linux/drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
<<
>>
Prefs
   1/**************************************************************************
   2 *
   3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
  28#include "vmwgfx_drv.h"
  29#include <drm/vmwgfx_drm.h>
  30#include <drm/ttm/ttm_object.h>
  31#include <drm/ttm/ttm_placement.h>
  32#include <drm/drmP.h>
  33#include "vmwgfx_resource_priv.h"
  34#include "vmwgfx_binding.h"
  35
  36#define VMW_RES_EVICT_ERR_COUNT 10
  37
  38struct vmw_user_dma_buffer {
  39        struct ttm_prime_object prime;
  40        struct vmw_dma_buffer dma;
  41};
  42
  43struct vmw_bo_user_rep {
  44        uint32_t handle;
  45        uint64_t map_handle;
  46};
  47
  48struct vmw_stream {
  49        struct vmw_resource res;
  50        uint32_t stream_id;
  51};
  52
  53struct vmw_user_stream {
  54        struct ttm_base_object base;
  55        struct vmw_stream stream;
  56};
  57
  58
  59static uint64_t vmw_user_stream_size;
  60
  61static const struct vmw_res_func vmw_stream_func = {
  62        .res_type = vmw_res_stream,
  63        .needs_backup = false,
  64        .may_evict = false,
  65        .type_name = "video streams",
  66        .backup_placement = NULL,
  67        .create = NULL,
  68        .destroy = NULL,
  69        .bind = NULL,
  70        .unbind = NULL
  71};
  72
  73static inline struct vmw_dma_buffer *
  74vmw_dma_buffer(struct ttm_buffer_object *bo)
  75{
  76        return container_of(bo, struct vmw_dma_buffer, base);
  77}
  78
  79static inline struct vmw_user_dma_buffer *
  80vmw_user_dma_buffer(struct ttm_buffer_object *bo)
  81{
  82        struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
  83        return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
  84}
  85
  86struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
  87{
  88        kref_get(&res->kref);
  89        return res;
  90}
  91
  92struct vmw_resource *
  93vmw_resource_reference_unless_doomed(struct vmw_resource *res)
  94{
  95        return kref_get_unless_zero(&res->kref) ? res : NULL;
  96}
  97
  98/**
  99 * vmw_resource_release_id - release a resource id to the id manager.
 100 *
 101 * @res: Pointer to the resource.
 102 *
 103 * Release the resource id to the resource id manager and set it to -1
 104 */
 105void vmw_resource_release_id(struct vmw_resource *res)
 106{
 107        struct vmw_private *dev_priv = res->dev_priv;
 108        struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 109
 110        write_lock(&dev_priv->resource_lock);
 111        if (res->id != -1)
 112                idr_remove(idr, res->id);
 113        res->id = -1;
 114        write_unlock(&dev_priv->resource_lock);
 115}
 116
 117static void vmw_resource_release(struct kref *kref)
 118{
 119        struct vmw_resource *res =
 120            container_of(kref, struct vmw_resource, kref);
 121        struct vmw_private *dev_priv = res->dev_priv;
 122        int id;
 123        struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 124
 125        write_lock(&dev_priv->resource_lock);
 126        res->avail = false;
 127        list_del_init(&res->lru_head);
 128        write_unlock(&dev_priv->resource_lock);
 129        if (res->backup) {
 130                struct ttm_buffer_object *bo = &res->backup->base;
 131
 132                ttm_bo_reserve(bo, false, false, false, NULL);
 133                if (!list_empty(&res->mob_head) &&
 134                    res->func->unbind != NULL) {
 135                        struct ttm_validate_buffer val_buf;
 136
 137                        val_buf.bo = bo;
 138                        val_buf.shared = false;
 139                        res->func->unbind(res, false, &val_buf);
 140                }
 141                res->backup_dirty = false;
 142                list_del_init(&res->mob_head);
 143                ttm_bo_unreserve(bo);
 144                vmw_dmabuf_unreference(&res->backup);
 145        }
 146
 147        if (likely(res->hw_destroy != NULL)) {
 148                mutex_lock(&dev_priv->binding_mutex);
 149                vmw_binding_res_list_kill(&res->binding_head);
 150                mutex_unlock(&dev_priv->binding_mutex);
 151                res->hw_destroy(res);
 152        }
 153
 154        id = res->id;
 155        if (res->res_free != NULL)
 156                res->res_free(res);
 157        else
 158                kfree(res);
 159
 160        write_lock(&dev_priv->resource_lock);
 161        if (id != -1)
 162                idr_remove(idr, id);
 163        write_unlock(&dev_priv->resource_lock);
 164}
 165
 166void vmw_resource_unreference(struct vmw_resource **p_res)
 167{
 168        struct vmw_resource *res = *p_res;
 169
 170        *p_res = NULL;
 171        kref_put(&res->kref, vmw_resource_release);
 172}
 173
 174
 175/**
 176 * vmw_resource_alloc_id - release a resource id to the id manager.
 177 *
 178 * @res: Pointer to the resource.
 179 *
 180 * Allocate the lowest free resource from the resource manager, and set
 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
 182 */
 183int vmw_resource_alloc_id(struct vmw_resource *res)
 184{
 185        struct vmw_private *dev_priv = res->dev_priv;
 186        int ret;
 187        struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 188
 189        BUG_ON(res->id != -1);
 190
 191        idr_preload(GFP_KERNEL);
 192        write_lock(&dev_priv->resource_lock);
 193
 194        ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
 195        if (ret >= 0)
 196                res->id = ret;
 197
 198        write_unlock(&dev_priv->resource_lock);
 199        idr_preload_end();
 200        return ret < 0 ? ret : 0;
 201}
 202
 203/**
 204 * vmw_resource_init - initialize a struct vmw_resource
 205 *
 206 * @dev_priv:       Pointer to a device private struct.
 207 * @res:            The struct vmw_resource to initialize.
 208 * @obj_type:       Resource object type.
 209 * @delay_id:       Boolean whether to defer device id allocation until
 210 *                  the first validation.
 211 * @res_free:       Resource destructor.
 212 * @func:           Resource function table.
 213 */
 214int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
 215                      bool delay_id,
 216                      void (*res_free) (struct vmw_resource *res),
 217                      const struct vmw_res_func *func)
 218{
 219        kref_init(&res->kref);
 220        res->hw_destroy = NULL;
 221        res->res_free = res_free;
 222        res->avail = false;
 223        res->dev_priv = dev_priv;
 224        res->func = func;
 225        INIT_LIST_HEAD(&res->lru_head);
 226        INIT_LIST_HEAD(&res->mob_head);
 227        INIT_LIST_HEAD(&res->binding_head);
 228        res->id = -1;
 229        res->backup = NULL;
 230        res->backup_offset = 0;
 231        res->backup_dirty = false;
 232        res->res_dirty = false;
 233        if (delay_id)
 234                return 0;
 235        else
 236                return vmw_resource_alloc_id(res);
 237}
 238
 239/**
 240 * vmw_resource_activate
 241 *
 242 * @res:        Pointer to the newly created resource
 243 * @hw_destroy: Destroy function. NULL if none.
