held. */
4138
4139        int r = 0;
4140
4141        BUG_ON(kvm->arch.ept_identity_pagetable_done);
4142
4143        r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4144                                    kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4145
4146        return r;
4147}
4148
4149static void allocate_vpid(struct vcpu_vmx *vmx)
4150{
4151        int vpid;
4152
4153        vmx->vpid = 0;
4154        if (!enable_vpid)
4155                return;
4156        spin_lock(&vmx_vpid_lock);
4157        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4158        if (vpid < VMX_NR_VPIDS) {
4159                vmx->vpid = vpid;
4160                __set_bit(vpid, vmx_vpid_bitmap);
4161        }
4162        spin_unlock(&vmx_vpid_lock);
4163}
4164
4165static void free_vpid(struct vcpu_vmx *vmx)
4166{
4167        if (!enable_vpid)
4168                return;
4169        spin_lock(&vmx_vpid_lock);
4170        if (vmx->vpid != 0)
4171                __clear_bit(vmx->vpid, vmx_vpid_bitmap);
4172        spin_unlock(&vmx_vpid_lock);
4173}
4174
4175#define MSR_TYPE_R      1
4176#define MSR_TYPE_W      2
4177static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4178                                                u32 msr, int type)
4179{
4180        int f = sizeof(unsigned long);
4181
4182        if (!cpu_has_vmx_msr_bitmap())
4183                return;
4184
4185        /*
4186         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4187         * have the write-low and read-high bitmap offsets the wrong way round.
4188         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4189         */
4190        if (msr <= 0x1fff) {
4191                if (type & MSR_TYPE_R)
4192                        /* read-low */
4193                        __clear_bit(msr, msr_bitmap + 0x000 / f);
4194
4195                if (type & MSR_TYPE_W)
4196                        /* write-low */
4197                        __clear_bit(msr, msr_bitmap + 0x800 / f);
4198
4199        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4200                msr &= 0x1fff;
4201                if (type & MSR_TYPE_R)
4202                        /* read-high */
4203                        __clear_bit(msr, msr_bitmap + 0x400 / f);
4204
4205                if (type & MSR_TYPE_W)
4206                        /* write-high */
4207                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
4208
4209        }
4210}
4211
4212static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4213                                                u32 msr, int type)
4214{
4215        int f = sizeof(unsigned long);
4216
4217        if (!cpu_has_vmx_msr_bitmap())
4218                return;
4219
4220        /*
4221         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4222         * have the write-low and read-high bitmap offsets the wrong way round.
4223         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4224         */
4225        if (msr <= 0x1fff) {
4226                if (type & MSR_TYPE_R)
4227                        /* read-low */
4228                        __set_bit(msr, msr_bitmap + 0x000 / f);
4229
4230                if (type & MSR_TYPE_W)
4231                        /* write-low */
4232                        __set_bit(msr, msr_bitmap + 0x800 / f);
4233
4234        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4235                msr &= 0x1fff;
4236                if (type & MSR_TYPE_R)
4237                        /* read-high */
4238                        __set_bit(msr, msr_bitmap + 0x400 / f);
4239
4240                if (type & MSR_TYPE_W)
4241                        /* write-high */
4242                        __set_bit(msr, msr_bitmap + 0xc00 / f);
4243
4244        }
4245}
4246
4247/*
4248 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4249 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4250 */
4251static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4252                                               unsigned long *msr_bitmap_nested,
4253                                               u32 msr, int type)
4254{
4255        int f = sizeof(unsigned long);
4256
4257        if (!cpu_has_vmx_msr_bitmap()) {
4258                WARN_ON(1);
4259                return;
4260        }
4261
4262        /*
4263         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4264         * have the write-low and read-high bitmap offsets the wrong way round.
4265         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4266         */
4267        if (msr <= 0x1fff) {
4268                if (type & MSR_TYPE_R &&
4269                   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4270                        /* read-low */
4271                        __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4272
4273                if (type & MSR_TYPE_W &&
4274                   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4275                        /* write-low */
4276                        __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4277
4278        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4279                msr &= 0x1fff;
4280                if (type & MSR_TYPE_R &&
4281                   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4282                        /* read-high */
4283                        __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4284
4285                if (type & MSR_TYPE_W &&
4286                   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4287                        /* write-high */
4288                        __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4289
4290        }
4291}
4292
4293static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4294{
4295        if (!longmode_only)
4296                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4297                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4298        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4299                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4300}
4301
4302static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4303{
4304        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4305                        msr, MSR_TYPE_R);
4306        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4307                        msr, MSR_TYPE_R);
4308}
4309
4310static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4311{
4312        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4313                        msr, MSR_TYPE_R);
4314        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4315                        msr, MSR_TYPE_R);
4316}
4317
4318static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4319{
4320        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4321                        msr, MSR_TYPE_W);
4322        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4323                        msr, MSR_TYPE_W);
4324}
4325
4326static int vmx_vm_has_apicv(struct kvm *kvm)
4327{
4328        return enable_apicv && irqchip_in_kernel(kvm);
4329}
4330
4331static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4332{
4333        struct vcpu_vmx *vmx = to_vmx(vcpu);
4334        int max_irr;
4335        void *vapic_page;
4336        u16 status;
4337
4338        if (vmx->nested.pi_desc &&
4339            vmx->nested.pi_pending) {
4340                vmx->nested.pi_pending = false;
4341                if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4342                        return 0;
4343
4344                max_irr = find_last_bit(
4345                        (unsigned long *)vmx->nested.pi_desc->pir, 256);
4346
4347                if (max_irr == 256)
4348                        return 0;
4349
4350                vapic_page = kmap(vmx->nested.virtual_apic_page);
4351                if (!vapic_page) {
4352                        WARN_ON(1);
4353                        return -ENOMEM;
4354                }
4355                __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4356                kunmap(vmx->nested.virtual_apic_page);
4357
4358                status = vmcs_read16(GUEST_INTR_STATUS);
4359                if ((u8)max_irr > ((u8)status & 0xff)) {
4360                        status &= ~0xff;
4361                        status |= (u8)max_irr;
4362                        vmcs_write16(GUEST_INTR_STATUS, status);
4363                }
4364        }
4365        return 0;
4366}
4367
4368static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4369{
4370#ifdef CONFIG_SMP
4371        if (vcpu->mode == IN_GUEST_MODE) {
4372                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4373                                POSTED_INTR_VECTOR);
4374                return true;
4375        }
4376#endif
4377        return false;
4378}
4379
4380static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4381                                                int vector)
4382{
4383        struct vcpu_vmx *vmx = to_vmx(vcpu);
4384
4385        if (is_guest_mode(vcpu) &&
4386            vector == vmx->nested.posted_intr_nv) {
4387                /* the PIR and ON have been set by L1. */
4388                kvm_vcpu_trigger_posted_interrupt(vcpu);
4389                /*
4390                 * If a posted intr is not recognized by hardware,
4391                 * we will accomplish it in the next vmentry.
4392                 */
4393                vmx->nested.pi_pending = true;
4394                kvm_make_request(KVM_REQ_EVENT, vcpu);
4395                return 0;
4396        }
4397        return -1;
4398}
4399/*
4400 * Send interrupt to vcpu via posted interrupt way.
4401 * 1. If target vcpu is running(non-root mode), send posted interrupt
4402 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4403 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4404 * interrupt from PIR in next vmentry.
4405 */
4406static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4407{
4408        struct vcpu_vmx *vmx = to_vmx(vcpu);
4409        int r;
4410
4411        r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4412        if (!r)
4413                return;
4414
4415        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4416                return;
4417
4418        r = pi_test_and_set_on(&vmx->pi_desc);
4419        kvm_make_request(KVM_REQ_EVENT, vcpu);
4420        if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4421                kvm_vcpu_kick(vcpu);
4422}
4423
4424static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4425{
4426        struct vcpu_vmx *vmx = to_vmx(vcpu);
4427
4428        if (!pi_test_and_clear_on(&vmx->pi_desc))
4429                return;
4430
4431        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4432}
4433
4434static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4435{
4436        return;
4437}
4438
4439/*
4440 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4441 * will not change in the lifetime of the guest.
4442 * Note that host-state that does change is set elsewhere. E.g., host-state
4443 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4444 */
4445static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4446{
4447        u32 low32, high32;
4448        unsigned long tmpl;
4449        struct desc_ptr dt;
4450        unsigned long cr4;
4451
4452        vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4453        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4454
4455        /* Save the most likely value for this task's CR4 in the VMCS. */
4456        cr4 = cr4_read_shadow();
4457        vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4458        vmx->host_state.vmcs_host_cr4 = cr4;
4459
4460        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4461#ifdef CONFIG_X86_64
4462        /*
4463         * Load null selectors, so we can avoid reloading them in
4464         * __vmx_load_host_state(), in case userspace uses the null selectors
4465         * too (the expected case).
4466         */
4467        vmcs_write16(HOST_DS_SELECTOR, 0);
4468        vmcs_write16(HOST_ES_SELECTOR, 0);
4469#else
4470        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4471        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4472#endif
4473        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4474        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4475
4476        native_store_idt(&dt);
4477        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4478        vmx->host_idt_base = dt.address;
4479
4480        vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4481
4482        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4483        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4484        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4485        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4486
4487        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4488                rdmsr(MSR_IA32_CR_PAT, low32, high32);
4489                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4490        }
4491}
4492
4493static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4494{
4495        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4496        if (enable_ept)
4497                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4498        if (is_guest_mode(&vmx->vcpu))
4499                vmx->vcpu.arch.cr4_guest_owned_bits &=
4500                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4501        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4502}
4503
4504static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4505{
4506        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4507
4508        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4509                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4510        return pin_based_exec_ctrl;
4511}
4512
4513static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4514{
4515        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4516
4517        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4518                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4519
4520        if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4521                exec_control &= ~CPU_BASED_TPR_SHADOW;
4522#ifdef CONFIG_X86_64
4523                exec_control |= CPU_BASED_CR8_STORE_EXITING |
4524                                CPU_BASED_CR8_LOAD_EXITING;
4525#endif
4526        }
4527        if (!enable_ept)
4528                exec_control |= CPU_BASED_CR3_STORE_EXITING |
4529                                CPU_BASED_CR3_LOAD_EXITING  |
4530                                CPU_BASED_INVLPG_EXITING;
4531        return exec_control;
4532}
4533
4534static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4535{
4536        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4537        if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4538                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4539        if (vmx->vpid == 0)
4540                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4541        if (!enable_ept) {
4542                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4543                enable_unrestricted_guest = 0;
4544                /* Enable INVPCID for non-ept guests may cause performance regression. */
4545                exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4546        }
4547        if (!enable_unrestricted_guest)
4548                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4549        if (!ple_gap)
4550                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4551        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4552                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4553                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4554        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4555        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4556           (handle_vmptrld).
4557           We can NOT enable shadow_vmcs here because we don't have yet
4558           a current VMCS12
4559        */
4560        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4561        /* PML is enabled/disabled in creating/destorying vcpu */
4562        exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4563
4564        return exec_control;
4565}
4566
4567static void ept_set_mmio_spte_mask(void)
4568{
4569        /*
4570         * EPT Misconfigurations can be generated if the value of bits 2:0
4571         * of an EPT paging-structure entry is 110b (write/execute).
4572         * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4573         * spte.
4574         */
4575        kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4576}
4577
4578#define VMX_XSS_EXIT_BITMAP 0
4579/*
4580 * Sets up the vmcs for emulated real mode.
4581 */
4582static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4583{
4584#ifdef CONFIG_X86_64
4585        unsigned long a;
4586#endif
4587        int i;
4588
4589        /* I/O */
4590        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4591        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4592
4593        if (enable_shadow_vmcs) {
4594                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4595                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4596        }
4597        if (cpu_has_vmx_msr_bitmap())
4598                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4599
4600        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4601
4602        /* Control */
4603        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4604
4605        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4606
4607        if (cpu_has_secondary_exec_ctrls()) {
4608                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4609                                vmx_secondary_exec_control(vmx));
4610        }
4611
4612        if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4613                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4614                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4615                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4616                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4617
4618                vmcs_write16(GUEST_INTR_STATUS, 0);
4619
4620                vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4621                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4622        }
4623
4624        if (ple_gap) {
4625                vmcs_write32(PLE_GAP, ple_gap);
4626                vmx->ple_window = ple_window;
4627                vmx->ple_window_dirty = true;
4628        }
4629
4630        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4631        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4632        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4633
4634        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4635        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4636        vmx_set_constant_host_state(vmx);
4637#ifdef CONFIG_X86_64
4638        rdmsrl(MSR_FS_BASE, a);
4639        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4640        rdmsrl(MSR_GS_BASE, a);
4641        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4642#else
4643        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4644        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4645#endif
4646
4647        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4648        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4649        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4650        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4651        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4652
4653        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4654                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4655
4656        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4657                u32 index = vmx_msr_index[i];
4658                u32 data_low, data_high;
4659                int j = vmx->nmsrs;
4660
4661                if (rdmsr_safe(index, &data_low, &data_high) < 0)
4662                        continue;
4663                if (wrmsr_safe(index, data_low, data_high) < 0)
4664                        continue;
4665                vmx->guest_msrs[j].index = i;
4666                vmx->guest_msrs[j].data = 0;
4667                vmx->guest_msrs[j].mask = -1ull;
4668                ++vmx->nmsrs;
4669        }
4670
4671
4672        vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4673
4674        /* 22.2.1, 20.8.1 */
4675        vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4676
4677        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4678        set_cr4_guest_host_mask(vmx);
4679
4680        if (vmx_xsaves_supported())
4681                vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4682
4683        return 0;
4684}
4685
4686static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4687{
4688        struct vcpu_vmx *vmx = to_vmx(vcpu);
4689        struct msr_data apic_base_msr;
4690        u64 cr0;
4691
4692        vmx->rmode.vm86_active = 0;
4693
4694        vmx->soft_vnmi_blocked = 0;
4695
4696        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4697        kvm_set_cr8(vcpu, 0);
4698
4699        if (!init_event) {
4700                apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4701                                     MSR_IA32_APICBASE_ENABLE;
4702                if (kvm_vcpu_is_reset_bsp(vcpu))
4703                        apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4704                apic_base_msr.host_initiated = true;
4705                kvm_set_apic_base(vcpu, &apic_base_msr);
4706        }
4707
4708        vmx_segment_cache_clear(vmx);
4709
4710        seg_setup(VCPU_SREG_CS);
4711        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4712        vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4713
4714        seg_setup(VCPU_SREG_DS);
4715        seg_setup(VCPU_SREG_ES);
4716        seg_setup(VCPU_SREG_FS);
4717        seg_setup(VCPU_SREG_GS);
4718        seg_setup(VCPU_SREG_SS);
4719
4720        vmcs_write16(GUEST_TR_SELECTOR, 0);
4721        vmcs_writel(GUEST_TR_BASE, 0);
4722        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4723        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4724
4725        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4726        vmcs_writel(GUEST_LDTR_BASE, 0);
4727        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4728        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4729
4730        if (!init_event) {
4731                vmcs_write32(GUEST_SYSENTER_CS, 0);
4732                vmcs_writel(GUEST_SYSENTER_ESP, 0);
4733                vmcs_writel(GUEST_SYSENTER_EIP, 0);
4734                vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4735        }
4736
4737        vmcs_writel(GUEST_RFLAGS, 0x02);
4738        kvm_rip_write(vcpu, 0xfff0);
4739
4740        vmcs_writel(GUEST_GDTR_BASE, 0);
4741        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4742
4743        vmcs_writel(GUEST_IDTR_BASE, 0);
4744        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4745
4746        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4747        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4748        vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4749
4750        setup_msrs(vmx);
4751
4752        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4753
4754        if (cpu_has_vmx_tpr_shadow() && !init_event) {
4755                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4756                if (vm_need_tpr_shadow(vcpu->kvm))
4757                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4758                                     __pa(vcpu->arch.apic->regs));
4759                vmcs_write32(TPR_THRESHOLD, 0);
4760        }
4761
4762        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4763
4764        if (vmx_vm_has_apicv(vcpu->kvm))
4765                memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4766
4767        if (vmx->vpid != 0)
4768                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4769
4770        cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4771        vmx_set_cr0(vcpu, cr0); /* enter rmode */
4772        vmx->vcpu.arch.cr0 = cr0;
4773        vmx_set_cr4(vcpu, 0);
4774        if (!init_event)
4775                vmx_set_efer(vcpu, 0);
4776        vmx_fpu_activate(vcpu);
4777        update_exception_bitmap(vcpu);
4778
4779        vpid_sync_context(vmx);
4780}
4781
4782/*
4783 * In nested virtualization, check if L1 asked to exit on external interrupts.
4784 * For most existing hypervisors, this will always return true.
4785 */
4786static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4787{
4788        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4789                PIN_BASED_EXT_INTR_MASK;
4790}
4791
4792/*
4793 * In nested virtualization, check if L1 has set
4794 * VM_EXIT_ACK_INTR_ON_EXIT
4795 */
4796static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4797{
4798        return get_vmcs12(vcpu)->vm_exit_controls &
4799                VM_EXIT_ACK_INTR_ON_EXIT;
4800}
4801
4802static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4803{
4804        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4805                PIN_BASED_NMI_EXITING;
4806}
4807
4808static void enable_irq_window(struct kvm_vcpu *vcpu)
4809{
4810        u32 cpu_based_vm_exec_control;
4811
4812        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4813        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4814        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4815}
4816
4817static void enable_nmi_window(struct kvm_vcpu *vcpu)
4818{
4819        u32 cpu_based_vm_exec_control;
4820
4821        if (!cpu_has_virtual_nmis() ||
4822            vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4823                enable_irq_window(vcpu);
4824                return;
4825        }
4826
4827        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4828        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4829        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4830}
4831
4832static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4833{
4834        struct vcpu_vmx *vmx = to_vmx(vcpu);
4835        uint32_t intr;
4836        int irq = vcpu->arch.interrupt.nr;
4837
4838        trace_kvm_inj_virq(irq);
4839
4840        ++vcpu->stat.irq_injections;
4841        if (vmx->rmode.vm86_active) {
4842                int inc_eip = 0;
4843                if (vcpu->arch.interrupt.soft)
4844                        inc_eip = vcpu->arch.event_exit_inst_len;
4845                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4846                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4847                return;
4848        }
4849        intr = irq | INTR_INFO_VALID_MASK;
4850        if (vcpu->arch.interrupt.soft) {
4851                intr |= INTR_TYPE_SOFT_INTR;
4852                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4853                             vmx->vcpu.arch.event_exit_inst_len);
4854        } else
4855                intr |= INTR_TYPE_EXT_INTR;
4856        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4857}
4858
4859static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4860{
4861        struct vcpu_vmx *vmx = to_vmx(vcpu);
4862
4863        if (is_guest_mode(vcpu))
4864                return;
4865
4866        if (!cpu_has_virtual_nmis()) {
4867                /*
4868                 * Tracking the NMI-blocked state in software is built upon
4869                 * finding the next open IRQ window. This, in turn, depends on
4870                 * well-behaving guests: They have to keep IRQs disabled at
4871                 * least as long as the NMI handler runs. Otherwise we may
4872                 * cause NMI nesting, maybe breaking the guest. But as this is
4873                 * highly unlikely, we can live with the residual risk.
4874                 */
4875                vmx->soft_vnmi_blocked = 1;
4876                vmx->vnmi_blocked_time = 0;
4877        }
4878
4879        ++vcpu->stat.nmi_injections;
4880        vmx->nmi_known_unmasked = false;
4881        if (vmx->rmode.vm86_active) {
4882                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4883                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4884                return;
4885        }
4886        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4887                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4888}
4889
4890static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4891{
4892        if (!cpu_has_virtual_nmis())
4893                return to_vmx(vcpu)->soft_vnmi_blocked;
4894        if (to_vmx(vcpu)->nmi_known_unmasked)
4895                return false;
4896        return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4897}
4898
4899static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4900{
4901        struct vcpu_vmx *vmx = to_vmx(vcpu);
4902
4903        if (!cpu_has_virtual_nmis()) {
4904                if (vmx->soft_vnmi_blocked != masked) {
4905                        vmx->soft_vnmi_blocked = masked;
4906                        vmx->vnmi_blocked_time = 0;
4907                }
4908        } else {
4909                vmx->nmi_known_unmasked = !masked;
4910                if (masked)
4911                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4912                                      GUEST_INTR_STATE_NMI);
4913                else
4914                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4915                                        GUEST_INTR_STATE_NMI);
4916        }
4917}
4918
4919static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4920{
4921        if (to_vmx(vcpu)->nested.nested_run_pending)
4922                return 0;
4923
4924        if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4925                return 0;
4926
4927        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4928                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4929                   | GUEST_INTR_STATE_NMI));
4930}
4931
4932static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4933{
4934        return (!to_vmx(vcpu)->nested.nested_run_pending &&
4935                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4936                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4937                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4938}
4939
4940static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4941{
4942        int ret;
4943
4944        ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4945                                    PAGE_SIZE * 3);
4946        if (ret)
4947                return ret;
4948        kvm->arch.tss_addr = addr;
4949        return init_rmode_tss(kvm);
4950}
4951
4952static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4953{
4954        switch (vec) {
4955        case BP_VECTOR:
4956                /*
4957                 * Update instruction length as we may reinject the exception
4958                 * from user space while in guest debugging mode.
4959                 */
4960                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4961                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4962                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4963                        return false;
4964                /* fall through */
4965        case DB_VECTOR:
4966                if (vcpu->guest_debug &
4967                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4968                        return false;
4969                /* fall through */
4970        case DE_VECTOR:
4971        case OF_VECTOR:
4972        case BR_VECTOR:
4973        case UD_VECTOR:
4974        case DF_VECTOR:
4975        case SS_VECTOR:
4976        case GP_VECTOR:
4977        case MF_VECTOR:
4978                return true;
4979        break;
4980        }
4981        return false;
4982}
4983
4984static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4985                                  int vec, u32 err_code)
4986{
4987        /*
4988         * Instruction with address size override prefix opcode 0x67
4989         * Cause the #SS fault with 0 error code in VM86 mode.
4990         */
4991        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4992                if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4993                        if (vcpu->arch.halt_request) {
4994                                vcpu->arch.halt_request = 0;
4995                                return kvm_vcpu_halt(vcpu);
4996                        }
4997                        return 1;
4998                }
4999                return 0;
5000        }
5001
5002        /*
5003         * Forward all other exceptions that are valid in real mode.
5004         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5005         *        the required debugging infrastructure rework.
5006         */
5007        kvm_queue_exception(vcpu, vec);
5008        return 1;
5009}
5010
5011/*
5012 * Trigger machine check on the host. We assume all the MSRs are already set up
5013 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5014 * We pass a fake environment to the machine check handler because we want
5015 * the guest to be always treated like user space, no matter what context
5016 * it used internally.
