linux/drivers/char/xillybus/xillybus_core.c
<<
>>
Prefs
   1/*
   2 * linux/drivers/misc/xillybus_core.c
   3 *
   4 * Copyright 2011 Xillybus Ltd, http://xillybus.com
   5 *
   6 * Driver for the Xillybus FPGA/host framework.
   7 *
   8 * This driver interfaces with a special IP core in an FPGA, setting up
   9 * a pipe between a hardware FIFO in the programmable logic and a device
  10 * file in the host. The number of such pipes and their attributes are
  11 * set up on the logic. This driver detects these automatically and
  12 * creates the device files accordingly.
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the smems of the GNU General Public License as published by
  16 * the Free Software Foundation; version 2 of the License.
  17 */
  18
  19#include <linux/list.h>
  20#include <linux/device.h>
  21#include <linux/module.h>
  22#include <linux/io.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/interrupt.h>
  25#include <linux/sched.h>
  26#include <linux/fs.h>
  27#include <linux/cdev.h>
  28#include <linux/spinlock.h>
  29#include <linux/mutex.h>
  30#include <linux/crc32.h>
  31#include <linux/poll.h>
  32#include <linux/delay.h>
  33#include <linux/slab.h>
  34#include <linux/workqueue.h>
  35#include "xillybus.h"
  36
  37MODULE_DESCRIPTION("Xillybus core functions");
  38MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
  39MODULE_VERSION("1.07");
  40MODULE_ALIAS("xillybus_core");
  41MODULE_LICENSE("GPL v2");
  42
  43/* General timeout is 100 ms, rx timeout is 10 ms */
  44#define XILLY_RX_TIMEOUT (10*HZ/1000)
  45#define XILLY_TIMEOUT (100*HZ/1000)
  46
  47#define fpga_msg_ctrl_reg              0x0008
  48#define fpga_dma_control_reg           0x0020
  49#define fpga_dma_bufno_reg             0x0024
  50#define fpga_dma_bufaddr_lowaddr_reg   0x0028
  51#define fpga_dma_bufaddr_highaddr_reg  0x002c
  52#define fpga_buf_ctrl_reg              0x0030
  53#define fpga_buf_offset_reg            0x0034
  54#define fpga_endian_reg                0x0040
  55
  56#define XILLYMSG_OPCODE_RELEASEBUF 1
  57#define XILLYMSG_OPCODE_QUIESCEACK 2
  58#define XILLYMSG_OPCODE_FIFOEOF 3
  59#define XILLYMSG_OPCODE_FATAL_ERROR 4
  60#define XILLYMSG_OPCODE_NONEMPTY 5
  61
  62static const char xillyname[] = "xillybus";
  63
  64static struct class *xillybus_class;
  65
  66/*
  67 * ep_list_lock is the last lock to be taken; No other lock requests are
  68 * allowed while holding it. It merely protects list_of_endpoints, and not
  69 * the endpoints listed in it.
  70 */
  71
  72static LIST_HEAD(list_of_endpoints);
  73static struct mutex ep_list_lock;
  74static struct workqueue_struct *xillybus_wq;
  75
  76/*
  77 * Locking scheme: Mutexes protect invocations of character device methods.
  78 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
  79 *
  80 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
  81 * buffers' end_offset fields against changes made by IRQ handler (and in
  82 * theory, other file request handlers, but the mutex handles that). Nothing
  83 * else.
  84 * They are held for short direct memory manipulations. Needless to say,
  85 * no mutex locking is allowed when a spinlock is held.
  86 *
  87 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
  88 *
  89 * register_mutex is endpoint-specific, and is held when non-atomic
  90 * register operations are performed. wr_mutex and rd_mutex may be
  91 * held when register_mutex is taken, but none of the spinlocks. Note that
  92 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
  93 * which are unrelated to buf_offset_reg, since they are harmless.
  94 *
  95 * Blocking on the wait queues is allowed with mutexes held, but not with
  96 * spinlocks.
  97 *
  98 * Only interruptible blocking is allowed on mutexes and wait queues.
  99 *
 100 * All in all, the locking order goes (with skips allowed, of course):
 101 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
 102 */
 103
 104static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
 105{
 106        int opcode;
 107        int msg_channel, msg_bufno, msg_data, msg_dir;
 108
 109        opcode = (buf[0] >> 24) & 0xff;
 110        msg_dir = buf[0] & 1;
 111        msg_channel = (buf[0] >> 1) & 0x7ff;
 112        msg_bufno = (buf[0] >> 12) & 0x3ff;
 113        msg_data = buf[1] & 0xfffffff;
 114
 115        dev_warn(endpoint->dev,
 116                 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
 117                 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
 118}
 119
 120/*
 121 * xillybus_isr assumes the interrupt is allocated exclusively to it,
 122 * which is the natural case MSI and several other hardware-oriented
 123 * interrupts. Sharing is not allowed.
 124 */
 125
 126irqreturn_t xillybus_isr(int irq, void *data)
 127{
 128        struct xilly_endpoint *ep = data;
 129        u32 *buf;
 130        unsigned int buf_size;
 131        int i;
 132        int opcode;
 133        unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
 134        struct xilly_channel *channel;
 135
 136        buf = ep->msgbuf_addr;
 137        buf_size = ep->msg_buf_size/sizeof(u32);
 138
 139        ep->ephw->hw_sync_sgl_for_cpu(ep,
 140                                      ep->msgbuf_dma_addr,
 141                                      ep->msg_buf_size,
 142                                      DMA_FROM_DEVICE);
 143
 144        for (i = 0; i < buf_size; i += 2) {
 145                if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
 146                        malformed_message(ep, &buf[i]);
 147                        dev_warn(ep->dev,
 148                                 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
 149                                 ((buf[i+1] >> 28) & 0xf),
 150                                 ep->msg_counter,
 151                                 i/2);
 152
 153                        if (++ep->failed_messages > 10) {
 154                                dev_err(ep->dev,
 155                                        "Lost sync with interrupt messages. Stopping.\n");
 156                        } else {
 157                                ep->ephw->hw_sync_sgl_for_device(
 158                                        ep,
 159                                        ep->msgbuf_dma_addr,
 160                                        ep->msg_buf_size,
 161                                        DMA_FROM_DEVICE);
 162
 163                                iowrite32(0x01,  /* Message NACK */
 164                                          ep->registers + fpga_msg_ctrl_reg);
 165                        }
 166                        return IRQ_HANDLED;
 167                } else if (buf[i] & (1 << 22)) /* Last message */
 168                        break;
 169        }
 170
 171        if (i >= buf_size) {
 172                dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
 173                return IRQ_HANDLED;
 174        }
 175
 176        buf_size = i + 2;
 177
 178        for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
 179                opcode = (buf[i] >> 24) & 0xff;
 180
 181                msg_dir = buf[i] & 1;
 182                msg_channel = (buf[i] >> 1) & 0x7ff;
 183                msg_bufno = (buf[i] >> 12) & 0x3ff;
 184                msg_data = buf[i+1] & 0xfffffff;
 185
 186                switch (opcode) {
 187                case XILLYMSG_OPCODE_RELEASEBUF:
 188                        if ((msg_channel > ep->num_channels) ||
 189                            (msg_channel == 0)) {
 190                                malformed_message(ep, &buf[i]);
 191                                break;
 192                        }
 193
 194                        channel = ep->channels[msg_channel];
 195
 196                        if (msg_dir) { /* Write channel */
 197                                if (msg_bufno >= channel->num_wr_buffers) {
 198                                        malformed_message(ep, &buf[i]);
 199                                        break;
 200                                }
 201                                spin_lock(&channel->wr_spinlock);
 202                                channel->wr_buffers[msg_bufno]->end_offset =
 203                                        msg_data;
 204                                channel->wr_fpga_buf_idx = msg_bufno;
 205                                channel->wr_empty = 0;
 206                                channel->wr_sleepy = 0;
 207                                spin_unlock(&channel->wr_spinlock);
 208
 209                                wake_up_interruptible(&channel->wr_wait);
 210
 211                        } else {
 212                                /* Read channel */
 213
 214                                if (msg_bufno >= channel->num_rd_buffers) {
 215                                        malformed_message(ep, &buf[i]);
 216                                        break;
 217                                }
 218
 219                                spin_lock(&channel->rd_spinlock);
 220                                channel->rd_fpga_buf_idx = msg_bufno;
 221                                channel->rd_full = 0;
 222                                spin_unlock(&channel->rd_spinlock);
 223
 224                                wake_up_interruptible(&channel->rd_wait);
 225                                if (!channel->rd_synchronous)
 226                                        queue_delayed_work(
 227                                                xillybus_wq,
 228                                                &channel->rd_workitem,
 229                                                XILLY_RX_TIMEOUT);
 230                        }
 231
 232                        break;
 233                case XILLYMSG_OPCODE_NONEMPTY:
 234                        if ((msg_channel > ep->num_channels) ||
 235                            (msg_channel == 0) || (!msg_dir) ||
 236                            !ep->channels[msg_channel]->wr_supports_nonempty) {
 237                                malformed_message(ep, &buf[i]);
 238                                break;
 239                        }
 240
 241                        channel = ep->channels[msg_channel];
 242
 243                        if (msg_bufno >= channel->num_wr_buffers) {
 244                                malformed_message(ep, &buf[i]);
 245                                break;
 246                        }
 247                        spin_lock(&channel->wr_spinlock);
 248                        if (msg_bufno == channel->wr_host_buf_idx)
 249                                channel->wr_ready = 1;
 250                        spin_unlock(&channel->wr_spinlock);
 251
 252                        wake_up_interruptible(&channel->wr_ready_wait);
 253
 254                        break;