 244 *
 245 * Activate a resource after the hardware has been made aware of it.
 246 * Set tye destroy function to @destroy. Typically this frees the
 247 * resource and destroys the hardware resources associated with it.
 248 * Activate basically means that the function vmw_resource_lookup will
 249 * find it.
 250 */
 251void vmw_resource_activate(struct vmw_resource *res,
 252                           void (*hw_destroy) (struct vmw_resource *))
 253{
 254        struct vmw_private *dev_priv = res->dev_priv;
 255
 256        write_lock(&dev_priv->resource_lock);
 257        res->avail = true;
 258        res->hw_destroy = hw_destroy;
 259        write_unlock(&dev_priv->resource_lock);
 260}
 261
 262static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
 263                                                struct idr *idr, int id)
 264{
 265        struct vmw_resource *res;
 266
 267        read_lock(&dev_priv->resource_lock);
 268        res = idr_find(idr, id);
 269        if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
 270                res = NULL;
 271
 272        read_unlock(&dev_priv->resource_lock);
 273
 274        if (unlikely(res == NULL))
 275                return NULL;
 276
 277        return res;
 278}
 279
 280/**
 281 * vmw_user_resource_lookup_handle - lookup a struct resource from a
 282 * TTM user-space handle and perform basic type checks
 283 *
 284 * @dev_priv:     Pointer to a device private struct
 285 * @tfile:        Pointer to a struct ttm_object_file identifying the caller
 286 * @handle:       The TTM user-space handle
 287 * @converter:    Pointer to an object describing the resource type
 288 * @p_res:        On successful return the location pointed to will contain
 289 *                a pointer to a refcounted struct vmw_resource.
 290 *
 291 * If the handle can't be found or is associated with an incorrect resource
 292 * type, -EINVAL will be returned.
 293 */
 294int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
 295                                    struct ttm_object_file *tfile,
 296                                    uint32_t handle,
 297                                    const struct vmw_user_resource_conv
 298                                    *converter,
 299                                    struct vmw_resource **p_res)
 300{
 301        struct ttm_base_object *base;
 302        struct vmw_resource *res;
 303        int ret = -EINVAL;
 304
 305        base = ttm_base_object_lookup(tfile, handle);
 306        if (unlikely(base == NULL))
 307                return -EINVAL;
 308
 309        if (unlikely(ttm_base_object_type(base) != converter->object_type))
 310                goto out_bad_resource;
 311
 312        res = converter->base_obj_to_res(base);
 313
 314        read_lock(&dev_priv->resource_lock);
 315        if (!res->avail || res->res_free != converter->res_free) {
 316                read_unlock(&dev_priv->resource_lock);
 317                goto out_bad_resource;
 318        }
 319
 320        kref_get(&res->kref);
 321        read_unlock(&dev_priv->resource_lock);
 322
 323        *p_res = res;
 324        ret = 0;
 325
 326out_bad_resource:
 327        ttm_base_object_unref(&base);
 328
 329        return ret;
 330}
 331
 332/**
 333 * Helper function that looks either a surface or dmabuf.
 334 *
 335 * The pointer this pointed at by out_surf and out_buf needs to be null.
 336 */
 337int vmw_user_lookup_handle(struct vmw_private *dev_priv,
 338                           struct ttm_object_file *tfile,
 339                           uint32_t handle,
 340                           struct vmw_surface **out_surf,
 341                           struct vmw_dma_buffer **out_buf)
 342{
 343        struct vmw_resource *res;
 344        int ret;
 345
 346        BUG_ON(*out_surf || *out_buf);
 347
 348        ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
 349                                              user_surface_converter,
 350                                              &res);
 351        if (!ret) {
 352                *out_surf = vmw_res_to_srf(res);
 353                return 0;
 354        }
 355
 356        *out_surf = NULL;
 357        ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
 358        return ret;
 359}
 360
 361/**
 362 * Buffer management.
 363 */
 364
 365/**
 366 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
 367 *
 368 * @dev_priv: Pointer to a struct vmw_private identifying the device.
 369 * @size: The requested buffer size.
 370 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
 371 */
 372static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
 373                                  bool user)
 374{
 375        static size_t struct_size, user_struct_size;
 376        size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 377        size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
 378
 379        if (unlikely(struct_size == 0)) {
 380                size_t backend_size = ttm_round_pot(vmw_tt_size);
 381
 382                struct_size = backend_size +
 383                        ttm_round_pot(sizeof(struct vmw_dma_buffer));
 384                user_struct_size = backend_size +
 385                        ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
 386        }
 387
 388        if (dev_priv->map_mode == vmw_dma_alloc_coherent)
 389                page_array_size +=
 390                        ttm_round_pot(num_pages * sizeof(dma_addr_t));
 391
 392        return ((user) ? user_struct_size : struct_size) +
 393                page_array_size;
 394}
 395
 396void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
 397{
 398        struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
 399
 400        kfree(vmw_bo);
 401}
 402
 403static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
 404{
 405        struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
 406
 407        ttm_prime_object_kfree(vmw_user_bo, prime);
 408}
 409
 410int vmw_dmabuf_init(struct vmw_private *dev_priv,
 411                    struct vmw_dma_buffer *vmw_bo,
 412                    size_t size, struct ttm_placement *placement,
 413                    bool interruptible,
 414                    void (*bo_free) (struct ttm_buffer_object *bo))
 415{
 416        struct ttm_bo_device *bdev = &dev_priv->bdev;
 417        size_t acc_size;
 418        int ret;
 419        bool user = (bo_free == &vmw_user_dmabuf_destroy);
 420
 421        BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
 422
 423        acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
 424        memset(vmw_bo, 0, sizeof(*vmw_bo));
 425
 426        INIT_LIST_HEAD(&vmw_bo->res_list);
 427
 428        ret = ttm_bo_init(bdev, &vmw_bo->base, size,
 429                          ttm_bo_type_device, placement,
 430                          0, interruptible,
 431                          NULL, acc_size, NULL, NULL, bo_free);
 432        return ret;
 433}
 434
 435static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
 436{
 437        struct vmw_user_dma_buffer *vmw_user_bo;
 438        struct ttm_base_object *base = *p_base;
 439        struct ttm_buffer_object *bo;
 440
 441        *p_base = NULL;
 442
 443        if (unlikely(base == NULL))
 444                return;
 445
 446        vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 447                                   prime.base);
 448        bo = &vmw_user_bo->dma.base;
 449        ttm_bo_unref(&bo);
 450}
 451
 452static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
 453                                            enum ttm_ref_type ref_type)
 454{
 455        struct vmw_user_dma_buffer *user_bo;
 456        user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
 457
 458        switch (ref_type) {
 459        case TTM_REF_SYNCCPU_WRITE:
 460                ttm_bo_synccpu_write_release(&user_bo->dma.base);
 461                break;
 462        default:
 463                BUG();
 464        }
 465}
 466
 467/**
 468 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
 469 *
 470 * @dev_priv: Pointer to a struct device private.
 471 * @tfile: Pointer to a struct ttm_object_file on which to register the user
 472 * object.
 473 * @size: Size of the dma buffer.
