linux/drivers/md/dm-crypt.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/kthread.h>
  22#include <linux/backing-dev.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <linux/rbtree.h>
  26#include <asm/page.h>
  27#include <asm/unaligned.h>
  28#include <crypto/hash.h>
  29#include <crypto/md5.h>
  30#include <crypto/algapi.h>
  31
  32#include <linux/device-mapper.h>
  33
  34#define DM_MSG_PREFIX "crypt"
  35
  36/*
  37 * context holding the current state of a multi-part conversion
  38 */
  39struct convert_context {
  40        struct completion restart;
  41        struct bio *bio_in;
  42        struct bio *bio_out;
  43        struct bvec_iter iter_in;
  44        struct bvec_iter iter_out;
  45        sector_t cc_sector;
  46        atomic_t cc_pending;
  47        struct ablkcipher_request *req;
  48};
  49
  50/*
  51 * per bio private data
  52 */
  53struct dm_crypt_io {
  54        struct crypt_config *cc;
  55        struct bio *base_bio;
  56        struct work_struct work;
  57
  58        struct convert_context ctx;
  59
  60        atomic_t io_pending;
  61        int error;
  62        sector_t sector;
  63
  64        struct rb_node rb_node;
  65} CRYPTO_MINALIGN_ATTR;
  66
  67struct dm_crypt_request {
  68        struct convert_context *ctx;
  69        struct scatterlist sg_in;
  70        struct scatterlist sg_out;
  71        sector_t iv_sector;
  72};
  73
  74struct crypt_config;
  75
  76struct crypt_iv_operations {
  77        int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  78                   const char *opts);
  79        void (*dtr)(struct crypt_config *cc);
  80        int (*init)(struct crypt_config *cc);
  81        int (*wipe)(struct crypt_config *cc);
  82        int (*generator)(struct crypt_config *cc, u8 *iv,
  83                         struct dm_crypt_request *dmreq);
  84        int (*post)(struct crypt_config *cc, u8 *iv,
  85                    struct dm_crypt_request *dmreq);
  86};
  87
  88struct iv_essiv_private {
  89        struct crypto_hash *hash_tfm;
  90        u8 *salt;
  91};
  92
  93struct iv_benbi_private {
  94        int shift;
  95};
  96
  97#define LMK_SEED_SIZE 64 /* hash + 0 */
  98struct iv_lmk_private {
  99        struct crypto_shash *hash_tfm;
 100        u8 *seed;
 101};
 102
 103#define TCW_WHITENING_SIZE 16
 104struct iv_tcw_private {
 105        struct crypto_shash *crc32_tfm;
 106        u8 *iv_seed;
 107        u8 *whitening;
 108};
 109
 110/*
 111 * Crypt: maps a linear range of a block device
 112 * and encrypts / decrypts at the same time.
 113 */
 114enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 115             DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
 116
 117/*
 118 * The fields in here must be read only after initialization.
 119 */
 120struct crypt_config {
 121        struct dm_dev *dev;
 122        sector_t start;
 123
 124        /*
 125         * pool for per bio private data, crypto requests and
 126         * encryption requeusts/buffer pages
 127         */
 128        mempool_t *req_pool;
 129        mempool_t *page_pool;
 130        struct bio_set *bs;
 131        struct mutex bio_alloc_lock;
 132
 133        struct workqueue_struct *io_queue;
 134        struct workqueue_struct *crypt_queue;
 135
 136        struct task_struct *write_thread;
 137        wait_queue_head_t write_thread_wait;
 138        struct rb_root write_tree;
 139
 140        char *cipher;
 141        char *cipher_string;
 142
 143        struct crypt_iv_operations *iv_gen_ops;
 144        union {
 145                struct iv_essiv_private essiv;
 146                struct iv_benbi_private benbi;
 147                struct iv_lmk_private lmk;
 148                struct iv_tcw_private tcw;
 149        } iv_gen_private;
 150        sector_t iv_offset;
 151        unsigned int iv_size;
 152
 153        /* ESSIV: struct crypto_cipher *essiv_tfm */
 154        void *iv_private;
 155        struct crypto_ablkcipher **tfms;
 156        unsigned tfms_count;
 157
 158        /*
 159         * Layout of each crypto request:
 160         *
 161         *   struct ablkcipher_request
 162         *      context
 163         *      padding
 164         *   struct dm_crypt_request
 165         *      padding
 166         *   IV
 167         *
 168         * The padding is added so that dm_crypt_request and the IV are
 169         * correctly aligned.