5017 */
5018static void kvm_machine_check(void)
5019{
5020#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5021        struct pt_regs regs = {
5022                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5023                .flags = X86_EFLAGS_IF,
5024        };
5025
5026        do_machine_check(&regs, 0);
5027#endif
5028}
5029
5030static int handle_machine_check(struct kvm_vcpu *vcpu)
5031{
5032        /* already handled by vcpu_run */
5033        return 1;
5034}
5035
5036static int handle_exception(struct kvm_vcpu *vcpu)
5037{
5038        struct vcpu_vmx *vmx = to_vmx(vcpu);
5039        struct kvm_run *kvm_run = vcpu->run;
5040        u32 intr_info, ex_no, error_code;
5041        unsigned long cr2, rip, dr6;
5042        u32 vect_info;
5043        enum emulation_result er;
5044
5045        vect_info = vmx->idt_vectoring_info;
5046        intr_info = vmx->exit_intr_info;
5047
5048        if (is_machine_check(intr_info))
5049                return handle_machine_check(vcpu);
5050
5051        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5052                return 1;  /* already handled by vmx_vcpu_run() */
5053
5054        if (is_no_device(intr_info)) {
5055                vmx_fpu_activate(vcpu);
5056                return 1;
5057        }
5058
5059        if (is_invalid_opcode(intr_info)) {
5060                if (is_guest_mode(vcpu)) {
5061                        kvm_queue_exception(vcpu, UD_VECTOR);
5062                        return 1;
5063                }
5064                er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5065                if (er != EMULATE_DONE)
5066                        kvm_queue_exception(vcpu, UD_VECTOR);
5067                return 1;
5068        }
5069
5070        error_code = 0;
5071        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5072                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5073
5074        /*
5075         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5076         * MMIO, it is better to report an internal error.
5077         * See the comments in vmx_handle_exit.
5078         */
5079        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5080            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5081                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5082                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5083                vcpu->run->internal.ndata = 3;
5084                vcpu->run->internal.data[0] = vect_info;
5085                vcpu->run->internal.data[1] = intr_info;
5086                vcpu->run->internal.data[2] = error_code;
5087                return 0;
5088        }
5089
5090        if (is_page_fault(intr_info)) {
5091                /* EPT won't cause page fault directly */
5092                BUG_ON(enable_ept);
5093                cr2 = vmcs_readl(EXIT_QUALIFICATION);
5094                trace_kvm_page_fault(cr2, error_code);
5095
5096                if (kvm_event_needs_reinjection(vcpu))
5097                        kvm_mmu_unprotect_page_virt(vcpu, cr2);
5098                return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5099        }
5100
5101        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5102
5103        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5104                return handle_rmode_exception(vcpu, ex_no, error_code);
5105
5106        switch (ex_no) {
5107        case DB_VECTOR:
5108                dr6 = vmcs_readl(EXIT_QUALIFICATION);
5109                if (!(vcpu->guest_debug &
5110                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5111                        vcpu->arch.dr6 &= ~15;
5112                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
5113                        if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5114                                skip_emulated_instruction(vcpu);
5115
5116                        kvm_queue_exception(vcpu, DB_VECTOR);
5117                        return 1;
5118                }
5119                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5120                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5121                /* fall through */
5122        case BP_VECTOR:
5123                /*
5124                 * Update instruction length as we may reinject #BP from
5125                 * user space while in guest debugging mode. Reading it for
5126                 * #DB as well causes no harm, it is not used in that case.
5127                 */
5128                vmx->vcpu.arch.event_exit_inst_len =
5129                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5130                kvm_run->exit_reason = KVM_EXIT_DEBUG;
5131                rip = kvm_rip_read(vcpu);
5132                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5133                kvm_run->debug.arch.exception = ex_no;
5134                break;
5135        default:
5136                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5137                kvm_run->ex.exception = ex_no;
5138                kvm_run->ex.error_code = error_code;
5139                break;
5140        }
5141        return 0;
5142}
5143
5144static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5145{
5146        ++vcpu->stat.irq_exits;
5147        return 1;
5148}
5149
5150static int handle_triple_fault(struct kvm_vcpu *vcpu)
5151{
5152        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5153        return 0;
5154}
5155
5156static int handle_io(struct kvm_vcpu *vcpu)
5157{
5158        unsigned long exit_qualification;
5159        int size, in, string;
5160        unsigned port;
5161
5162        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5163        string = (exit_qualification & 16) != 0;
5164        in = (exit_qualification & 8) != 0;
5165
5166        ++vcpu->stat.io_exits;
5167
5168        if (string || in)
5169                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5170
5171        port = exit_qualification >> 16;
5172        size = (exit_qualification & 7) + 1;
5173        skip_emulated_instruction(vcpu);
5174
5175        return kvm_fast_pio_out(vcpu, size, port);
5176}
5177
5178static void
5179vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5180{
5181        /*
5182         * Patch in the VMCALL instruction:
5183         */
5184        hypercall[0] = 0x0f;
5185        hypercall[1] = 0x01;
5186        hypercall[2] = 0xc1;
5187}
5188
5189static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5190{
5191        unsigned long always_on = VMXON_CR0_ALWAYSON;
5192        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5193
5194        if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5195                SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5196            nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5197                always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5198        return (val & always_on) == always_on;
5199}
5200
5201/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5202static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5203{
5204        if (is_guest_mode(vcpu)) {
5205                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5206                unsigned long orig_val = val;
5207
5208                /*
5209                 * We get here when L2 changed cr0 in a way that did not change
5210                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5211                 * but did change L0 shadowed bits. So we first calculate the
5212                 * effective cr0 value that L1 would like to write into the
5213                 * hardware. It consists of the L2-owned bits from the new
5214                 * value combined with the L1-owned bits from L1's guest_cr0.
5215                 */
5216                val = (val & ~vmcs12->cr0_guest_host_mask) |
5217                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5218
5219                if (!nested_cr0_valid(vcpu, val))
5220                        return 1;
5221
5222                if (kvm_set_cr0(vcpu, val))
5223                        return 1;
5224                vmcs_writel(CR0_READ_SHADOW, orig_val);
5225                return 0;
5226        } else {
5227                if (to_vmx(vcpu)->nested.vmxon &&
5228                    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5229                        return 1;
5230                return kvm_set_cr0(vcpu, val);
5231        }
5232}
5233
5234static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5235{
5236        if (is_guest_mode(vcpu)) {
5237                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5238                unsigned long orig_val = val;
5239
5240                /* analogously to handle_set_cr0 */
5241                val = (val & ~vmcs12->cr4_guest_host_mask) |
5242                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5243                if (kvm_set_cr4(vcpu, val))
5244                        return 1;
5245                vmcs_writel(CR4_READ_SHADOW, orig_val);
5246                return 0;
5247        } else
5248                return kvm_set_cr4(vcpu, val);
5249}
5250
5251/* called to set cr0 as approriate for clts instruction exit. */
5252static void handle_clts(struct kvm_vcpu *vcpu)
5253{
5254        if (is_guest_mode(vcpu)) {
5255                /*
5256                 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5257                 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5258                 * just pretend it's off (also in arch.cr0 for fpu_activate).
5259                 */
5260                vmcs_writel(CR0_READ_SHADOW,
5261                        vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5262                vcpu->arch.cr0 &= ~X86_CR0_TS;
5263        } else
5264                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5265}
5266
5267static int handle_cr(struct kvm_vcpu *vcpu)
5268{
5269        unsigned long exit_qualification, val;
5270        int cr;
5271        int reg;
5272        int err;
5273
5274        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5275        cr = exit_qualification & 15;
5276        reg = (exit_qualification >> 8) & 15;
5277        switch ((exit_qualification >> 4) & 3) {
5278        case 0: /* mov to cr */
5279                val = kvm_register_readl(vcpu, reg);
5280                trace_kvm_cr_write(cr, val);
5281                switch (cr) {
5282                case 0:
5283                        err = handle_set_cr0(vcpu, val);
5284                        kvm_complete_insn_gp(vcpu, err);
5285                        return 1;
5286                case 3:
5287                        err = kvm_set_cr3(vcpu, val);
5288                        kvm_complete_insn_gp(vcpu, err);
5289                        return 1;
5290                case 4:
5291                        err = handle_set_cr4(vcpu, val);
5292                        kvm_complete_insn_gp(vcpu, err);
5293                        return 1;
5294                case 8: {
5295                                u8 cr8_prev = kvm_get_cr8(vcpu);
5296                                u8 cr8 = (u8)val;
5297                                err = kvm_set_cr8(vcpu, cr8);
5298                                kvm_complete_insn_gp(vcpu, err);
5299                                if (irqchip_in_kernel(vcpu->kvm))
5300                                        return 1;
5301                                if (cr8_prev <= cr8)
5302                                        return 1;
5303                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5304                                return 0;
5305                        }
5306                }
5307                break;
5308        case 2: /* clts */
5309                handle_clts(vcpu);
5310                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5311                skip_emulated_instruction(vcpu);
5312                vmx_fpu_activate(vcpu);
5313                return 1;
5314        case 1: /*mov from cr*/
5315                switch (cr) {
5316                case 3:
5317                        val = kvm_read_cr3(vcpu);
5318                        kvm_register_write(vcpu, reg, val);
5319                        trace_kvm_cr_read(cr, val);
5320                        skip_emulated_instruction(vcpu);
5321                        return 1;
5322                case 8:
5323                        val = kvm_get_cr8(vcpu);
5324                        kvm_register_write(vcpu, reg, val);
5325                        trace_kvm_cr_read(cr, val);
5326                        skip_emulated_instruction(vcpu);
5327                        return 1;
5328                }
5329                break;
5330        case 3: /* lmsw */
5331                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5332                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5333                kvm_lmsw(vcpu, val);
5334
5335                skip_emulated_instruction(vcpu);
5336                return 1;
5337        default:
5338                break;
5339        }
5340        vcpu->run->exit_reason = 0;
5341        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5342               (int)(exit_qualification >> 4) & 3, cr);
5343        return 0;
5344}
5345
5346static int handle_dr(struct kvm_vcpu *vcpu)
5347{
5348        unsigned long exit_qualification;
5349        int dr, dr7, reg;
5350
5351        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5352        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5353
5354        /* First, if DR does not exist, trigger UD */
5355        if (!kvm_require_dr(vcpu, dr))
5356                return 1;
5357
5358        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5359        if (!kvm_require_cpl(vcpu, 0))
5360                return 1;
5361        dr7 = vmcs_readl(GUEST_DR7);
5362        if (dr7 & DR7_GD) {
5363                /*
5364                 * As the vm-exit takes precedence over the debug trap, we
5365                 * need to emulate the latter, either for the host or the
5366                 * guest debugging itself.
5367                 */
5368                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5369                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5370                        vcpu->run->debug.arch.dr7 = dr7;
5371                        vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5372                        vcpu->run->debug.arch.exception = DB_VECTOR;
5373                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5374                        return 0;
5375                } else {
5376                        vcpu->arch.dr6 &= ~15;
5377                        vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5378                        kvm_queue_exception(vcpu, DB_VECTOR);
5379                        return 1;
5380                }
5381        }
5382
5383        if (vcpu->guest_debug == 0) {
5384                u32 cpu_based_vm_exec_control;
5385
5386                cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5387                cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5388                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5389
5390                /*
5391                 * No more DR vmexits; force a reload of the debug registers
5392                 * and reenter on this instruction.  The next vmexit will
5393                 * retrieve the full state of the debug registers.
5394                 */
5395                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5396                return 1;
5397        }
5398
5399        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5400        if (exit_qualification & TYPE_MOV_FROM_DR) {
5401                unsigned long val;
5402
5403                if (kvm_get_dr(vcpu, dr, &val))
5404                        return 1;
5405                kvm_register_write(vcpu, reg, val);
5406        } else
5407                if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5408                        return 1;
5409
5410        skip_emulated_instruction(vcpu);
5411        return 1;
5412}
5413
5414static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5415{
5416        return vcpu->arch.dr6;
5417}
5418
5419static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5420{
5421}
5422
5423static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5424{
5425        u32 cpu_based_vm_exec_control;
5426
5427        get_debugreg(vcpu->arch.db[0], 0);
5428        get_debugreg(vcpu->arch.db[1], 1);
5429        get_debugreg(vcpu->arch.db[2], 2);
5430        get_debugreg(vcpu->arch.db[3], 3);
5431        get_debugreg(vcpu->arch.dr6, 6);
5432        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5433
5434        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5435
5436        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5437        cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5438        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5439}
5440
5441static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5442{
5443        vmcs_writel(GUEST_DR7, val);
5444}
5445
5446static int handle_cpuid(struct kvm_vcpu *vcpu)
5447{
5448        kvm_emulate_cpuid(vcpu);
5449        return 1;
5450}
5451
5452static int handle_rdmsr(struct kvm_vcpu *vcpu)
5453{
5454        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5455        struct msr_data msr_info;
5456
5457        msr_info.index = ecx;
5458        msr_info.host_initiated = false;
5459        if (vmx_get_msr(vcpu, &msr_info)) {
5460                trace_kvm_msr_read_ex(ecx);
5461                kvm_inject_gp(vcpu, 0);
5462                return 1;
5463        }
5464
5465        trace_kvm_msr_read(ecx, msr_info.data);
5466
5467        /* FIXME: handling of bits 32:63 of rax, rdx */
5468        vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5469        vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5470        skip_emulated_instruction(vcpu);
5471        return 1;
5472}
5473
5474static int handle_wrmsr(struct kvm_vcpu *vcpu)
5475{
5476        struct msr_data msr;
5477        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5478        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5479                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5480
5481        msr.data = data;
5482        msr.index = ecx;
5483        msr.host_initiated = false;
5484        if (kvm_set_msr(vcpu, &msr) != 0) {
5485                trace_kvm_msr_write_ex(ecx, data);
5486                kvm_inject_gp(vcpu, 0);
5487                return 1;
5488        }
5489
5490        trace_kvm_msr_write(ecx, data);
5491        skip_emulated_instruction(vcpu);
5492        return 1;
5493}
5494
5495static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5496{
5497        kvm_make_request(KVM_REQ_EVENT, vcpu);
5498        return 1;
5499}
5500
5501static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5502{
5503        u32 cpu_based_vm_exec_control;
5504
5505        /* clear pending irq */
5506        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5507        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5508        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5509
5510        kvm_make_request(KVM_REQ_EVENT, vcpu);
5511
5512        ++vcpu->stat.irq_window_exits;
5513
5514        /*
5515         * If the user space waits to inject interrupts, exit as soon as
5516         * possible
5517         */
5518        if (!irqchip_in_kernel(vcpu->kvm) &&
5519            vcpu->run->request_interrupt_window &&
5520            !kvm_cpu_has_interrupt(vcpu)) {
5521                vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5522                return 0;
5523        }
5524        return 1;
5525}
5526
5527static int handle_halt(struct kvm_vcpu *vcpu)
5528{
5529        return kvm_emulate_halt(vcpu);
5530}
5531
5532static int handle_vmcall(struct kvm_vcpu *vcpu)
5533{
5534        kvm_emulate_hypercall(vcpu);
5535        return 1;
5536}
5537
5538static int handle_invd(struct kvm_vcpu *vcpu)
5539{
5540        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5541}
5542
5543static int handle_invlpg(struct kvm_vcpu *vcpu)
5544{
5545        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5546
5547        kvm_mmu_invlpg(vcpu, exit_qualification);
5548        skip_emulated_instruction(vcpu);
5549        return 1;
5550}
5551
5552static int handle_rdpmc(struct kvm_vcpu *vcpu)
5553{
5554        int err;
5555
5556        err = kvm_rdpmc(vcpu);
5557        kvm_complete_insn_gp(vcpu, err);
5558
5559        return 1;
5560}
5561
5562static int handle_wbinvd(struct kvm_vcpu *vcpu)
5563{
5564        kvm_emulate_wbinvd(vcpu);
5565        return 1;
5566}
5567
5568static int handle_xsetbv(struct kvm_vcpu *vcpu)
5569{
5570        u64 new_bv = kvm_read_edx_eax(vcpu);
5571        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5572
5573        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5574                skip_emulated_instruction(vcpu);
5575        return 1;
5576}
5577
5578static int handle_xsaves(struct kvm_vcpu *vcpu)
5579{
5580        skip_emulated_instruction(vcpu);
5581        WARN(1, "this should never happen\n");
5582        return 1;
5583}
5584
5585static int handle_xrstors(struct kvm_vcpu *vcpu)
5586{
5587        skip_emulated_instruction(vcpu);
5588        WARN(1, "this should never happen\n");
5589        return 1;
5590}
5591
5592static int handle_apic_access(struct kvm_vcpu *vcpu)
5593{
5594        if (likely(fasteoi)) {
5595                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5596                int access_type, offset;
5597
5598                access_type = exit_qualification & APIC_ACCESS_TYPE;
5599                offset = exit_qualification & APIC_ACCESS_OFFSET;
5600                /*
5601                 * Sane guest uses MOV to write EOI, with written value
5602                 * not cared. So make a short-circuit here by avoiding
5603                 * heavy instruction emulation.
5604                 */
5605                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5606                    (offset == APIC_EOI)) {
5607                        kvm_lapic_set_eoi(vcpu);
5608                        skip_emulated_instruction(vcpu);
5609                        return 1;
5610                }
5611        }
5612        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5613}
5614
5615static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5616{
5617        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5618        int vector = exit_qualification & 0xff;
5619
5620        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5621        kvm_apic_set_eoi_accelerated(vcpu, vector);
5622        return 1;
5623}
5624
5625static int handle_apic_write(struct kvm_vcpu *vcpu)
5626{
5627        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5628        u32 offset = exit_qualification & 0xfff;
5629
5630        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5631        kvm_apic_write_nodecode(vcpu, offset);
5632        return 1;
5633}
5634
5635static int handle_task_switch(struct kvm_vcpu *vcpu)
5636{
5637        struct vcpu_vmx *vmx = to_vmx(vcpu);
5638        unsigned long exit_qualification;
5639        bool has_error_code = false;
5640        u32 error_code = 0;
5641        u16 tss_selector;
5642        int reason, type, idt_v, idt_index;
5643
5644        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5645        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5646        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5647
5648        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5649
5650        reason = (u32)exit_qualification >> 30;
5651        if (reason == TASK_SWITCH_GATE && idt_v) {
5652                switch (type) {
5653                case INTR_TYPE_NMI_INTR:
5654                        vcpu->arch.nmi_injected = false;
5655                        vmx_set_nmi_mask(vcpu, true);
5656                        break;
5657                case INTR_TYPE_EXT_INTR:
5658                case INTR_TYPE_SOFT_INTR:
5659                        kvm_clear_interrupt_queue(vcpu);
5660                        break;
5661                case INTR_TYPE_HARD_EXCEPTION:
5662                        if (vmx->idt_vectoring_info &
5663                            VECTORING_INFO_DELIVER_CODE_MASK) {
5664                                has_error_code = true;
5665                                error_code =
5666                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5667                        }
5668                        /* fall through */
5669                case INTR_TYPE_SOFT_EXCEPTION:
5670                        kvm_clear_exception_queue(vcpu);
5671                        break;
5672                default:
5673                        break;
5674                }
5675        }
5676        tss_selector = exit_qualification;
5677
5678        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5679                       type != INTR_TYPE_EXT_INTR &&
5680                       type != INTR_TYPE_NMI_INTR))
5681                skip_emulated_instruction(vcpu);
5682
5683        if (kvm_task_switch(vcpu, tss_selector,
5684                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5685                            has_error_code, error_code) == EMULATE_FAIL) {
5686                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5687                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5688                vcpu->run->internal.ndata = 0;
5689                return 0;
5690        }
5691
5692        /*
5693         * TODO: What about debug traps on tss switch?
5694         *       Are we supposed to inject them and update dr6?
5695         */
5696
5697        return 1;
5698}
5699
5700static int handle_ept_violation(struct kvm_vcpu *vcpu)
5701{
5702        unsigned long exit_qualification;
5703        gpa_t gpa;
5704        u32 error_code;
5705        int gla_validity;
5706
5707        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5708
5709        gla_validity = (exit_qualification >> 7) & 0x3;
5710        if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5711                printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5712                printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5713                        (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5714                        vmcs_readl(GUEST_LINEAR_ADDRESS));
5715                printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5716                        (long unsigned int)exit_qualification);
5717                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5718                vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5719                return 0;
5720        }
5721
5722        /*
5723         * EPT violation happened while executing iret from NMI,
5724         * "blocked by NMI" bit has to be set before next VM entry.
5725         * There are errata that may cause this bit to not be set:
5726         * AAK134, BY25.
5727         */
5728        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5729                        cpu_has_virtual_nmis() &&
5730                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5731                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5732
5733        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5734        trace_kvm_page_fault(gpa, exit_qualification);
5735
5736        /* It is a write fault? */
5737        error_code = exit_qualification & PFERR_WRITE_MASK;
5738        /* It is a fetch fault? */
5739        error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
5740        /* ept page table is present? */
5741        error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
5742
5743        vcpu->arch.exit_qualification = exit_qualification;
5744
5745        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5746}
5747
5748static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5749{
5750        int ret;
5751        gpa_t gpa;
5752
5753        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5754        if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5755                skip_emulated_instruction(vcpu);
5756                return 1;
5757        }
5758
5759        ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5760        if (likely(ret == RET_MMIO_PF_EMULATE))
5761                return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5762                                              EMULATE_DONE;
5763
5764        if (unlikely(ret == RET_MMIO_PF_INVALID))
5765                return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5766
5767        if (unlikely(ret == RET_MMIO_PF_RETRY))
5768                return 1;
5769
5770        /* It is the real ept misconfig */
5771        WARN_ON(1);
5772
5773        vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5774        vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5775
5776        return 0;
5777}
5778
5779static int handle_nmi_window(struct kvm_vcpu *vcpu)
5780{
5781        u32 cpu_based_vm_exec_control;
5782
5783        /* clear pending NMI */
5784        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5785        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5786        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5787        ++vcpu->stat.nmi_window_exits;
5788        kvm_make_request(KVM_REQ_EVENT, vcpu);
5789
5790        return 1;
5791}
5792
5793static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5794{
5795        struct vcpu_vmx *vmx = to_vmx(vcpu);
5796        enum emulation_result err = EMULATE_DONE;
5797        int ret = 1;
5798        u32 cpu_exec_ctrl;
5799        bool intr_window_requested;
5800        unsigned count = 130;
5801
5802        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5803        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5804
5805        while (vmx->emulation_required && count-- != 0) {
5806                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5807                        return handle_interrupt_window(&vmx->vcpu);
5808
5809                if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5810                        return 1;
5811
5812                err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5813
5814                if (err == EMULATE_USER_EXIT) {
5815                        ++vcpu->stat.mmio_exits;
5816                        ret = 0;
5817                        goto out;
5818                }
5819
5820                if (err != EMULATE_DONE) {
5821                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5822                        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5823                        vcpu->run->internal.ndata = 0;
5824                        return 0;
5825                }
5826
5827                if (vcpu->arch.halt_request) {
5828                        vcpu->arch.halt_request = 0;
5829                        ret = kvm_vcpu_halt(vcpu);
5830                        goto out;
5831                }
5832
5833                if (signal_pending(current))
5834                        goto out;
5835                if (need_resched())
5836                        schedule();
5837        }
5838
5839out:
5840        return ret;
5841}
5842
5843static int __grow_ple_window(int val)
5844{
5845        if (ple_window_grow < 1)
5846                return ple_window;
5847
5848        val = min(val, ple_window_actual_max);
5849
5850        if (ple_window_grow < ple_window)
5851                val *= ple_window_grow;
5852        else
5853                val += ple_window_grow;
5854
5855        return val;
5856}
5857
5858static int __shrink_ple_window(int val, int modifier, int minimum)
5859{
5860        if (modifier < 1)
5861                return ple_window;
5862
5863        if (modifier < ple_window)
5864                val /= modifier;
5865        else
5866                val -= modifier;
5867
5868        return max(val, minimum);
5869}
5870
5871static void grow_ple_window(struct kvm_vcpu *vcpu)
5872{
5873        struct vcpu_vmx *vmx = to_vmx(vcpu);
5874        int old = vmx->ple_window;
5875
5876        vmx->ple_window = __grow_ple_window(old);
5877
5878        if (vmx->ple_window != old)
5879                vmx->ple_window_dirty = true;
5880
5881        trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5882}
5883
5884static void shrink_ple_window(struct kvm_vcpu *vcpu)
5885{
5886        struct vcpu_vmx *vmx = to_vmx(vcpu);
5887        int old = vmx->ple_window;
5888
5889        vmx->ple_window = __shrink_ple_window(old,
5890                                              ple_window_shrink, ple_window);
5891
5892        if (vmx->ple_window != old)
5893                vmx->ple_window_dirty = true;
5894
5895        trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5896}
5897
5898/*
5899 * ple_window_actual_max is computed to be one grow_ple_window() below
5900 * ple_window_max. (See __grow_ple_window for the reason.)