 474 * @shareable: Boolean whether the buffer is shareable with other open files.
 475 * @handle: Pointer to where the handle value should be assigned.
 476 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
 477 * should be assigned.
 478 */
 479int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
 480                          struct ttm_object_file *tfile,
 481                          uint32_t size,
 482                          bool shareable,
 483                          uint32_t *handle,
 484                          struct vmw_dma_buffer **p_dma_buf,
 485                          struct ttm_base_object **p_base)
 486{
 487        struct vmw_user_dma_buffer *user_bo;
 488        struct ttm_buffer_object *tmp;
 489        int ret;
 490
 491        user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
 492        if (unlikely(user_bo == NULL)) {
 493                DRM_ERROR("Failed to allocate a buffer.\n");
 494                return -ENOMEM;
 495        }
 496
 497        ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
 498                              (dev_priv->has_mob) ?
 499                              &vmw_sys_placement :
 500                              &vmw_vram_sys_placement, true,
 501                              &vmw_user_dmabuf_destroy);
 502        if (unlikely(ret != 0))
 503                return ret;
 504
 505        tmp = ttm_bo_reference(&user_bo->dma.base);
 506        ret = ttm_prime_object_init(tfile,
 507                                    size,
 508                                    &user_bo->prime,
 509                                    shareable,
 510                                    ttm_buffer_type,
 511                                    &vmw_user_dmabuf_release,
 512                                    &vmw_user_dmabuf_ref_obj_release);
 513        if (unlikely(ret != 0)) {
 514                ttm_bo_unref(&tmp);
 515                goto out_no_base_object;
 516        }
 517
 518        *p_dma_buf = &user_bo->dma;
 519        if (p_base) {
 520                *p_base = &user_bo->prime.base;
 521                kref_get(&(*p_base)->refcount);
 522        }
 523        *handle = user_bo->prime.base.hash.key;
 524
 525out_no_base_object:
 526        return ret;
 527}
 528
 529/**
 530 * vmw_user_dmabuf_verify_access - verify access permissions on this
 531 * buffer object.
 532 *
 533 * @bo: Pointer to the buffer object being accessed
 534 * @tfile: Identifying the caller.
 535 */
 536int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
 537                                  struct ttm_object_file *tfile)
 538{
 539        struct vmw_user_dma_buffer *vmw_user_bo;
 540
 541        if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
 542                return -EPERM;
 543
 544        vmw_user_bo = vmw_user_dma_buffer(bo);
 545
 546        /* Check that the caller has opened the object. */
 547        if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
 548                return 0;
 549
 550        DRM_ERROR("Could not grant buffer access.\n");
 551        return -EPERM;
 552}
 553
 554/**
 555 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
 556 * access, idling previous GPU operations on the buffer and optionally
 557 * blocking it for further command submissions.
 558 *
 559 * @user_bo: Pointer to the buffer object being grabbed for CPU access
 560 * @tfile: Identifying the caller.
 561 * @flags: Flags indicating how the grab should be performed.
 562 *
 563 * A blocking grab will be automatically released when @tfile is closed.
 564 */
 565static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
 566                                        struct ttm_object_file *tfile,
 567                                        uint32_t flags)
 568{
 569        struct ttm_buffer_object *bo = &user_bo->dma.base;
 570        bool existed;
 571        int ret;
 572
 573        if (flags & drm_vmw_synccpu_allow_cs) {
 574                bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
 575                long lret;
 576
 577                if (nonblock)
 578                        return reservation_object_test_signaled_rcu(bo->resv, true) ? 0 : -EBUSY;
 579
 580                lret = reservation_object_wait_timeout_rcu(bo->resv, true, true, MAX_SCHEDULE_TIMEOUT);
 581                if (!lret)
 582                        return -EBUSY;
 583                else if (lret < 0)
 584                        return lret;
 585                return 0;
 586        }
 587
 588        ret = ttm_bo_synccpu_write_grab
 589                (bo, !!(flags & drm_vmw_synccpu_dontblock));
 590        if (unlikely(ret != 0))
 591                return ret;
 592
 593        ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
 594                                 TTM_REF_SYNCCPU_WRITE, &existed);
 595        if (ret != 0 || existed)
 596                ttm_bo_synccpu_write_release(&user_bo->dma.base);
 597
 598        return ret;
 599}
 600
 601/**
 602 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
 603 * and unblock command submission on the buffer if blocked.
 604 *
 605 * @handle: Handle identifying the buffer object.
 606 * @tfile: Identifying the caller.
 607 * @flags: Flags indicating the type of release.
 608 */
 609static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
 610                                           struct ttm_object_file *tfile,
 611                                           uint32_t flags)
 612{
 613        if (!(flags & drm_vmw_synccpu_allow_cs))
 614                return ttm_ref_object_base_unref(tfile, handle,
 615                                                 TTM_REF_SYNCCPU_WRITE);
 616
 617        return 0;
 618}
 619
 620/**
 621 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
 622 * functionality.
 623 *
 624 * @dev: Identifies the drm device.
 625 * @data: Pointer to the ioctl argument.
 626 * @file_priv: Identifies the caller.
 627 *
 628 * This function checks the ioctl arguments for validity and calls the
 629 * relevant synccpu functions.