 255                case XILLYMSG_OPCODE_QUIESCEACK:
 256                        ep->idtlen = msg_data;
 257                        wake_up_interruptible(&ep->ep_wait);
 258
 259                        break;
 260                case XILLYMSG_OPCODE_FIFOEOF:
 261                        if ((msg_channel > ep->num_channels) ||
 262                            (msg_channel == 0) || (!msg_dir) ||
 263                            !ep->channels[msg_channel]->num_wr_buffers) {
 264                                malformed_message(ep, &buf[i]);
 265                                break;
 266                        }
 267                        channel = ep->channels[msg_channel];
 268                        spin_lock(&channel->wr_spinlock);
 269                        channel->wr_eof = msg_bufno;
 270                        channel->wr_sleepy = 0;
 271
 272                        channel->wr_hangup = channel->wr_empty &&
 273                                (channel->wr_host_buf_idx == msg_bufno);
 274
 275                        spin_unlock(&channel->wr_spinlock);
 276
 277                        wake_up_interruptible(&channel->wr_wait);
 278
 279                        break;
 280                case XILLYMSG_OPCODE_FATAL_ERROR:
 281                        ep->fatal_error = 1;
 282                        wake_up_interruptible(&ep->ep_wait); /* For select() */
 283                        dev_err(ep->dev,
 284                                "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
 285                        break;
 286                default:
 287                        malformed_message(ep, &buf[i]);
 288                        break;
 289                }
 290        }
 291
 292        ep->ephw->hw_sync_sgl_for_device(ep,
 293                                         ep->msgbuf_dma_addr,
 294                                         ep->msg_buf_size,
 295                                         DMA_FROM_DEVICE);
 296
 297        ep->msg_counter = (ep->msg_counter + 1) & 0xf;
 298        ep->failed_messages = 0;
 299        iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
 300
 301        return IRQ_HANDLED;
 302}
 303EXPORT_SYMBOL(xillybus_isr);
 304
 305/*
 306 * A few trivial memory management functions.
 307 * NOTE: These functions are used only on probe and remove, and therefore
 308 * no locks are applied!
 309 */
 310
 311static void xillybus_autoflush(struct work_struct *work);
 312
 313struct xilly_alloc_state {
 314        void *salami;
 315        int left_of_salami;
 316        int nbuffer;
 317        enum dma_data_direction direction;
 318        u32 regdirection;
 319};
 320
 321static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
 322                                 struct xilly_alloc_state *s,
 323                                 struct xilly_buffer **buffers,
 324                                 int bufnum, int bytebufsize)
 325{
 326        int i, rc;
 327        dma_addr_t dma_addr;
 328        struct device *dev = ep->dev;
 329        struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
 330
 331        if (buffers) { /* Not the message buffer */
 332                this_buffer = devm_kcalloc(dev, bufnum,
 333                                           sizeof(struct xilly_buffer),
 334                                           GFP_KERNEL);
 335                if (!this_buffer)
 336                        return -ENOMEM;
 337        }
 338
 339        for (i = 0; i < bufnum; i++) {
 340                /*
 341                 * Buffers are expected in descending size order, so there
 342                 * is either enough space for this buffer or none at all.
 343                 */
 344
 345                if ((s->left_of_salami < bytebufsize) &&
 346                    (s->left_of_salami > 0)) {
 347                        dev_err(ep->dev,
 348                                "Corrupt buffer allocation in IDT. Aborting.\n");
 349                        return -ENODEV;
 350                }
 351
 352                if (s->left_of_salami == 0) {
 353                        int allocorder, allocsize;
 354
 355                        allocsize = PAGE_SIZE;
 356                        allocorder = 0;
 357                        while (bytebufsize > allocsize) {
 358                                allocsize *= 2;
 359                                allocorder++;
 360                        }
 361
 362                        s->salami = (void *) devm_get_free_pages(
 363                                dev,
 364                                GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
 365                                allocorder);
 366                        if (!s->salami)
 367                                return -ENOMEM;
 368
 369                        s->left_of_salami = allocsize;
 370                }
 371
 372                rc = ep->ephw->map_single(ep, s->salami,
 373                                          bytebufsize, s->direction,
 374                                          &dma_addr);
 375                if (rc)
 376                        return rc;
 377
 378                iowrite32((u32) (dma_addr & 0xffffffff),
 379                          ep->registers + fpga_dma_bufaddr_lowaddr_reg);
 380                iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
 381                          ep->registers + fpga_dma_bufaddr_highaddr_reg);
 382
 383                if (buffers) { /* Not the message buffer */
 384                        this_buffer->addr = s->salami;
 385                        this_buffer->dma_addr = dma_addr;
 386                        buffers[i] = this_buffer++;
 387
 388                        iowrite32(s->regdirection | s->nbuffer++,
 389                                  ep->registers + fpga_dma_bufno_reg);
 390                } else {
 391                        ep->msgbuf_addr = s->salami;
 392                        ep->msgbuf_dma_addr = dma_addr;
 393                        ep->msg_buf_size = bytebufsize;
 394
 395                        iowrite32(s->regdirection,
 396                                  ep->registers + fpga_dma_bufno_reg);
 397                }
 398
 399                s->left_of_salami -= bytebufsize;
 400                s->salami += bytebufsize;
 401        }
 402        return 0;
 403}
 404
 405static int xilly_setupchannels(struct xilly_endpoint *ep,
 406                               unsigned char *chandesc,
 407                               int entries)
 408{
 409        struct device *dev = ep->dev;
 410        int i, entry, rc;
 411        struct xilly_channel *channel;
 412        int channelnum, bufnum, bufsize, format, is_writebuf;
 413        int bytebufsize;
 414        int synchronous, allowpartial, exclusive_open, seekable;
 415        int supports_nonempty;
 416        int msg_buf_done = 0;
 417
 418        struct xilly_alloc_state rd_alloc = {
 419                .salami = NULL,
 420                .left_of_salami = 0,
 421                .nbuffer = 1,
 422                .direction = DMA_TO_DEVICE,
 423                .regdirection = 0,
 424        };
 425
 426        struct xilly_alloc_state wr_alloc = {
 427                .salami = NULL,
 428                .left_of_salami = 0,
 429                .nbuffer = 1,
 430                .direction = DMA_FROM_DEVICE,
 431                .regdirection = 0x80000000,
 432        };
 433
 434        channel = devm_kcalloc(dev, ep->num_channels,
 435                               sizeof(struct xilly_channel), GFP_KERNEL);
 436        if (!channel)
 437                return -ENOMEM;
 438
 439        ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
 440                                    sizeof(struct xilly_channel *),
 441                                    GFP_KERNEL);
 442        if (!ep->channels)
 443                return -ENOMEM;
 444
 445        ep->channels[0] = NULL; /* Channel 0 is message buf. */
 446
 447        /* Initialize all channels with defaults */
 448
 449        for (i = 1; i <= ep->num_channels; i++) {
 450                channel->wr_buffers = NULL;
 451                channel->rd_buffers = NULL;
 452                channel->num_wr_buffers = 0;
 453                channel->num_rd_buffers = 0;
 454                channel->wr_fpga_buf_idx = -1;
 455                channel->wr_host_buf_idx = 0;
 456                channel->wr_host_buf_pos = 0;
 457                channel->wr_empty = 1;
 458                channel->wr_ready = 0;
 459                channel->wr_sleepy = 1;
 460                channel->rd_fpga_buf_idx = 0;
 461                channel->rd_host_buf_idx = 0;
 462                channel->rd_host_buf_pos = 0;
 463                channel->rd_full = 0;
 464                channel->wr_ref_count = 0;
 465                channel->rd_ref_count = 0;
 466
 467                spin_lock_init(&channel->wr_spinlock);
 468                spin_lock_init(&channel->rd_spinlock);
 469                mutex_init(&channel->wr_mutex);
 470                mutex_init(&channel->rd_mutex);
 471                init_waitqueue_head(&channel->rd_wait);
 472                init_waitqueue_head(&channel->wr_wait);
 473                init_waitqueue_head(&channel->wr_ready_wait);
 474
 475                INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
 476
 477                channel->endpoint = ep;
 478                channel->chan_num = i;
 479
 480                channel->log2_element_size = 0;
 481
 482                ep->channels[i] = channel++;
 483        }
 484
 485        for (entry = 0; entry < entries; entry++, chandesc += 4) {
 486                struct xilly_buffer **buffers = NULL;
 487
 488                is_writebuf = chandesc[0] & 0x01;
 489                channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
 490                format = (chandesc[1] >> 4) & 0x03;
 491                allowpartial = (chandesc[1] >> 6) & 0x01;
 492                synchronous = (chandesc[1] >> 7) & 0x01;
 493                bufsize = 1 << (chandesc[2] & 0x1f);
 494                bufnum = 1 << (chandesc[3] & 0x0f);
 495                exclusive_open = (chandesc[2] >> 7) & 0x01;
 496                seekable = (chandesc[2] >> 6) & 0x01;
 497                supports_nonempty = (chandesc[2] >> 5) & 0x01;
 498
 499                if ((channelnum > ep->num_channels) ||
 500                    ((channelnum == 0) && !is_writebuf)) {
 501                        dev_err(ep->dev,
 502                                "IDT requests channel out of range. Aborting.\n");
 503                        return -ENODEV;
 504                }
 505
 506                channel = ep->channels[channelnum]; /* NULL for msg channel */
 507
 508                if (!is_writebuf || channelnum > 0) {
 509                        channel->log2_element_size = ((format > 2) ?