5901 * This prevents overflows, because ple_window_max is int.
5902 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5903 * this process.
5904 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5905 */
5906static void update_ple_window_actual_max(void)
5907{
5908        ple_window_actual_max =
5909                        __shrink_ple_window(max(ple_window_max, ple_window),
5910                                            ple_window_grow, INT_MIN);
5911}
5912
5913static __init int hardware_setup(void)
5914{
5915        int r = -ENOMEM, i, msr;
5916
5917        rdmsrl_safe(MSR_EFER, &host_efer);
5918
5919        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
5920                kvm_define_shared_msr(i, vmx_msr_index[i]);
5921
5922        vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
5923        if (!vmx_io_bitmap_a)
5924                return r;
5925
5926        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
5927        if (!vmx_io_bitmap_b)
5928                goto out;
5929
5930        vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
5931        if (!vmx_msr_bitmap_legacy)
5932                goto out1;
5933
5934        vmx_msr_bitmap_legacy_x2apic =
5935                                (unsigned long *)__get_free_page(GFP_KERNEL);
5936        if (!vmx_msr_bitmap_legacy_x2apic)
5937                goto out2;
5938
5939        vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
5940        if (!vmx_msr_bitmap_longmode)
5941                goto out3;
5942
5943        vmx_msr_bitmap_longmode_x2apic =
5944                                (unsigned long *)__get_free_page(GFP_KERNEL);
5945        if (!vmx_msr_bitmap_longmode_x2apic)
5946                goto out4;
5947
5948        if (nested) {
5949                vmx_msr_bitmap_nested =
5950                        (unsigned long *)__get_free_page(GFP_KERNEL);
5951                if (!vmx_msr_bitmap_nested)
5952                        goto out5;
5953        }
5954
5955        vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5956        if (!vmx_vmread_bitmap)
5957                goto out6;
5958
5959        vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
5960        if (!vmx_vmwrite_bitmap)
5961                goto out7;
5962
5963        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
5964        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
5965
5966        /*
5967         * Allow direct access to the PC debug port (it is often used for I/O
5968         * delays, but the vmexits simply slow things down).
5969         */
5970        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
5971        clear_bit(0x80, vmx_io_bitmap_a);
5972
5973        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
5974
5975        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
5976        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
5977        if (nested)
5978                memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
5979
5980        if (setup_vmcs_config(&vmcs_config) < 0) {
5981                r = -EIO;
5982                goto out8;
5983        }
5984
5985        if (boot_cpu_has(X86_FEATURE_NX))
5986                kvm_enable_efer_bits(EFER_NX);
5987
5988        if (!cpu_has_vmx_vpid())
5989                enable_vpid = 0;
5990        if (!cpu_has_vmx_shadow_vmcs())
5991                enable_shadow_vmcs = 0;
5992        if (enable_shadow_vmcs)
5993                init_vmcs_shadow_fields();
5994
5995        if (!cpu_has_vmx_ept() ||
5996            !cpu_has_vmx_ept_4levels()) {
5997                enable_ept = 0;
5998                enable_unrestricted_guest = 0;
5999                enable_ept_ad_bits = 0;
6000        }
6001
6002        if (!cpu_has_vmx_ept_ad_bits())
6003                enable_ept_ad_bits = 0;
6004
6005        if (!cpu_has_vmx_unrestricted_guest())
6006                enable_unrestricted_guest = 0;
6007
6008        if (!cpu_has_vmx_flexpriority())
6009                flexpriority_enabled = 0;
6010
6011        /*
6012         * set_apic_access_page_addr() is used to reload apic access
6013         * page upon invalidation.  No need to do anything if not
6014         * using the APIC_ACCESS_ADDR VMCS field.
6015         */
6016        if (!flexpriority_enabled)
6017                kvm_x86_ops->set_apic_access_page_addr = NULL;
6018
6019        if (!cpu_has_vmx_tpr_shadow())
6020                kvm_x86_ops->update_cr8_intercept = NULL;
6021
6022        if (enable_ept && !cpu_has_vmx_ept_2m_page())
6023                kvm_disable_largepages();
6024
6025        if (!cpu_has_vmx_ple())
6026                ple_gap = 0;
6027
6028        if (!cpu_has_vmx_apicv())
6029                enable_apicv = 0;
6030
6031        if (enable_apicv)
6032                kvm_x86_ops->update_cr8_intercept = NULL;
6033        else {
6034                kvm_x86_ops->hwapic_irr_update = NULL;
6035                kvm_x86_ops->hwapic_isr_update = NULL;
6036                kvm_x86_ops->deliver_posted_interrupt = NULL;
6037                kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6038        }
6039
6040        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6041        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6042        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6043        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6044        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6045        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6046        vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6047
6048        memcpy(vmx_msr_bitmap_legacy_x2apic,
6049                        vmx_msr_bitmap_legacy, PAGE_SIZE);
6050        memcpy(vmx_msr_bitmap_longmode_x2apic,
6051                        vmx_msr_bitmap_longmode, PAGE_SIZE);
6052
6053        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6054
6055        if (enable_apicv) {
6056                for (msr = 0x800; msr <= 0x8ff; msr++)
6057                        vmx_disable_intercept_msr_read_x2apic(msr);
6058
6059                /* According SDM, in x2apic mode, the whole id reg is used.
6060                 * But in KVM, it only use the highest eight bits. Need to
6061                 * intercept it */
6062                vmx_enable_intercept_msr_read_x2apic(0x802);
6063                /* TMCCT */
6064                vmx_enable_intercept_msr_read_x2apic(0x839);
6065                /* TPR */
6066                vmx_disable_intercept_msr_write_x2apic(0x808);
6067                /* EOI */
6068                vmx_disable_intercept_msr_write_x2apic(0x80b);
6069                /* SELF-IPI */
6070                vmx_disable_intercept_msr_write_x2apic(0x83f);
6071        }
6072
6073        if (enable_ept) {
6074                kvm_mmu_set_mask_ptes(0ull,
6075                        (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6076                        (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6077                        0ull, VMX_EPT_EXECUTABLE_MASK);
6078                ept_set_mmio_spte_mask();
6079                kvm_enable_tdp();
6080        } else
6081                kvm_disable_tdp();
6082
6083        update_ple_window_actual_max();
6084
6085        /*
6086         * Only enable PML when hardware supports PML feature, and both EPT
6087         * and EPT A/D bit features are enabled -- PML depends on them to work.
6088         */
6089        if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6090                enable_pml = 0;
6091
6092        if (!enable_pml) {
6093                kvm_x86_ops->slot_enable_log_dirty = NULL;
6094                kvm_x86_ops->slot_disable_log_dirty = NULL;
6095                kvm_x86_ops->flush_log_dirty = NULL;
6096                kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6097        }
6098
6099        return alloc_kvm_area();
6100
6101out8:
6102        free_page((unsigned long)vmx_vmwrite_bitmap);
6103out7:
6104        free_page((unsigned long)vmx_vmread_bitmap);
6105out6:
6106        if (nested)
6107                free_page((unsigned long)vmx_msr_bitmap_nested);
6108out5:
6109        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6110out4:
6111        free_page((unsigned long)vmx_msr_bitmap_longmode);
6112out3:
6113        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6114out2:
6115        free_page((unsigned long)vmx_msr_bitmap_legacy);
6116out1:
6117        free_page((unsigned long)vmx_io_bitmap_b);
6118out:
6119        free_page((unsigned long)vmx_io_bitmap_a);
6120
6121    return r;
6122}
6123
6124static __exit void hardware_unsetup(void)
6125{
6126        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6127        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6128        free_page((unsigned long)vmx_msr_bitmap_legacy);
6129        free_page((unsigned long)vmx_msr_bitmap_longmode);
6130        free_page((unsigned long)vmx_io_bitmap_b);
6131        free_page((unsigned long)vmx_io_bitmap_a);
6132        free_page((unsigned long)vmx_vmwrite_bitmap);
6133        free_page((unsigned long)vmx_vmread_bitmap);
6134        if (nested)
6135                free_page((unsigned long)vmx_msr_bitmap_nested);
6136
6137        free_kvm_area();
6138}
6139
6140/*
6141 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6142 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6143 */
6144static int handle_pause(struct kvm_vcpu *vcpu)
6145{
6146        if (ple_gap)
6147                grow_ple_window(vcpu);
6148
6149        skip_emulated_instruction(vcpu);
6150        kvm_vcpu_on_spin(vcpu);
6151
6152        return 1;
6153}
6154
6155static int handle_nop(struct kvm_vcpu *vcpu)
6156{
6157        skip_emulated_instruction(vcpu);
6158        return 1;
6159}
6160
6161static int handle_mwait(struct kvm_vcpu *vcpu)
6162{
6163        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6164        return handle_nop(vcpu);
6165}
6166
6167static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6168{
6169        return 1;
6170}
6171
6172static int handle_monitor(struct kvm_vcpu *vcpu)
6173{
6174        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6175        return handle_nop(vcpu);
6176}
6177
6178/*
6179 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6180 * We could reuse a single VMCS for all the L2 guests, but we also want the
6181 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6182 * allows keeping them loaded on the processor, and in the future will allow
6183 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6184 * every entry if they never change.
6185 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6186 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6187 *
6188 * The following functions allocate and free a vmcs02 in this pool.
6189 */
6190
6191/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6192static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6193{
6194        struct vmcs02_list *item;
6195        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6196                if (item->vmptr == vmx->nested.current_vmptr) {
6197                        list_move(&item->list, &vmx->nested.vmcs02_pool);
6198                        return &item->vmcs02;
6199                }
6200
6201        if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6202                /* Recycle the least recently used VMCS. */
6203                item = list_entry(vmx->nested.vmcs02_pool.prev,
6204                        struct vmcs02_list, list);
6205                item->vmptr = vmx->nested.current_vmptr;
6206                list_move(&item->list, &vmx->nested.vmcs02_pool);
6207                return &item->vmcs02;
6208        }
6209
6210        /* Create a new VMCS */
6211        item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6212        if (!item)
6213                return NULL;
6214        item->vmcs02.vmcs = alloc_vmcs();
6215        if (!item->vmcs02.vmcs) {
6216                kfree(item);
6217                return NULL;
6218        }
6219        loaded_vmcs_init(&item->vmcs02);
6220        item->vmptr = vmx->nested.current_vmptr;
6221        list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6222        vmx->nested.vmcs02_num++;
6223        return &item->vmcs02;
6224}
6225
6226/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6227static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6228{
6229        struct vmcs02_list *item;
6230        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6231                if (item->vmptr == vmptr) {
6232                        free_loaded_vmcs(&item->vmcs02);
6233                        list_del(&item->list);
6234                        kfree(item);
6235                        vmx->nested.vmcs02_num--;
6236                        return;
6237                }
6238}
6239
6240/*
6241 * Free all VMCSs saved for this vcpu, except the one pointed by
6242 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6243 * must be &vmx->vmcs01.
6244 */
6245static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6246{
6247        struct vmcs02_list *item, *n;
6248
6249        WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6250        list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6251                /*
6252                 * Something will leak if the above WARN triggers.  Better than
6253                 * a use-after-free.
6254                 */
6255                if (vmx->loaded_vmcs == &item->vmcs02)
6256                        continue;
6257
6258                free_loaded_vmcs(&item->vmcs02);
6259                list_del(&item->list);
6260                kfree(item);
6261                vmx->nested.vmcs02_num--;
6262        }
6263}
6264
6265/*
6266 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6267 * set the success or error code of an emulated VMX instruction, as specified
6268 * by Vol 2B, VMX Instruction Reference, "Conventions".
6269 */
6270static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6271{
6272        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6273                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6274                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6275}
6276
6277static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6278{
6279        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6280                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6281                            X86_EFLAGS_SF | X86_EFLAGS_OF))
6282                        | X86_EFLAGS_CF);
6283}
6284
6285static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6286                                        u32 vm_instruction_error)
6287{
6288        if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6289                /*
6290                 * failValid writes the error number to the current VMCS, which
6291                 * can't be done there isn't a current VMCS.
6292                 */
6293                nested_vmx_failInvalid(vcpu);
6294                return;
6295        }
6296        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6297                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6298                            X86_EFLAGS_SF | X86_EFLAGS_OF))
6299                        | X86_EFLAGS_ZF);
6300        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6301        /*
6302         * We don't need to force a shadow sync because
6303         * VM_INSTRUCTION_ERROR is not shadowed
6304         */
6305}
6306
6307static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6308{
6309        /* TODO: not to reset guest simply here. */
6310        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6311        pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6312}
6313
6314static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6315{
6316        struct vcpu_vmx *vmx =
6317                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6318
6319        vmx->nested.preemption_timer_expired = true;
6320        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6321        kvm_vcpu_kick(&vmx->vcpu);
6322
6323        return HRTIMER_NORESTART;
6324}
6325
6326/*
6327 * Decode the memory-address operand of a vmx instruction, as recorded on an
6328 * exit caused by such an instruction (run by a guest hypervisor).
6329 * On success, returns 0. When the operand is invalid, returns 1 and throws
6330 * #UD or #GP.
6331 */
6332static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6333                                 unsigned long exit_qualification,
6334                                 u32 vmx_instruction_info, bool wr, gva_t *ret)
6335{
6336        gva_t off;
6337        bool exn;
6338        struct kvm_segment s;
6339
6340        /*
6341         * According to Vol. 3B, "Information for VM Exits Due to Instruction
6342         * Execution", on an exit, vmx_instruction_info holds most of the
6343         * addressing components of the operand. Only the displacement part
6344         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6345         * For how an actual address is calculated from all these components,
6346         * refer to Vol. 1, "Operand Addressing".
6347         */
6348        int  scaling = vmx_instruction_info & 3;
6349        int  addr_size = (vmx_instruction_info >> 7) & 7;
6350        bool is_reg = vmx_instruction_info & (1u << 10);
6351        int  seg_reg = (vmx_instruction_info >> 15) & 7;
6352        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6353        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6354        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6355        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6356
6357        if (is_reg) {
6358                kvm_queue_exception(vcpu, UD_VECTOR);
6359                return 1;
6360        }
6361
6362        /* Addr = segment_base + offset */
6363        /* offset = base + [index * scale] + displacement */
6364        off = exit_qualification; /* holds the displacement */
6365        if (base_is_valid)
6366                off += kvm_register_read(vcpu, base_reg);
6367        if (index_is_valid)
6368                off += kvm_register_read(vcpu, index_reg)<<scaling;
6369        vmx_get_segment(vcpu, &s, seg_reg);
6370        *ret = s.base + off;
6371
6372        if (addr_size == 1) /* 32 bit */
6373                *ret &= 0xffffffff;
6374
6375        /* Checks for #GP/#SS exceptions. */
6376        exn = false;
6377        if (is_protmode(vcpu)) {
6378                /* Protected mode: apply checks for segment validity in the
6379                 * following order:
6380                 * - segment type check (#GP(0) may be thrown)
6381                 * - usability check (#GP(0)/#SS(0))
6382                 * - limit check (#GP(0)/#SS(0))
6383                 */
6384                if (wr)
6385                        /* #GP(0) if the destination operand is located in a
6386                         * read-only data segment or any code segment.
6387                         */
6388                        exn = ((s.type & 0xa) == 0 || (s.type & 8));
6389                else
6390                        /* #GP(0) if the source operand is located in an
6391                         * execute-only code segment
6392                         */
6393                        exn = ((s.type & 0xa) == 8);
6394        }
6395        if (exn) {
6396                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6397                return 1;
6398        }
6399        if (is_long_mode(vcpu)) {
6400                /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6401                 * non-canonical form. This is an only check for long mode.
6402                 */
6403                exn = is_noncanonical_address(*ret);
6404        } else if (is_protmode(vcpu)) {
6405                /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6406                 */
6407                exn = (s.unusable != 0);
6408                /* Protected mode: #GP(0)/#SS(0) if the memory
6409                 * operand is outside the segment limit.
6410                 */
6411                exn = exn || (off + sizeof(u64) > s.limit);
6412        }
6413        if (exn) {
6414                kvm_queue_exception_e(vcpu,
6415                                      seg_reg == VCPU_SREG_SS ?
6416                                                SS_VECTOR : GP_VECTOR,
6417                                      0);
6418                return 1;
6419        }
6420
6421        return 0;
6422}
6423
6424/*
6425 * This function performs the various checks including
6426 * - if it's 4KB aligned
6427 * - No bits beyond the physical address width are set
6428 * - Returns 0 on success or else 1
6429 * (Intel SDM Section 30.3)
6430 */
6431static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6432                                  gpa_t *vmpointer)
6433{
6434        gva_t gva;
6435        gpa_t vmptr;
6436        struct x86_exception e;
6437        struct page *page;
6438        struct vcpu_vmx *vmx = to_vmx(vcpu);
6439        int maxphyaddr = cpuid_maxphyaddr(vcpu);
6440
6441        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6442                        vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6443                return 1;
6444
6445        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6446                                sizeof(vmptr), &e)) {
6447                kvm_inject_page_fault(vcpu, &e);
6448                return 1;
6449        }
6450
6451        switch (exit_reason) {
6452        case EXIT_REASON_VMON:
6453                /*
6454                 * SDM 3: 24.11.5
6455                 * The first 4 bytes of VMXON region contain the supported
6456                 * VMCS revision identifier
6457                 *
6458                 * Note - IA32_VMX_BASIC[48] will never be 1
6459                 * for the nested case;
6460                 * which replaces physical address width with 32
6461                 *
6462                 */
6463                if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6464                        nested_vmx_failInvalid(vcpu);
6465                        skip_emulated_instruction(vcpu);
6466                        return 1;
6467                }
6468
6469                page = nested_get_page(vcpu, vmptr);
6470                if (page == NULL ||
6471                    *(u32 *)kmap(page) != VMCS12_REVISION) {
6472                        nested_vmx_failInvalid(vcpu);
6473                        kunmap(page);
6474                        skip_emulated_instruction(vcpu);
6475                        return 1;
6476                }
6477                kunmap(page);
6478                vmx->nested.vmxon_ptr = vmptr;
6479                break;
6480        case EXIT_REASON_VMCLEAR:
6481                if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6482                        nested_vmx_failValid(vcpu,
6483                                             VMXERR_VMCLEAR_INVALID_ADDRESS);
6484                        skip_emulated_instruction(vcpu);
6485                        return 1;
6486                }
6487
6488                if (vmptr == vmx->nested.vmxon_ptr) {
6489                        nested_vmx_failValid(vcpu,
6490                                             VMXERR_VMCLEAR_VMXON_POINTER);
6491                        skip_emulated_instruction(vcpu);
6492                        return 1;
6493                }
6494                break;
6495        case EXIT_REASON_VMPTRLD:
6496                if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6497                        nested_vmx_failValid(vcpu,
6498                                             VMXERR_VMPTRLD_INVALID_ADDRESS);
6499                        skip_emulated_instruction(vcpu);
6500                        return 1;
6501                }
6502
6503                if (vmptr == vmx->nested.vmxon_ptr) {
6504                        nested_vmx_failValid(vcpu,
6505                                             VMXERR_VMCLEAR_VMXON_POINTER);
6506                        skip_emulated_instruction(vcpu);
6507                        return 1;
6508                }
6509                break;
6510        default:
6511                return 1; /* shouldn't happen */
6512        }
6513
6514        if (vmpointer)
6515                *vmpointer = vmptr;
6516        return 0;
6517}
6518
6519/*
6520 * Emulate the VMXON instruction.
6521 * Currently, we just remember that VMX is active, and do not save or even
6522 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6523 * do not currently need to store anything in that guest-allocated memory
6524 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6525 * argument is different from the VMXON pointer (which the spec says they do).
6526 */
6527static int handle_vmon(struct kvm_vcpu *vcpu)
6528{
6529        struct kvm_segment cs;
6530        struct vcpu_vmx *vmx = to_vmx(vcpu);
6531        struct vmcs *shadow_vmcs;
6532        const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6533                | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6534
6535        /* The Intel VMX Instruction Reference lists a bunch of bits that
6536         * are prerequisite to running VMXON, most notably cr4.VMXE must be
6537         * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6538         * Otherwise, we should fail with #UD. We test these now:
6539         */
6540        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6541            !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6542            (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6543                kvm_queue_exception(vcpu, UD_VECTOR);
6544                return 1;
6545        }
6546
6547        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6548        if (is_long_mode(vcpu) && !cs.l) {
6549                kvm_queue_exception(vcpu, UD_VECTOR);
6550                return 1;
6551        }
6552
6553        if (vmx_get_cpl(vcpu)) {
6554                kvm_inject_gp(vcpu, 0);
6555                return 1;
6556        }
6557
6558        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6559                return 1;
6560
6561        if (vmx->nested.vmxon) {
6562                nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6563                skip_emulated_instruction(vcpu);
6564                return 1;
6565        }
6566
6567        if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6568                        != VMXON_NEEDED_FEATURES) {
6569                kvm_inject_gp(vcpu, 0);
6570                return 1;
6571        }
6572
6573        if (enable_shadow_vmcs) {
6574                shadow_vmcs = alloc_vmcs();
6575                if (!shadow_vmcs)
6576                        return -ENOMEM;
6577                /* mark vmcs as shadow */
6578                shadow_vmcs->revision_id |= (1u << 31);
6579                /* init shadow vmcs */
6580                vmcs_clear(shadow_vmcs);
6581                vmx->nested.current_shadow_vmcs = shadow_vmcs;
6582        }
6583
6584        INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6585        vmx->nested.vmcs02_num = 0;
6586
6587        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6588                     HRTIMER_MODE_REL);
6589        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6590
6591        vmx->nested.vmxon = true;
6592
6593        skip_emulated_instruction(vcpu);
6594        nested_vmx_succeed(vcpu);
6595        return 1;
6596}
6597
6598/*
6599 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6600 * for running VMX instructions (except VMXON, whose prerequisites are
6601 * slightly different). It also specifies what exception to inject otherwise.