 630 */
 631int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
 632                                  struct drm_file *file_priv)
 633{
 634        struct drm_vmw_synccpu_arg *arg =
 635                (struct drm_vmw_synccpu_arg *) data;
 636        struct vmw_dma_buffer *dma_buf;
 637        struct vmw_user_dma_buffer *user_bo;
 638        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 639        struct ttm_base_object *buffer_base;
 640        int ret;
 641
 642        if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
 643            || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
 644                               drm_vmw_synccpu_dontblock |
 645                               drm_vmw_synccpu_allow_cs)) != 0) {
 646                DRM_ERROR("Illegal synccpu flags.\n");
 647                return -EINVAL;
 648        }
 649
 650        switch (arg->op) {
 651        case drm_vmw_synccpu_grab:
 652                ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
 653                                             &buffer_base);
 654                if (unlikely(ret != 0))
 655                        return ret;
 656
 657                user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
 658                                       dma);
 659                ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
 660                vmw_dmabuf_unreference(&dma_buf);
 661                ttm_base_object_unref(&buffer_base);
 662                if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
 663                             ret != -EBUSY)) {
 664                        DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
 665                                  (unsigned int) arg->handle);
 666                        return ret;
 667                }
 668                break;
 669        case drm_vmw_synccpu_release:
 670                ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
 671                                                      arg->flags);
 672                if (unlikely(ret != 0)) {
 673                        DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
 674                                  (unsigned int) arg->handle);
 675                        return ret;
 676                }
 677                break;
 678        default:
 679                DRM_ERROR("Invalid synccpu operation.\n");
 680                return -EINVAL;
 681        }
 682
 683        return 0;
 684}
 685
 686int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
 687                           struct drm_file *file_priv)
 688{
 689        struct vmw_private *dev_priv = vmw_priv(dev);
 690        union drm_vmw_alloc_dmabuf_arg *arg =
 691            (union drm_vmw_alloc_dmabuf_arg *)data;
 692        struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
 693        struct drm_vmw_dmabuf_rep *rep = &arg->rep;
 694        struct vmw_dma_buffer *dma_buf;
 695        uint32_t handle;
 696        int ret;
 697
 698        ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 699        if (unlikely(ret != 0))
 700                return ret;
 701
 702        ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
 703                                    req->size, false, &handle, &dma_buf,
 704                                    NULL);
 705        if (unlikely(ret != 0))
 706                goto out_no_dmabuf;
 707
 708        rep->handle = handle;
 709        rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
 710        rep->cur_gmr_id = handle;
 711        rep->cur_gmr_offset = 0;
 712
 713        vmw_dmabuf_unreference(&dma_buf);
 714
 715out_no_dmabuf:
 716        ttm_read_unlock(&dev_priv->reservation_sem);
 717
 718        return ret;
 719}
 720
 721int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
 722                           struct drm_file *file_priv)
 723{
 724        struct drm_vmw_unref_dmabuf_arg *arg =
 725            (struct drm_vmw_unref_dmabuf_arg *)data;
 726
 727        return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
 728                                         arg->handle,
 729                                         TTM_REF_USAGE);
 730}
 731
 732int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
 733                           uint32_t handle, struct vmw_dma_buffer **out,
 734                           struct ttm_base_object **p_base)
 735{
 736        struct vmw_user_dma_buffer *vmw_user_bo;
 737        struct ttm_base_object *base;
 738
 739        base = ttm_base_object_lookup(tfile, handle);
 740        if (unlikely(base == NULL)) {
 741                printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 742                       (unsigned long)handle);
 743                return -ESRCH;
 744        }
 745
 746        if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
 747                ttm_base_object_unref(&base);
 748                printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 749                       (unsigned long)handle);
 750                return -EINVAL;
 751        }
 752
 753        vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 754                                   prime.base);
 755        (void)ttm_bo_reference(&vmw_user_bo->dma.base);
 756        if (p_base)
 757                *p_base = base;
 758        else
 759                ttm_base_object_unref(&base);
 760        *out = &vmw_user_bo->dma;
 761
 762        return 0;
 763}
 764
 765int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
 766                              struct vmw_dma_buffer *dma_buf,
 767                              uint32_t *handle)
 768{
 769        struct vmw_user_dma_buffer *user_bo;
 770
 771        if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
 772                return -EINVAL;
 773
 774        user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
 775
 776        *handle = user_bo->prime.base.hash.key;
 777        return ttm_ref_object_add(tfile, &user_bo->prime.base,
 778                                  TTM_REF_USAGE, NULL);
 779}
 780
 781/*
 782 * Stream management
 783 */
 784
 785static void vmw_stream_destroy(struct vmw_resource *res)
 786{
 787        struct vmw_private *dev_priv = res->dev_priv;
 788        struct vmw_stream *stream;
 789        int ret;
 790
 791        DRM_INFO("%s: unref\n", __func__);
 792        stream = container_of(res, struct vmw_stream, res);
 793
 794        ret = vmw_overlay_unref(dev_priv, stream->stream_id);
 795        WARN_ON(ret != 0);
 796}
 797
 798static int vmw_stream_init(struct vmw_private *dev_priv,
 799                           struct vmw_stream *stream,
 800                           void (*res_free) (struct vmw_resource *res))
 801{
 802        struct vmw_resource *res = &stream->res;
 803        int ret;
 804
 805        ret = vmw_resource_init(dev_priv, res, false, res_free,
 806                                &vmw_stream_func);
 807
 808        if (unlikely(ret != 0)) {
 809                if (res_free == NULL)
 810                        kfree(stream);
 811                else
 812                        res_free(&stream->res);
 813                return ret;
 814        }
 815
 816        ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
 817        if (ret) {
 818                vmw_resource_unreference(&res);
 819                return ret;
 820        }
 821
 822        DRM_INFO("%s: claimed\n", __func__);
 823
 824        vmw_resource_activate(&stream->res, vmw_stream_destroy);
 825        return 0;
 826}
 827
 828static void vmw_user_stream_free(struct vmw_resource *res)
 829{
 830        struct vmw_user_stream *stream =
 831            container_of(res, struct vmw_user_stream, stream.res);
 832        struct vmw_private *dev_priv = res->dev_priv;
 833
 834        ttm_base_object_kfree(stream, base);
 835        ttm_mem_global_free(vmw_mem_glob(dev_priv),
 836                            vmw_user_stream_size);
 837}
 838
 839/**
 840 * This function is called when user space has no more references on the
 841 * base object. It releases the base-object's reference on the resource object.
 842 */
 843
 844static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
 845{
 846        struct ttm_base_object *base = *p_base;
 847        struct vmw_user_stream *stream =
 848            container_of(base, struct vmw_user_stream, base);
 849        struct vmw_resource *res = &stream->stream.res;
 850
 851        *p_base = NULL;
 852        vmw_resource_unreference(&res);
 853}
 854
 855int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
 856                           struct drm_file *file_priv)
 857{
 858        struct vmw_private *dev_priv = vmw_priv(dev);
 859        struct vmw_resource *res;
 860        struct vmw_user_stream *stream;
 861        struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 862        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 863        struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
 864        int ret = 0;
 865
 866
 867        res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
 868        if (unlikely(res == NULL))
 869                return -EINVAL;
 870
 871        if (res->res_free != &vmw_user_stream_free) {
 872                ret = -EINVAL;
 873                goto out;
 874        }
 875
 876        stream = container_of(res, struct vmw_user_stream, stream.res);
 877        if (stream->base.tfile != tfile) {
 878                ret = -EINVAL;
 879                goto out;
 880        }
 881
 882        ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
 883out:
 884        vmw_resource_unreference(&res);
 885        return ret;
 886}
 887
 888int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
 889                           struct drm_file *file_priv)
 890{
 891        struct vmw_private *dev_priv = vmw_priv(dev);
 892        struct vmw_user_stream *stream;
 893        struct vmw_resource *res;
 894        struct vmw_resource *tmp;
 895        struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 896        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 897        int ret;
 898
 899        /*
 900         * Approximate idr memory usage with 128 bytes. It will be limited
 901         * by maximum number_of streams anyway?
 902         */
 903
 904        if (unlikely(vmw_user_stream_size == 0))
 905                vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
 906
 907        ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 908        if (unlikely(ret != 0))
 909                return ret;
 910
 911        ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
 912                                   vmw_user_stream_size,
 913                                   false, true);
 914        ttm_read_unlock(&dev_priv->reservation_sem);
 915        if (unlikely(ret != 0)) {
 916                if (ret != -ERESTARTSYS)
 917                        DRM_ERROR("Out of graphics memory for stream"
 918                                  " creation.\n");
 919
 920                goto out_ret;
 921        }
 922
 923        stream = kmalloc(sizeof(*stream), GFP_KERNEL);
 924        if (unlikely(stream == NULL)) {
 925                ttm_mem_global_free(vmw_mem_glob(dev_priv),
 926                                    vmw_user_stream_size);
 927                ret = -ENOMEM;
 928                goto out_ret;
 929        }
 930
 931        res = &stream->stream.res;
 932        stream->base.shareable = false;
 933        stream->base.tfile = NULL;
 934
 935        /*
 936         * From here on, the destructor takes over resource freeing.