 510                                                      2 : format);
 511
 512                        bytebufsize = channel->rd_buf_size = bufsize *
 513                                (1 << channel->log2_element_size);
 514
 515                        buffers = devm_kcalloc(dev, bufnum,
 516                                               sizeof(struct xilly_buffer *),
 517                                               GFP_KERNEL);
 518                        if (!buffers)
 519                                return -ENOMEM;
 520                } else {
 521                        bytebufsize = bufsize << 2;
 522                }
 523
 524                if (!is_writebuf) {
 525                        channel->num_rd_buffers = bufnum;
 526                        channel->rd_allow_partial = allowpartial;
 527                        channel->rd_synchronous = synchronous;
 528                        channel->rd_exclusive_open = exclusive_open;
 529                        channel->seekable = seekable;
 530
 531                        channel->rd_buffers = buffers;
 532                        rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
 533                                                   bufnum, bytebufsize);
 534                } else if (channelnum > 0) {
 535                        channel->num_wr_buffers = bufnum;
 536
 537                        channel->seekable = seekable;
 538                        channel->wr_supports_nonempty = supports_nonempty;
 539
 540                        channel->wr_allow_partial = allowpartial;
 541                        channel->wr_synchronous = synchronous;
 542                        channel->wr_exclusive_open = exclusive_open;
 543
 544                        channel->wr_buffers = buffers;
 545                        rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
 546                                                   bufnum, bytebufsize);
 547                } else {
 548                        rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
 549                                                   bufnum, bytebufsize);
 550                        msg_buf_done++;
 551                }
 552
 553                if (rc)
 554                        return -ENOMEM;
 555        }
 556
 557        if (!msg_buf_done) {
 558                dev_err(ep->dev,
 559                        "Corrupt IDT: No message buffer. Aborting.\n");
 560                return -ENODEV;
 561        }
 562        return 0;
 563}
 564
 565static int xilly_scan_idt(struct xilly_endpoint *endpoint,
 566                          struct xilly_idt_handle *idt_handle)
 567{
 568        int count = 0;
 569        unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
 570        unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
 571        unsigned char *scan;
 572        int len;
 573
 574        scan = idt;
 575        idt_handle->idt = idt;
 576
 577        scan++; /* Skip version number */
 578
 579        while ((scan <= end_of_idt) && *scan) {
 580                while ((scan <= end_of_idt) && *scan++)
 581                        /* Do nothing, just scan thru string */;
 582                count++;
 583        }
 584
 585        scan++;
 586
 587        if (scan > end_of_idt) {
 588                dev_err(endpoint->dev,
 589                        "IDT device name list overflow. Aborting.\n");
 590                return -ENODEV;
 591        }
 592        idt_handle->chandesc = scan;
 593
 594        len = endpoint->idtlen - (3 + ((int) (scan - idt)));
 595
 596        if (len & 0x03) {
 597                dev_err(endpoint->dev,
 598                        "Corrupt IDT device name list. Aborting.\n");
 599                return -ENODEV;
 600        }
 601
 602        idt_handle->entries = len >> 2;
 603        endpoint->num_channels = count;
 604
 605        return 0;
 606}
 607
 608static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
 609{
 610        struct xilly_channel *channel;
 611        unsigned char *version;
 612        long t;
 613
 614        channel = endpoint->channels[1]; /* This should be generated ad-hoc */
 615
 616        channel->wr_sleepy = 1;
 617
 618        iowrite32(1 |
 619                  (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
 620                  endpoint->registers + fpga_buf_ctrl_reg);
 621
 622        t = wait_event_interruptible_timeout(channel->wr_wait,
 623                                             (!channel->wr_sleepy),
 624                                             XILLY_TIMEOUT);
 625
 626        if (t <= 0) {
 627                dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
 628
 629                if (endpoint->fatal_error)
 630                        return -EIO;
 631
 632                return -ENODEV;
 633        }
 634
 635        endpoint->ephw->hw_sync_sgl_for_cpu(
 636                channel->endpoint,
 637                channel->wr_buffers[0]->dma_addr,
 638                channel->wr_buf_size,
 639                DMA_FROM_DEVICE);
 640
 641        if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
 642                dev_err(endpoint->dev,
 643                        "IDT length mismatch (%d != %d). Aborting.\n",
 644                        channel->wr_buffers[0]->end_offset, endpoint->idtlen);
 645                return -ENODEV;
 646        }
 647
 648        if (crc32_le(~0, channel->wr_buffers[0]->addr,
 649                     endpoint->idtlen+1) != 0) {
 650                dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
 651                return -ENODEV;
 652        }
 653
 654        version = channel->wr_buffers[0]->addr;
 655
 656        /* Check version number. Accept anything below 0x82 for now. */
 657        if (*version > 0x82) {
 658                dev_err(endpoint->dev,
 659                        "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
 660                        *version);
 661                return -ENODEV;
 662        }
 663
 664        return 0;
 665}
 666
 667static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
 668                             size_t count, loff_t *f_pos)
 669{
 670        ssize_t rc;
 671        unsigned long flags;
 672        int bytes_done = 0;
 673        int no_time_left = 0;
 674        long deadline, left_to_sleep;
 675        struct xilly_channel *channel = filp->private_data;
 676
 677        int empty, reached_eof, exhausted, ready;
 678        /* Initializations are there only to silence warnings */
 679
 680        int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
 681        int waiting_bufidx;
 682
 683        if (channel->endpoint->fatal_error)
 684                return -EIO;
 685
 686        deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
 687
 688        rc = mutex_lock_interruptible(&channel->wr_mutex);
 689        if (rc)
 690                return rc;
 691
 692        while (1) { /* Note that we may drop mutex within this loop */
 693                int bytes_to_do = count - bytes_done;
 694
 695                spin_lock_irqsave(&channel->wr_spinlock, flags);
 696
 697                empty = channel->wr_empty;
 698                ready = !empty || channel->wr_ready;
 699
 700                if (!empty) {
 701                        bufidx = channel->wr_host_buf_idx;
 702                        bufpos = channel->wr_host_buf_pos;
 703                        howmany = ((channel->wr_buffers[bufidx]->end_offset
 704                                    + 1) << channel->log2_element_size)
 705                                - bufpos;
 706
 707                        /* Update wr_host_* to its post-operation state */
 708                        if (howmany > bytes_to_do) {
 709                                bufferdone = 0;
 710
 711                                howmany = bytes_to_do;
 712                                channel->wr_host_buf_pos += howmany;
 713                        } else {
 714                                bufferdone = 1;
 715
 716                                channel->wr_host_buf_pos = 0;
 717
 718                                if (bufidx == channel->wr_fpga_buf_idx) {
 719                                        channel->wr_empty = 1;
 720                                        channel->wr_sleepy = 1;
 721                                        channel->wr_ready = 0;
 722                                }
 723
 724                                if (bufidx >= (channel->num_wr_buffers - 1))
 725                                        channel->wr_host_buf_idx = 0;
 726                                else
 727                                        channel->wr_host_buf_idx++;
 728                        }
 729                }
 730
 731                /*
 732                 * Marking our situation after the possible changes above,
 733                 * for use after releasing the spinlock.