 170         */
 171        unsigned int dmreq_start;
 172
 173        unsigned int per_bio_data_size;
 174
 175        unsigned long flags;
 176        unsigned int key_size;
 177        unsigned int key_parts;      /* independent parts in key buffer */
 178        unsigned int key_extra_size; /* additional keys length */
 179        u8 key[0];
 180};
 181
 182#define MIN_IOS        16
 183
 184static void clone_init(struct dm_crypt_io *, struct bio *);
 185static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 186static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 187
 188/*
 189 * Use this to access cipher attributes that are the same for each CPU.
 190 */
 191static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
 192{
 193        return cc->tfms[0];
 194}
 195
 196/*
 197 * Different IV generation algorithms:
 198 *
 199 * plain: the initial vector is the 32-bit little-endian version of the sector
 200 *        number, padded with zeros if necessary.
 201 *
 202 * plain64: the initial vector is the 64-bit little-endian version of the sector
 203 *        number, padded with zeros if necessary.
 204 *
 205 * essiv: "encrypted sector|salt initial vector", the sector number is
 206 *        encrypted with the bulk cipher using a salt as key. The salt
 207 *        should be derived from the bulk cipher's key via hashing.
 208 *
 209 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 210 *        (needed for LRW-32-AES and possible other narrow block modes)
 211 *
 212 * null: the initial vector is always zero.  Provides compatibility with
 213 *       obsolete loop_fish2 devices.  Do not use for new devices.
 214 *
 215 * lmk:  Compatible implementation of the block chaining mode used
 216 *       by the Loop-AES block device encryption system
 217 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 218 *       It operates on full 512 byte sectors and uses CBC
 219 *       with an IV derived from the sector number, the data and
 220 *       optionally extra IV seed.
 221 *       This means that after decryption the first block
 222 *       of sector must be tweaked according to decrypted data.
 223 *       Loop-AES can use three encryption schemes:
 224 *         version 1: is plain aes-cbc mode
 225 *         version 2: uses 64 multikey scheme with lmk IV generator
 226 *         version 3: the same as version 2 with additional IV seed
 227 *                   (it uses 65 keys, last key is used as IV seed)
 228 *
 229 * tcw:  Compatible implementation of the block chaining mode used
 230 *       by the TrueCrypt device encryption system (prior to version 4.1).
 231 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 232 *       It operates on full 512 byte sectors and uses CBC
 233 *       with an IV derived from initial key and the sector number.
 234 *       In addition, whitening value is applied on every sector, whitening
 235 *       is calculated from initial key, sector number and mixed using CRC32.
 236 *       Note that this encryption scheme is vulnerable to watermarking attacks
 237 *       and should be used for old compatible containers access only.