6602 */
6603static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6604{
6605        struct kvm_segment cs;
6606        struct vcpu_vmx *vmx = to_vmx(vcpu);
6607
6608        if (!vmx->nested.vmxon) {
6609                kvm_queue_exception(vcpu, UD_VECTOR);
6610                return 0;
6611        }
6612
6613        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6614        if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6615            (is_long_mode(vcpu) && !cs.l)) {
6616                kvm_queue_exception(vcpu, UD_VECTOR);
6617                return 0;
6618        }
6619
6620        if (vmx_get_cpl(vcpu)) {
6621                kvm_inject_gp(vcpu, 0);
6622                return 0;
6623        }
6624
6625        return 1;
6626}
6627
6628static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6629{
6630        u32 exec_control;
6631        if (vmx->nested.current_vmptr == -1ull)
6632                return;
6633
6634        /* current_vmptr and current_vmcs12 are always set/reset together */
6635        if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6636                return;
6637
6638        if (enable_shadow_vmcs) {
6639                /* copy to memory all shadowed fields in case
6640                   they were modified */
6641                copy_shadow_to_vmcs12(vmx);
6642                vmx->nested.sync_shadow_vmcs = false;
6643                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6644                exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6645                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6646                vmcs_write64(VMCS_LINK_POINTER, -1ull);
6647        }
6648        vmx->nested.posted_intr_nv = -1;
6649        kunmap(vmx->nested.current_vmcs12_page);
6650        nested_release_page(vmx->nested.current_vmcs12_page);
6651        vmx->nested.current_vmptr = -1ull;
6652        vmx->nested.current_vmcs12 = NULL;
6653}
6654
6655/*
6656 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6657 * just stops using VMX.
6658 */
6659static void free_nested(struct vcpu_vmx *vmx)
6660{
6661        if (!vmx->nested.vmxon)
6662                return;
6663
6664        vmx->nested.vmxon = false;
6665        nested_release_vmcs12(vmx);
6666        if (enable_shadow_vmcs)
6667                free_vmcs(vmx->nested.current_shadow_vmcs);
6668        /* Unpin physical memory we referred to in current vmcs02 */
6669        if (vmx->nested.apic_access_page) {
6670                nested_release_page(vmx->nested.apic_access_page);
6671                vmx->nested.apic_access_page = NULL;
6672        }
6673        if (vmx->nested.virtual_apic_page) {
6674                nested_release_page(vmx->nested.virtual_apic_page);
6675                vmx->nested.virtual_apic_page = NULL;
6676        }
6677        if (vmx->nested.pi_desc_page) {
6678                kunmap(vmx->nested.pi_desc_page);
6679                nested_release_page(vmx->nested.pi_desc_page);
6680                vmx->nested.pi_desc_page = NULL;
6681                vmx->nested.pi_desc = NULL;
6682        }
6683
6684        nested_free_all_saved_vmcss(vmx);
6685}
6686
6687/* Emulate the VMXOFF instruction */
6688static int handle_vmoff(struct kvm_vcpu *vcpu)
6689{
6690        if (!nested_vmx_check_permission(vcpu))
6691                return 1;
6692        free_nested(to_vmx(vcpu));
6693        skip_emulated_instruction(vcpu);
6694        nested_vmx_succeed(vcpu);
6695        return 1;
6696}
6697
6698/* Emulate the VMCLEAR instruction */
6699static int handle_vmclear(struct kvm_vcpu *vcpu)
6700{
6701        struct vcpu_vmx *vmx = to_vmx(vcpu);
6702        gpa_t vmptr;
6703        struct vmcs12 *vmcs12;
6704        struct page *page;
6705
6706        if (!nested_vmx_check_permission(vcpu))
6707                return 1;
6708
6709        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6710                return 1;
6711
6712        if (vmptr == vmx->nested.current_vmptr)
6713                nested_release_vmcs12(vmx);
6714
6715        page = nested_get_page(vcpu, vmptr);
6716        if (page == NULL) {
6717                /*
6718                 * For accurate processor emulation, VMCLEAR beyond available
6719                 * physical memory should do nothing at all. However, it is
6720                 * possible that a nested vmx bug, not a guest hypervisor bug,
6721                 * resulted in this case, so let's shut down before doing any
6722                 * more damage:
6723                 */
6724                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6725                return 1;
6726        }
6727        vmcs12 = kmap(page);
6728        vmcs12->launch_state = 0;
6729        kunmap(page);
6730        nested_release_page(page);
6731
6732        nested_free_vmcs02(vmx, vmptr);
6733
6734        skip_emulated_instruction(vcpu);
6735        nested_vmx_succeed(vcpu);
6736        return 1;
6737}
6738
6739static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6740
6741/* Emulate the VMLAUNCH instruction */
6742static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6743{
6744        return nested_vmx_run(vcpu, true);
6745}
6746
6747/* Emulate the VMRESUME instruction */
6748static int handle_vmresume(struct kvm_vcpu *vcpu)
6749{
6750
6751        return nested_vmx_run(vcpu, false);
6752}
6753
6754enum vmcs_field_type {
6755        VMCS_FIELD_TYPE_U16 = 0,
6756        VMCS_FIELD_TYPE_U64 = 1,
6757        VMCS_FIELD_TYPE_U32 = 2,
6758        VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6759};
6760
6761static inline int vmcs_field_type(unsigned long field)
6762{
6763        if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
6764                return VMCS_FIELD_TYPE_U32;
6765        return (field >> 13) & 0x3 ;
6766}
6767
6768static inline int vmcs_field_readonly(unsigned long field)
6769{
6770        return (((field >> 10) & 0x3) == 1);
6771}
6772
6773/*
6774 * Read a vmcs12 field. Since these can have varying lengths and we return
6775 * one type, we chose the biggest type (u64) and zero-extend the return value
6776 * to that size. Note that the caller, handle_vmread, might need to use only
6777 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6778 * 64-bit fields are to be returned).
6779 */
6780static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
6781                                  unsigned long field, u64 *ret)
6782{
6783        short offset = vmcs_field_to_offset(field);
6784        char *p;
6785
6786        if (offset < 0)
6787                return offset;
6788
6789        p = ((char *)(get_vmcs12(vcpu))) + offset;
6790
6791        switch (vmcs_field_type(field)) {
6792        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6793                *ret = *((natural_width *)p);
6794                return 0;
6795        case VMCS_FIELD_TYPE_U16:
6796                *ret = *((u16 *)p);
6797                return 0;
6798        case VMCS_FIELD_TYPE_U32:
6799                *ret = *((u32 *)p);
6800                return 0;
6801        case VMCS_FIELD_TYPE_U64:
6802                *ret = *((u64 *)p);
6803                return 0;
6804        default:
6805                WARN_ON(1);
6806                return -ENOENT;
6807        }
6808}
6809
6810
6811static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
6812                                   unsigned long field, u64 field_value){
6813        short offset = vmcs_field_to_offset(field);
6814        char *p = ((char *) get_vmcs12(vcpu)) + offset;
6815        if (offset < 0)
6816                return offset;
6817
6818        switch (vmcs_field_type(field)) {
6819        case VMCS_FIELD_TYPE_U16:
6820                *(u16 *)p = field_value;
6821                return 0;
6822        case VMCS_FIELD_TYPE_U32:
6823                *(u32 *)p = field_value;
6824                return 0;
6825        case VMCS_FIELD_TYPE_U64:
6826                *(u64 *)p = field_value;
6827                return 0;
6828        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6829                *(natural_width *)p = field_value;
6830                return 0;
6831        default:
6832                WARN_ON(1);
6833                return -ENOENT;
6834        }
6835
6836}
6837
6838static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6839{
6840        int i;
6841        unsigned long field;
6842        u64 field_value;
6843        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6844        const unsigned long *fields = shadow_read_write_fields;
6845        const int num_fields = max_shadow_read_write_fields;
6846
6847        preempt_disable();
6848
6849        vmcs_load(shadow_vmcs);
6850
6851        for (i = 0; i < num_fields; i++) {
6852                field = fields[i];
6853                switch (vmcs_field_type(field)) {
6854                case VMCS_FIELD_TYPE_U16:
6855                        field_value = vmcs_read16(field);
6856                        break;
6857                case VMCS_FIELD_TYPE_U32:
6858                        field_value = vmcs_read32(field);
6859                        break;
6860                case VMCS_FIELD_TYPE_U64:
6861                        field_value = vmcs_read64(field);
6862                        break;
6863                case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6864                        field_value = vmcs_readl(field);
6865                        break;
6866                default:
6867                        WARN_ON(1);
6868                        continue;
6869                }
6870                vmcs12_write_any(&vmx->vcpu, field, field_value);
6871        }
6872
6873        vmcs_clear(shadow_vmcs);
6874        vmcs_load(vmx->loaded_vmcs->vmcs);
6875
6876        preempt_enable();
6877}
6878
6879static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6880{
6881        const unsigned long *fields[] = {
6882                shadow_read_write_fields,
6883                shadow_read_only_fields
6884        };
6885        const int max_fields[] = {
6886                max_shadow_read_write_fields,
6887                max_shadow_read_only_fields
6888        };
6889        int i, q;
6890        unsigned long field;
6891        u64 field_value = 0;
6892        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6893
6894        vmcs_load(shadow_vmcs);
6895
6896        for (q = 0; q < ARRAY_SIZE(fields); q++) {
6897                for (i = 0; i < max_fields[q]; i++) {
6898                        field = fields[q][i];
6899                        vmcs12_read_any(&vmx->vcpu, field, &field_value);
6900
6901                        switch (vmcs_field_type(field)) {
6902                        case VMCS_FIELD_TYPE_U16:
6903                                vmcs_write16(field, (u16)field_value);
6904                                break;
6905                        case VMCS_FIELD_TYPE_U32:
6906                                vmcs_write32(field, (u32)field_value);
6907                                break;
6908                        case VMCS_FIELD_TYPE_U64:
6909                                vmcs_write64(field, (u64)field_value);
6910                                break;
6911                        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6912                                vmcs_writel(field, (long)field_value);
6913                                break;
6914                        default:
6915                                WARN_ON(1);
6916                                break;
6917                        }
6918                }
6919        }
6920
6921        vmcs_clear(shadow_vmcs);
6922        vmcs_load(vmx->loaded_vmcs->vmcs);
6923}
6924
6925/*
6926 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6927 * used before) all generate the same failure when it is missing.
6928 */
6929static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6930{
6931        struct vcpu_vmx *vmx = to_vmx(vcpu);
6932        if (vmx->nested.current_vmptr == -1ull) {
6933                nested_vmx_failInvalid(vcpu);
6934                skip_emulated_instruction(vcpu);
6935                return 0;
6936        }
6937        return 1;
6938}
6939
6940static int handle_vmread(struct kvm_vcpu *vcpu)
6941{
6942        unsigned long field;
6943        u64 field_value;
6944        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6945        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6946        gva_t gva = 0;
6947
6948        if (!nested_vmx_check_permission(vcpu) ||
6949            !nested_vmx_check_vmcs12(vcpu))
6950                return 1;
6951
6952        /* Decode instruction info and find the field to read */
6953        field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6954        /* Read the field, zero-extended to a u64 field_value */
6955        if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
6956                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6957                skip_emulated_instruction(vcpu);
6958                return 1;
6959        }
6960        /*
6961         * Now copy part of this value to register or memory, as requested.
6962         * Note that the number of bits actually copied is 32 or 64 depending
6963         * on the guest's mode (32 or 64 bit), not on the given field's length.
6964         */
6965        if (vmx_instruction_info & (1u << 10)) {
6966                kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6967                        field_value);
6968        } else {
6969                if (get_vmx_mem_address(vcpu, exit_qualification,
6970                                vmx_instruction_info, true, &gva))
6971                        return 1;
6972                /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6973                kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6974                             &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6975        }
6976
6977        nested_vmx_succeed(vcpu);
6978        skip_emulated_instruction(vcpu);
6979        return 1;
6980}
6981
6982
6983static int handle_vmwrite(struct kvm_vcpu *vcpu)
6984{
6985        unsigned long field;
6986        gva_t gva;
6987        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6988        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6989        /* The value to write might be 32 or 64 bits, depending on L1's long
6990         * mode, and eventually we need to write that into a field of several
6991         * possible lengths. The code below first zero-extends the value to 64
6992         * bit (field_value), and then copies only the approriate number of
6993         * bits into the vmcs12 field.
6994         */
6995        u64 field_value = 0;
6996        struct x86_exception e;
6997
6998        if (!nested_vmx_check_permission(vcpu) ||
6999            !nested_vmx_check_vmcs12(vcpu))
7000                return 1;
7001
7002        if (vmx_instruction_info & (1u << 10))
7003                field_value = kvm_register_readl(vcpu,
7004                        (((vmx_instruction_info) >> 3) & 0xf));
7005        else {
7006                if (get_vmx_mem_address(vcpu, exit_qualification,
7007                                vmx_instruction_info, false, &gva))
7008                        return 1;
7009                if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7010                           &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7011                        kvm_inject_page_fault(vcpu, &e);
7012                        return 1;
7013                }
7014        }
7015
7016
7017        field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7018        if (vmcs_field_readonly(field)) {
7019                nested_vmx_failValid(vcpu,
7020                        VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7021                skip_emulated_instruction(vcpu);
7022                return 1;
7023        }
7024
7025        if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7026                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7027                skip_emulated_instruction(vcpu);
7028                return 1;
7029        }
7030
7031        nested_vmx_succeed(vcpu);
7032        skip_emulated_instruction(vcpu);
7033        return 1;
7034}
7035
7036/* Emulate the VMPTRLD instruction */
7037static int handle_vmptrld(struct kvm_vcpu *vcpu)
7038{
7039        struct vcpu_vmx *vmx = to_vmx(vcpu);
7040        gpa_t vmptr;
7041        u32 exec_control;
7042
7043        if (!nested_vmx_check_permission(vcpu))
7044                return 1;
7045
7046        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7047                return 1;
7048
7049        if (vmx->nested.current_vmptr != vmptr) {
7050                struct vmcs12 *new_vmcs12;
7051                struct page *page;
7052                page = nested_get_page(vcpu, vmptr);
7053                if (page == NULL) {
7054                        nested_vmx_failInvalid(vcpu);
7055                        skip_emulated_instruction(vcpu);
7056                        return 1;
7057                }
7058                new_vmcs12 = kmap(page);
7059                if (new_vmcs12->revision_id != VMCS12_REVISION) {
7060                        kunmap(page);
7061                        nested_release_page_clean(page);
7062                        nested_vmx_failValid(vcpu,
7063                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7064                        skip_emulated_instruction(vcpu);
7065                        return 1;
7066                }
7067
7068                nested_release_vmcs12(vmx);
7069                vmx->nested.current_vmptr = vmptr;
7070                vmx->nested.current_vmcs12 = new_vmcs12;
7071                vmx->nested.current_vmcs12_page = page;
7072                if (enable_shadow_vmcs) {
7073                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7074                        exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
7075                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7076                        vmcs_write64(VMCS_LINK_POINTER,
7077                                     __pa(vmx->nested.current_shadow_vmcs));
7078                        vmx->nested.sync_shadow_vmcs = true;
7079                }
7080        }
7081
7082        nested_vmx_succeed(vcpu);
7083        skip_emulated_instruction(vcpu);
7084        return 1;
7085}
7086
7087/* Emulate the VMPTRST instruction */
7088static int handle_vmptrst(struct kvm_vcpu *vcpu)
7089{
7090        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7091        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7092        gva_t vmcs_gva;
7093        struct x86_exception e;
7094
7095        if (!nested_vmx_check_permission(vcpu))
7096                return 1;
7097
7098        if (get_vmx_mem_address(vcpu, exit_qualification,
7099                        vmx_instruction_info, true, &vmcs_gva))
7100                return 1;
7101        /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7102        if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7103                                 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7104                                 sizeof(u64), &e)) {
7105                kvm_inject_page_fault(vcpu, &e);
7106                return 1;
7107        }
7108        nested_vmx_succeed(vcpu);
7109        skip_emulated_instruction(vcpu);
7110        return 1;
7111}
7112
7113/* Emulate the INVEPT instruction */
7114static int handle_invept(struct kvm_vcpu *vcpu)
7115{
7116        struct vcpu_vmx *vmx = to_vmx(vcpu);
7117        u32 vmx_instruction_info, types;
7118        unsigned long type;
7119        gva_t gva;
7120        struct x86_exception e;
7121        struct {
7122                u64 eptp, gpa;
7123        } operand;
7124
7125        if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7126              SECONDARY_EXEC_ENABLE_EPT) ||
7127            !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7128                kvm_queue_exception(vcpu, UD_VECTOR);
7129                return 1;
7130        }
7131
7132        if (!nested_vmx_check_permission(vcpu))
7133                return 1;
7134
7135        if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7136                kvm_queue_exception(vcpu, UD_VECTOR);
7137                return 1;
7138        }
7139
7140        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7141        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7142
7143        types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7144
7145        if (!(types & (1UL << type))) {
7146                nested_vmx_failValid(vcpu,
7147                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7148                return 1;
7149        }
7150
7151        /* According to the Intel VMX instruction reference, the memory
7152         * operand is read even if it isn't needed (e.g., for type==global)
7153         */
7154        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7155                        vmx_instruction_info, false, &gva))
7156                return 1;
7157        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7158                                sizeof(operand), &e)) {
7159                kvm_inject_page_fault(vcpu, &e);
7160                return 1;
7161        }
7162
7163        switch (type) {
7164        case VMX_EPT_EXTENT_GLOBAL:
7165                kvm_mmu_sync_roots(vcpu);
7166                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7167                nested_vmx_succeed(vcpu);
7168                break;
7169        default:
7170                /* Trap single context invalidation invept calls */
7171                BUG_ON(1);
7172                break;
7173        }
7174
7175        skip_emulated_instruction(vcpu);
7176        return 1;
7177}
7178
7179static int handle_invvpid(struct kvm_vcpu *vcpu)
7180{
7181        kvm_queue_exception(vcpu, UD_VECTOR);
7182        return 1;
7183}
7184
7185static int handle_pml_full(struct kvm_vcpu *vcpu)
7186{
7187        unsigned long exit_qualification;
7188
7189        trace_kvm_pml_full(vcpu->vcpu_id);
7190
7191        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7192
7193        /*
7194         * PML buffer FULL happened while executing iret from NMI,
7195         * "blocked by NMI" bit has to be set before next VM entry.
7196         */
7197        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7198                        cpu_has_virtual_nmis() &&
7199                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7200                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7201                                GUEST_INTR_STATE_NMI);
7202
7203        /*
7204         * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7205         * here.., and there's no userspace involvement needed for PML.
7206         */
7207        return 1;
7208}
7209
7210/*
7211 * The exit handlers return 1 if the exit was handled fully and guest execution
7212 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7213 * to be done to userspace and return 0.
7214 */
7215static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7216        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7217        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7218        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7219        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7220        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7221        [EXIT_REASON_CR_ACCESS]               = handle_cr,
7222        [EXIT_REASON_DR_ACCESS]               = handle_dr,
7223        [EXIT_REASON_CPUID]                   = handle_cpuid,
7224        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7225        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7226        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7227        [EXIT_REASON_HLT]                     = handle_halt,
7228        [EXIT_REASON_INVD]                    = handle_invd,
7229        [EXIT_REASON_INVLPG]                  = handle_invlpg,
7230        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7231        [EXIT_REASON_VMCALL]                  = handle_vmcall,
7232        [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7233        [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7234        [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7235        [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7236        [EXIT_REASON_VMREAD]                  = handle_vmread,
7237        [EXIT_REASON_VMRESUME]                = handle_vmresume,
7238        [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7239        [EXIT_REASON_VMOFF]                   = handle_vmoff,
7240        [EXIT_REASON_VMON]                    = handle_vmon,
7241        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7242        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7243        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7244        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7245        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7246        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7247        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7248        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7249        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7250        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7251        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7252        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7253        [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7254        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7255        [EXIT_REASON_INVEPT]                  = handle_invept,
7256        [EXIT_REASON_INVVPID]                 = handle_invvpid,
7257        [EXIT_REASON_XSAVES]                  = handle_xsaves,
7258        [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7259        [EXIT_REASON_PML_FULL]                = handle_pml_full,
7260};
7261
7262static const int kvm_vmx_max_exit_handlers =
7263        ARRAY_SIZE(kvm_vmx_exit_handlers);
7264
7265static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7266                                       struct vmcs12 *vmcs12)
7267{
7268        unsigned long exit_qualification;
7269        gpa_t bitmap, last_bitmap;
7270        unsigned int port;
7271        int size;
7272        u8 b;
7273
7274        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7275                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7276
7277        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7278
7279        port = exit_qualification >> 16;
7280        size = (exit_qualification & 7) + 1;
7281
7282        last_bitmap = (gpa_t)-1;
7283        b = -1;
7284
7285        while (size > 0) {
7286                if (port < 0x8000)
7287                        bitmap = vmcs12->io_bitmap_a;
7288                else if (port < 0x10000)
7289                        bitmap = vmcs12->io_bitmap_b;
7290                else
7291                        return true;
7292                bitmap += (port & 0x7fff) / 8;
7293
7294                if (last_bitmap != bitmap)
7295                        if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7296                                return true;
7297                if (b & (1 << (port & 7)))
7298                        return true;
7299
7300                port++;
7301                size--;
7302                last_bitmap = bitmap;
7303        }
7304
7305        return false;
7306}
7307
7308/*
7309 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7310 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7311 * disinterest in the current event (read or write a specific MSR) by using an
7312 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7313 */
7314static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7315        struct vmcs12 *vmcs12, u32 exit_reason)
7316{
7317        u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7318        gpa_t bitmap;
7319
7320        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7321                return true;
7322
7323        /*
7324         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7325         * for the four combinations of read/write and low/high MSR numbers.
7326         * First we need to figure out which of the four to use:
7327         */
7328        bitmap = vmcs12->msr_bitmap;
7329        if (exit_reason == EXIT_REASON_MSR_WRITE)
7330                bitmap += 2048;
7331        if (msr_index >= 0xc0000000) {
7332                msr_index -= 0xc0000000;
7333                bitmap += 1024;
7334        }
7335
7336        /* Then read the msr_index'th bit from this bitmap: */
7337        if (msr_index < 1024*8) {
7338                unsigned char b;
7339                if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7340                        return true;
7341                return 1 & (b >> (msr_index & 7));
7342        } else
7343                return true; /* let L1 handle the wrong parameter */
7344}
7345
7346/*
7347 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7348 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7349 * intercept (via guest_host_mask etc.) the current event.