 734                 *
 735                 * empty = empty before change
 736                 * exhasted = empty after possible change
 737                 */
 738
 739                reached_eof = channel->wr_empty &&
 740                        (channel->wr_host_buf_idx == channel->wr_eof);
 741                channel->wr_hangup = reached_eof;
 742                exhausted = channel->wr_empty;
 743                waiting_bufidx = channel->wr_host_buf_idx;
 744
 745                spin_unlock_irqrestore(&channel->wr_spinlock, flags);
 746
 747                if (!empty) { /* Go on, now without the spinlock */
 748
 749                        if (bufpos == 0) /* Position zero means it's virgin */
 750                                channel->endpoint->ephw->hw_sync_sgl_for_cpu(
 751                                        channel->endpoint,
 752                                        channel->wr_buffers[bufidx]->dma_addr,
 753                                        channel->wr_buf_size,
 754                                        DMA_FROM_DEVICE);
 755
 756                        if (copy_to_user(
 757                                    userbuf,
 758                                    channel->wr_buffers[bufidx]->addr
 759                                    + bufpos, howmany))
 760                                rc = -EFAULT;
 761
 762                        userbuf += howmany;
 763                        bytes_done += howmany;
 764
 765                        if (bufferdone) {
 766                                channel->endpoint->ephw->hw_sync_sgl_for_device(
 767                                        channel->endpoint,
 768                                        channel->wr_buffers[bufidx]->dma_addr,
 769                                        channel->wr_buf_size,
 770                                        DMA_FROM_DEVICE);
 771
 772                                /*
 773                                 * Tell FPGA the buffer is done with. It's an
 774                                 * atomic operation to the FPGA, so what
 775                                 * happens with other channels doesn't matter,
 776                                 * and the certain channel is protected with
 777                                 * the channel-specific mutex.
 778                                 */
 779
 780                                iowrite32(1 | (channel->chan_num << 1) |
 781                                          (bufidx << 12),
 782                                          channel->endpoint->registers +
 783                                          fpga_buf_ctrl_reg);
 784                        }
 785
 786                        if (rc) {
 787                                mutex_unlock(&channel->wr_mutex);
 788                                return rc;
 789                        }
 790                }
 791
 792                /* This includes a zero-count return = EOF */
 793                if ((bytes_done >= count) || reached_eof)
 794                        break;
 795
 796                if (!exhausted)
 797                        continue; /* More in RAM buffer(s)? Just go on. */
 798
 799                if ((bytes_done > 0) &&
 800                    (no_time_left ||
 801                     (channel->wr_synchronous && channel->wr_allow_partial)))
 802                        break;
 803
 804                /*
 805                 * Nonblocking read: The "ready" flag tells us that the FPGA
 806                 * has data to send. In non-blocking mode, if it isn't on,
 807                 * just return. But if there is, we jump directly to the point
 808                 * where we ask for the FPGA to send all it has, and wait
 809                 * until that data arrives. So in a sense, we *do* block in
 810                 * nonblocking mode, but only for a very short time.
 811                 */
 812
 813                if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
 814                        if (bytes_done > 0)
 815                                break;
 816
 817                        if (ready)
 818                                goto desperate;
 819
 820                        rc = -EAGAIN;
 821                        break;
 822                }
 823
 824                if (!no_time_left || (bytes_done > 0)) {
 825                        /*
 826                         * Note that in case of an element-misaligned read
 827                         * request, offsetlimit will include the last element,
 828                         * which will be partially read from.
 829                         */
 830                        int offsetlimit = ((count - bytes_done) - 1) >>
 831                                channel->log2_element_size;
 832                        int buf_elements = channel->wr_buf_size >>
 833                                channel->log2_element_size;
 834
 835                        /*
 836                         * In synchronous mode, always send an offset limit.
 837                         * Just don't send a value too big.
 838                         */
 839
 840                        if (channel->wr_synchronous) {
 841                                /* Don't request more than one buffer */
 842                                if (channel->wr_allow_partial &&
 843                                    (offsetlimit >= buf_elements))
 844                                        offsetlimit = buf_elements - 1;
 845
 846                                /* Don't request more than all buffers */
 847                                if (!channel->wr_allow_partial &&
 848                                    (offsetlimit >=
 849                                     (buf_elements * channel->num_wr_buffers)))
 850                                        offsetlimit = buf_elements *
 851                                                channel->num_wr_buffers - 1;
 852                        }
 853
 854                        /*
 855                         * In asynchronous mode, force early flush of a buffer
 856                         * only if that will allow returning a full count. The
 857                         * "offsetlimit < ( ... )" rather than "<=" excludes
 858                         * requesting a full buffer, which would obviously
 859                         * cause a buffer transmission anyhow
 860                         */
 861
 862                        if (channel->wr_synchronous ||
 863                            (offsetlimit < (buf_elements - 1))) {
 864                                mutex_lock(&channel->endpoint->register_mutex);
 865
 866                                iowrite32(offsetlimit,
 867                                          channel->endpoint->registers +
 868                                          fpga_buf_offset_reg);
 869
 870                                iowrite32(1 | (channel->chan_num << 1) |
 871                                          (2 << 24) |  /* 2 = offset limit */
 872                                          (waiting_bufidx << 12),
 873                                          channel->endpoint->registers +
 874                                          fpga_buf_ctrl_reg);
 875
 876                                mutex_unlock(&channel->endpoint->
 877                                             register_mutex);
 878                        }
 879                }
 880
 881                /*
 882                 * If partial completion is disallowed, there is no point in
 883                 * timeout sleeping. Neither if no_time_left is set and
 884                 * there's no data.
 885                 */
 886
 887                if (!channel->wr_allow_partial ||
 888                    (no_time_left && (bytes_done == 0))) {
 889                        /*
 890                         * This do-loop will run more than once if another
 891                         * thread reasserted wr_sleepy before we got the mutex
 892                         * back, so we try again.
 893                         */
 894
 895                        do {
 896                                mutex_unlock(&channel->wr_mutex);
 897
 898                                if (wait_event_interruptible(
 899                                            channel->wr_wait,
 900                                            (!channel->wr_sleepy)))
 901                                        goto interrupted;
 902
 903                                if (mutex_lock_interruptible(
 904                                            &channel->wr_mutex))
 905                                        goto interrupted;
 906                        } while (channel->wr_sleepy);
 907
 908                        continue;
 909
 910interrupted: /* Mutex is not held if got here */
 911                        if (channel->endpoint->fatal_error)
 912                                return -EIO;
 913                        if (bytes_done)
 914                                return bytes_done;
 915                        if (filp->f_flags & O_NONBLOCK)
 916                                return -EAGAIN; /* Don't admit snoozing */
 917                        return -EINTR;
 918                }
 919
 920                left_to_sleep = deadline - ((long) jiffies);
 921
 922                /*
 923                 * If our time is out, skip the waiting. We may miss wr_sleepy
 924                 * being deasserted but hey, almost missing the train is like
 925                 * missing it.
 926                 */
 927
 928                if (left_to_sleep > 0) {
 929                        left_to_sleep =
 930                                wait_event_interruptible_timeout(
 931                                        channel->wr_wait,
 932                                        (!channel->wr_sleepy),
 933                                        left_to_sleep);
 934
 935                        if (left_to_sleep > 0) /* wr_sleepy deasserted */
 936                                continue;
 937
 938                        if (left_to_sleep < 0) { /* Interrupt */
 939                                mutex_unlock(&channel->wr_mutex);
 940                                if (channel->endpoint->fatal_error)
 941                                        return -EIO;
 942                                if (bytes_done)
 943                                        return bytes_done;
 944                                return -EINTR;
 945                        }
 946                }
 947
 948desperate:
 949                no_time_left = 1; /* We're out of sleeping time. Desperate! */
 950
 951                if (bytes_done == 0) {
 952                        /*
 953                         * Reaching here means that we allow partial return,
 954                         * that we've run out of time, and that we have
 955                         * nothing to return.
 956                         * So tell the FPGA to send anything it has or gets.
 957                         */
 958
 959                        iowrite32(1 | (channel->chan_num << 1) |
 960                                  (3 << 24) |  /* Opcode 3, flush it all! */
 961                                  (waiting_bufidx << 12),
 962                                  channel->endpoint->registers +
 963                                  fpga_buf_ctrl_reg);
 964                }
 965
 966                /*
 967                 * Reaching here means that we *do* have data in the buffer,
 968                 * but the "partial" flag disallows returning less than
 969                 * required. And we don't have as much. So loop again,
 970                 * which is likely to end up blocking indefinitely until
 971                 * enough data has arrived.
 972                 */
 973        }
 974
 975        mutex_unlock(&channel->wr_mutex);
 976
 977        if (channel->endpoint->fatal_error)
 978                return -EIO;
 979
 980        if (rc)
 981                return rc;
 982
 983        return bytes_done;
 984}
 985
 986/*
 987 * The timeout argument takes values as follows:
 988 *  >0 : Flush with timeout
 989 * ==0 : Flush, and wait idefinitely for the flush to complete
 990 *  <0 : Autoflush: Flush only if there's a single buffer occupied
 991 */
 992
 993static int xillybus_myflush(struct xilly_channel *channel, long timeout)
 994{
 995        int rc;
 996        unsigned long flags;
 997
 998        int end_offset_plus1;
 999        int bufidx, bufidx_minus1;
1000        int i;
1001        int empty;
1002        int new_rd_host_buf_pos;
1003
1004        if (channel->endpoint->fatal_error)
1005                return -EIO;
1006        rc = mutex_lock_interruptible(&channel->rd_mutex);
1007        if (rc)
1008                return rc;
1009
1010        /*
1011         * Don't flush a closed channel. This can happen when the work queued
1012         * autoflush thread fires off after the file has closed. This is not
1013         * an error, just something to dismiss.