 937         */
 938
 939        ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
 940        if (unlikely(ret != 0))
 941                goto out_ret;
 942
 943        tmp = vmw_resource_reference(res);
 944        ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
 945                                   &vmw_user_stream_base_release, NULL);
 946
 947        if (unlikely(ret != 0)) {
 948                vmw_resource_unreference(&tmp);
 949                goto out_err;
 950        }
 951
 952        arg->stream_id = res->id;
 953out_err:
 954        vmw_resource_unreference(&res);
 955out_ret:
 956        return ret;
 957}
 958
 959int vmw_user_stream_lookup(struct vmw_private *dev_priv,
 960                           struct ttm_object_file *tfile,
 961                           uint32_t *inout_id, struct vmw_resource **out)
 962{
 963        struct vmw_user_stream *stream;
 964        struct vmw_resource *res;
 965        int ret;
 966
 967        res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
 968                                  *inout_id);
 969        if (unlikely(res == NULL))
 970                return -EINVAL;
 971
 972        if (res->res_free != &vmw_user_stream_free) {
 973                ret = -EINVAL;
 974                goto err_ref;
 975        }
 976
 977        stream = container_of(res, struct vmw_user_stream, stream.res);
 978        if (stream->base.tfile != tfile) {
 979                ret = -EPERM;
 980                goto err_ref;
 981        }
 982
 983        *inout_id = stream->stream.stream_id;
 984        *out = res;
 985        return 0;
 986err_ref:
 987        vmw_resource_unreference(&res);
 988        return ret;
 989}
 990
 991
 992/**
 993 * vmw_dumb_create - Create a dumb kms buffer
 994 *
 995 * @file_priv: Pointer to a struct drm_file identifying the caller.
 996 * @dev: Pointer to the drm device.
 997 * @args: Pointer to a struct drm_mode_create_dumb structure
 998 *
 999 * This is a driver callback for the core drm create_dumb functionality.
1000 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
1001 * that the arguments have a different format.
1002 */
1003int vmw_dumb_create(struct drm_file *file_priv,
1004                    struct drm_device *dev,
1005                    struct drm_mode_create_dumb *args)
1006{
1007        struct vmw_private *dev_priv = vmw_priv(dev);
1008        struct vmw_dma_buffer *dma_buf;
1009        int ret;
1010
1011        args->pitch = args->width * ((args->bpp + 7) / 8);
1012        args->size = args->pitch * args->height;
1013
1014        ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1015        if (unlikely(ret != 0))
1016                return ret;
1017
1018        ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1019                                    args->size, false, &args->handle,
1020                                    &dma_buf, NULL);
1021        if (unlikely(ret != 0))
1022                goto out_no_dmabuf;
1023
1024        vmw_dmabuf_unreference(&dma_buf);
1025out_no_dmabuf:
1026        ttm_read_unlock(&dev_priv->reservation_sem);
1027        return ret;
1028}
1029
1030/**
1031 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1032 *
1033 * @file_priv: Pointer to a struct drm_file identifying the caller.
1034 * @dev: Pointer to the drm device.
1035 * @handle: Handle identifying the dumb buffer.
1036 * @offset: The address space offset returned.
1037 *
1038 * This is a driver callback for the core drm dumb_map_offset functionality.
1039 */
1040int vmw_dumb_map_offset(struct drm_file *file_priv,
1041                        struct drm_device *dev, uint32_t handle,
1042                        uint64_t *offset)
1043{
1044        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1045        struct vmw_dma_buffer *out_buf;
1046        int ret;
1047
1048        ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1049        if (ret != 0)
1050                return -EINVAL;
1051
1052        *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1053        vmw_dmabuf_unreference(&out_buf);
1054        return 0;
1055}
1056
1057/**
1058 * vmw_dumb_destroy - Destroy a dumb boffer
1059 *
1060 * @file_priv: Pointer to a struct drm_file identifying the caller.
1061 * @dev: Pointer to the drm device.
1062 * @handle: Handle identifying the dumb buffer.
1063 *
1064 * This is a driver callback for the core drm dumb_destroy functionality.
1065 */
1066int vmw_dumb_destroy(struct drm_file *file_priv,
1067                     struct drm_device *dev,
1068                     uint32_t handle)
1069{
1070        return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1071                                         handle, TTM_REF_USAGE);
1072}
1073
1074/**
1075 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1076 *
1077 * @res:            The resource for which to allocate a backup buffer.
1078 * @interruptible:  Whether any sleeps during allocation should be
1079 *                  performed while interruptible.
1080 */
1081static int vmw_resource_buf_alloc(struct vmw_resource *res,
1082                                  bool interruptible)
1083{
1084        unsigned long size =
1085                (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1086        struct vmw_dma_buffer *backup;
1087        int ret;
1088
1089        if (likely(res->backup)) {
1090                BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1091                return 0;
1092        }
1093
1094        backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1095        if (unlikely(backup == NULL))
1096                return -ENOMEM;
1097
1098        ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1099                              res->func->backup_placement,
1100                              interruptible,
1101                              &vmw_dmabuf_bo_free);
1102        if (unlikely(ret != 0))
1103                goto out_no_dmabuf;
1104
1105        res->backup = backup;
1106
1107out_no_dmabuf:
1108        return ret;
1109}
1110
1111/**
1112 * vmw_resource_do_validate - Make a resource up-to-date and visible
1113 *                            to the device.
1114 *
1115 * @res:            The resource to make visible to the device.
1116 * @val_buf:        Information about a buffer possibly
1117 *                  containing backup data if a bind operation is needed.
1118 *
1119 * On hardware resource shortage, this function returns -EBUSY and
1120 * should be retried once resources have been freed up.
1121 */
1122static int vmw_resource_do_validate(struct vmw_resource *res,
1123                                    struct ttm_validate_buffer *val_buf)
1124{
1125        int ret = 0;
1126        const struct vmw_res_func *func = res->func;
1127
1128        if (unlikely(res->id == -1)) {
1129                ret = func->create(res);
1130                if (unlikely(ret != 0))
1131                        return ret;
1132        }
1133
1134        if (func->bind &&
1135            ((func->needs_backup && list_empty(&res->mob_head) &&
1136              val_buf->bo != NULL) ||
1137             (!func->needs_backup && val_buf->bo != NULL))) {
1138                ret = func->bind(res, val_buf);
1139                if (unlikely(ret != 0))
1140                        goto out_bind_failed;
1141                if (func->needs_backup)
1142                        list_add_tail(&res->mob_head, &res->backup->res_list);
1143        }
1144
1145        /*
1146         * Only do this on write operations, and move to
1147         * vmw_resource_unreserve if it can be called after
1148         * backup buffers have been unreserved. Otherwise
1149         * sort out locking.
1150         */
1151        res->res_dirty = true;
1152
1153        return 0;
1154
1155out_bind_failed:
1156        func->destroy(res);
1157
1158        return ret;
1159}
1160
1161/**
1162 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1163 * command submission.
