linux/arch/x86/xen/time.c
<<
>>
Prefs
   1/*
   2 * Xen time implementation.
   3 *
   4 * This is implemented in terms of a clocksource driver which uses
   5 * the hypervisor clock as a nanosecond timebase, and a clockevent
   6 * driver which uses the hypervisor's timer mechanism.
   7 *
   8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
   9 */
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/clocksource.h>
  13#include <linux/clockchips.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/math64.h>
  16#include <linux/gfp.h>
  17#include <linux/slab.h>
  18#include <linux/pvclock_gtod.h>
  19
  20#include <asm/pvclock.h>
  21#include <asm/xen/hypervisor.h>
  22#include <asm/xen/hypercall.h>
  23
  24#include <xen/events.h>
  25#include <xen/features.h>
  26#include <xen/interface/xen.h>
  27#include <xen/interface/vcpu.h>
  28
  29#include "xen-ops.h"
  30
  31/* Xen may fire a timer up to this many ns early */
  32#define TIMER_SLOP      100000
  33#define NS_PER_TICK     (1000000000LL / HZ)
  34
  35/* runstate info updated by Xen */
  36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
  37
  38/* snapshots of runstate info */
  39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
  40
  41/* unused ns of stolen time */
  42static DEFINE_PER_CPU(u64, xen_residual_stolen);
  43
  44/* return an consistent snapshot of 64-bit time/counter value */
  45static u64 get64(const u64 *p)
  46{
  47        u64 ret;
  48
  49        if (BITS_PER_LONG < 64) {
  50                u32 *p32 = (u32 *)p;
  51                u32 h, l;
  52
  53                /*
  54                 * Read high then low, and then make sure high is
  55                 * still the same; this will only loop if low wraps
  56                 * and carries into high.
  57                 * XXX some clean way to make this endian-proof?
  58                 */
  59                do {
  60                        h = p32[1];
  61                        barrier();
  62                        l = p32[0];
  63                        barrier();
  64                } while (p32[1] != h);
  65
  66                ret = (((u64)h) << 32) | l;
  67        } else
  68                ret = *p;
  69
  70        return ret;
  71}
  72
  73/*
  74 * Runstate accounting
  75 */
  76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
  77{
  78        u64 state_time;
  79        struct vcpu_runstate_info *state;
  80
  81        BUG_ON(preemptible());
  82
  83        state = this_cpu_ptr(&xen_runstate);
  84
  85        /*
  86         * The runstate info is always updated by the hypervisor on
  87         * the current CPU, so there's no need to use anything
  88         * stronger than a compiler barrier when fetching it.
  89         */
  90        do {
  91                state_time = get64(&state->state_entry_time);
  92                barrier();
  93                *res = *state;
  94                barrier();
  95        } while (get64(&state->state_entry_time) != state_time);
  96}
  97
  98/* return true when a vcpu could run but has no real cpu to run on */
  99bool xen_vcpu_stolen(int vcpu)
 100{
 101        return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
 102}
 103
 104void xen_setup_runstate_info(int cpu)
 105{
 106        struct vcpu_register_runstate_memory_area area;
 107
 108        area.addr.v = &per_cpu(xen_runstate, cpu);
 109
 110        if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
 111                               cpu, &area))
 112                BUG();
 113}
 114
 115static void do_stolen_accounting(void)
 116{
 117        struct vcpu_runstate_info state;
 118        struct vcpu_runstate_info *snap;
 119        s64 runnable, offline, stolen;
 120        cputime_t ticks;
 121
 122        get_runstate_snapshot(&state);
 123
 124        WARN_ON(state.state != RUNSTATE_running);
 125
 126        snap = this_cpu_ptr(&xen_runstate_snapshot);
 127
 128        /* work out how much time the VCPU has not been runn*ing*  */
 129        runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
 130        offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
 131
 132        *snap = state;
 133
 134        /* Add the appropriate number of ticks of stolen time,
 135           including any left-overs from last time. */