1014         */
1015
1016        if (!channel->rd_ref_count)
1017                goto done;
1018
1019        bufidx = channel->rd_host_buf_idx;
1020
1021        bufidx_minus1 = (bufidx == 0) ?
1022                channel->num_rd_buffers - 1 :
1023                bufidx - 1;
1024
1025        end_offset_plus1 = channel->rd_host_buf_pos >>
1026                channel->log2_element_size;
1027
1028        new_rd_host_buf_pos = channel->rd_host_buf_pos -
1029                (end_offset_plus1 << channel->log2_element_size);
1030
1031        /* Submit the current buffer if it's nonempty */
1032        if (end_offset_plus1) {
1033                unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1034                        (end_offset_plus1 << channel->log2_element_size);
1035
1036                /* Copy  unflushed data, so we can put it in next buffer */
1037                for (i = 0; i < new_rd_host_buf_pos; i++)
1038                        channel->rd_leftovers[i] = *tail++;
1039
1040                spin_lock_irqsave(&channel->rd_spinlock, flags);
1041
1042                /* Autoflush only if a single buffer is occupied */
1043
1044                if ((timeout < 0) &&
1045                    (channel->rd_full ||
1046                     (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1047                        spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1048                        /*
1049                         * A new work item may be queued by the ISR exactly
1050                         * now, since the execution of a work item allows the
1051                         * queuing of a new one while it's running.
1052                         */
1053                        goto done;
1054                }
1055
1056                /* The 4th element is never needed for data, so it's a flag */
1057                channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1058
1059                /* Set up rd_full to reflect a certain moment's state */
1060
1061                if (bufidx == channel->rd_fpga_buf_idx)
1062                        channel->rd_full = 1;
1063                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1064
1065                if (bufidx >= (channel->num_rd_buffers - 1))
1066                        channel->rd_host_buf_idx = 0;
1067                else
1068                        channel->rd_host_buf_idx++;
1069
1070                channel->endpoint->ephw->hw_sync_sgl_for_device(
1071                        channel->endpoint,
1072                        channel->rd_buffers[bufidx]->dma_addr,
1073                        channel->rd_buf_size,
1074                        DMA_TO_DEVICE);
1075
1076                mutex_lock(&channel->endpoint->register_mutex);
1077
1078                iowrite32(end_offset_plus1 - 1,
1079                          channel->endpoint->registers + fpga_buf_offset_reg);
1080
1081                iowrite32((channel->chan_num << 1) | /* Channel ID */
1082                          (2 << 24) |  /* Opcode 2, submit buffer */
1083                          (bufidx << 12),
1084                          channel->endpoint->registers + fpga_buf_ctrl_reg);
1085
1086                mutex_unlock(&channel->endpoint->register_mutex);
1087        } else if (bufidx == 0) {
1088                bufidx = channel->num_rd_buffers - 1;
1089        } else {
1090                bufidx--;
1091        }
1092
1093        channel->rd_host_buf_pos = new_rd_host_buf_pos;
1094
1095        if (timeout < 0)
1096                goto done; /* Autoflush */
1097
1098        /*
1099         * bufidx is now the last buffer written to (or equal to
1100         * rd_fpga_buf_idx if buffer was never written to), and
1101         * channel->rd_host_buf_idx the one after it.
1102         *
1103         * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1104         */
1105
1106        while (1) { /* Loop waiting for draining of buffers */
1107                spin_lock_irqsave(&channel->rd_spinlock, flags);
1108
1109                if (bufidx != channel->rd_fpga_buf_idx)
1110                        channel->rd_full = 1; /*
1111                                               * Not really full,
1112                                               * but needs waiting.
1113                                               */
1114
1115                empty = !channel->rd_full;
1116
1117                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1118
1119                if (empty)
1120                        break;
1121
1122                /*
1123                 * Indefinite sleep with mutex taken. With data waiting for
1124                 * flushing user should not be surprised if open() for write
1125                 * sleeps.
1126                 */
1127                if (timeout == 0)
1128                        wait_event_interruptible(channel->rd_wait,
1129                                                 (!channel->rd_full));
1130
1131                else if (wait_event_interruptible_timeout(
1132                                 channel->rd_wait,
1133                                 (!channel->rd_full),
1134                                 timeout) == 0) {
1135                        dev_warn(channel->endpoint->dev,
1136                                 "Timed out while flushing. Output data may be lost.\n");
1137
1138                        rc = -ETIMEDOUT;
1139                        break;
1140                }
1141
1142                if (channel->rd_full) {
1143                        rc = -EINTR;
1144                        break;
1145                }
1146        }
1147
1148done:
1149        mutex_unlock(&channel->rd_mutex);
1150
1151        if (channel->endpoint->fatal_error)
1152                return -EIO;
1153
1154        return rc;
1155}
1156
1157static int xillybus_flush(struct file *filp, fl_owner_t id)
1158{
1159        if (!(filp->f_mode & FMODE_WRITE))
1160                return 0;
1161
1162        return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1163}
1164
1165static void xillybus_autoflush(struct work_struct *work)
1166{
1167        struct delayed_work *workitem = container_of(
1168                work, struct delayed_work, work);
1169        struct xilly_channel *channel = container_of(
1170                workitem, struct xilly_channel, rd_workitem);
1171        int rc;
1172
1173        rc = xillybus_myflush(channel, -1);
1174        if (rc == -EINTR)
1175                dev_warn(channel->endpoint->dev,
1176                         "Autoflush failed because work queue thread got a signal.\n");
1177        else if (rc)
1178                dev_err(channel->endpoint->dev,
1179                        "Autoflush failed under weird circumstances.\n");
1180}
1181
1182static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1183                              size_t count, loff_t *f_pos)
1184{
1185        ssize_t rc;
1186        unsigned long flags;
1187        int bytes_done = 0;
1188        struct xilly_channel *channel = filp->private_data;
1189
1190        int full, exhausted;
1191        /* Initializations are there only to silence warnings */
1192
1193        int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1194        int end_offset_plus1 = 0;
1195
1196        if (channel->endpoint->fatal_error)
1197                return -EIO;
1198
1199        rc = mutex_lock_interruptible(&channel->rd_mutex);
1200        if (rc)
1201                return rc;
1202
1203        while (1) {
1204                int bytes_to_do = count - bytes_done;
1205
1206                spin_lock_irqsave(&channel->rd_spinlock, flags);
1207
1208                full = channel->rd_full;
1209
1210                if (!full) {
1211                        bufidx = channel->rd_host_buf_idx;
1212                        bufpos = channel->rd_host_buf_pos;
1213                        howmany = channel->rd_buf_size - bufpos;
1214
1215                        /*
1216                         * Update rd_host_* to its state after this operation.
1217                         * count=0 means committing the buffer immediately,
1218                         * which is like flushing, but not necessarily block.
1219                         */
1220
1221                        if ((howmany > bytes_to_do) &&
1222                            (count ||
1223                             ((bufpos >> channel->log2_element_size) == 0))) {
1224                                bufferdone = 0;
1225
1226                                howmany = bytes_to_do;
1227                                channel->rd_host_buf_pos += howmany;
1228                        } else {
1229                                bufferdone = 1;
1230
1231                                if (count) {
1232                                        end_offset_plus1 =
1233                                                channel->rd_buf_size >>
1234                                                channel->log2_element_size;
1235                                        channel->rd_host_buf_pos = 0;
1236                                } else {
1237                                        unsigned char *tail;
1238                                        int i;
1239
1240                                        howmany = 0;
1241
1242                                        end_offset_plus1 = bufpos >>
1243                                                channel->log2_element_size;
1244
1245                                        channel->rd_host_buf_pos -=
1246                                                end_offset_plus1 <<
1247                                                channel->log2_element_size;
1248
1249                                        tail = channel->
1250                                                rd_buffers[bufidx]->addr +
1251                                                (end_offset_plus1 <<
1252                                                 channel->log2_element_size);
1253
1254                                        for (i = 0;
1255                                             i < channel->rd_host_buf_pos;
1256                                             i++)
1257                                                channel->rd_leftovers[i] =
1258                                                        *tail++;
1259                                }
1260
1261                                if (bufidx == channel->rd_fpga_buf_idx)
1262                                        channel->rd_full = 1;
1263
1264                                if (bufidx >= (channel->num_rd_buffers - 1))
1265                                        channel->rd_host_buf_idx = 0;
1266                                else
1267                                        channel->rd_host_buf_idx++;
1268                        }
1269                }
1270
1271                /*
1272                 * Marking our situation after the possible changes above,
1273                 * for use  after releasing the spinlock.