 238 *
 239 * plumb: unimplemented, see:
 240 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 241 */
 242
 243static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 244                              struct dm_crypt_request *dmreq)
 245{
 246        memset(iv, 0, cc->iv_size);
 247        *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 248
 249        return 0;
 250}
 251
 252static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 253                                struct dm_crypt_request *dmreq)
 254{
 255        memset(iv, 0, cc->iv_size);
 256        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 257
 258        return 0;
 259}
 260
 261/* Initialise ESSIV - compute salt but no local memory allocations */
 262static int crypt_iv_essiv_init(struct crypt_config *cc)
 263{
 264        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 265        struct hash_desc desc;
 266        struct scatterlist sg;
 267        struct crypto_cipher *essiv_tfm;
 268        int err;
 269
 270        sg_init_one(&sg, cc->key, cc->key_size);
 271        desc.tfm = essiv->hash_tfm;
 272        desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 273
 274        err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
 275        if (err)
 276                return err;
 277
 278        essiv_tfm = cc->iv_private;
 279
 280        err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 281                            crypto_hash_digestsize(essiv->hash_tfm));
 282        if (err)
 283                return err;
 284
 285        return 0;
 286}
 287
 288/* Wipe salt and reset key derived from volume key */
 289static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 290{
 291        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 292        unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
 293        struct crypto_cipher *essiv_tfm;
 294        int r, err = 0;
 295
 296        memset(essiv->salt, 0, salt_size);
 297
 298        essiv_tfm = cc->iv_private;
 299        r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 300        if (r)
 301                err = r;
 302
 303        return err;
 304}
 305
 306/* Set up per cpu cipher state */
 307static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 308                                             struct dm_target *ti,
 309                                             u8 *salt, unsigned saltsize)
 310{
 311        struct crypto_cipher *essiv_tfm;
 312        int err;
 313
 314        /* Setup the essiv_tfm with the given salt */
 315        essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 316        if (IS_ERR(essiv_tfm)) {
 317                ti->error = "Error allocating crypto tfm for ESSIV";
 318                return essiv_tfm;
 319        }
 320
 321        if (crypto_cipher_blocksize(essiv_tfm) !=
 322            crypto_ablkcipher_ivsize(any_tfm(cc))) {
 323                ti->error = "Block size of ESSIV cipher does "
 324                            "not match IV size of block cipher";
 325                crypto_free_cipher(essiv_tfm);
 326                return ERR_PTR(-EINVAL);
 327        }
 328
 329        err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 330        if (err) {
 331                ti->error = "Failed to set key for ESSIV cipher";
 332                crypto_free_cipher(essiv_tfm);
 333                return ERR_PTR(err);
 334        }
 335
 336        return essiv_tfm;
 337}
 338
 339static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 340{
 341        struct crypto_cipher *essiv_tfm;
 342        struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 343
 344        crypto_free_hash(essiv->hash_tfm);
 345        essiv->hash_tfm = NULL;
 346
 347        kzfree(essiv->salt);
 348        essiv->salt = NULL;
 349
 350        essiv_tfm = cc->iv_private;
 351
 352        if (essiv_tfm)
 353                crypto_free_cipher(essiv_tfm);
 354
 355        cc->iv_private = NULL;
 356}
 357
 358static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 359                              const char *opts)
 360{
 361        struct crypto_cipher *essiv_tfm = NULL;
 362        struct crypto_hash *hash_tfm = NULL;
 363        u8 *salt = NULL;
 364        int err;
 365
 366        if (!opts) {
 367                ti->error = "Digest algorithm missing for ESSIV mode";
 368                return -EINVAL;
 369        }
 370
 371        /* Allocate hash algorithm */
 372        hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
 373        if (IS_ERR(hash_tfm)) {
 374                ti->error = "Error initializing ESSIV hash";
 375                err = PTR_ERR(hash_tfm);
 376                goto bad;
 377        }
 378
 379        salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
 380        if (!salt) {
 381                ti->error = "Error kmallocing salt storage in ESSIV";
 382                err = -ENOMEM;
 383                goto bad;
 384        }
 385
 386        cc->iv_gen_private.essiv.salt = salt;
 387        cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 388
 389        essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 390                                crypto_hash_digestsize(hash_tfm));
 391        if (IS_ERR(essiv_tfm)) {
 392                crypt_iv_essiv_dtr(cc);
 393                return PTR_ERR(essiv_tfm);
 394        }
 395        cc->iv_private = essiv_tfm;
 396
 397        return 0;
 398
 399bad:
 400        if (hash_tfm && !IS_ERR(hash_tfm))
 401                crypto_free_hash(hash_tfm);
 402        kfree(salt);
 403        return err;
 404}
 405