 136        stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
 137
 138        if (stolen < 0)
 139                stolen = 0;
 140
 141        ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
 142        __this_cpu_write(xen_residual_stolen, stolen);
 143        account_steal_ticks(ticks);
 144}
 145
 146/* Get the TSC speed from Xen */
 147static unsigned long xen_tsc_khz(void)
 148{
 149        struct pvclock_vcpu_time_info *info =
 150                &HYPERVISOR_shared_info->vcpu_info[0].time;
 151
 152        return pvclock_tsc_khz(info);
 153}
 154
 155cycle_t xen_clocksource_read(void)
 156{
 157        struct pvclock_vcpu_time_info *src;
 158        cycle_t ret;
 159
 160        preempt_disable_notrace();
 161        src = &__this_cpu_read(xen_vcpu)->time;
 162        ret = pvclock_clocksource_read(src);
 163        preempt_enable_notrace();
 164        return ret;
 165}
 166
 167static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
 168{
 169        return xen_clocksource_read();
 170}
 171
 172static void xen_read_wallclock(struct timespec *ts)
 173{
 174        struct shared_info *s = HYPERVISOR_shared_info;
 175        struct pvclock_wall_clock *wall_clock = &(s->wc);
 176        struct pvclock_vcpu_time_info *vcpu_time;
 177
 178        vcpu_time = &get_cpu_var(xen_vcpu)->time;
 179        pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 180        put_cpu_var(xen_vcpu);
 181}
 182
 183static void xen_get_wallclock(struct timespec *now)
 184{
 185        xen_read_wallclock(now);
 186}
 187
 188static int xen_set_wallclock(const struct timespec *now)
 189{
 190        return -1;
 191}
 192
 193static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 194                                   unsigned long was_set, void *priv)
 195{
 196        /* Protected by the calling core code serialization */
 197        static struct timespec next_sync;
 198
 199        struct xen_platform_op op;
 200        struct timespec now;
 201
 202        now = __current_kernel_time();
 203
 204        /*
 205         * We only take the expensive HV call when the clock was set
 206         * or when the 11 minutes RTC synchronization time elapsed.
 207         */
 208        if (!was_set && timespec_compare(&now, &next_sync) < 0)
 209                return NOTIFY_OK;
 210
 211        op.cmd = XENPF_settime;
 212        op.u.settime.secs = now.tv_sec;
 213        op.u.settime.nsecs = now.tv_nsec;
 214        op.u.settime.system_time = xen_clocksource_read();
 215
 216        (void)HYPERVISOR_dom0_op(&op);
 217
 218        /*
 219         * Move the next drift compensation time 11 minutes
 220         * ahead. That's emulating the sync_cmos_clock() update for
 221         * the hardware RTC.
 222         */
 223        next_sync = now;
 224        next_sync.tv_sec += 11 * 60;
 225
 226        return NOTIFY_OK;
 227}
 228
 229static struct notifier_block xen_pvclock_gtod_notifier = {
 230        .notifier_call = xen_pvclock_gtod_notify,
 231};
 232
 233static struct clocksource xen_clocksource __read_mostly = {
 234        .name = "xen",
 235        .rating = 400,
 236        .read = xen_clocksource_get_cycles,
 237        .mask = ~0,
 238        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 239};
 240
 241/*
 242   Xen clockevent implementation
 243
 244   Xen has two clockevent implementations:
 245
 246   The old timer_op one works with all released versions of Xen prior
 247   to version 3.0.4.  This version of the hypervisor provides a
 248   single-shot timer with nanosecond resolution.  However, sharing the
 249   same event channel is a 100Hz tick which is delivered while the
 250   vcpu is running.  We don't care about or use this tick, but it will
 251   cause the core time code to think the timer fired too soon, and
 252   will end up resetting it each time.  It could be filtered, but
 253   doing so has complications when the ktime clocksource is not yet
 254   the xen clocksource (ie, at boot time).
 255
 256   The new vcpu_op-based timer interface allows the tick timer period
 257   to be changed or turned off.  The tick timer is not useful as a
 258   periodic timer because events are only delivered to running vcpus.
 259   The one-shot timer can report when a timeout is in the past, so
 260   set_next_event is capable of returning -ETIME when appropriate.