1274                 *
1275                 * full = full before change
1276                 * exhasted = full after possible change
1277                 */
1278
1279                exhausted = channel->rd_full;
1280
1281                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1282
1283                if (!full) { /* Go on, now without the spinlock */
1284                        unsigned char *head =
1285                                channel->rd_buffers[bufidx]->addr;
1286                        int i;
1287
1288                        if ((bufpos == 0) || /* Zero means it's virgin */
1289                            (channel->rd_leftovers[3] != 0)) {
1290                                channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1291                                        channel->endpoint,
1292                                        channel->rd_buffers[bufidx]->dma_addr,
1293                                        channel->rd_buf_size,
1294                                        DMA_TO_DEVICE);
1295
1296                                /* Virgin, but leftovers are due */
1297                                for (i = 0; i < bufpos; i++)
1298                                        *head++ = channel->rd_leftovers[i];
1299
1300                                channel->rd_leftovers[3] = 0; /* Clear flag */
1301                        }
1302
1303                        if (copy_from_user(
1304                                    channel->rd_buffers[bufidx]->addr + bufpos,
1305                                    userbuf, howmany))
1306                                rc = -EFAULT;
1307
1308                        userbuf += howmany;
1309                        bytes_done += howmany;
1310
1311                        if (bufferdone) {
1312                                channel->endpoint->ephw->hw_sync_sgl_for_device(
1313                                        channel->endpoint,
1314                                        channel->rd_buffers[bufidx]->dma_addr,
1315                                        channel->rd_buf_size,
1316                                        DMA_TO_DEVICE);
1317
1318                                mutex_lock(&channel->endpoint->register_mutex);
1319
1320                                iowrite32(end_offset_plus1 - 1,
1321                                          channel->endpoint->registers +
1322                                          fpga_buf_offset_reg);
1323
1324                                iowrite32((channel->chan_num << 1) |
1325                                          (2 << 24) |  /* 2 = submit buffer */
1326                                          (bufidx << 12),
1327                                          channel->endpoint->registers +
1328                                          fpga_buf_ctrl_reg);
1329
1330                                mutex_unlock(&channel->endpoint->
1331                                             register_mutex);
1332
1333                                channel->rd_leftovers[3] =
1334                                        (channel->rd_host_buf_pos != 0);
1335                        }
1336
1337                        if (rc) {
1338                                mutex_unlock(&channel->rd_mutex);
1339
1340                                if (channel->endpoint->fatal_error)
1341                                        return -EIO;
1342
1343                                if (!channel->rd_synchronous)
1344                                        queue_delayed_work(
1345                                                xillybus_wq,
1346                                                &channel->rd_workitem,
1347                                                XILLY_RX_TIMEOUT);
1348
1349                                return rc;
1350                        }
1351                }
1352
1353                if (bytes_done >= count)
1354                        break;
1355
1356                if (!exhausted)
1357                        continue; /* If there's more space, just go on */
1358
1359                if ((bytes_done > 0) && channel->rd_allow_partial)
1360                        break;
1361
1362                /*
1363                 * Indefinite sleep with mutex taken. With data waiting for
1364                 * flushing, user should not be surprised if open() for write
1365                 * sleeps.
1366                 */
1367
1368                if (filp->f_flags & O_NONBLOCK) {
1369                        rc = -EAGAIN;
1370                        break;
1371                }
1372
1373                if (wait_event_interruptible(channel->rd_wait,
1374                                             (!channel->rd_full))) {
1375                        mutex_unlock(&channel->rd_mutex);
1376
1377                        if (channel->endpoint->fatal_error)
1378                                return -EIO;
1379
1380                        if (bytes_done)
1381                                return bytes_done;
1382                        return -EINTR;
1383                }
1384        }
1385
1386        mutex_unlock(&channel->rd_mutex);
1387
1388        if (!channel->rd_synchronous)
1389                queue_delayed_work(xillybus_wq,
1390                                   &channel->rd_workitem,
1391                                   XILLY_RX_TIMEOUT);
1392
1393        if (channel->endpoint->fatal_error)
1394                return -EIO;
1395
1396        if (rc)
1397                return rc;
1398
1399        if ((channel->rd_synchronous) && (bytes_done > 0)) {
1400                rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1401
1402                if (rc && (rc != -EINTR))
1403                        return rc;
1404        }
1405
1406        return bytes_done;
1407}
1408
1409static int xillybus_open(struct inode *inode, struct file *filp)
1410{
1411        int rc = 0;
1412        unsigned long flags;
1413        int minor = iminor(inode);
1414        int major = imajor(inode);
1415        struct xilly_endpoint *ep_iter, *endpoint = NULL;
1416        struct xilly_channel *channel;
1417
1418        mutex_lock(&ep_list_lock);
1419
1420        list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1421                if ((ep_iter->major == major) &&
1422                    (minor >= ep_iter->lowest_minor) &&
1423                    (minor < (ep_iter->lowest_minor +
1424                              ep_iter->num_channels))) {
1425                        endpoint = ep_iter;
1426                        break;
1427                }
1428        }
1429        mutex_unlock(&ep_list_lock);
1430
1431        if (!endpoint) {
1432                pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1433                       major, minor);
1434                return -ENODEV;
1435        }
1436
1437        if (endpoint->fatal_error)
1438                return -EIO;
1439
1440        channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1441        filp->private_data = channel;
1442
1443        /*
1444         * It gets complicated because:
1445         * 1. We don't want to take a mutex we don't have to
1446         * 2. We don't want to open one direction if the other will fail.
1447         */
1448
1449        if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1450                return -ENODEV;
1451
1452        if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1453                return -ENODEV;
1454
1455        if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1456            (channel->wr_synchronous || !channel->wr_allow_partial ||
1457             !channel->wr_supports_nonempty)) {
1458                dev_err(endpoint->dev,
1459                        "open() failed: O_NONBLOCK not allowed for read on this device\n");
1460                return -ENODEV;
1461        }
1462
1463        if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1464            (channel->rd_synchronous || !channel->rd_allow_partial)) {
1465                dev_err(endpoint->dev,
1466                        "open() failed: O_NONBLOCK not allowed for write on this device\n");
1467                return -ENODEV;
1468        }
1469
1470        /*
1471         * Note: open() may block on getting mutexes despite O_NONBLOCK.
1472         * This shouldn't occur normally, since multiple open of the same
1473         * file descriptor is almost always prohibited anyhow
1474         * (*_exclusive_open is normally set in real-life systems).
1475         */
1476
1477        if (filp->f_mode & FMODE_READ) {
1478                rc = mutex_lock_interruptible(&channel->wr_mutex);
1479                if (rc)
1480                        return rc;
1481        }
1482
1483        if (filp->f_mode & FMODE_WRITE) {
1484                rc = mutex_lock_interruptible(&channel->rd_mutex);
1485                if (rc)
1486                        goto unlock_wr;
1487        }
1488
1489        if ((filp->f_mode & FMODE_READ) &&
1490            (channel->wr_ref_count != 0) &&
1491            (channel->wr_exclusive_open)) {
1492                rc = -EBUSY;
1493                goto unlock;
1494        }
1495
1496        if ((filp->f_mode & FMODE_WRITE) &&
1497            (channel->rd_ref_count != 0) &&
1498            (channel->rd_exclusive_open)) {
1499                rc = -EBUSY;
1500                goto unlock;
1501        }
1502
1503        if (filp->f_mode & FMODE_READ) {
1504                if (channel->wr_ref_count == 0) { /* First open of file */
1505                        /* Move the host to first buffer */
1506                        spin_lock_irqsave(&channel->wr_spinlock, flags);
1507                        channel->wr_host_buf_idx = 0;
1508                        channel->wr_host_buf_pos = 0;
1509                        channel->wr_fpga_buf_idx = -1;
1510                        channel->wr_empty = 1;
1511                        channel->wr_ready = 0;
1512                        channel->wr_sleepy = 1;
1513                        channel->wr_eof = -1;
1514                        channel->wr_hangup = 0;
1515
1516                        spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1517
1518                        iowrite32(1 | (channel->chan_num << 1) |
1519                                  (4 << 24) |  /* Opcode 4, open channel */
1520                                  ((channel->wr_synchronous & 1) << 23),
1521                                  channel->endpoint->registers +
1522                                  fpga_buf_ctrl_reg);
1523                }
1524
1525                channel->wr_ref_count++;
1526        }
1527
1528        if (filp->f_mode & FMODE_WRITE) {
1529                if (channel->rd_ref_count == 0) { /* First open of file */
1530                        /* Move the host to first buffer */
1531                        spin_lock_irqsave(&channel->rd_spinlock, flags);
1532                        channel->rd_host_buf_idx = 0;
1533                        channel->rd_host_buf_pos = 0;
1534                        channel->rd_leftovers[3] = 0; /* No leftovers. */
1535                        channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1536                        channel->rd_full = 0;
1537
1538                        spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1539
1540                        iowrite32((channel->chan_num << 1) |
1541                                  (4 << 24),   /* Opcode 4, open channel */
1542                                  channel->endpoint->registers +
1543                                  fpga_buf_ctrl_reg);
1544                }
1545
1546                channel->rd_ref_count++;
1547        }
1548
1549unlock:
1550        if (filp->f_mode & FMODE_WRITE)
1551                mutex_unlock(&channel->rd_mutex);
1552unlock_wr:
1553        if (filp->f_mode & FMODE_READ)
1554                mutex_unlock(&channel->wr_mutex);
1555
1556        if (!rc && (!channel->seekable))
1557                return nonseekable_open(inode, filp);
1558
1559        return rc;
1560}
1561
1562static int xillybus_release(struct inode *inode, struct file *filp)
1563{
1564        unsigned long flags;
1565        struct xilly_channel *channel = filp->private_data;
1566
1567        int buf_idx;
1568        int eof;
1569
1570        if (channel->endpoint->fatal_error)
1571                return -EIO;
1572
1573        if (filp->f_mode & FMODE_WRITE) {
1574                mutex_lock(&channel->rd_mutex);
1575
1576                channel->rd_ref_count--;
1577
1578                if (channel->rd_ref_count == 0) {
1579                        /*
1580                         * We rely on the kernel calling flush()
1581                         * before we get here.