1164 *
1165 * @res:               Pointer to the struct vmw_resource to unreserve.
1166 * @switch_backup:     Backup buffer has been switched.
1167 * @new_backup:        Pointer to new backup buffer if command submission
1168 *                     switched. May be NULL.
1169 * @new_backup_offset: New backup offset if @switch_backup is true.
1170 *
1171 * Currently unreserving a resource means putting it back on the device's
1172 * resource lru list, so that it can be evicted if necessary.
1173 */
1174void vmw_resource_unreserve(struct vmw_resource *res,
1175                            bool switch_backup,
1176                            struct vmw_dma_buffer *new_backup,
1177                            unsigned long new_backup_offset)
1178{
1179        struct vmw_private *dev_priv = res->dev_priv;
1180
1181        if (!list_empty(&res->lru_head))
1182                return;
1183
1184        if (switch_backup && new_backup != res->backup) {
1185                if (res->backup) {
1186                        lockdep_assert_held(&res->backup->base.resv->lock.base);
1187                        list_del_init(&res->mob_head);
1188                        vmw_dmabuf_unreference(&res->backup);
1189                }
1190
1191                if (new_backup) {
1192                        res->backup = vmw_dmabuf_reference(new_backup);
1193                        lockdep_assert_held(&new_backup->base.resv->lock.base);
1194                        list_add_tail(&res->mob_head, &new_backup->res_list);
1195                } else {
1196                        res->backup = NULL;
1197                }
1198        }
1199        if (switch_backup)
1200                res->backup_offset = new_backup_offset;
1201
1202        if (!res->func->may_evict || res->id == -1 || res->pin_count)
1203                return;
1204
1205        write_lock(&dev_priv->resource_lock);
1206        list_add_tail(&res->lru_head,
1207                      &res->dev_priv->res_lru[res->func->res_type]);
1208        write_unlock(&dev_priv->resource_lock);
1209}
1210
1211/**
1212 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1213 *                             for a resource and in that case, allocate
1214 *                             one, reserve and validate it.
1215 *
1216 * @res:            The resource for which to allocate a backup buffer.
1217 * @interruptible:  Whether any sleeps during allocation should be
1218 *                  performed while interruptible.
1219 * @val_buf:        On successful return contains data about the
1220 *                  reserved and validated backup buffer.
1221 */
1222static int
1223vmw_resource_check_buffer(struct vmw_resource *res,
1224                          bool interruptible,
1225                          struct ttm_validate_buffer *val_buf)
1226{
1227        struct list_head val_list;
1228        bool backup_dirty = false;
1229        int ret;
1230
1231        if (unlikely(res->backup == NULL)) {
1232                ret = vmw_resource_buf_alloc(res, interruptible);
1233                if (unlikely(ret != 0))
1234                        return ret;
1235        }
1236
1237        INIT_LIST_HEAD(&val_list);
1238        val_buf->bo = ttm_bo_reference(&res->backup->base);
1239        val_buf->shared = false;
1240        list_add_tail(&val_buf->head, &val_list);
1241        ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1242        if (unlikely(ret != 0))
1243                goto out_no_reserve;
1244
1245        if (res->func->needs_backup && list_empty(&res->mob_head))
1246                return 0;
1247
1248        backup_dirty = res->backup_dirty;
1249        ret = ttm_bo_validate(&res->backup->base,
1250                              res->func->backup_placement,
1251                              true, false);
1252
1253        if (unlikely(ret != 0))
1254                goto out_no_validate;
1255
1256        return 0;
1257
1258out_no_validate:
1259        ttm_eu_backoff_reservation(NULL, &val_list);
1260out_no_reserve:
1261        ttm_bo_unref(&val_buf->bo);
1262        if (backup_dirty)
1263                vmw_dmabuf_unreference(&res->backup);
1264
1265        return ret;
1266}
1267
1268/**
1269 * vmw_resource_reserve - Reserve a resource for command submission
1270 *
1271 * @res:            The resource to reserve.
1272 *
1273 * This function takes the resource off the LRU list and make sure
1274 * a backup buffer is present for guest-backed resources. However,
1275 * the buffer may not be bound to the resource at this point.
1276 *
1277 */
1278int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1279                         bool no_backup)
1280{
1281        struct vmw_private *dev_priv = res->dev_priv;
1282        int ret;
1283
1284        write_lock(&dev_priv->resource_lock);
1285        list_del_init(&res->lru_head);
1286        write_unlock(&dev_priv->resource_lock);
1287
1288        if (res->func->needs_backup && res->backup == NULL &&
1289            !no_backup) {
1290                ret = vmw_resource_buf_alloc(res, interruptible);
1291                if (unlikely(ret != 0)) {
1292                        DRM_ERROR("Failed to allocate a backup buffer "
1293                                  "of size %lu. bytes\n",
1294                                  (unsigned long) res->backup_size);
1295                        return ret;
1296                }
1297        }
1298
1299        return 0;
1300}
1301
1302/**
1303 * vmw_resource_backoff_reservation - Unreserve and unreference a
1304 *                                    backup buffer
1305 *.
1306 * @val_buf:        Backup buffer information.
1307 */
1308static void
1309vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1310{
1311        struct list_head val_list;
1312
1313        if (likely(val_buf->bo == NULL))
1314                return;
1315
1316        INIT_LIST_HEAD(&val_list);
1317        list_add_tail(&val_buf->head, &val_list);
1318        ttm_eu_backoff_reservation(NULL, &val_list);
1319        ttm_bo_unref(&val_buf->bo);
1320}
1321
1322/**
1323 * vmw_resource_do_evict - Evict a resource, and transfer its data
1324 *                         to a backup buffer.
1325 *
1326 * @res:            The resource to evict.
1327 * @interruptible:  Whether to wait interruptible.
1328 */
1329static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1330{
1331        struct ttm_validate_buffer val_buf;
1332        const struct vmw_res_func *func = res->func;
1333        int ret;
1334
1335        BUG_ON(!func->may_evict);
1336
1337        val_buf.bo = NULL;
1338        val_buf.shared = false;
1339        ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1340        if (unlikely(ret != 0))
1341                return ret;
1342
1343        if (unlikely(func->unbind != NULL &&
1344                     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1345                ret = func->unbind(res, res->res_dirty, &val_buf);
1346                if (unlikely(ret != 0))
1347                        goto out_no_unbind;
1348                list_del_init(&res->mob_head);
1349        }
1350        ret = func->destroy(res);
1351        res->backup_dirty = true;
1352        res->res_dirty = false;
1353out_no_unbind:
1354        vmw_resource_backoff_reservation(&val_buf);
1355
1356        return ret;
1357}
1358
1359
1360/**
1361 * vmw_resource_validate - Make a resource up-to-date and visible
1362 *                         to the device.
1363 *
1364 * @res:            The resource to make visible to the device.
1365 *
1366 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1367 * be reserved and validated.
1368 * On hardware resource shortage, this function will repeatedly evict
1369 * resources of the same type until the validation succeeds.