7350 */
7351static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7352        struct vmcs12 *vmcs12)
7353{
7354        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7355        int cr = exit_qualification & 15;
7356        int reg = (exit_qualification >> 8) & 15;
7357        unsigned long val = kvm_register_readl(vcpu, reg);
7358
7359        switch ((exit_qualification >> 4) & 3) {
7360        case 0: /* mov to cr */
7361                switch (cr) {
7362                case 0:
7363                        if (vmcs12->cr0_guest_host_mask &
7364                            (val ^ vmcs12->cr0_read_shadow))
7365                                return true;
7366                        break;
7367                case 3:
7368                        if ((vmcs12->cr3_target_count >= 1 &&
7369                                        vmcs12->cr3_target_value0 == val) ||
7370                                (vmcs12->cr3_target_count >= 2 &&
7371                                        vmcs12->cr3_target_value1 == val) ||
7372                                (vmcs12->cr3_target_count >= 3 &&
7373                                        vmcs12->cr3_target_value2 == val) ||
7374                                (vmcs12->cr3_target_count >= 4 &&
7375                                        vmcs12->cr3_target_value3 == val))
7376                                return false;
7377                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7378                                return true;
7379                        break;
7380                case 4:
7381                        if (vmcs12->cr4_guest_host_mask &
7382                            (vmcs12->cr4_read_shadow ^ val))
7383                                return true;
7384                        break;
7385                case 8:
7386                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7387                                return true;
7388                        break;
7389                }
7390                break;
7391        case 2: /* clts */
7392                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7393                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
7394                        return true;
7395                break;
7396        case 1: /* mov from cr */
7397                switch (cr) {
7398                case 3:
7399                        if (vmcs12->cpu_based_vm_exec_control &
7400                            CPU_BASED_CR3_STORE_EXITING)
7401                                return true;
7402                        break;
7403                case 8:
7404                        if (vmcs12->cpu_based_vm_exec_control &
7405                            CPU_BASED_CR8_STORE_EXITING)
7406                                return true;
7407                        break;
7408                }
7409                break;
7410        case 3: /* lmsw */
7411                /*
7412                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7413                 * cr0. Other attempted changes are ignored, with no exit.
7414                 */
7415                if (vmcs12->cr0_guest_host_mask & 0xe &
7416                    (val ^ vmcs12->cr0_read_shadow))
7417                        return true;
7418                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7419                    !(vmcs12->cr0_read_shadow & 0x1) &&
7420                    (val & 0x1))
7421                        return true;
7422                break;
7423        }
7424        return false;
7425}
7426
7427/*
7428 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7429 * should handle it ourselves in L0 (and then continue L2). Only call this
7430 * when in is_guest_mode (L2).
7431 */
7432static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7433{
7434        u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7435        struct vcpu_vmx *vmx = to_vmx(vcpu);
7436        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7437        u32 exit_reason = vmx->exit_reason;
7438
7439        trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7440                                vmcs_readl(EXIT_QUALIFICATION),
7441                                vmx->idt_vectoring_info,
7442                                intr_info,
7443                                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7444                                KVM_ISA_VMX);
7445
7446        if (vmx->nested.nested_run_pending)
7447                return false;
7448
7449        if (unlikely(vmx->fail)) {
7450                pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7451                                    vmcs_read32(VM_INSTRUCTION_ERROR));
7452                return true;
7453        }
7454
7455        switch (exit_reason) {
7456        case EXIT_REASON_EXCEPTION_NMI:
7457                if (!is_exception(intr_info))
7458                        return false;
7459                else if (is_page_fault(intr_info))
7460                        return enable_ept;
7461                else if (is_no_device(intr_info) &&
7462                         !(vmcs12->guest_cr0 & X86_CR0_TS))
7463                        return false;
7464                return vmcs12->exception_bitmap &
7465                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7466        case EXIT_REASON_EXTERNAL_INTERRUPT:
7467                return false;
7468        case EXIT_REASON_TRIPLE_FAULT:
7469                return true;
7470        case EXIT_REASON_PENDING_INTERRUPT:
7471                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7472        case EXIT_REASON_NMI_WINDOW:
7473                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7474        case EXIT_REASON_TASK_SWITCH:
7475                return true;
7476        case EXIT_REASON_CPUID:
7477                if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7478                        return false;
7479                return true;
7480        case EXIT_REASON_HLT:
7481                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7482        case EXIT_REASON_INVD:
7483                return true;
7484        case EXIT_REASON_INVLPG:
7485                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7486        case EXIT_REASON_RDPMC:
7487                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7488        case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7489                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7490        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7491        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7492        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7493        case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7494        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7495        case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7496                /*
7497                 * VMX instructions trap unconditionally. This allows L1 to
7498                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7499                 */
7500                return true;
7501        case EXIT_REASON_CR_ACCESS:
7502                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7503        case EXIT_REASON_DR_ACCESS:
7504                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7505        case EXIT_REASON_IO_INSTRUCTION:
7506                return nested_vmx_exit_handled_io(vcpu, vmcs12);
7507        case EXIT_REASON_MSR_READ:
7508        case EXIT_REASON_MSR_WRITE:
7509                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7510        case EXIT_REASON_INVALID_STATE:
7511                return true;
7512        case EXIT_REASON_MWAIT_INSTRUCTION:
7513                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7514        case EXIT_REASON_MONITOR_TRAP_FLAG:
7515                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7516        case EXIT_REASON_MONITOR_INSTRUCTION:
7517                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7518        case EXIT_REASON_PAUSE_INSTRUCTION:
7519                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7520                        nested_cpu_has2(vmcs12,
7521                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7522        case EXIT_REASON_MCE_DURING_VMENTRY:
7523                return false;
7524        case EXIT_REASON_TPR_BELOW_THRESHOLD:
7525                return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7526        case EXIT_REASON_APIC_ACCESS:
7527                return nested_cpu_has2(vmcs12,
7528                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7529        case EXIT_REASON_APIC_WRITE:
7530        case EXIT_REASON_EOI_INDUCED:
7531                /* apic_write and eoi_induced should exit unconditionally. */
7532                return true;
7533        case EXIT_REASON_EPT_VIOLATION:
7534                /*
7535                 * L0 always deals with the EPT violation. If nested EPT is
7536                 * used, and the nested mmu code discovers that the address is
7537                 * missing in the guest EPT table (EPT12), the EPT violation
7538                 * will be injected with nested_ept_inject_page_fault()
7539                 */
7540                return false;
7541        case EXIT_REASON_EPT_MISCONFIG:
7542                /*
7543                 * L2 never uses directly L1's EPT, but rather L0's own EPT
7544                 * table (shadow on EPT) or a merged EPT table that L0 built
7545                 * (EPT on EPT). So any problems with the structure of the
7546                 * table is L0's fault.
7547                 */
7548                return false;
7549        case EXIT_REASON_WBINVD:
7550                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7551        case EXIT_REASON_XSETBV:
7552                return true;
7553        case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7554                /*
7555                 * This should never happen, since it is not possible to
7556                 * set XSS to a non-zero value---neither in L1 nor in L2.
7557                 * If if it were, XSS would have to be checked against
7558                 * the XSS exit bitmap in vmcs12.
7559                 */
7560                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7561        default:
7562                return true;
7563        }
7564}
7565
7566static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7567{
7568        *info1 = vmcs_readl(EXIT_QUALIFICATION);
7569        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7570}
7571
7572static int vmx_enable_pml(struct vcpu_vmx *vmx)
7573{
7574        struct page *pml_pg;
7575        u32 exec_control;
7576
7577        pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7578        if (!pml_pg)
7579                return -ENOMEM;
7580
7581        vmx->pml_pg = pml_pg;
7582
7583        vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7584        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7585
7586        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7587        exec_control |= SECONDARY_EXEC_ENABLE_PML;
7588        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7589
7590        return 0;
7591}
7592
7593static void vmx_disable_pml(struct vcpu_vmx *vmx)
7594{
7595        u32 exec_control;
7596
7597        ASSERT(vmx->pml_pg);
7598        __free_page(vmx->pml_pg);
7599        vmx->pml_pg = NULL;
7600
7601        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7602        exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
7603        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7604}
7605
7606static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7607{
7608        struct vcpu_vmx *vmx = to_vmx(vcpu);
7609        u64 *pml_buf;
7610        u16 pml_idx;
7611
7612        pml_idx = vmcs_read16(GUEST_PML_INDEX);
7613
7614        /* Do nothing if PML buffer is empty */
7615        if (pml_idx == (PML_ENTITY_NUM - 1))
7616                return;
7617
7618        /* PML index always points to next available PML buffer entity */
7619        if (pml_idx >= PML_ENTITY_NUM)
7620                pml_idx = 0;
7621        else
7622                pml_idx++;
7623
7624        pml_buf = page_address(vmx->pml_pg);
7625        for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7626                u64 gpa;
7627
7628                gpa = pml_buf[pml_idx];
7629                WARN_ON(gpa & (PAGE_SIZE - 1));
7630                kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
7631        }
7632
7633        /* reset PML index */
7634        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7635}
7636
7637/*
7638 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7639 * Called before reporting dirty_bitmap to userspace.
7640 */
7641static void kvm_flush_pml_buffers(struct kvm *kvm)
7642{
7643        int i;
7644        struct kvm_vcpu *vcpu;
7645        /*
7646         * We only need to kick vcpu out of guest mode here, as PML buffer
7647         * is flushed at beginning of all VMEXITs, and it's obvious that only
7648         * vcpus running in guest are possible to have unflushed GPAs in PML
7649         * buffer.
7650         */
7651        kvm_for_each_vcpu(i, vcpu, kvm)
7652                kvm_vcpu_kick(vcpu);
7653}
7654
7655static void vmx_dump_sel(char *name, uint32_t sel)
7656{
7657        pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
7658               name, vmcs_read32(sel),
7659               vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
7660               vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
7661               vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
7662}
7663
7664static void vmx_dump_dtsel(char *name, uint32_t limit)
7665{
7666        pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
7667               name, vmcs_read32(limit),
7668               vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
7669}
7670
7671static void dump_vmcs(void)
7672{
7673        u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
7674        u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
7675        u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7676        u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
7677        u32 secondary_exec_control = 0;
7678        unsigned long cr4 = vmcs_readl(GUEST_CR4);
7679        u64 efer = vmcs_readl(GUEST_IA32_EFER);
7680        int i, n;
7681
7682        if (cpu_has_secondary_exec_ctrls())
7683                secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7684
7685        pr_err("*** Guest State ***\n");
7686        pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7687               vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
7688               vmcs_readl(CR0_GUEST_HOST_MASK));
7689        pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
7690               cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
7691        pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
7692        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
7693            (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
7694        {
7695                pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
7696                       vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
7697                pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
7698                       vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
7699        }
7700        pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
7701               vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
7702        pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
7703               vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
7704        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7705               vmcs_readl(GUEST_SYSENTER_ESP),
7706               vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
7707        vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
7708        vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
7709        vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
7710        vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
7711        vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
7712        vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
7713        vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
7714        vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
7715        vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
7716        vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
7717        if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
7718            (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
7719                pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
7720                       efer, vmcs_readl(GUEST_IA32_PAT));
7721        pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
7722               vmcs_readl(GUEST_IA32_DEBUGCTL),
7723               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
7724        if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
7725                pr_err("PerfGlobCtl = 0x%016lx\n",
7726                       vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
7727        if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
7728                pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
7729        pr_err("Interruptibility = %08x  ActivityState = %08x\n",
7730               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
7731               vmcs_read32(GUEST_ACTIVITY_STATE));
7732        if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
7733                pr_err("InterruptStatus = %04x\n",
7734                       vmcs_read16(GUEST_INTR_STATUS));
7735
7736        pr_err("*** Host State ***\n");
7737        pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
7738               vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
7739        pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
7740               vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
7741               vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
7742               vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
7743               vmcs_read16(HOST_TR_SELECTOR));
7744        pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
7745               vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
7746               vmcs_readl(HOST_TR_BASE));
7747        pr_err("GDTBase=%016lx IDTBase=%016lx\n",
7748               vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
7749        pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
7750               vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
7751               vmcs_readl(HOST_CR4));
7752        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
7753               vmcs_readl(HOST_IA32_SYSENTER_ESP),
7754               vmcs_read32(HOST_IA32_SYSENTER_CS),
7755               vmcs_readl(HOST_IA32_SYSENTER_EIP));
7756        if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
7757                pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
7758                       vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
7759        if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7760                pr_err("PerfGlobCtl = 0x%016lx\n",
7761                       vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
7762
7763        pr_err("*** Control State ***\n");
7764        pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
7765               pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
7766        pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
7767        pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
7768               vmcs_read32(EXCEPTION_BITMAP),
7769               vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
7770               vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
7771        pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
7772               vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7773               vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
7774               vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
7775        pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
7776               vmcs_read32(VM_EXIT_INTR_INFO),
7777               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7778               vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
7779        pr_err("        reason=%08x qualification=%016lx\n",
7780               vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
7781        pr_err("IDTVectoring: info=%08x errcode=%08x\n",
7782               vmcs_read32(IDT_VECTORING_INFO_FIELD),
7783               vmcs_read32(IDT_VECTORING_ERROR_CODE));
7784        pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
7785        if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
7786                pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
7787        if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
7788                pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
7789        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
7790                pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
7791        n = vmcs_read32(CR3_TARGET_COUNT);
7792        for (i = 0; i + 1 < n; i += 4)
7793                pr_err("CR3 target%u=%016lx target%u=%016lx\n",
7794                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
7795                       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
7796        if (i < n)
7797                pr_err("CR3 target%u=%016lx\n",
7798                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
7799        if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
7800                pr_err("PLE Gap=%08x Window=%08x\n",
7801                       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
7802        if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
7803                pr_err("Virtual processor ID = 0x%04x\n",
7804                       vmcs_read16(VIRTUAL_PROCESSOR_ID));
7805}
7806
7807/*
7808 * The guest has exited.  See if we can fix it or if we need userspace
7809 * assistance.
7810 */
7811static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7812{
7813        struct vcpu_vmx *vmx = to_vmx(vcpu);
7814        u32 exit_reason = vmx->exit_reason;
7815        u32 vectoring_info = vmx->idt_vectoring_info;
7816
7817        /*
7818         * Flush logged GPAs PML buffer, this will make dirty_bitmap more
7819         * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
7820         * querying dirty_bitmap, we only need to kick all vcpus out of guest
7821         * mode as if vcpus is in root mode, the PML buffer must has been
7822         * flushed already.
7823         */
7824        if (enable_pml)
7825                vmx_flush_pml_buffer(vcpu);
7826
7827        /* If guest state is invalid, start emulating */
7828        if (vmx->emulation_required)
7829                return handle_invalid_guest_state(vcpu);
7830
7831        if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7832                nested_vmx_vmexit(vcpu, exit_reason,
7833                                  vmcs_read32(VM_EXIT_INTR_INFO),
7834                                  vmcs_readl(EXIT_QUALIFICATION));
7835                return 1;
7836        }
7837
7838        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7839                dump_vmcs();
7840                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7841                vcpu->run->fail_entry.hardware_entry_failure_reason
7842                        = exit_reason;
7843                return 0;
7844        }
7845
7846        if (unlikely(vmx->fail)) {
7847                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7848                vcpu->run->fail_entry.hardware_entry_failure_reason
7849                        = vmcs_read32(VM_INSTRUCTION_ERROR);
7850                return 0;
7851        }
7852
7853        /*
7854         * Note:
7855         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7856         * delivery event since it indicates guest is accessing MMIO.
7857         * The vm-exit can be triggered again after return to guest that
7858         * will cause infinite loop.
7859         */
7860        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7861                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7862                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
7863                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
7864                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7865                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7866                vcpu->run->internal.ndata = 2;
7867                vcpu->run->internal.data[0] = vectoring_info;
7868                vcpu->run->internal.data[1] = exit_reason;
7869                return 0;
7870        }
7871
7872        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7873            !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7874                                        get_vmcs12(vcpu))))) {
7875                if (vmx_interrupt_allowed(vcpu)) {
7876                        vmx->soft_vnmi_blocked = 0;
7877                } else if (vmx->vnmi_blocked_time > 1000000000LL &&
7878                           vcpu->arch.nmi_pending) {
7879                        /*
7880                         * This CPU don't support us in finding the end of an
7881                         * NMI-blocked window if the guest runs with IRQs
7882                         * disabled. So we pull the trigger after 1 s of
7883                         * futile waiting, but inform the user about this.
7884                         */
7885                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7886                               "state on VCPU %d after 1 s timeout\n",
7887                               __func__, vcpu->vcpu_id);
7888                        vmx->soft_vnmi_blocked = 0;
7889                }
7890        }
7891
7892        if (exit_reason < kvm_vmx_max_exit_handlers
7893            && kvm_vmx_exit_handlers[exit_reason])
7894                return kvm_vmx_exit_handlers[exit_reason](vcpu);
7895        else {
7896                WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7897                kvm_queue_exception(vcpu, UD_VECTOR);
7898                return 1;
7899        }
7900}
7901
7902static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7903{
7904        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7905
7906        if (is_guest_mode(vcpu) &&
7907                nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7908                return;
7909
7910        if (irr == -1 || tpr < irr) {
7911                vmcs_write32(TPR_THRESHOLD, 0);
7912                return;
7913        }
7914
7915        vmcs_write32(TPR_THRESHOLD, irr);
7916}
7917
7918static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7919{
7920        u32 sec_exec_control;
7921
7922        /*
7923         * There is not point to enable virtualize x2apic without enable
7924         * apicv
7925         */
7926        if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7927                                !vmx_vm_has_apicv(vcpu->kvm))
7928                return;
7929
7930        if (!vm_need_tpr_shadow(vcpu->kvm))
7931                return;
7932
7933        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7934
7935        if (set) {
7936                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7937                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7938        } else {
7939                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7940                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7941        }
7942        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7943
7944        vmx_set_msr_bitmap(vcpu);
7945}
7946
7947static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7948{
7949        struct vcpu_vmx *vmx = to_vmx(vcpu);
7950
7951        /*
7952         * Currently we do not handle the nested case where L2 has an
7953         * APIC access page of its own; that page is still pinned.
7954         * Hence, we skip the case where the VCPU is in guest mode _and_
7955         * L1 prepared an APIC access page for L2.
7956         *
7957         * For the case where L1 and L2 share the same APIC access page
7958         * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7959         * in the vmcs12), this function will only update either the vmcs01
7960         * or the vmcs02.  If the former, the vmcs02 will be updated by
7961         * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7962         * the next L2->L1 exit.
7963         */
7964        if (!is_guest_mode(vcpu) ||
7965            !nested_cpu_has2(vmx->nested.current_vmcs12,
7966                             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7967                vmcs_write64(APIC_ACCESS_ADDR, hpa);
7968}
7969
7970static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7971{
7972        u16 status;
7973        u8 old;
7974
7975        if (isr == -1)
7976                isr = 0;
7977
7978        status = vmcs_read16(GUEST_INTR_STATUS);
7979        old = status >> 8;
7980        if (isr != old) {
7981                status &= 0xff;
7982                status |= isr << 8;
7983                vmcs_write16(GUEST_INTR_STATUS, status);
7984        }
7985}
7986
7987static void vmx_set_rvi(int vector)
7988{
7989        u16 status;
7990        u8 old;
7991
7992        if (vector == -1)
7993                vector = 0;
7994
7995        status = vmcs_read16(GUEST_INTR_STATUS);
7996        old = (u8)status & 0xff;
7997        if ((u8)vector != old) {
7998                status &= ~0xff;
7999                status |= (u8)vector;
8000                vmcs_write16(GUEST_INTR_STATUS, status);
8001        }
8002}
8003
8004static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8005{
8006        if (!is_guest_mode(vcpu)) {
8007                vmx_set_rvi(max_irr);
8008                return;
8009        }
8010
8011        if (max_irr == -1)
8012                return;
8013
8014        /*
8015         * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8016         * handles it.
8017         */
8018        if (nested_exit_on_intr(vcpu))
8019                return;
8020
8021        /*
8022         * Else, fall back to pre-APICv interrupt injection since L2
8023         * is run without virtual interrupt delivery.
8024         */
8025        if (!kvm_event_needs_reinjection(vcpu) &&
8026            vmx_interrupt_allowed(vcpu)) {
8027                kvm_queue_interrupt(vcpu, max_irr, false);
8028                vmx_inject_irq(vcpu);
8029        }
8030}
8031
8032static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8033{
8034        if (!vmx_vm_has_apicv(vcpu->kvm))
8035                return;
8036
8037        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8038        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8039        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8040        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8041}
8042
8043static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8044{
8045        u32 exit_intr_info;
8046
8047        if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8048              || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8049                return;
8050
8051        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8052        exit_intr_info = vmx->exit_intr_info;
8053
8054        /* Handle machine checks before interrupts are enabled */
8055        if (is_machine_check(exit_intr_info))
8056                kvm_machine_check();
8057
8058        /* We need to handle NMIs before interrupts are enabled */
8059        if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8060            (exit_intr_info & INTR_INFO_VALID_MASK)) {
8061                kvm_before_handle_nmi(&vmx->vcpu);
8062                asm("int $2");
8063                kvm_after_handle_nmi(&vmx->vcpu);
8064        }
8065}
8066
8067static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8068{
8069        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8070
8071        /*
8072         * If external interrupt exists, IF bit is set in rflags/eflags on the
8073         * interrupt stack frame, and interrupt will be enabled on a return
8074         * from interrupt handler.
8075         */
8076        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8077                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8078                unsigned int vector;
8079                unsigned long entry;
8080                gate_desc *desc;
8081                struct vcpu_vmx *vmx = to_vmx(vcpu);
8082#ifdef CONFIG_X86_64
8083                unsigned long tmp;
8084#endif
8085
8086                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8087                desc = (gate_desc *)vmx->host_idt_base + vector;
8088                entry = gate_offset(*desc);
8089                asm volatile(
8090#ifdef CONFIG_X86_64
8091                        "mov %%" _ASM_SP ", %[sp]\n\t"
8092                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8093                        "push $%c[ss]\n\t"
8094                        "push %[sp]\n\t"
8095#endif
8096                        "pushf\n\t"
8097                        "orl $0x200, (%%" _ASM_SP ")\n\t"
8098                        __ASM_SIZE(push) " $%c[cs]\n\t"
8099                        "call *%[entry]\n\t"
8100                        :
8101#ifdef CONFIG_X86_64
8102                        [sp]"=&r"(tmp)
8103#endif
8104                        :
8105                        [entry]"r"(entry),
8106                        [ss]"i"(__KERNEL_DS),
8107                        [cs]"i"(__KERNEL_CS)
8108                        );
8109        } else
8110                local_irq_enable();
8111}
8112
8113static bool vmx_has_high_real_mode_segbase(void)
8114{
8115        return enable_unrestricted_guest || emulate_invalid_guest_state;
8116}
8117
8118static bool vmx_mpx_supported(void)
8119{
8120        return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8121                (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8122}
8123
8124static bool vmx_xsaves_supported(void)
8125{
8126        return vmcs_config.cpu_based_2nd_exec_ctrl &
8127                SECONDARY_EXEC_XSAVES;
8128}
8129
8130static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8131{
8132        u32 exit_intr_info;
8133        bool unblock_nmi;
8134        u8 vector;
8135        bool idtv_info_valid;
8136
8137        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8138
8139        if (cpu_has_virtual_nmis()) {
8140                if (vmx->nmi_known_unmasked)
8141                        return;
8142                /*
8143                 * Can't use vmx->exit_intr_info since we're not sure what
8144                 * the exit reason is.