1582                         */
1583
1584                        iowrite32((channel->chan_num << 1) | /* Channel ID */
1585                                  (5 << 24),  /* Opcode 5, close channel */
1586                                  channel->endpoint->registers +
1587                                  fpga_buf_ctrl_reg);
1588                }
1589                mutex_unlock(&channel->rd_mutex);
1590        }
1591
1592        if (filp->f_mode & FMODE_READ) {
1593                mutex_lock(&channel->wr_mutex);
1594
1595                channel->wr_ref_count--;
1596
1597                if (channel->wr_ref_count == 0) {
1598                        iowrite32(1 | (channel->chan_num << 1) |
1599                                  (5 << 24),  /* Opcode 5, close channel */
1600                                  channel->endpoint->registers +
1601                                  fpga_buf_ctrl_reg);
1602
1603                        /*
1604                         * This is crazily cautious: We make sure that not
1605                         * only that we got an EOF (be it because we closed
1606                         * the channel or because of a user's EOF), but verify
1607                         * that it's one beyond the last buffer arrived, so
1608                         * we have no leftover buffers pending before wrapping
1609                         * up (which can only happen in asynchronous channels,
1610                         * BTW)
1611                         */
1612
1613                        while (1) {
1614                                spin_lock_irqsave(&channel->wr_spinlock,
1615                                                  flags);
1616                                buf_idx = channel->wr_fpga_buf_idx;
1617                                eof = channel->wr_eof;
1618                                channel->wr_sleepy = 1;
1619                                spin_unlock_irqrestore(&channel->wr_spinlock,
1620                                                       flags);
1621
1622                                /*
1623                                 * Check if eof points at the buffer after
1624                                 * the last one the FPGA submitted. Note that
1625                                 * no EOF is marked by negative eof.
1626                                 */
1627
1628                                buf_idx++;
1629                                if (buf_idx == channel->num_wr_buffers)
1630                                        buf_idx = 0;
1631
1632                                if (buf_idx == eof)
1633                                        break;
1634
1635                                /*
1636                                 * Steal extra 100 ms if awaken by interrupt.
1637                                 * This is a simple workaround for an
1638                                 * interrupt pending when entering, which would
1639                                 * otherwise result in declaring the hardware
1640                                 * non-responsive.
1641                                 */
1642
1643                                if (wait_event_interruptible(
1644                                            channel->wr_wait,
1645                                            (!channel->wr_sleepy)))
1646                                        msleep(100);
1647
1648                                if (channel->wr_sleepy) {
1649                                        mutex_unlock(&channel->wr_mutex);
1650                                        dev_warn(channel->endpoint->dev,
1651                                                 "Hardware failed to respond to close command, therefore left in messy state.\n");
1652                                        return -EINTR;
1653                                }
1654                        }
1655                }
1656
1657                mutex_unlock(&channel->wr_mutex);
1658        }
1659
1660        return 0;
1661}
1662
1663static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1664{
1665        struct xilly_channel *channel = filp->private_data;
1666        loff_t pos = filp->f_pos;
1667        int rc = 0;
1668
1669        /*
1670         * Take both mutexes not allowing interrupts, since it seems like
1671         * common applications don't expect an -EINTR here. Besides, multiple
1672         * access to a single file descriptor on seekable devices is a mess
1673         * anyhow.
1674         */
1675
1676        if (channel->endpoint->fatal_error)
1677                return -EIO;
1678
1679        mutex_lock(&channel->wr_mutex);
1680        mutex_lock(&channel->rd_mutex);
1681
1682        switch (whence) {
1683        case SEEK_SET:
1684                pos = offset;
1685                break;
1686        case SEEK_CUR:
1687                pos += offset;
1688                break;
1689        case SEEK_END:
1690                pos = offset; /* Going to the end => to the beginning */
1691                break;
1692        default:
1693                rc = -EINVAL;
1694                goto end;
1695        }
1696
1697        /* In any case, we must finish on an element boundary */
1698        if (pos & ((1 << channel->log2_element_size) - 1)) {
1699                rc = -EINVAL;
1700                goto end;
1701        }
1702
1703        mutex_lock(&channel->endpoint->register_mutex);
1704
1705        iowrite32(pos >> channel->log2_element_size,
1706                  channel->endpoint->registers + fpga_buf_offset_reg);
1707
1708        iowrite32((channel->chan_num << 1) |
1709                  (6 << 24),  /* Opcode 6, set address */
1710                  channel->endpoint->registers + fpga_buf_ctrl_reg);
1711
1712        mutex_unlock(&channel->endpoint->register_mutex);
1713
1714end:
1715        mutex_unlock(&channel->rd_mutex);
1716        mutex_unlock(&channel->wr_mutex);
1717
1718        if (rc) /* Return error after releasing mutexes */
1719                return rc;
1720
1721        filp->f_pos = pos;
1722
1723        /*
1724         * Since seekable devices are allowed only when the channel is
1725         * synchronous, we assume that there is no data pending in either
1726         * direction (which holds true as long as no concurrent access on the
1727         * file descriptor takes place).
1728         * The only thing we may need to throw away is leftovers from partial
1729         * write() flush.
1730         */
1731
1732        channel->rd_leftovers[3] = 0;
1733
1734        return pos;
1735}
1736
1737static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
1738{
1739        struct xilly_channel *channel = filp->private_data;
1740        unsigned int mask = 0;
1741        unsigned long flags;
1742
1743        poll_wait(filp, &channel->endpoint->ep_wait, wait);
1744
1745        /*
1746         * poll() won't play ball regarding read() channels which
1747         * aren't asynchronous and support the nonempty message. Allowing
1748         * that will create situations where data has been delivered at
1749         * the FPGA, and users expecting select() to wake up, which it may
1750         * not.
1751         */
1752
1753        if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1754                poll_wait(filp, &channel->wr_wait, wait);
1755                poll_wait(filp, &channel->wr_ready_wait, wait);
1756
1757                spin_lock_irqsave(&channel->wr_spinlock, flags);
1758                if (!channel->wr_empty || channel->wr_ready)
1759                        mask |= POLLIN | POLLRDNORM;
1760
1761                if (channel->wr_hangup)
1762                        /*
1763                         * Not POLLHUP, because its behavior is in the
1764                         * mist, and POLLIN does what we want: Wake up
1765                         * the read file descriptor so it sees EOF.
1766                         */
1767                        mask |=  POLLIN | POLLRDNORM;
1768                spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1769        }
1770
1771        /*
1772         * If partial data write is disallowed on a write() channel,
1773         * it's pointless to ever signal OK to write, because is could
1774         * block despite some space being available.