1370 */
1371int vmw_resource_validate(struct vmw_resource *res)
1372{
1373        int ret;
1374        struct vmw_resource *evict_res;
1375        struct vmw_private *dev_priv = res->dev_priv;
1376        struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1377        struct ttm_validate_buffer val_buf;
1378        unsigned err_count = 0;
1379
1380        if (!res->func->create)
1381                return 0;
1382
1383        val_buf.bo = NULL;
1384        val_buf.shared = false;
1385        if (res->backup)
1386                val_buf.bo = &res->backup->base;
1387        do {
1388                ret = vmw_resource_do_validate(res, &val_buf);
1389                if (likely(ret != -EBUSY))
1390                        break;
1391
1392                write_lock(&dev_priv->resource_lock);
1393                if (list_empty(lru_list) || !res->func->may_evict) {
1394                        DRM_ERROR("Out of device device resources "
1395                                  "for %s.\n", res->func->type_name);
1396                        ret = -EBUSY;
1397                        write_unlock(&dev_priv->resource_lock);
1398                        break;
1399                }
1400
1401                evict_res = vmw_resource_reference
1402                        (list_first_entry(lru_list, struct vmw_resource,
1403                                          lru_head));
1404                list_del_init(&evict_res->lru_head);
1405
1406                write_unlock(&dev_priv->resource_lock);
1407
1408                ret = vmw_resource_do_evict(evict_res, true);
1409                if (unlikely(ret != 0)) {
1410                        write_lock(&dev_priv->resource_lock);
1411                        list_add_tail(&evict_res->lru_head, lru_list);
1412                        write_unlock(&dev_priv->resource_lock);
1413                        if (ret == -ERESTARTSYS ||
1414                            ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1415                                vmw_resource_unreference(&evict_res);
1416                                goto out_no_validate;
1417                        }
1418                }
1419
1420                vmw_resource_unreference(&evict_res);
1421        } while (1);
1422
1423        if (unlikely(ret != 0))
1424                goto out_no_validate;
1425        else if (!res->func->needs_backup && res->backup) {
1426                list_del_init(&res->mob_head);
1427                vmw_dmabuf_unreference(&res->backup);
1428        }
1429
1430        return 0;
1431
1432out_no_validate:
1433        return ret;
1434}
1435
1436/**
1437 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1438 *                       object without unreserving it.
1439 *
1440 * @bo:             Pointer to the struct ttm_buffer_object to fence.
1441 * @fence:          Pointer to the fence. If NULL, this function will
1442 *                  insert a fence into the command stream..
1443 *
1444 * Contrary to the ttm_eu version of this function, it takes only
1445 * a single buffer object instead of a list, and it also doesn't
1446 * unreserve the buffer object, which needs to be done separately.
1447 */
1448void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1449                         struct vmw_fence_obj *fence)
1450{
1451        struct ttm_bo_device *bdev = bo->bdev;
1452
1453        struct vmw_private *dev_priv =
1454                container_of(bdev, struct vmw_private, bdev);
1455
1456        if (fence == NULL) {
1457                vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1458                reservation_object_add_excl_fence(bo->resv, &fence->base);
1459                fence_put(&fence->base);
1460        } else
1461                reservation_object_add_excl_fence(bo->resv, &fence->base);
1462}
1463
1464/**
1465 * vmw_resource_move_notify - TTM move_notify_callback
1466 *
1467 * @bo: The TTM buffer object about to move.
1468 * @mem: The struct ttm_mem_reg indicating to what memory
1469 *       region the move is taking place.
1470 *
1471 * Evicts the Guest Backed hardware resource if the backup
1472 * buffer is being moved out of MOB memory.
1473 * Note that this function should not race with the resource
1474 * validation code as long as it accesses only members of struct
1475 * resource that remain static while bo::res is !NULL and
1476 * while we have @bo reserved. struct resource::backup is *not* a
1477 * static member. The resource validation code will take care
1478 * to set @bo::res to NULL, while having @bo reserved when the
1479 * buffer is no longer bound to the resource, so @bo:res can be
1480 * used to determine whether there is a need to unbind and whether
1481 * it is safe to unbind.
1482 */
1483void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1484                              struct ttm_mem_reg *mem)
1485{
1486        struct vmw_dma_buffer *dma_buf;
1487
1488        if (mem == NULL)
1489                return;
1490
1491        if (bo->destroy != vmw_dmabuf_bo_free &&
1492            bo->destroy != vmw_user_dmabuf_destroy)
1493                return;
1494
1495        dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1496
1497        if (mem->mem_type != VMW_PL_MOB) {
1498                struct vmw_resource *res, *n;
1499                struct ttm_validate_buffer val_buf;
1500
1501                val_buf.bo = bo;
1502                val_buf.shared = false;
1503
1504                list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1505
1506                        if (unlikely(res->func->unbind == NULL))
1507                                continue;
1508
1509                        (void) res->func->unbind(res, true, &val_buf);
1510                        res->backup_dirty = true;
1511                        res->res_dirty = false;
1512                        list_del_init(&res->mob_head);
1513                }
1514
1515                (void) ttm_bo_wait(bo, false, false, false);
1516        }
1517}
1518
1519
1520
1521/**
1522 * vmw_query_readback_all - Read back cached query states
1523 *
1524 * @dx_query_mob: Buffer containing the DX query MOB
1525 *
1526 * Read back cached states from the device if they exist.  This function
1527 * assumings binding_mutex is held.
1528 */
1529int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1530{
1531        struct vmw_resource *dx_query_ctx;
1532        struct vmw_private *dev_priv;
1533        struct {
1534                SVGA3dCmdHeader header;
1535                SVGA3dCmdDXReadbackAllQuery body;
1536        } *cmd;
1537
1538
1539        /* No query bound, so do nothing */
1540        if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1541                return 0;
1542
1543        dx_query_ctx = dx_query_mob->dx_query_ctx;
1544        dev_priv     = dx_query_ctx->dev_priv;
1545
1546        cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1547        if (unlikely(cmd == NULL)) {
1548                DRM_ERROR("Failed reserving FIFO space for "
1549                          "query MOB read back.\n");
1550                return -ENOMEM;
1551        }
1552
1553        cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1554        cmd->header.size = sizeof(cmd->body);
1555        cmd->body.cid    = dx_query_ctx->id;
1556
1557        vmw_fifo_commit(dev_priv, sizeof(*cmd));
1558
1559        /* Triggers a rebind the next time affected context is bound */
1560        dx_query_mob->dx_query_ctx = NULL;
1561
1562        return 0;
1563}
1564
1565
1566
1567/**
1568 * vmw_query_move_notify - Read back cached query states
1569 *
1570 * @bo: The TTM buffer object about to move.
1571 * @mem: The memory region @bo is moving to.
1572 *
1573 * Called before the query MOB is swapped out to read back cached query
1574 * states from the device.