 261   This interface is used when available.
 262*/
 263
 264
 265/*
 266  Get a hypervisor absolute time.  In theory we could maintain an
 267  offset between the kernel's time and the hypervisor's time, and
 268  apply that to a kernel's absolute timeout.  Unfortunately the
 269  hypervisor and kernel times can drift even if the kernel is using
 270  the Xen clocksource, because ntp can warp the kernel's clocksource.
 271*/
 272static s64 get_abs_timeout(unsigned long delta)
 273{
 274        return xen_clocksource_read() + delta;
 275}
 276
 277static int xen_timerop_shutdown(struct clock_event_device *evt)
 278{
 279        /* cancel timeout */
 280        HYPERVISOR_set_timer_op(0);
 281
 282        return 0;
 283}
 284
 285static int xen_timerop_set_next_event(unsigned long delta,
 286                                      struct clock_event_device *evt)
 287{
 288        WARN_ON(!clockevent_state_oneshot(evt));
 289
 290        if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
 291                BUG();
 292
 293        /* We may have missed the deadline, but there's no real way of
 294           knowing for sure.  If the event was in the past, then we'll
 295           get an immediate interrupt. */
 296
 297        return 0;
 298}
 299
 300static const struct clock_event_device xen_timerop_clockevent = {
 301        .name                   = "xen",
 302        .features               = CLOCK_EVT_FEAT_ONESHOT,
 303
 304        .max_delta_ns           = 0xffffffff,
 305        .min_delta_ns           = TIMER_SLOP,
 306
 307        .mult                   = 1,
 308        .shift                  = 0,
 309        .rating                 = 500,
 310
 311        .set_state_shutdown     = xen_timerop_shutdown,
 312        .set_next_event         = xen_timerop_set_next_event,
 313};
 314
 315static int xen_vcpuop_shutdown(struct clock_event_device *evt)
 316{
 317        int cpu = smp_processor_id();
 318
 319        if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
 320            HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 321                BUG();
 322
 323        return 0;
 324}
 325
 326static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
 327{
 328        int cpu = smp_processor_id();
 329
 330        if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 331                BUG();
 332
 333        return 0;
 334}
 335
 336static int xen_vcpuop_set_next_event(unsigned long delta,
 337                                     struct clock_event_device *evt)
 338{
 339        int cpu = smp_processor_id();
 340        struct vcpu_set_singleshot_timer single;
 341        int ret;
 342
 343        WARN_ON(!clockevent_state_oneshot(evt));
 344
 345        single.timeout_abs_ns = get_abs_timeout(delta);
 346        single.flags = VCPU_SSHOTTMR_future;
 347
 348        ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
 349
 350        BUG_ON(ret != 0 && ret != -ETIME);
 351
 352        return ret;
 353}
 354
 355static const struct clock_event_device xen_vcpuop_clockevent = {
 356        .name = "xen",
 357        .features = CLOCK_EVT_FEAT_ONESHOT,
 358
 359        .max_delta_ns = 0xffffffff,
 360        .min_delta_ns = TIMER_SLOP,
 361
 362        .mult = 1,
 363        .shift = 0,
 364        .rating = 500,
 365
 366        .set_state_shutdown = xen_vcpuop_shutdown,
 367        .set_state_oneshot = xen_vcpuop_set_oneshot,
 368        .set_next_event = xen_vcpuop_set_next_event,
 369};
 370
 371static const struct clock_event_device *xen_clockevent =
 372        &xen_timerop_clockevent;
 373
 374struct xen_clock_event_device {
 375        struct clock_event_device evt;
 376        char name[16];
 377};
 378static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
 379
 380static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
 381{
 382        struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
 383        irqreturn_t ret;
 384
 385        ret = IRQ_NONE;
 386        if (evt->event_handler) {
 387                evt->event_handler(evt);
 388                ret = IRQ_HANDLED;
 389        }
 390
 391        do_stolen_accounting();
 392
 393        return ret;
 394}
 395
 396void xen_teardown_timer(int cpu)
 397{
 398        struct clock_event_device *evt;
 399        BUG_ON(cpu == 0);
 400        evt = &per_cpu(xen_clock_events, cpu).evt;
 401
 402        if (evt->irq >= 0) {
 403                unbind_from_irqhandler(evt->irq, NULL);
 404                evt->irq = -1;
 405        }
 406}
 407
 408void xen_setup_timer(int cpu)
 409{
 410        struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