8145                 */
8146                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8147                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8148                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8149                /*
8150                 * SDM 3: 27.7.1.2 (September 2008)
8151                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8152                 * a guest IRET fault.
8153                 * SDM 3: 23.2.2 (September 2008)
8154                 * Bit 12 is undefined in any of the following cases:
8155                 *  If the VM exit sets the valid bit in the IDT-vectoring
8156                 *   information field.
8157                 *  If the VM exit is due to a double fault.
8158                 */
8159                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8160                    vector != DF_VECTOR && !idtv_info_valid)
8161                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8162                                      GUEST_INTR_STATE_NMI);
8163                else
8164                        vmx->nmi_known_unmasked =
8165                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8166                                  & GUEST_INTR_STATE_NMI);
8167        } else if (unlikely(vmx->soft_vnmi_blocked))
8168                vmx->vnmi_blocked_time +=
8169                        ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8170}
8171
8172static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8173                                      u32 idt_vectoring_info,
8174                                      int instr_len_field,
8175                                      int error_code_field)
8176{
8177        u8 vector;
8178        int type;
8179        bool idtv_info_valid;
8180
8181        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8182
8183        vcpu->arch.nmi_injected = false;
8184        kvm_clear_exception_queue(vcpu);
8185        kvm_clear_interrupt_queue(vcpu);
8186
8187        if (!idtv_info_valid)
8188                return;
8189
8190        kvm_make_request(KVM_REQ_EVENT, vcpu);
8191
8192        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8193        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8194
8195        switch (type) {
8196        case INTR_TYPE_NMI_INTR:
8197                vcpu->arch.nmi_injected = true;
8198                /*
8199                 * SDM 3: 27.7.1.2 (September 2008)
8200                 * Clear bit "block by NMI" before VM entry if a NMI
8201                 * delivery faulted.
8202                 */
8203                vmx_set_nmi_mask(vcpu, false);
8204                break;
8205        case INTR_TYPE_SOFT_EXCEPTION:
8206                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8207                /* fall through */
8208        case INTR_TYPE_HARD_EXCEPTION:
8209                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8210                        u32 err = vmcs_read32(error_code_field);
8211                        kvm_requeue_exception_e(vcpu, vector, err);
8212                } else
8213                        kvm_requeue_exception(vcpu, vector);
8214                break;
8215        case INTR_TYPE_SOFT_INTR:
8216                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8217                /* fall through */
8218        case INTR_TYPE_EXT_INTR:
8219                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8220                break;
8221        default:
8222                break;
8223        }
8224}
8225
8226static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8227{
8228        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8229                                  VM_EXIT_INSTRUCTION_LEN,
8230                                  IDT_VECTORING_ERROR_CODE);
8231}
8232
8233static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8234{
8235        __vmx_complete_interrupts(vcpu,
8236                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8237                                  VM_ENTRY_INSTRUCTION_LEN,
8238                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
8239
8240        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8241}
8242
8243static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8244{
8245        int i, nr_msrs;
8246        struct perf_guest_switch_msr *msrs;
8247
8248        msrs = perf_guest_get_msrs(&nr_msrs);
8249
8250        if (!msrs)
8251                return;
8252
8253        for (i = 0; i < nr_msrs; i++)
8254                if (msrs[i].host == msrs[i].guest)
8255                        clear_atomic_switch_msr(vmx, msrs[i].msr);
8256                else
8257                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8258                                        msrs[i].host);
8259}
8260
8261static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8262{
8263        struct vcpu_vmx *vmx = to_vmx(vcpu);
8264        unsigned long debugctlmsr, cr4;
8265
8266        /* Record the guest's net vcpu time for enforced NMI injections. */
8267        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8268                vmx->entry_time = ktime_get();
8269
8270        /* Don't enter VMX if guest state is invalid, let the exit handler
8271           start emulation until we arrive back to a valid state */
8272        if (vmx->emulation_required)
8273                return;
8274
8275        if (vmx->ple_window_dirty) {
8276                vmx->ple_window_dirty = false;
8277                vmcs_write32(PLE_WINDOW, vmx->ple_window);
8278        }
8279
8280        if (vmx->nested.sync_shadow_vmcs) {
8281                copy_vmcs12_to_shadow(vmx);
8282                vmx->nested.sync_shadow_vmcs = false;
8283        }
8284
8285        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8286                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8287        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8288                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8289
8290        cr4 = cr4_read_shadow();
8291        if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8292                vmcs_writel(HOST_CR4, cr4);
8293                vmx->host_state.vmcs_host_cr4 = cr4;
8294        }
8295
8296        /* When single-stepping over STI and MOV SS, we must clear the
8297         * corresponding interruptibility bits in the guest state. Otherwise
8298         * vmentry fails as it then expects bit 14 (BS) in pending debug
8299         * exceptions being set, but that's not correct for the guest debugging
8300         * case. */
8301        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8302                vmx_set_interrupt_shadow(vcpu, 0);
8303
8304        atomic_switch_perf_msrs(vmx);
8305        debugctlmsr = get_debugctlmsr();
8306
8307        vmx->__launched = vmx->loaded_vmcs->launched;
8308        asm(
8309                /* Store host registers */
8310                "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8311                "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8312                "push %%" _ASM_CX " \n\t"
8313                "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8314                "je 1f \n\t"
8315                "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8316                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8317                "1: \n\t"
8318                /* Reload cr2 if changed */
8319                "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8320                "mov %%cr2, %%" _ASM_DX " \n\t"
8321                "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8322                "je 2f \n\t"
8323                "mov %%" _ASM_AX", %%cr2 \n\t"
8324                "2: \n\t"
8325                /* Check if vmlaunch of vmresume is needed */
8326                "cmpl $0, %c[launched](%0) \n\t"
8327                /* Load guest registers.  Don't clobber flags. */
8328                "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8329                "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8330                "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8331                "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8332                "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8333                "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8334#ifdef CONFIG_X86_64
8335                "mov %c[r8](%0),  %%r8  \n\t"
8336                "mov %c[r9](%0),  %%r9  \n\t"
8337                "mov %c[r10](%0), %%r10 \n\t"
8338                "mov %c[r11](%0), %%r11 \n\t"
8339                "mov %c[r12](%0), %%r12 \n\t"
8340                "mov %c[r13](%0), %%r13 \n\t"
8341                "mov %c[r14](%0), %%r14 \n\t"
8342                "mov %c[r15](%0), %%r15 \n\t"
8343#endif
8344                "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8345
8346                /* Enter guest mode */
8347                "jne 1f \n\t"
8348                __ex(ASM_VMX_VMLAUNCH) "\n\t"
8349                "jmp 2f \n\t"
8350                "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8351                "2: "
8352                /* Save guest registers, load host registers, keep flags */
8353                "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8354                "pop %0 \n\t"
8355                "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8356                "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8357                __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8358                "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8359                "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8360                "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8361                "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8362#ifdef CONFIG_X86_64
8363                "mov %%r8,  %c[r8](%0) \n\t"
8364                "mov %%r9,  %c[r9](%0) \n\t"
8365                "mov %%r10, %c[r10](%0) \n\t"
8366                "mov %%r11, %c[r11](%0) \n\t"
8367                "mov %%r12, %c[r12](%0) \n\t"
8368                "mov %%r13, %c[r13](%0) \n\t"
8369                "mov %%r14, %c[r14](%0) \n\t"
8370                "mov %%r15, %c[r15](%0) \n\t"
8371#endif
8372                "mov %%cr2, %%" _ASM_AX "   \n\t"
8373                "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8374
8375                "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8376                "setbe %c[fail](%0) \n\t"
8377                ".pushsection .rodata \n\t"
8378                ".global vmx_return \n\t"
8379                "vmx_return: " _ASM_PTR " 2b \n\t"
8380                ".popsection"
8381              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8382                [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8383                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8384                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8385                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8386                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8387                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8388                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8389                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8390                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8391                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8392#ifdef CONFIG_X86_64
8393                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8394                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8395                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8396                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8397                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8398                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8399                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8400                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8401#endif
8402                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8403                [wordsize]"i"(sizeof(ulong))
8404              : "cc", "memory"
8405#ifdef CONFIG_X86_64
8406                , "rax", "rbx", "rdi", "rsi"
8407                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8408#else
8409                , "eax", "ebx", "edi", "esi"
8410#endif
8411              );
8412
8413        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8414        if (debugctlmsr)
8415                update_debugctlmsr(debugctlmsr);
8416
8417#ifndef CONFIG_X86_64
8418        /*
8419         * The sysexit path does not restore ds/es, so we must set them to
8420         * a reasonable value ourselves.
8421         *
8422         * We can't defer this to vmx_load_host_state() since that function
8423         * may be executed in interrupt context, which saves and restore segments
8424         * around it, nullifying its effect.
8425         */
8426        loadsegment(ds, __USER_DS);
8427        loadsegment(es, __USER_DS);
8428#endif
8429
8430        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8431                                  | (1 << VCPU_EXREG_RFLAGS)
8432                                  | (1 << VCPU_EXREG_PDPTR)
8433                                  | (1 << VCPU_EXREG_SEGMENTS)
8434                                  | (1 << VCPU_EXREG_CR3));
8435        vcpu->arch.regs_dirty = 0;
8436
8437        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8438
8439        vmx->loaded_vmcs->launched = 1;
8440
8441        vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8442        trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
8443
8444        /*
8445         * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8446         * we did not inject a still-pending event to L1 now because of
8447         * nested_run_pending, we need to re-enable this bit.
8448         */
8449        if (vmx->nested.nested_run_pending)
8450                kvm_make_request(KVM_REQ_EVENT, vcpu);
8451
8452        vmx->nested.nested_run_pending = 0;
8453
8454        vmx_complete_atomic_exit(vmx);
8455        vmx_recover_nmi_blocking(vmx);
8456        vmx_complete_interrupts(vmx);
8457}
8458
8459static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8460{
8461        struct vcpu_vmx *vmx = to_vmx(vcpu);
8462        int cpu;
8463
8464        if (vmx->loaded_vmcs == &vmx->vmcs01)
8465                return;
8466
8467        cpu = get_cpu();
8468        vmx->loaded_vmcs = &vmx->vmcs01;
8469        vmx_vcpu_put(vcpu);
8470        vmx_vcpu_load(vcpu, cpu);
8471        vcpu->cpu = cpu;
8472        put_cpu();
8473}
8474
8475static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8476{
8477        struct vcpu_vmx *vmx = to_vmx(vcpu);
8478
8479        if (enable_pml)
8480                vmx_disable_pml(vmx);
8481        free_vpid(vmx);
8482        leave_guest_mode(vcpu);
8483        vmx_load_vmcs01(vcpu);
8484        free_nested(vmx);
8485        free_loaded_vmcs(vmx->loaded_vmcs);
8486        kfree(vmx->guest_msrs);
8487        kvm_vcpu_uninit(vcpu);
8488        kmem_cache_free(kvm_vcpu_cache, vmx);
8489}
8490
8491static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8492{
8493        int err;
8494        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8495        int cpu;
8496
8497        if (!vmx)
8498                return ERR_PTR(-ENOMEM);
8499
8500        allocate_vpid(vmx);
8501
8502        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8503        if (err)
8504                goto free_vcpu;
8505
8506        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8507        BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8508                     > PAGE_SIZE);
8509
8510        err = -ENOMEM;
8511        if (!vmx->guest_msrs) {
8512                goto uninit_vcpu;
8513        }
8514
8515        vmx->loaded_vmcs = &vmx->vmcs01;
8516        vmx->loaded_vmcs->vmcs = alloc_vmcs();
8517        if (!vmx->loaded_vmcs->vmcs)
8518                goto free_msrs;
8519        if (!vmm_exclusive)
8520                kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8521        loaded_vmcs_init(vmx->loaded_vmcs);
8522        if (!vmm_exclusive)
8523                kvm_cpu_vmxoff();
8524
8525        cpu = get_cpu();
8526        vmx_vcpu_load(&vmx->vcpu, cpu);
8527        vmx->vcpu.cpu = cpu;
8528        err = vmx_vcpu_setup(vmx);
8529        vmx_vcpu_put(&vmx->vcpu);
8530        put_cpu();
8531        if (err)
8532                goto free_vmcs;
8533        if (vm_need_virtualize_apic_accesses(kvm)) {
8534                err = alloc_apic_access_page(kvm);
8535                if (err)
8536                        goto free_vmcs;
8537        }
8538
8539        if (enable_ept) {
8540                if (!kvm->arch.ept_identity_map_addr)
8541                        kvm->arch.ept_identity_map_addr =
8542                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
8543                err = init_rmode_identity_map(kvm);
8544                if (err)
8545                        goto free_vmcs;
8546        }
8547
8548        if (nested)
8549                nested_vmx_setup_ctls_msrs(vmx);
8550
8551        vmx->nested.posted_intr_nv = -1;
8552        vmx->nested.current_vmptr = -1ull;
8553        vmx->nested.current_vmcs12 = NULL;
8554
8555        /*
8556         * If PML is turned on, failure on enabling PML just results in failure
8557         * of creating the vcpu, therefore we can simplify PML logic (by
8558         * avoiding dealing with cases, such as enabling PML partially on vcpus
8559         * for the guest, etc.
8560         */
8561        if (enable_pml) {
8562                err = vmx_enable_pml(vmx);
8563                if (err)
8564                        goto free_vmcs;
8565        }
8566
8567        return &vmx->vcpu;
8568
8569free_vmcs:
8570        free_loaded_vmcs(vmx->loaded_vmcs);
8571free_msrs:
8572        kfree(vmx->guest_msrs);
8573uninit_vcpu:
8574        kvm_vcpu_uninit(&vmx->vcpu);
8575free_vcpu:
8576        free_vpid(vmx);
8577        kmem_cache_free(kvm_vcpu_cache, vmx);
8578        return ERR_PTR(err);
8579}
8580
8581static void __init vmx_check_processor_compat(void *rtn)
8582{
8583        struct vmcs_config vmcs_conf;
8584
8585        *(int *)rtn = 0;
8586        if (setup_vmcs_config(&vmcs_conf) < 0)
8587                *(int *)rtn = -EIO;
8588        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8589                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8590                                smp_processor_id());
8591                *(int *)rtn = -EIO;
8592        }
8593}
8594
8595static int get_ept_level(void)
8596{
8597        return VMX_EPT_DEFAULT_GAW + 1;
8598}
8599
8600static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
8601{
8602        u8 cache;
8603        u64 ipat = 0;
8604
8605        /* For VT-d and EPT combination
8606         * 1. MMIO: always map as UC
8607         * 2. EPT with VT-d:
8608         *   a. VT-d without snooping control feature: can't guarantee the
8609         *      result, try to trust guest.
8610         *   b. VT-d with snooping control feature: snooping control feature of
8611         *      VT-d engine can guarantee the cache correctness. Just set it
8612         *      to WB to keep consistent with host. So the same as item 3.
8613         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
8614         *    consistent with host MTRR
8615         */
8616        if (is_mmio) {
8617                cache = MTRR_TYPE_UNCACHABLE;
8618                goto exit;
8619        }
8620
8621        if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
8622                ipat = VMX_EPT_IPAT_BIT;
8623                cache = MTRR_TYPE_WRBACK;
8624                goto exit;
8625        }
8626
8627        if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
8628                ipat = VMX_EPT_IPAT_BIT;
8629                if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
8630                        cache = MTRR_TYPE_WRBACK;
8631                else
8632                        cache = MTRR_TYPE_UNCACHABLE;
8633                goto exit;
8634        }
8635
8636        cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
8637
8638exit:
8639        return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
8640}
8641
8642static int vmx_get_lpage_level(void)
8643{
8644        if (enable_ept && !cpu_has_vmx_ept_1g_page())
8645                return PT_DIRECTORY_LEVEL;
8646        else
8647                /* For shadow and EPT supported 1GB page */
8648                return PT_PDPE_LEVEL;
8649}
8650
8651static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
8652{
8653        struct kvm_cpuid_entry2 *best;
8654        struct vcpu_vmx *vmx = to_vmx(vcpu);
8655        u32 exec_control;
8656
8657        vmx->rdtscp_enabled = false;
8658        if (vmx_rdtscp_supported()) {
8659                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8660                if (exec_control & SECONDARY_EXEC_RDTSCP) {
8661                        best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
8662                        if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
8663                                vmx->rdtscp_enabled = true;
8664                        else {
8665                                exec_control &= ~SECONDARY_EXEC_RDTSCP;
8666                                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8667                                                exec_control);
8668                        }
8669                }
8670                if (nested && !vmx->rdtscp_enabled)
8671                        vmx->nested.nested_vmx_secondary_ctls_high &=
8672                                ~SECONDARY_EXEC_RDTSCP;
8673        }
8674
8675        /* Exposing INVPCID only when PCID is exposed */
8676        best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
8677        if (vmx_invpcid_supported() &&
8678            best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
8679            guest_cpuid_has_pcid(vcpu)) {
8680                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8681                exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
8682                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8683                             exec_control);
8684        } else {
8685                if (cpu_has_secondary_exec_ctrls()) {
8686                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8687                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
8688                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
8689                                     exec_control);
8690                }
8691                if (best)
8692                        best->ebx &= ~bit(X86_FEATURE_INVPCID);
8693        }
8694}
8695
8696static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
8697{
8698        if (func == 1 && nested)
8699                entry->ecx |= bit(X86_FEATURE_VMX);
8700}
8701
8702static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
8703                struct x86_exception *fault)
8704{
8705        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8706        u32 exit_reason;
8707
8708        if (fault->error_code & PFERR_RSVD_MASK)
8709                exit_reason = EXIT_REASON_EPT_MISCONFIG;
8710        else
8711                exit_reason = EXIT_REASON_EPT_VIOLATION;
8712        nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
8713        vmcs12->guest_physical_address = fault->address;
8714}
8715
8716/* Callbacks for nested_ept_init_mmu_context: */
8717
8718static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
8719{
8720        /* return the page table to be shadowed - in our case, EPT12 */
8721        return get_vmcs12(vcpu)->ept_pointer;
8722}
8723
8724static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
8725{
8726        WARN_ON(mmu_is_nested(vcpu));
8727        kvm_init_shadow_ept_mmu(vcpu,
8728                        to_vmx(vcpu)->nested.nested_vmx_ept_caps &
8729                        VMX_EPT_EXECUTE_ONLY_BIT);
8730        vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
8731        vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
8732        vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
8733
8734        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
8735}
8736
8737static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
8738{
8739        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
8740}
8741
8742static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
8743                                            u16 error_code)
8744{
8745        bool inequality, bit;
8746
8747        bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
8748        inequality =
8749                (error_code & vmcs12->page_fault_error_code_mask) !=
8750                 vmcs12->page_fault_error_code_match;
8751        return inequality ^ bit;
8752}
8753
8754static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
8755                struct x86_exception *fault)
8756{
8757        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8758
8759        WARN_ON(!is_guest_mode(vcpu));
8760
8761        if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
8762                nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
8763                                  vmcs_read32(VM_EXIT_INTR_INFO),
8764                                  vmcs_readl(EXIT_QUALIFICATION));
8765        else
8766                kvm_inject_page_fault(vcpu, fault);
8767}
8768
8769static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
8770                                        struct vmcs12 *vmcs12)
8771{
8772        struct vcpu_vmx *vmx = to_vmx(vcpu);
8773        int maxphyaddr = cpuid_maxphyaddr(vcpu);
8774
8775        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8776                if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
8777                    vmcs12->apic_access_addr >> maxphyaddr)
8778                        return false;
8779
8780                /*
8781                 * Translate L1 physical address to host physical
8782                 * address for vmcs02. Keep the page pinned, so this
8783                 * physical address remains valid. We keep a reference
8784                 * to it so we can release it later.
8785                 */
8786                if (vmx->nested.apic_access_page) /* shouldn't happen */
8787                        nested_release_page(vmx->nested.apic_access_page);
8788                vmx->nested.apic_access_page =
8789                        nested_get_page(vcpu, vmcs12->apic_access_addr);
8790        }
8791
8792        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8793                if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
8794                    vmcs12->virtual_apic_page_addr >> maxphyaddr)
8795                        return false;
8796
8797                if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8798                        nested_release_page(vmx->nested.virtual_apic_page);
8799                vmx->nested.virtual_apic_page =
8800                        nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8801
8802                /*
8803                 * Failing the vm entry is _not_ what the processor does
8804                 * but it's basically the only possibility we have.
8805                 * We could still enter the guest if CR8 load exits are
8806                 * enabled, CR8 store exits are enabled, and virtualize APIC
8807                 * access is disabled; in this case the processor would never
8808                 * use the TPR shadow and we could simply clear the bit from
8809                 * the execution control.  But such a configuration is useless,
8810                 * so let's keep the code simple.
8811                 */
8812                if (!vmx->nested.virtual_apic_page)
8813                        return false;
8814        }
8815
8816        if (nested_cpu_has_posted_intr(vmcs12)) {
8817                if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
8818                    vmcs12->posted_intr_desc_addr >> maxphyaddr)
8819                        return false;
8820
8821                if (vmx->nested.pi_desc_page) { /* shouldn't happen */
8822                        kunmap(vmx->nested.pi_desc_page);
8823                        nested_release_page(vmx->nested.pi_desc_page);
8824                }
8825                vmx->nested.pi_desc_page =
8826                        nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
8827                if (!vmx->nested.pi_desc_page)
8828                        return false;
8829
8830                vmx->nested.pi_desc =
8831                        (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
8832                if (!vmx->nested.pi_desc) {
8833                        nested_release_page_clean(vmx->nested.pi_desc_page);
8834                        return false;
8835                }
8836                vmx->nested.pi_desc =
8837                        (struct pi_desc *)((void *)vmx->nested.pi_desc +
8838                        (unsigned long)(vmcs12->posted_intr_desc_addr &
8839                        (PAGE_SIZE - 1)));
8840        }
8841
8842        return true;
8843}
8844
8845static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8846{
8847        u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8848        struct vcpu_vmx *vmx = to_vmx(vcpu);
8849
8850        if (vcpu->arch.virtual_tsc_khz == 0)
8851                return;
8852
8853        /* Make sure short timeouts reliably trigger an immediate vmexit.
8854         * hrtimer_start does not guarantee this. */
8855        if (preemption_timeout <= 1) {
8856                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8857                return;
8858        }
8859
8860        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8861        preemption_timeout *= 1000000;
8862        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8863        hrtimer_start(&vmx->nested.preemption_timer,
8864                      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8865}
8866
8867static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
8868                                                struct vmcs12 *vmcs12)
8869{
8870        int maxphyaddr;
8871        u64 addr;
8872
8873        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8874                return 0;
8875
8876        if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
8877                WARN_ON(1);
8878                return -EINVAL;
8879        }
8880        maxphyaddr = cpuid_maxphyaddr(vcpu);
8881
8882        if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
8883           ((addr + PAGE_SIZE) >> maxphyaddr))
8884                return -EINVAL;
8885
8886        return 0;
8887}
8888
8889/*
8890 * Merge L0's and L1's MSR bitmap, return false to indicate that
8891 * we do not use the hardware.