1775         */
1776
1777        if (channel->rd_allow_partial) {
1778                poll_wait(filp, &channel->rd_wait, wait);
1779
1780                spin_lock_irqsave(&channel->rd_spinlock, flags);
1781                if (!channel->rd_full)
1782                        mask |= POLLOUT | POLLWRNORM;
1783                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1784        }
1785
1786        if (channel->endpoint->fatal_error)
1787                mask |= POLLERR;
1788
1789        return mask;
1790}
1791
1792static const struct file_operations xillybus_fops = {
1793        .owner      = THIS_MODULE,
1794        .read       = xillybus_read,
1795        .write      = xillybus_write,
1796        .open       = xillybus_open,
1797        .flush      = xillybus_flush,
1798        .release    = xillybus_release,
1799        .llseek     = xillybus_llseek,
1800        .poll       = xillybus_poll,
1801};
1802
1803static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1804                                const unsigned char *idt)
1805{
1806        int rc;
1807        dev_t dev;
1808        int devnum, i, minor, major;
1809        char devname[48];
1810        struct device *device;
1811
1812        rc = alloc_chrdev_region(&dev, 0, /* minor start */
1813                                 endpoint->num_channels,
1814                                 xillyname);
1815        if (rc) {
1816                dev_warn(endpoint->dev, "Failed to obtain major/minors");
1817                return rc;
1818        }
1819
1820        endpoint->major = major = MAJOR(dev);
1821        endpoint->lowest_minor = minor = MINOR(dev);
1822
1823        cdev_init(&endpoint->cdev, &xillybus_fops);
1824        endpoint->cdev.owner = endpoint->ephw->owner;
1825        rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1826                      endpoint->num_channels);
1827        if (rc) {
1828                dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1829                goto unregister_chrdev;
1830        }
1831
1832        idt++;
1833
1834        for (i = minor, devnum = 0;
1835             devnum < endpoint->num_channels;
1836             devnum++, i++) {
1837                snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1838
1839                devname[sizeof(devname)-1] = 0; /* Should never matter */
1840
1841                while (*idt++)
1842                        /* Skip to next */;
1843
1844                device = device_create(xillybus_class,
1845                                       NULL,
1846                                       MKDEV(major, i),
1847                                       NULL,
1848                                       "%s", devname);
1849
1850                if (IS_ERR(device)) {
1851                        dev_warn(endpoint->dev,
1852                                 "Failed to create %s device. Aborting.\n",
1853                                 devname);
1854                        rc = -ENODEV;
1855                        goto unroll_device_create;
1856                }
1857        }
1858
1859        dev_info(endpoint->dev, "Created %d device files.\n",
1860                 endpoint->num_channels);
1861        return 0; /* succeed */
1862
1863unroll_device_create:
1864        devnum--; i--;
1865        for (; devnum >= 0; devnum--, i--)
1866                device_destroy(xillybus_class, MKDEV(major, i));
1867
1868        cdev_del(&endpoint->cdev);
1869unregister_chrdev:
1870        unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1871
1872        return rc;
1873}
1874
1875static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1876{
1877        int minor;
1878
1879        for (minor = endpoint->lowest_minor;
1880             minor < (endpoint->lowest_minor + endpoint->num_channels);
1881             minor++)
1882                device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1883        cdev_del(&endpoint->cdev);
1884        unregister_chrdev_region(MKDEV(endpoint->major,
1885                                       endpoint->lowest_minor),
1886                                 endpoint->num_channels);
1887
1888        dev_info(endpoint->dev, "Removed %d device files.\n",
1889                 endpoint->num_channels);
1890}
1891
1892struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1893                                              struct device *dev,
1894                                              struct xilly_endpoint_hardware
1895                                              *ephw)
1896{
1897        struct xilly_endpoint *endpoint;
1898
1899        endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1900        if (!endpoint)
1901                return NULL;
1902
1903        endpoint->pdev = pdev;
1904        endpoint->dev = dev;
1905        endpoint->ephw = ephw;
1906        endpoint->msg_counter = 0x0b;
1907        endpoint->failed_messages = 0;
1908        endpoint->fatal_error = 0;
1909
1910        init_waitqueue_head(&endpoint->ep_wait);
1911        mutex_init(&endpoint->register_mutex);
1912
1913        return endpoint;
1914}
1915EXPORT_SYMBOL(xillybus_init_endpoint);
1916
1917static int xilly_quiesce(struct xilly_endpoint *endpoint)
1918{
1919        long t;
1920
1921        endpoint->idtlen = -1;
1922
1923        iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1924                  endpoint->registers + fpga_dma_control_reg);
1925
1926        t = wait_event_interruptible_timeout(endpoint->ep_wait,
1927                                             (endpoint->idtlen >= 0),
1928                                             XILLY_TIMEOUT);
1929        if (t <= 0) {
1930                dev_err(endpoint->dev,
1931                        "Failed to quiesce the device on exit.\n");
1932                return -ENODEV;
1933        }
1934        return 0;
1935}
1936
1937int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1938{
1939        int rc;
1940        long t;
1941
1942        void *bootstrap_resources;
1943        int idtbuffersize = (1 << PAGE_SHIFT);
1944        struct device *dev = endpoint->dev;
1945
1946        /*
1947         * The bogus IDT is used during bootstrap for allocating the initial
1948         * message buffer, and then the message buffer and space for the IDT
1949         * itself. The initial message buffer is of a single page's size, but
1950         * it's soon replaced with a more modest one (and memory is freed).
1951         */
1952
1953        unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1954                                       3, 192, PAGE_SHIFT, 0 };
1955        struct xilly_idt_handle idt_handle;
1956
1957        /*
1958         * Writing the value 0x00000001 to Endianness register signals which
1959         * endianness this processor is using, so the FPGA can swap words as
1960         * necessary.
1961         */
1962
1963        iowrite32(1, endpoint->registers + fpga_endian_reg);
1964
1965        /* Bootstrap phase I: Allocate temporary message buffer */
1966
1967        bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1968        if (!bootstrap_resources)
1969                return -ENOMEM;
1970
1971        endpoint->num_channels = 0;
1972
1973        rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1974        if (rc)
1975                return rc;
1976
1977        /* Clear the message subsystem (and counter in particular) */
1978        iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1979
1980        endpoint->idtlen = -1;
1981
1982        /*
1983         * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1984         * buffer size.
1985         */
1986        iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1987                  endpoint->registers + fpga_dma_control_reg);
1988
1989        t = wait_event_interruptible_timeout(endpoint->ep_wait,
1990                                             (endpoint->idtlen >= 0),
1991                                             XILLY_TIMEOUT);
1992        if (t <= 0) {
1993                dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1994                return -ENODEV;
1995        }
1996
1997        /* Enable DMA */
1998        iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
1999                  endpoint->registers + fpga_dma_control_reg);
2000
2001        /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2002        while (endpoint->idtlen >= idtbuffersize) {
2003                idtbuffersize *= 2;
2004                bogus_idt[6]++;
2005        }
2006
2007        endpoint->num_channels = 1;
2008
2009        rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2010        if (rc)
2011                goto failed_idt;
2012
2013        rc = xilly_obtain_idt(endpoint);
2014        if (rc)
2015                goto failed_idt;
2016
2017        rc = xilly_scan_idt(endpoint, &idt_handle);
2018        if (rc)
2019                goto failed_idt;
2020
2021        devres_close_group(dev, bootstrap_resources);
2022
2023        /* Bootstrap phase III: Allocate buffers according to IDT */
2024
2025        rc = xilly_setupchannels(endpoint,
2026                                 idt_handle.chandesc,
2027                                 idt_handle.entries);
2028        if (rc)
2029                goto failed_idt;
2030
2031        /*
2032         * endpoint is now completely configured. We put it on the list
2033         * available to open() before registering the char device(s)
2034         */
2035
2036        mutex_lock(&ep_list_lock);
2037        list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2038        mutex_unlock(&ep_list_lock);
2039
2040        rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2041        if (rc)
2042                goto failed_chrdevs;
2043
2044        devres_release_group(dev, bootstrap_resources);
2045
2046        return 0;
2047
2048failed_chrdevs:
2049        mutex_lock(&ep_list_lock);
2050        list_del(&endpoint->ep_list);
2051        mutex_unlock(&ep_list_lock);
2052
2053failed_idt:
2054        xilly_quiesce(endpoint);
2055        flush_workqueue(xillybus_wq);
2056
2057        return rc;
2058}
2059EXPORT_SYMBOL(xillybus_endpoint_discovery);
2060
2061void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2062{
2063        xillybus_cleanup_chrdev(endpoint);
2064
2065        mutex_lock(&ep_list_lock);
2066        list_del(&endpoint->ep_list);
2067        mutex_unlock(&ep_list_lock);
2068
2069        xilly_quiesce(endpoint);
2070
2071        /*
2072         * Flushing is done upon endpoint release to prevent access to memory
2073         * just about to be released. This makes the quiesce complete.
2074         */
2075        flush_workqueue(xillybus_wq);
2076}
2077EXPORT_SYMBOL(xillybus_endpoint_remove);
2078
2079static int __init xillybus_init(void)
2080{
2081        mutex_init(&ep_list_lock);
2082
2083        xillybus_class = class_create(THIS_MODULE, xillyname);
2084        if (IS_ERR(xillybus_class))
2085                return PTR_ERR(xillybus_class);
2086
2087        xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2088        if (!xillybus_wq) {
2089                class_destroy(xillybus_class);
2090                return -ENOMEM;
2091        }
2092
2093        return 0;
2094}
2095
2096static void __exit xillybus_exit(void)
2097{
2098        /* flush_workqueue() was called for each endpoint released */
2099        destroy_workqueue(xillybus_wq);
2100
2101        class_destroy(xillybus_class);
2102}
2103
2104module_init(xillybus_init);
2105module_exit(xillybus_exit);
2106