 411        struct clock_event_device *evt = &xevt->evt;
 412        int irq;
 413
 414        WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
 415        if (evt->irq >= 0)
 416                xen_teardown_timer(cpu);
 417
 418        printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
 419
 420        snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
 421
 422        irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
 423                                      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
 424                                      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
 425                                      xevt->name, NULL);
 426        (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
 427
 428        memcpy(evt, xen_clockevent, sizeof(*evt));
 429
 430        evt->cpumask = cpumask_of(cpu);
 431        evt->irq = irq;
 432}
 433
 434
 435void xen_setup_cpu_clockevents(void)
 436{
 437        clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
 438}
 439
 440void xen_timer_resume(void)
 441{
 442        int cpu;
 443
 444        pvclock_resume();
 445
 446        if (xen_clockevent != &xen_vcpuop_clockevent)
 447                return;
 448
 449        for_each_online_cpu(cpu) {
 450                if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
 451                        BUG();
 452        }
 453}
 454
 455static const struct pv_time_ops xen_time_ops __initconst = {
 456        .sched_clock = xen_clocksource_read,
 457};
 458
 459static void __init xen_time_init(void)
 460{
 461        int cpu = smp_processor_id();
 462        struct timespec tp;
 463
 464        /* As Dom0 is never moved, no penalty on using TSC there */
 465        if (xen_initial_domain())
 466                xen_clocksource.rating = 275;
 467
 468        clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
 469
 470        if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
 471                /* Successfully turned off 100Hz tick, so we have the
 472                   vcpuop-based timer interface */
 473                printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
 474                xen_clockevent = &xen_vcpuop_clockevent;
 475        }
 476
 477        /* Set initial system time with full resolution */
 478        xen_read_wallclock(&tp);
 479        do_settimeofday(&tp);
 480
 481        setup_force_cpu_cap(X86_FEATURE_TSC);
 482
 483        xen_setup_runstate_info(cpu);
 484        xen_setup_timer(cpu);
 485        xen_setup_cpu_clockevents();
 486
 487        if (xen_initial_domain())
 488                pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
 489}
 490
 491void __init xen_init_time_ops(void)
 492{
 493        pv_time_ops = xen_time_ops;
 494
 495        x86_init.timers.timer_init = xen_time_init;
 496        x86_init.timers.setup_percpu_clockev = x86_init_noop;
 497        x86_cpuinit.setup_percpu_clockev = x86_init_noop;
 498
 499        x86_platform.calibrate_tsc = xen_tsc_khz;
 500        x86_platform.get_wallclock = xen_get_wallclock;
 501        /* Dom0 uses the native method to set the hardware RTC. */
 502        if (!xen_initial_domain())
 503                x86_platform.set_wallclock = xen_set_wallclock;
 504}
 505
 506#ifdef CONFIG_XEN_PVHVM
 507static void xen_hvm_setup_cpu_clockevents(void)
 508{
 509        int cpu = smp_processor_id();
 510        xen_setup_runstate_info(cpu);
 511        /*
 512         * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
 513         * doing it xen_hvm_cpu_notify (which gets called by smp_init during
 514         * early bootup and also during CPU hotplug events).
 515         */
 516        xen_setup_cpu_clockevents();
 517}
 518
 519void __init xen_hvm_init_time_ops(void)
 520{
 521        /* vector callback is needed otherwise we cannot receive interrupts
 522         * on cpu > 0 and at this point we don't know how many cpus are
 523         * available */
 524        if (!xen_have_vector_callback)
 525                return;
 526        if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
 527                printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
 528                                "disable pv timer\n");
 529                return;
 530        }
 531
 532        pv_time_ops = xen_time_ops;
 533        x86_init.timers.setup_percpu_clockev = xen_time_init;
 534        x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
 535
 536        x86_platform.calibrate_tsc = xen_tsc_khz;
 537        x86_platform.get_wallclock = xen_get_wallclock;
 538        x86_platform.set_wallclock = xen_set_wallclock;
 539}
 540#endif
 541