8892 */
8893static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
8894                                               struct vmcs12 *vmcs12)
8895{
8896        int msr;
8897        struct page *page;
8898        unsigned long *msr_bitmap;
8899
8900        if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
8901                return false;
8902
8903        page = nested_get_page(vcpu, vmcs12->msr_bitmap);
8904        if (!page) {
8905                WARN_ON(1);
8906                return false;
8907        }
8908        msr_bitmap = (unsigned long *)kmap(page);
8909        if (!msr_bitmap) {
8910                nested_release_page_clean(page);
8911                WARN_ON(1);
8912                return false;
8913        }
8914
8915        if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
8916                if (nested_cpu_has_apic_reg_virt(vmcs12))
8917                        for (msr = 0x800; msr <= 0x8ff; msr++)
8918                                nested_vmx_disable_intercept_for_msr(
8919                                        msr_bitmap,
8920                                        vmx_msr_bitmap_nested,
8921                                        msr, MSR_TYPE_R);
8922                /* TPR is allowed */
8923                nested_vmx_disable_intercept_for_msr(msr_bitmap,
8924                                vmx_msr_bitmap_nested,
8925                                APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8926                                MSR_TYPE_R | MSR_TYPE_W);
8927                if (nested_cpu_has_vid(vmcs12)) {
8928                        /* EOI and self-IPI are allowed */
8929                        nested_vmx_disable_intercept_for_msr(
8930                                msr_bitmap,
8931                                vmx_msr_bitmap_nested,
8932                                APIC_BASE_MSR + (APIC_EOI >> 4),
8933                                MSR_TYPE_W);
8934                        nested_vmx_disable_intercept_for_msr(
8935                                msr_bitmap,
8936                                vmx_msr_bitmap_nested,
8937                                APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8938                                MSR_TYPE_W);
8939                }
8940        } else {
8941                /*
8942                 * Enable reading intercept of all the x2apic
8943                 * MSRs. We should not rely on vmcs12 to do any
8944                 * optimizations here, it may have been modified
8945                 * by L1.
8946                 */
8947                for (msr = 0x800; msr <= 0x8ff; msr++)
8948                        __vmx_enable_intercept_for_msr(
8949                                vmx_msr_bitmap_nested,
8950                                msr,
8951                                MSR_TYPE_R);
8952
8953                __vmx_enable_intercept_for_msr(
8954                                vmx_msr_bitmap_nested,
8955                                APIC_BASE_MSR + (APIC_TASKPRI >> 4),
8956                                MSR_TYPE_W);
8957                __vmx_enable_intercept_for_msr(
8958                                vmx_msr_bitmap_nested,
8959                                APIC_BASE_MSR + (APIC_EOI >> 4),
8960                                MSR_TYPE_W);
8961                __vmx_enable_intercept_for_msr(
8962                                vmx_msr_bitmap_nested,
8963                                APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
8964                                MSR_TYPE_W);
8965        }
8966        kunmap(page);
8967        nested_release_page_clean(page);
8968
8969        return true;
8970}
8971
8972static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
8973                                           struct vmcs12 *vmcs12)
8974{
8975        if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8976            !nested_cpu_has_apic_reg_virt(vmcs12) &&
8977            !nested_cpu_has_vid(vmcs12) &&
8978            !nested_cpu_has_posted_intr(vmcs12))
8979                return 0;
8980
8981        /*
8982         * If virtualize x2apic mode is enabled,
8983         * virtualize apic access must be disabled.
8984         */
8985        if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
8986            nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8987                return -EINVAL;
8988
8989        /*
8990         * If virtual interrupt delivery is enabled,
8991         * we must exit on external interrupts.
8992         */
8993        if (nested_cpu_has_vid(vmcs12) &&
8994           !nested_exit_on_intr(vcpu))
8995                return -EINVAL;
8996
8997        /*
8998         * bits 15:8 should be zero in posted_intr_nv,
8999         * the descriptor address has been already checked
9000         * in nested_get_vmcs12_pages.
9001         */
9002        if (nested_cpu_has_posted_intr(vmcs12) &&
9003           (!nested_cpu_has_vid(vmcs12) ||
9004            !nested_exit_intr_ack_set(vcpu) ||
9005            vmcs12->posted_intr_nv & 0xff00))
9006                return -EINVAL;
9007
9008        /* tpr shadow is needed by all apicv features. */
9009        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9010                return -EINVAL;
9011
9012        return 0;
9013}
9014
9015static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9016                                       unsigned long count_field,
9017                                       unsigned long addr_field)
9018{
9019        int maxphyaddr;
9020        u64 count, addr;
9021
9022        if (vmcs12_read_any(vcpu, count_field, &count) ||
9023            vmcs12_read_any(vcpu, addr_field, &addr)) {
9024                WARN_ON(1);
9025                return -EINVAL;
9026        }
9027        if (count == 0)
9028                return 0;
9029        maxphyaddr = cpuid_maxphyaddr(vcpu);
9030        if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9031            (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9032                pr_warn_ratelimited(
9033                        "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9034                        addr_field, maxphyaddr, count, addr);
9035                return -EINVAL;
9036        }
9037        return 0;
9038}
9039
9040static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9041                                                struct vmcs12 *vmcs12)
9042{
9043        if (vmcs12->vm_exit_msr_load_count == 0 &&
9044            vmcs12->vm_exit_msr_store_count == 0 &&
9045            vmcs12->vm_entry_msr_load_count == 0)
9046                return 0; /* Fast path */
9047        if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9048                                        VM_EXIT_MSR_LOAD_ADDR) ||
9049            nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9050                                        VM_EXIT_MSR_STORE_ADDR) ||
9051            nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9052                                        VM_ENTRY_MSR_LOAD_ADDR))
9053                return -EINVAL;
9054        return 0;
9055}
9056
9057static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9058                                       struct vmx_msr_entry *e)
9059{
9060        /* x2APIC MSR accesses are not allowed */
9061        if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9062                return -EINVAL;
9063        if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9064            e->index == MSR_IA32_UCODE_REV)
9065                return -EINVAL;
9066        if (e->reserved != 0)
9067                return -EINVAL;
9068        return 0;
9069}
9070
9071static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9072                                     struct vmx_msr_entry *e)
9073{
9074        if (e->index == MSR_FS_BASE ||
9075            e->index == MSR_GS_BASE ||
9076            e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9077            nested_vmx_msr_check_common(vcpu, e))
9078                return -EINVAL;
9079        return 0;
9080}
9081
9082static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9083                                      struct vmx_msr_entry *e)
9084{
9085        if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9086            nested_vmx_msr_check_common(vcpu, e))
9087                return -EINVAL;
9088        return 0;
9089}
9090
9091/*
9092 * Load guest's/host's msr at nested entry/exit.
9093 * return 0 for success, entry index for failure.
9094 */
9095static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9096{
9097        u32 i;
9098        struct vmx_msr_entry e;
9099        struct msr_data msr;
9100
9101        msr.host_initiated = false;
9102        for (i = 0; i < count; i++) {
9103                if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9104                                        &e, sizeof(e))) {
9105                        pr_warn_ratelimited(
9106                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
9107                                __func__, i, gpa + i * sizeof(e));
9108                        goto fail;
9109                }
9110                if (nested_vmx_load_msr_check(vcpu, &e)) {
9111                        pr_warn_ratelimited(
9112                                "%s check failed (%u, 0x%x, 0x%x)\n",
9113                                __func__, i, e.index, e.reserved);
9114                        goto fail;
9115                }
9116                msr.index = e.index;
9117                msr.data = e.value;
9118                if (kvm_set_msr(vcpu, &msr)) {
9119                        pr_warn_ratelimited(
9120                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9121                                __func__, i, e.index, e.value);
9122                        goto fail;
9123                }
9124        }
9125        return 0;
9126fail:
9127        return i + 1;
9128}
9129
9130static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9131{
9132        u32 i;
9133        struct vmx_msr_entry e;
9134
9135        for (i = 0; i < count; i++) {
9136                struct msr_data msr_info;
9137                if (kvm_vcpu_read_guest(vcpu,
9138                                        gpa + i * sizeof(e),
9139                                        &e, 2 * sizeof(u32))) {
9140                        pr_warn_ratelimited(
9141                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
9142                                __func__, i, gpa + i * sizeof(e));
9143                        return -EINVAL;
9144                }
9145                if (nested_vmx_store_msr_check(vcpu, &e)) {
9146                        pr_warn_ratelimited(
9147                                "%s check failed (%u, 0x%x, 0x%x)\n",
9148                                __func__, i, e.index, e.reserved);
9149                        return -EINVAL;
9150                }
9151                msr_info.host_initiated = false;
9152                msr_info.index = e.index;
9153                if (kvm_get_msr(vcpu, &msr_info)) {
9154                        pr_warn_ratelimited(
9155                                "%s cannot read MSR (%u, 0x%x)\n",
9156                                __func__, i, e.index);
9157                        return -EINVAL;
9158                }
9159                if (kvm_vcpu_write_guest(vcpu,
9160                                         gpa + i * sizeof(e) +
9161                                             offsetof(struct vmx_msr_entry, value),
9162                                         &msr_info.data, sizeof(msr_info.data))) {
9163                        pr_warn_ratelimited(
9164                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9165                                __func__, i, e.index, msr_info.data);
9166                        return -EINVAL;
9167                }
9168        }
9169        return 0;
9170}
9171
9172/*
9173 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9174 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9175 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9176 * guest in a way that will both be appropriate to L1's requests, and our
9177 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9178 * function also has additional necessary side-effects, like setting various
9179 * vcpu->arch fields.
9180 */
9181static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9182{
9183        struct vcpu_vmx *vmx = to_vmx(vcpu);
9184        u32 exec_control;
9185
9186        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9187        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9188        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9189        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9190        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9191        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9192        vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9193        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9194        vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9195        vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9196        vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9197        vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9198        vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9199        vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9200        vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9201        vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9202        vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9203        vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9204        vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9205        vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9206        vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9207        vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9208        vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9209        vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9210        vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9211        vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9212        vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9213        vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9214        vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9215        vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9216        vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9217        vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9218        vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9219        vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9220        vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9221        vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9222
9223        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9224                kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9225                vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9226        } else {
9227                kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9228                vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9229        }
9230        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9231                vmcs12->vm_entry_intr_info_field);
9232        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9233                vmcs12->vm_entry_exception_error_code);
9234        vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9235                vmcs12->vm_entry_instruction_len);
9236        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9237                vmcs12->guest_interruptibility_info);
9238        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9239        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9240        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9241                vmcs12->guest_pending_dbg_exceptions);
9242        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9243        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9244
9245        if (nested_cpu_has_xsaves(vmcs12))
9246                vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9247        vmcs_write64(VMCS_LINK_POINTER, -1ull);
9248
9249        exec_control = vmcs12->pin_based_vm_exec_control;
9250        exec_control |= vmcs_config.pin_based_exec_ctrl;
9251        exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9252
9253        if (nested_cpu_has_posted_intr(vmcs12)) {
9254                /*
9255                 * Note that we use L0's vector here and in
9256                 * vmx_deliver_nested_posted_interrupt.
9257                 */
9258                vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9259                vmx->nested.pi_pending = false;
9260                vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9261                vmcs_write64(POSTED_INTR_DESC_ADDR,
9262                        page_to_phys(vmx->nested.pi_desc_page) +
9263                        (unsigned long)(vmcs12->posted_intr_desc_addr &
9264                        (PAGE_SIZE - 1)));
9265        } else
9266                exec_control &= ~PIN_BASED_POSTED_INTR;
9267
9268        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9269
9270        vmx->nested.preemption_timer_expired = false;
9271        if (nested_cpu_has_preemption_timer(vmcs12))
9272                vmx_start_preemption_timer(vcpu);
9273
9274        /*
9275         * Whether page-faults are trapped is determined by a combination of
9276         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9277         * If enable_ept, L0 doesn't care about page faults and we should
9278         * set all of these to L1's desires. However, if !enable_ept, L0 does
9279         * care about (at least some) page faults, and because it is not easy
9280         * (if at all possible?) to merge L0 and L1's desires, we simply ask
9281         * to exit on each and every L2 page fault. This is done by setting
9282         * MASK=MATCH=0 and (see below) EB.PF=1.
9283         * Note that below we don't need special code to set EB.PF beyond the
9284         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9285         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9286         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9287         *
9288         * A problem with this approach (when !enable_ept) is that L1 may be
9289         * injected with more page faults than it asked for. This could have
9290         * caused problems, but in practice existing hypervisors don't care.
9291         * To fix this, we will need to emulate the PFEC checking (on the L1
9292         * page tables), using walk_addr(), when injecting PFs to L1.
9293         */
9294        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9295                enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9296        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9297                enable_ept ? vmcs12->page_fault_error_code_match : 0);
9298
9299        if (cpu_has_secondary_exec_ctrls()) {
9300                exec_control = vmx_secondary_exec_control(vmx);
9301                if (!vmx->rdtscp_enabled)
9302                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
9303                /* Take the following fields only from vmcs12 */
9304                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9305                                  SECONDARY_EXEC_RDTSCP |
9306                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9307                                  SECONDARY_EXEC_APIC_REGISTER_VIRT);
9308                if (nested_cpu_has(vmcs12,
9309                                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9310                        exec_control |= vmcs12->secondary_vm_exec_control;
9311
9312                if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9313                        /*
9314                         * If translation failed, no matter: This feature asks
9315                         * to exit when accessing the given address, and if it
9316                         * can never be accessed, this feature won't do
9317                         * anything anyway.
9318                         */
9319                        if (!vmx->nested.apic_access_page)
9320                                exec_control &=
9321                                  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9322                        else
9323                                vmcs_write64(APIC_ACCESS_ADDR,
9324                                  page_to_phys(vmx->nested.apic_access_page));
9325                } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9326                            (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))) {
9327                        exec_control |=
9328                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9329                        kvm_vcpu_reload_apic_access_page(vcpu);
9330                }
9331
9332                if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9333                        vmcs_write64(EOI_EXIT_BITMAP0,
9334                                vmcs12->eoi_exit_bitmap0);
9335                        vmcs_write64(EOI_EXIT_BITMAP1,
9336                                vmcs12->eoi_exit_bitmap1);
9337                        vmcs_write64(EOI_EXIT_BITMAP2,
9338                                vmcs12->eoi_exit_bitmap2);
9339                        vmcs_write64(EOI_EXIT_BITMAP3,
9340                                vmcs12->eoi_exit_bitmap3);
9341                        vmcs_write16(GUEST_INTR_STATUS,
9342                                vmcs12->guest_intr_status);
9343                }
9344
9345                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9346        }
9347
9348
9349        /*
9350         * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9351         * Some constant fields are set here by vmx_set_constant_host_state().
9352         * Other fields are different per CPU, and will be set later when
9353         * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9354         */
9355        vmx_set_constant_host_state(vmx);
9356
9357        /*
9358         * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9359         * entry, but only if the current (host) sp changed from the value
9360         * we wrote last (vmx->host_rsp). This cache is no longer relevant
9361         * if we switch vmcs, and rather than hold a separate cache per vmcs,
9362         * here we just force the write to happen on entry.
9363         */
9364        vmx->host_rsp = 0;
9365
9366        exec_control = vmx_exec_control(vmx); /* L0's desires */
9367        exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9368        exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9369        exec_control &= ~CPU_BASED_TPR_SHADOW;
9370        exec_control |= vmcs12->cpu_based_vm_exec_control;
9371
9372        if (exec_control & CPU_BASED_TPR_SHADOW) {
9373                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9374                                page_to_phys(vmx->nested.virtual_apic_page));
9375                vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9376        }
9377
9378        if (cpu_has_vmx_msr_bitmap() &&
9379            exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9380                nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9381                /* MSR_BITMAP will be set by following vmx_set_efer. */
9382        } else
9383                exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9384
9385        /*
9386         * Merging of IO bitmap not currently supported.
9387         * Rather, exit every time.
9388         */
9389        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9390        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9391
9392        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9393
9394        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9395         * bitwise-or of what L1 wants to trap for L2, and what we want to
9396         * trap. Note that CR0.TS also needs updating - we do this later.
9397         */
9398        update_exception_bitmap(vcpu);
9399        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9400        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9401
9402        /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9403         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9404         * bits are further modified by vmx_set_efer() below.
9405         */
9406        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9407
9408        /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9409         * emulated by vmx_set_efer(), below.
9410         */
9411        vm_entry_controls_init(vmx, 
9412                (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9413                        ~VM_ENTRY_IA32E_MODE) |
9414                (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9415
9416        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9417                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9418                vcpu->arch.pat = vmcs12->guest_ia32_pat;
9419        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9420                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9421
9422
9423        set_cr4_guest_host_mask(vmx);
9424
9425        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9426                vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9427
9428        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9429                vmcs_write64(TSC_OFFSET,
9430                        vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9431        else
9432                vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9433
9434        if (enable_vpid) {
9435                /*
9436                 * Trivially support vpid by letting L2s share their parent
9437                 * L1's vpid. TODO: move to a more elaborate solution, giving
9438                 * each L2 its own vpid and exposing the vpid feature to L1.
9439                 */
9440                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9441                vmx_flush_tlb(vcpu);
9442        }
9443
9444        if (nested_cpu_has_ept(vmcs12)) {
9445                kvm_mmu_unload(vcpu);
9446                nested_ept_init_mmu_context(vcpu);
9447        }
9448
9449        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9450                vcpu->arch.efer = vmcs12->guest_ia32_efer;
9451        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9452                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9453        else
9454                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9455        /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9456        vmx_set_efer(vcpu, vcpu->arch.efer);
9457
9458        /*
9459         * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9460         * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9461         * The CR0_READ_SHADOW is what L2 should have expected to read given
9462         * the specifications by L1; It's not enough to take
9463         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9464         * have more bits than L1 expected.
9465         */
9466        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9467        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9468
9469        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9470        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9471
9472        /* shadow page tables on either EPT or shadow page tables */
9473        kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9474        kvm_mmu_reset_context(vcpu);
9475
9476        if (!enable_ept)
9477                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9478
9479        /*
9480         * L1 may access the L2's PDPTR, so save them to construct vmcs12
9481         */
9482        if (enable_ept) {
9483                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9484                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9485                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9486                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9487        }
9488
9489        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9490        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9491}
9492
9493/*
9494 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9495 * for running an L2 nested guest.
9496 */
9497static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9498{
9499        struct vmcs12 *vmcs12;
9500        struct vcpu_vmx *vmx = to_vmx(vcpu);
9501        int cpu;
9502        struct loaded_vmcs *vmcs02;
9503        bool ia32e;
9504        u32 msr_entry_idx;
9505
9506        if (!nested_vmx_check_permission(vcpu) ||
9507            !nested_vmx_check_vmcs12(vcpu))
9508                return 1;
9509
9510        skip_emulated_instruction(vcpu);
9511        vmcs12 = get_vmcs12(vcpu);
9512
9513        if (enable_shadow_vmcs)
9514                copy_shadow_to_vmcs12(vmx);
9515
9516        /*
9517         * The nested entry process starts with enforcing various prerequisites
9518         * on vmcs12 as required by the Intel SDM, and act appropriately when
9519         * they fail: As the SDM explains, some conditions should cause the
9520         * instruction to fail, while others will cause the instruction to seem
9521         * to succeed, but return an EXIT_REASON_INVALID_STATE.
9522         * To speed up the normal (success) code path, we should avoid checking
9523         * for misconfigurations which will anyway be caught by the processor
9524         * when using the merged vmcs02.
9525         */
9526        if (vmcs12->launch_state == launch) {
9527                nested_vmx_failValid(vcpu,
9528                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9529                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9530                return 1;
9531        }
9532
9533        if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9534            vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
9535                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9536                return 1;
9537        }
9538
9539        if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
9540                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9541                return 1;
9542        }
9543
9544        if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
9545                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9546                return 1;
9547        }
9548
9549        if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9550                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9551                return 1;
9552        }
9553
9554        if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9555                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9556                return 1;
9557        }
9558
9559        if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
9560                                vmx->nested.nested_vmx_true_procbased_ctls_low,
9561                                vmx->nested.nested_vmx_procbased_ctls_high) ||
9562            !vmx_control_verify(vmcs12->secondary_vm_exec_control,
9563                                vmx->nested.nested_vmx_secondary_ctls_low,
9564                                vmx->nested.nested_vmx_secondary_ctls_high) ||
9565            !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
9566                                vmx->nested.nested_vmx_pinbased_ctls_low,
9567                                vmx->nested.nested_vmx_pinbased_ctls_high) ||
9568            !vmx_control_verify(vmcs12->vm_exit_controls,
9569                                vmx->nested.nested_vmx_true_exit_ctls_low,
9570                                vmx->nested.nested_vmx_exit_ctls_high) ||
9571            !vmx_control_verify(vmcs12->vm_entry_controls,
9572                                vmx->nested.nested_vmx_true_entry_ctls_low,
9573                                vmx->nested.nested_vmx_entry_ctls_high))
9574        {
9575                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9576                return 1;
9577        }
9578
9579        if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9580            ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9581                nested_vmx_failValid(vcpu,
9582                        VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9583                return 1;
9584        }
9585
9586        if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
9587            ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9588                nested_vmx_entry_failure(vcpu, vmcs12,
9589                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9590                return 1;
9591        }
9592        if (vmcs12->vmcs_link_pointer != -1ull) {
9593                nested_vmx_entry_failure(vcpu, vmcs12,
9594                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9595                return 1;
9596        }
9597
9598        /*
9599         * If the load IA32_EFER VM-entry control is 1, the following checks
9600         * are performed on the field for the IA32_EFER MSR:
9601         * - Bits reserved in the IA32_EFER MSR must be 0.
9602         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
9603         *   the IA-32e mode guest VM-exit control. It must also be identical
9604         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
9605         *   CR0.PG) is 1.
9606         */
9607        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
9608                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
9609                if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
9610                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
9611                    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
9612                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
9613                        nested_vmx_entry_failure(vcpu, vmcs12,
9614                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9615                        return 1;
9616                }
9617        }
9618
9619        /*
9620         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
9621         * IA32_EFER MSR must be 0 in the field for that register. In addition,
9622         * the values of the LMA and LME bits in the field must each be that of
9623         * the host address-space size VM-exit control.
9624         */
9625        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
9626                ia32e = (vmcs12->vm_exit_controls &
9627                         VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
9628                if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
9629                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
9630                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
9631                        nested_vmx_entry_failure(vcpu, vmcs12,
9632                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9633                        return 1;
9634                }
9635        }
9636
9637        /*
9638         * We're finally done with prerequisite checking, and can start with
9639         * the nested entry.