 406static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 407                              struct dm_crypt_request *dmreq)
 408{
 409        struct crypto_cipher *essiv_tfm = cc->iv_private;
 410
 411        memset(iv, 0, cc->iv_size);
 412        *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 413        crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 414
 415        return 0;
 416}
 417
 418static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 419                              const char *opts)
 420{
 421        unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
 422        int log = ilog2(bs);
 423
 424        /* we need to calculate how far we must shift the sector count
 425         * to get the cipher block count, we use this shift in _gen */
 426
 427        if (1 << log != bs) {
 428                ti->error = "cypher blocksize is not a power of 2";
 429                return -EINVAL;
 430        }
 431
 432        if (log > 9) {
 433                ti->error = "cypher blocksize is > 512";
 434                return -EINVAL;
 435        }
 436
 437        cc->iv_gen_private.benbi.shift = 9 - log;
 438
 439        return 0;
 440}
 441
 442static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 443{
 444}
 445
 446static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 447                              struct dm_crypt_request *dmreq)
 448{
 449        __be64 val;
 450
 451        memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 452
 453        val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 454        put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 455
 456        return 0;
 457}
 458
 459static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 460                             struct dm_crypt_request *dmreq)
 461{
 462        memset(iv, 0, cc->iv_size);
 463
 464        return 0;
 465}
 466
 467static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 468{
 469        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 470
 471        if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 472                crypto_free_shash(lmk->hash_tfm);
 473        lmk->hash_tfm = NULL;
 474
 475        kzfree(lmk->seed);
 476        lmk->seed = NULL;
 477}
 478
 479static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 480                            const char *opts)
 481{
 482        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 483
 484        lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 485        if (IS_ERR(lmk->hash_tfm)) {
 486                ti->error = "Error initializing LMK hash";
 487                return PTR_ERR(lmk->hash_tfm);
 488        }
 489
 490        /* No seed in LMK version 2 */
 491        if (cc->key_parts == cc->tfms_count) {
 492                lmk->seed = NULL;
 493                return 0;
 494        }
 495
 496        lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 497        if (!lmk->seed) {
 498                crypt_iv_lmk_dtr(cc);
 499                ti->error = "Error kmallocing seed storage in LMK";
 500                return -ENOMEM;
 501        }
 502
 503        return 0;
 504}
 505
 506static int crypt_iv_lmk_init(struct crypt_config *cc)
 507{
 508        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 509        int subkey_size = cc->key_size / cc->key_parts;
 510
 511        /* LMK seed is on the position of LMK_KEYS + 1 key */
 512        if (lmk->seed)
 513                memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 514                       crypto_shash_digestsize(lmk->hash_tfm));
 515
 516        return 0;
 517}
 518
 519static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 520{
 521        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 522
 523        if (lmk->seed)
 524                memset(lmk->seed, 0, LMK_SEED_SIZE);
 525
 526        return 0;
 527}
 528
 529static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 530                            struct dm_crypt_request *dmreq,
 531                            u8 *data)
 532{
 533        struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 534        SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 535        struct md5_state md5state;
 536        __le32 buf[4];
 537        int i, r;
 538
 539        desc->tfm = lmk->hash_tfm;
 540        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 541
 542        r = crypto_shash_init(desc);
 543        if (r)
 544                return r;
 545
 546        if (lmk->seed) {
 547                r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 548                if (r)
 549                        return r;
 550        }
 551
 552        /* Sector is always 512B, block size 16, add data of blocks 1-31 */
 553        r = crypto_shash_update(desc, data + 16, 16 * 31);
 554        if (r)
 555                return r;
 556
 557        /* Sector is cropped to 56 bits here */
 558        buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 559        buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 560        buf[2] = cpu_to_le32(4024);
 561        buf[3] = 0;
 562        r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 563        if (r)
 564                return r;
 565
 566        /* No MD5 padding here */
 567        r = crypto_shash_export(desc, &md5state);
 568        if (r)
 569                return r;
 570
 571        for (i = 0; i < MD5_HASH_WORDS; i++)
 572                __cpu_to_le32s(&md5state.hash[i]);
 573        memcpy(iv, &md5state.hash, cc->iv_size);
 574
 575        return 0;
 576}
 577