1575 */
1576void vmw_query_move_notify(struct ttm_buffer_object *bo,
1577                           struct ttm_mem_reg *mem)
1578{
1579        struct vmw_dma_buffer *dx_query_mob;
1580        struct ttm_bo_device *bdev = bo->bdev;
1581        struct vmw_private *dev_priv;
1582
1583
1584        dev_priv = container_of(bdev, struct vmw_private, bdev);
1585
1586        mutex_lock(&dev_priv->binding_mutex);
1587
1588        dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1589        if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1590                mutex_unlock(&dev_priv->binding_mutex);
1591                return;
1592        }
1593
1594        /* If BO is being moved from MOB to system memory */
1595        if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1596                struct vmw_fence_obj *fence;
1597
1598                (void) vmw_query_readback_all(dx_query_mob);
1599                mutex_unlock(&dev_priv->binding_mutex);
1600
1601                /* Create a fence and attach the BO to it */
1602                (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1603                vmw_fence_single_bo(bo, fence);
1604
1605                if (fence != NULL)
1606                        vmw_fence_obj_unreference(&fence);
1607
1608                (void) ttm_bo_wait(bo, false, false, false);
1609        } else
1610                mutex_unlock(&dev_priv->binding_mutex);
1611
1612}
1613
1614/**
1615 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1616 *
1617 * @res:            The resource being queried.
1618 */
1619bool vmw_resource_needs_backup(const struct vmw_resource *res)
1620{
1621        return res->func->needs_backup;
1622}
1623
1624/**
1625 * vmw_resource_evict_type - Evict all resources of a specific type
1626 *
1627 * @dev_priv:       Pointer to a device private struct
1628 * @type:           The resource type to evict
1629 *
1630 * To avoid thrashing starvation or as part of the hibernation sequence,
1631 * try to evict all evictable resources of a specific type.
1632 */
1633static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1634                                    enum vmw_res_type type)
1635{
1636        struct list_head *lru_list = &dev_priv->res_lru[type];
1637        struct vmw_resource *evict_res;
1638        unsigned err_count = 0;
1639        int ret;
1640
1641        do {
1642                write_lock(&dev_priv->resource_lock);
1643
1644                if (list_empty(lru_list))
1645                        goto out_unlock;
1646
1647                evict_res = vmw_resource_reference(
1648                        list_first_entry(lru_list, struct vmw_resource,
1649                                         lru_head));
1650                list_del_init(&evict_res->lru_head);
1651                write_unlock(&dev_priv->resource_lock);
1652
1653                ret = vmw_resource_do_evict(evict_res, false);
1654                if (unlikely(ret != 0)) {
1655                        write_lock(&dev_priv->resource_lock);
1656                        list_add_tail(&evict_res->lru_head, lru_list);
1657                        write_unlock(&dev_priv->resource_lock);
1658                        if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1659                                vmw_resource_unreference(&evict_res);
1660                                return;
1661                        }
1662                }
1663
1664                vmw_resource_unreference(&evict_res);
1665        } while (1);
1666
1667out_unlock:
1668        write_unlock(&dev_priv->resource_lock);
1669}
1670
1671/**
1672 * vmw_resource_evict_all - Evict all evictable resources
1673 *
1674 * @dev_priv:       Pointer to a device private struct
1675 *
1676 * To avoid thrashing starvation or as part of the hibernation sequence,
1677 * evict all evictable resources. In particular this means that all
1678 * guest-backed resources that are registered with the device are
1679 * evicted and the OTable becomes clean.
1680 */
1681void vmw_resource_evict_all(struct vmw_private *dev_priv)
1682{
1683        enum vmw_res_type type;
1684
1685        mutex_lock(&dev_priv->cmdbuf_mutex);
1686
1687        for (type = 0; type < vmw_res_max; ++type)
1688                vmw_resource_evict_type(dev_priv, type);
1689
1690        mutex_unlock(&dev_priv->cmdbuf_mutex);
1691}
1692
1693/**
1694 * vmw_resource_pin - Add a pin reference on a resource
1695 *
1696 * @res: The resource to add a pin reference on
1697 *
1698 * This function adds a pin reference, and if needed validates the resource.
1699 * Having a pin reference means that the resource can never be evicted, and
1700 * its id will never change as long as there is a pin reference.
1701 * This function returns 0 on success and a negative error code on failure.
1702 */
1703int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1704{
1705        struct vmw_private *dev_priv = res->dev_priv;
1706        int ret;
1707
1708        ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1709        mutex_lock(&dev_priv->cmdbuf_mutex);
1710        ret = vmw_resource_reserve(res, interruptible, false);
1711        if (ret)
1712                goto out_no_reserve;
1713
1714        if (res->pin_count == 0) {
1715                struct vmw_dma_buffer *vbo = NULL;
1716
1717                if (res->backup) {
1718                        vbo = res->backup;
1719
1720                        ttm_bo_reserve(&vbo->base, interruptible, false, false,
1721                                       NULL);
1722                        if (!vbo->pin_count) {
1723                                ret = ttm_bo_validate
1724                                        (&vbo->base,
1725                                         res->func->backup_placement,
1726                                         interruptible, false);
1727                                if (ret) {
1728                                        ttm_bo_unreserve(&vbo->base);
1729                                        goto out_no_validate;
1730                                }
1731                        }
1732
1733                        /* Do we really need to pin the MOB as well? */
1734                        vmw_bo_pin_reserved(vbo, true);
1735                }
1736                ret = vmw_resource_validate(res);
1737                if (vbo)
1738                        ttm_bo_unreserve(&vbo->base);
1739                if (ret)
1740                        goto out_no_validate;
1741        }
1742        res->pin_count++;
1743
1744out_no_validate:
1745        vmw_resource_unreserve(res, false, NULL, 0UL);
1746out_no_reserve:
1747        mutex_unlock(&dev_priv->cmdbuf_mutex);
1748        ttm_write_unlock(&dev_priv->reservation_sem);
1749
1750        return ret;
1751}
1752
1753/**
1754 * vmw_resource_unpin - Remove a pin reference from a resource
1755 *
1756 * @res: The resource to remove a pin reference from
1757 *
1758 * Having a pin reference means that the resource can never be evicted, and
1759 * its id will never change as long as there is a pin reference.
1760 */
1761void vmw_resource_unpin(struct vmw_resource *res)
1762{
1763        struct vmw_private *dev_priv = res->dev_priv;
1764        int ret;
1765
1766        ttm_read_lock(&dev_priv->reservation_sem, false);
1767        mutex_lock(&dev_priv->cmdbuf_mutex);
1768
1769        ret = vmw_resource_reserve(res, false, true);
1770        WARN_ON(ret);
1771
1772        WARN_ON(res->pin_count == 0);
1773        if (--res->pin_count == 0 && res->backup) {
1774                struct vmw_dma_buffer *vbo = res->backup;
1775
1776                ttm_bo_reserve(&vbo->base, false, false, false, NULL);
1777                vmw_bo_pin_reserved(vbo, false);
1778                ttm_bo_unreserve(&vbo->base);
1779        }
1780
1781        vmw_resource_unreserve(res, false, NULL, 0UL);
1782
1783        mutex_unlock(&dev_priv->cmdbuf_mutex);
1784        ttm_read_unlock(&dev_priv->reservation_sem);
1785}
1786
1787/**
1788 * vmw_res_type - Return the resource type
1789 *
1790 * @res: Pointer to the resource
1791 */
1792enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1793{
1794        return res->func->res_type;
1795}
1796