9640         */
9641
9642        vmcs02 = nested_get_current_vmcs02(vmx);
9643        if (!vmcs02)
9644                return -ENOMEM;
9645
9646        enter_guest_mode(vcpu);
9647
9648        vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
9649
9650        if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
9651                vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9652
9653        cpu = get_cpu();
9654        vmx->loaded_vmcs = vmcs02;
9655        vmx_vcpu_put(vcpu);
9656        vmx_vcpu_load(vcpu, cpu);
9657        vcpu->cpu = cpu;
9658        put_cpu();
9659
9660        vmx_segment_cache_clear(vmx);
9661
9662        prepare_vmcs02(vcpu, vmcs12);
9663
9664        msr_entry_idx = nested_vmx_load_msr(vcpu,
9665                                            vmcs12->vm_entry_msr_load_addr,
9666                                            vmcs12->vm_entry_msr_load_count);
9667        if (msr_entry_idx) {
9668                leave_guest_mode(vcpu);
9669                vmx_load_vmcs01(vcpu);
9670                nested_vmx_entry_failure(vcpu, vmcs12,
9671                                EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
9672                return 1;
9673        }
9674
9675        vmcs12->launch_state = 1;
9676
9677        if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
9678                return kvm_vcpu_halt(vcpu);
9679
9680        vmx->nested.nested_run_pending = 1;
9681
9682        /*
9683         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
9684         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
9685         * returned as far as L1 is concerned. It will only return (and set
9686         * the success flag) when L2 exits (see nested_vmx_vmexit()).
9687         */
9688        return 1;
9689}
9690
9691/*
9692 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
9693 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
9694 * This function returns the new value we should put in vmcs12.guest_cr0.
9695 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
9696 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
9697 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
9698 *     didn't trap the bit, because if L1 did, so would L0).
9699 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
9700 *     been modified by L2, and L1 knows it. So just leave the old value of
9701 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
9702 *     isn't relevant, because if L0 traps this bit it can set it to anything.
9703 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
9704 *     changed these bits, and therefore they need to be updated, but L0
9705 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
9706 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
9707 */
9708static inline unsigned long
9709vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9710{
9711        return
9712        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
9713        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
9714        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
9715                        vcpu->arch.cr0_guest_owned_bits));
9716}
9717
9718static inline unsigned long
9719vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9720{
9721        return
9722        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
9723        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
9724        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
9725                        vcpu->arch.cr4_guest_owned_bits));
9726}
9727
9728static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
9729                                       struct vmcs12 *vmcs12)
9730{
9731        u32 idt_vectoring;
9732        unsigned int nr;
9733
9734        if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
9735                nr = vcpu->arch.exception.nr;
9736                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9737
9738                if (kvm_exception_is_soft(nr)) {
9739                        vmcs12->vm_exit_instruction_len =
9740                                vcpu->arch.event_exit_inst_len;
9741                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
9742                } else
9743                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
9744
9745                if (vcpu->arch.exception.has_error_code) {
9746                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
9747                        vmcs12->idt_vectoring_error_code =
9748                                vcpu->arch.exception.error_code;
9749                }
9750
9751                vmcs12->idt_vectoring_info_field = idt_vectoring;
9752        } else if (vcpu->arch.nmi_injected) {
9753                vmcs12->idt_vectoring_info_field =
9754                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
9755        } else if (vcpu->arch.interrupt.pending) {
9756                nr = vcpu->arch.interrupt.nr;
9757                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
9758
9759                if (vcpu->arch.interrupt.soft) {
9760                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
9761                        vmcs12->vm_entry_instruction_len =
9762                                vcpu->arch.event_exit_inst_len;
9763                } else
9764                        idt_vectoring |= INTR_TYPE_EXT_INTR;
9765
9766                vmcs12->idt_vectoring_info_field = idt_vectoring;
9767        }
9768}
9769
9770static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
9771{
9772        struct vcpu_vmx *vmx = to_vmx(vcpu);
9773
9774        if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
9775            vmx->nested.preemption_timer_expired) {
9776                if (vmx->nested.nested_run_pending)
9777                        return -EBUSY;
9778                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
9779                return 0;
9780        }
9781
9782        if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
9783                if (vmx->nested.nested_run_pending ||
9784                    vcpu->arch.interrupt.pending)
9785                        return -EBUSY;
9786                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9787                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
9788                                  INTR_INFO_VALID_MASK, 0);
9789                /*
9790                 * The NMI-triggered VM exit counts as injection:
9791                 * clear this one and block further NMIs.
9792                 */
9793                vcpu->arch.nmi_pending = 0;
9794                vmx_set_nmi_mask(vcpu, true);
9795                return 0;
9796        }
9797
9798        if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
9799            nested_exit_on_intr(vcpu)) {
9800                if (vmx->nested.nested_run_pending)
9801                        return -EBUSY;
9802                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
9803                return 0;
9804        }
9805
9806        return vmx_complete_nested_posted_interrupt(vcpu);
9807}
9808
9809static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
9810{
9811        ktime_t remaining =
9812                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
9813        u64 value;
9814
9815        if (ktime_to_ns(remaining) <= 0)
9816                return 0;
9817
9818        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
9819        do_div(value, 1000000);
9820        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9821}
9822
9823/*
9824 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
9825 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
9826 * and this function updates it to reflect the changes to the guest state while
9827 * L2 was running (and perhaps made some exits which were handled directly by L0
9828 * without going back to L1), and to reflect the exit reason.
9829 * Note that we do not have to copy here all VMCS fields, just those that
9830 * could have changed by the L2 guest or the exit - i.e., the guest-state and
9831 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
9832 * which already writes to vmcs12 directly.
9833 */
9834static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9835                           u32 exit_reason, u32 exit_intr_info,
9836                           unsigned long exit_qualification)
9837{
9838        /* update guest state fields: */
9839        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
9840        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
9841
9842        vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
9843        vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
9844        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
9845
9846        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
9847        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
9848        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
9849        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
9850        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
9851        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
9852        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
9853        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
9854        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
9855        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
9856        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
9857        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
9858        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
9859        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
9860        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
9861        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
9862        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
9863        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
9864        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
9865        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
9866        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
9867        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
9868        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
9869        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
9870        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
9871        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
9872        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
9873        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
9874        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
9875        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
9876        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
9877        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
9878        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
9879        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
9880        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
9881        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
9882
9883        vmcs12->guest_interruptibility_info =
9884                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
9885        vmcs12->guest_pending_dbg_exceptions =
9886                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
9887        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
9888                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
9889        else
9890                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
9891
9892        if (nested_cpu_has_preemption_timer(vmcs12)) {
9893                if (vmcs12->vm_exit_controls &
9894                    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
9895                        vmcs12->vmx_preemption_timer_value =
9896                                vmx_get_preemption_timer_value(vcpu);
9897                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
9898        }
9899
9900        /*
9901         * In some cases (usually, nested EPT), L2 is allowed to change its
9902         * own CR3 without exiting. If it has changed it, we must keep it.
9903         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
9904         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
9905         *
9906         * Additionally, restore L2's PDPTR to vmcs12.
9907         */
9908        if (enable_ept) {
9909                vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
9910                vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
9911                vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
9912                vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
9913                vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
9914        }
9915
9916        if (nested_cpu_has_vid(vmcs12))
9917                vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
9918
9919        vmcs12->vm_entry_controls =
9920                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
9921                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
9922
9923        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
9924                kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
9925                vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
9926        }
9927
9928        /* TODO: These cannot have changed unless we have MSR bitmaps and
9929         * the relevant bit asks not to trap the change */
9930        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
9931                vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
9932        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
9933                vmcs12->guest_ia32_efer = vcpu->arch.efer;
9934        vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
9935        vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
9936        vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
9937        if (vmx_mpx_supported())
9938                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
9939        if (nested_cpu_has_xsaves(vmcs12))
9940                vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
9941
9942        /* update exit information fields: */
9943
9944        vmcs12->vm_exit_reason = exit_reason;
9945        vmcs12->exit_qualification = exit_qualification;
9946
9947        vmcs12->vm_exit_intr_info = exit_intr_info;
9948        if ((vmcs12->vm_exit_intr_info &
9949             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9950            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
9951                vmcs12->vm_exit_intr_error_code =
9952                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9953        vmcs12->idt_vectoring_info_field = 0;
9954        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
9955        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
9956
9957        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
9958                /* vm_entry_intr_info_field is cleared on exit. Emulate this
9959                 * instead of reading the real value. */
9960                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
9961
9962                /*
9963                 * Transfer the event that L0 or L1 may wanted to inject into
9964                 * L2 to IDT_VECTORING_INFO_FIELD.
9965                 */
9966                vmcs12_save_pending_event(vcpu, vmcs12);
9967        }
9968
9969        /*
9970         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
9971         * preserved above and would only end up incorrectly in L1.
9972         */
9973        vcpu->arch.nmi_injected = false;
9974        kvm_clear_exception_queue(vcpu);
9975        kvm_clear_interrupt_queue(vcpu);
9976}
9977
9978/*
9979 * A part of what we need to when the nested L2 guest exits and we want to
9980 * run its L1 parent, is to reset L1's guest state to the host state specified
9981 * in vmcs12.
9982 * This function is to be called not only on normal nested exit, but also on
9983 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
9984 * Failures During or After Loading Guest State").
9985 * This function should be called when the active VMCS is L1's (vmcs01).
9986 */
9987static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
9988                                   struct vmcs12 *vmcs12)
9989{
9990        struct kvm_segment seg;
9991
9992        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
9993                vcpu->arch.efer = vmcs12->host_ia32_efer;
9994        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
9995                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9996        else
9997                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9998        vmx_set_efer(vcpu, vcpu->arch.efer);
9999
10000        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10001        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10002        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10003        /*
10004         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10005         * actually changed, because it depends on the current state of
10006         * fpu_active (which may have changed).
10007         * Note that vmx_set_cr0 refers to efer set above.
10008         */
10009        vmx_set_cr0(vcpu, vmcs12->host_cr0);
10010        /*
10011         * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10012         * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10013         * but we also need to update cr0_guest_host_mask and exception_bitmap.
10014         */
10015        update_exception_bitmap(vcpu);
10016        vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10017        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10018
10019        /*
10020         * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10021         * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10022         */
10023        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10024        kvm_set_cr4(vcpu, vmcs12->host_cr4);
10025
10026        nested_ept_uninit_mmu_context(vcpu);
10027
10028        kvm_set_cr3(vcpu, vmcs12->host_cr3);
10029        kvm_mmu_reset_context(vcpu);
10030
10031        if (!enable_ept)
10032                vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10033
10034        if (enable_vpid) {
10035                /*
10036                 * Trivially support vpid by letting L2s share their parent
10037                 * L1's vpid. TODO: move to a more elaborate solution, giving
10038                 * each L2 its own vpid and exposing the vpid feature to L1.
10039                 */
10040                vmx_flush_tlb(vcpu);
10041        }
10042
10043
10044        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10045        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10046        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10047        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10048        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10049
10050        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10051        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10052                vmcs_write64(GUEST_BNDCFGS, 0);
10053
10054        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10055                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10056                vcpu->arch.pat = vmcs12->host_ia32_pat;
10057        }
10058        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10059                vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10060                        vmcs12->host_ia32_perf_global_ctrl);
10061
10062        /* Set L1 segment info according to Intel SDM
10063            27.5.2 Loading Host Segment and Descriptor-Table Registers */
10064        seg = (struct kvm_segment) {
10065                .base = 0,
10066                .limit = 0xFFFFFFFF,
10067                .selector = vmcs12->host_cs_selector,
10068                .type = 11,
10069                .present = 1,
10070                .s = 1,
10071                .g = 1
10072        };
10073        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10074                seg.l = 1;
10075        else
10076                seg.db = 1;
10077        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10078        seg = (struct kvm_segment) {
10079                .base = 0,
10080                .limit = 0xFFFFFFFF,
10081                .type = 3,
10082                .present = 1,
10083                .s = 1,
10084                .db = 1,
10085                .g = 1
10086        };
10087        seg.selector = vmcs12->host_ds_selector;
10088        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10089        seg.selector = vmcs12->host_es_selector;
10090        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10091        seg.selector = vmcs12->host_ss_selector;
10092        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10093        seg.selector = vmcs12->host_fs_selector;
10094        seg.base = vmcs12->host_fs_base;
10095        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10096        seg.selector = vmcs12->host_gs_selector;
10097        seg.base = vmcs12->host_gs_base;
10098        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10099        seg = (struct kvm_segment) {
10100                .base = vmcs12->host_tr_base,
10101                .limit = 0x67,
10102                .selector = vmcs12->host_tr_selector,
10103                .type = 11,
10104                .present = 1
10105        };
10106        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10107
10108        kvm_set_dr(vcpu, 7, 0x400);
10109        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10110
10111        if (cpu_has_vmx_msr_bitmap())
10112                vmx_set_msr_bitmap(vcpu);
10113
10114        if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10115                                vmcs12->vm_exit_msr_load_count))
10116                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10117}
10118
10119/*
10120 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10121 * and modify vmcs12 to make it see what it would expect to see there if
10122 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10123 */
10124static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10125                              u32 exit_intr_info,
10126                              unsigned long exit_qualification)
10127{
10128        struct vcpu_vmx *vmx = to_vmx(vcpu);
10129        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10130
10131        /* trying to cancel vmlaunch/vmresume is a bug */
10132        WARN_ON_ONCE(vmx->nested.nested_run_pending);
10133
10134        leave_guest_mode(vcpu);
10135        prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10136                       exit_qualification);
10137
10138        if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10139                                 vmcs12->vm_exit_msr_store_count))
10140                nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10141
10142        vmx_load_vmcs01(vcpu);
10143
10144        if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10145            && nested_exit_intr_ack_set(vcpu)) {
10146                int irq = kvm_cpu_get_interrupt(vcpu);
10147                WARN_ON(irq < 0);
10148                vmcs12->vm_exit_intr_info = irq |
10149                        INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10150        }
10151
10152        trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10153                                       vmcs12->exit_qualification,
10154                                       vmcs12->idt_vectoring_info_field,
10155                                       vmcs12->vm_exit_intr_info,
10156                                       vmcs12->vm_exit_intr_error_code,
10157                                       KVM_ISA_VMX);
10158
10159        vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10160        vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10161        vmx_segment_cache_clear(vmx);
10162
10163        /* if no vmcs02 cache requested, remove the one we used */
10164        if (VMCS02_POOL_SIZE == 0)
10165                nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10166
10167        load_vmcs12_host_state(vcpu, vmcs12);
10168
10169        /* Update TSC_OFFSET if TSC was changed while L2 ran */
10170        vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10171
10172        /* This is needed for same reason as it was needed in prepare_vmcs02 */
10173        vmx->host_rsp = 0;
10174
10175        /* Unpin physical memory we referred to in vmcs02 */
10176        if (vmx->nested.apic_access_page) {
10177                nested_release_page(vmx->nested.apic_access_page);
10178                vmx->nested.apic_access_page = NULL;
10179        }
10180        if (vmx->nested.virtual_apic_page) {
10181                nested_release_page(vmx->nested.virtual_apic_page);
10182                vmx->nested.virtual_apic_page = NULL;
10183        }
10184        if (vmx->nested.pi_desc_page) {
10185                kunmap(vmx->nested.pi_desc_page);
10186                nested_release_page(vmx->nested.pi_desc_page);
10187                vmx->nested.pi_desc_page = NULL;
10188                vmx->nested.pi_desc = NULL;
10189        }
10190
10191        /*
10192         * We are now running in L2, mmu_notifier will force to reload the
10193         * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10194         */
10195        kvm_vcpu_reload_apic_access_page(vcpu);
10196
10197        /*
10198         * Exiting from L2 to L1, we're now back to L1 which thinks it just
10199         * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10200         * success or failure flag accordingly.
10201         */
10202        if (unlikely(vmx->fail)) {
10203                vmx->fail = 0;
10204                nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10205        } else
10206                nested_vmx_succeed(vcpu);
10207        if (enable_shadow_vmcs)
10208                vmx->nested.sync_shadow_vmcs = true;
10209
10210        /* in case we halted in L2 */
10211        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10212}
10213
10214/*
10215 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10216 */
10217static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10218{
10219        if (is_guest_mode(vcpu))
10220                nested_vmx_vmexit(vcpu, -1, 0, 0);
10221        free_nested(to_vmx(vcpu));
10222}
10223
10224/*
10225 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10226 * 23.7 "VM-entry failures during or after loading guest state" (this also
10227 * lists the acceptable exit-reason and exit-qualification parameters).
10228 * It should only be called before L2 actually succeeded to run, and when
10229 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10230 */
10231static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10232                        struct vmcs12 *vmcs12,
10233                        u32 reason, unsigned long qualification)
10234{
10235        load_vmcs12_host_state(vcpu, vmcs12);
10236        vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10237        vmcs12->exit_qualification = qualification;
10238        nested_vmx_succeed(vcpu);
10239        if (enable_shadow_vmcs)
10240                to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10241}
10242
10243static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10244                               struct x86_instruction_info *info,
10245                               enum x86_intercept_stage stage)
10246{
10247        return X86EMUL_CONTINUE;
10248}
10249
10250static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10251{
10252        if (ple_gap)
10253                shrink_ple_window(vcpu);
10254}
10255
10256static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10257                                     struct kvm_memory_slot *slot)
10258{
10259        kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10260        kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10261}
10262
10263static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10264                                       struct kvm_memory_slot *slot)
10265{
10266        kvm_mmu_slot_set_dirty(kvm, slot);
10267}
10268
10269static void vmx_flush_log_dirty(struct kvm *kvm)
10270{
10271        kvm_flush_pml_buffers(kvm);
10272}
10273
10274static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10275                                           struct kvm_memory_slot *memslot,
10276                                           gfn_t offset, unsigned long mask)
10277{
10278        kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10279}
10280
10281static struct kvm_x86_ops vmx_x86_ops = {
10282        .cpu_has_kvm_support = cpu_has_kvm_support,
10283        .disabled_by_bios = vmx_disabled_by_bios,
10284        .hardware_setup = hardware_setup,
10285        .hardware_unsetup = hardware_unsetup,
10286        .check_processor_compatibility = vmx_check_processor_compat,
10287        .hardware_enable = hardware_enable,
10288        .hardware_disable = hardware_disable,
10289        .cpu_has_accelerated_tpr = report_flexpriority,
10290        .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
10291
10292        .vcpu_create = vmx_create_vcpu,
10293        .vcpu_free = vmx_free_vcpu,
10294        .vcpu_reset = vmx_vcpu_reset,
10295
10296        .prepare_guest_switch = vmx_save_host_state,
10297        .vcpu_load = vmx_vcpu_load,
10298        .vcpu_put = vmx_vcpu_put,
10299
10300        .update_db_bp_intercept = update_exception_bitmap,
10301        .get_msr = vmx_get_msr,
10302        .set_msr = vmx_set_msr,
10303        .get_segment_base = vmx_get_segment_base,
10304        .get_segment = vmx_get_segment,
10305        .set_segment = vmx_set_segment,
10306        .get_cpl = vmx_get_cpl,
10307        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
10308        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
10309        .decache_cr3 = vmx_decache_cr3,
10310        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
10311        .set_cr0 = vmx_set_cr0,
10312        .set_cr3 = vmx_set_cr3,
10313        .set_cr4 = vmx_set_cr4,
10314        .set_efer = vmx_set_efer,
10315        .get_idt = vmx_get_idt,
10316        .set_idt = vmx_set_idt,
10317        .get_gdt = vmx_get_gdt,
10318        .set_gdt = vmx_set_gdt,
10319        .get_dr6 = vmx_get_dr6,
10320        .set_dr6 = vmx_set_dr6,
10321        .set_dr7 = vmx_set_dr7,
10322        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
10323        .cache_reg = vmx_cache_reg,
10324        .get_rflags = vmx_get_rflags,
10325        .set_rflags = vmx_set_rflags,
10326        .fpu_activate = vmx_fpu_activate,
10327        .fpu_deactivate = vmx_fpu_deactivate,
10328
10329        .tlb_flush = vmx_flush_tlb,
10330
10331        .run = vmx_vcpu_run,
10332        .handle_exit = vmx_handle_exit,
10333        .skip_emulated_instruction = skip_emulated_instruction,
10334        .set_interrupt_shadow = vmx_set_interrupt_shadow,
10335        .get_interrupt_shadow = vmx_get_interrupt_shadow,
10336        .patch_hypercall = vmx_patch_hypercall,
10337        .set_irq = vmx_inject_irq,
10338        .set_nmi = vmx_inject_nmi,
10339        .queue_exception = vmx_queue_exception,
10340        .cancel_injection = vmx_cancel_injection,
10341        .interrupt_allowed = vmx_interrupt_allowed,
10342        .nmi_allowed = vmx_nmi_allowed,
10343        .get_nmi_mask = vmx_get_nmi_mask,
10344        .set_nmi_mask = vmx_set_nmi_mask,
10345        .enable_nmi_window = enable_nmi_window,
10346        .enable_irq_window = enable_irq_window,
10347        .update_cr8_intercept = update_cr8_intercept,
10348        .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
10349        .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
10350        .vm_has_apicv = vmx_vm_has_apicv,
10351        .load_eoi_exitmap = vmx_load_eoi_exitmap,
10352        .hwapic_irr_update = vmx_hwapic_irr_update,
10353        .hwapic_isr_update = vmx_hwapic_isr_update,
10354        .sync_pir_to_irr = vmx_sync_pir_to_irr,
10355        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
10356
10357        .set_tss_addr = vmx_set_tss_addr,
10358        .get_tdp_level = get_ept_level,
10359        .get_mt_mask = vmx_get_mt_mask,
10360
10361        .get_exit_info = vmx_get_exit_info,
10362
10363        .get_lpage_level = vmx_get_lpage_level,
10364
10365        .cpuid_update = vmx_cpuid_update,
10366
10367        .rdtscp_supported = vmx_rdtscp_supported,
10368        .invpcid_supported = vmx_invpcid_supported,
10369
10370        .set_supported_cpuid = vmx_set_supported_cpuid,
10371
10372        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
10373
10374        .set_tsc_khz = vmx_set_tsc_khz,
10375        .read_tsc_offset = vmx_read_tsc_offset,
10376        .write_tsc_offset = vmx_write_tsc_offset,
10377        .adjust_tsc_offset = vmx_adjust_tsc_offset,
10378        .compute_tsc_offset = vmx_compute_tsc_offset,
10379        .read_l1_tsc = vmx_read_l1_tsc,
10380
10381        .set_tdp_cr3 = vmx_set_cr3,
10382
10383        .check_intercept = vmx_check_intercept,
10384        .handle_external_intr = vmx_handle_external_intr,
10385        .mpx_supported = vmx_mpx_supported,
10386        .xsaves_supported = vmx_xsaves_supported,
10387
10388        .check_nested_events = vmx_check_nested_events,
10389
10390        .sched_in = vmx_sched_in,
10391
10392        .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
10393        .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
10394        .flush_log_dirty = vmx_flush_log_dirty,
10395        .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
10396
10397        .pmu_ops = &intel_pmu_ops,
10398};
10399
10400static int __init vmx_init(void)
10401{
10402        int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
10403                     __alignof__(struct vcpu_vmx), THIS_MODULE);
10404        if (r)
10405                return r;
10406
10407#ifdef CONFIG_KEXEC_CORE
10408        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
10409                           crash_vmclear_local_loaded_vmcss);
10410#endif
10411
10412        return 0;
10413}
10414
10415static void __exit vmx_exit(void)
10416{
10417#ifdef CONFIG_KEXEC_CORE
10418        RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
10419        synchronize_rcu();
10420#endif
10421
10422        kvm_exit();
10423}
10424
10425module_init(vmx_init)
10426module_exit(vmx_exit)
10427