 578static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 579                            struct dm_crypt_request *dmreq)
 580{
 581        u8 *src;
 582        int r = 0;
 583
 584        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 585                src = kmap_atomic(sg_page(&dmreq->sg_in));
 586                r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 587                kunmap_atomic(src);
 588        } else
 589                memset(iv, 0, cc->iv_size);
 590
 591        return r;
 592}
 593
 594static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 595                             struct dm_crypt_request *dmreq)
 596{
 597        u8 *dst;
 598        int r;
 599
 600        if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 601                return 0;
 602
 603        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 604        r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 605
 606        /* Tweak the first block of plaintext sector */
 607        if (!r)
 608                crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 609
 610        kunmap_atomic(dst);
 611        return r;
 612}
 613
 614static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 615{
 616        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 617
 618        kzfree(tcw->iv_seed);
 619        tcw->iv_seed = NULL;
 620        kzfree(tcw->whitening);
 621        tcw->whitening = NULL;
 622
 623        if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 624                crypto_free_shash(tcw->crc32_tfm);
 625        tcw->crc32_tfm = NULL;
 626}
 627
 628static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 629                            const char *opts)
 630{
 631        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 632
 633        if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 634                ti->error = "Wrong key size for TCW";
 635                return -EINVAL;
 636        }
 637
 638        tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 639        if (IS_ERR(tcw->crc32_tfm)) {
 640                ti->error = "Error initializing CRC32 in TCW";
 641                return PTR_ERR(tcw->crc32_tfm);
 642        }
 643
 644        tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 645        tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 646        if (!tcw->iv_seed || !tcw->whitening) {
 647                crypt_iv_tcw_dtr(cc);
 648                ti->error = "Error allocating seed storage in TCW";
 649                return -ENOMEM;
 650        }
 651
 652        return 0;
 653}
 654
 655static int crypt_iv_tcw_init(struct crypt_config *cc)
 656{
 657        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 658        int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 659
 660        memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 661        memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 662               TCW_WHITENING_SIZE);
 663
 664        return 0;
 665}
 666
 667static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 668{
 669        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 670
 671        memset(tcw->iv_seed, 0, cc->iv_size);
 672        memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 673
 674        return 0;
 675}
 676
 677static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 678                                  struct dm_crypt_request *dmreq,
 679                                  u8 *data)
 680{
 681        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 682        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 683        u8 buf[TCW_WHITENING_SIZE];
 684        SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 685        int i, r;
 686
 687        /* xor whitening with sector number */
 688        memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 689        crypto_xor(buf, (u8 *)&sector, 8);
 690        crypto_xor(&buf[8], (u8 *)&sector, 8);
 691
 692        /* calculate crc32 for every 32bit part and xor it */
 693        desc->tfm = tcw->crc32_tfm;
 694        desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 695        for (i = 0; i < 4; i++) {
 696                r = crypto_shash_init(desc);
 697                if (r)
 698                        goto out;
 699                r = crypto_shash_update(desc, &buf[i * 4], 4);
 700                if (r)
 701                        goto out;
 702                r = crypto_shash_final(desc, &buf[i * 4]);
 703                if (r)
 704                        goto out;
 705        }
 706        crypto_xor(&buf[0], &buf[12], 4);
 707        crypto_xor(&buf[4], &buf[8], 4);
 708
 709        /* apply whitening (8 bytes) to whole sector */
 710        for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 711                crypto_xor(data + i * 8, buf, 8);
 712out:
 713        memzero_explicit(buf, sizeof(buf));
 714        return r;
 715}
 716
 717static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 718                            struct dm_crypt_request *dmreq)
 719{
 720        struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 721        u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 722        u8 *src;
 723        int r = 0;
 724
 725        /* Remove whitening from ciphertext */
 726        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 727                src = kmap_atomic(sg_page(&dmreq->sg_in));
 728                r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 729                kunmap_atomic(src);
 730        }
 731
 732        /* Calculate IV */
 733        memcpy(iv, tcw->iv_seed, cc->iv_size);
 734        crypto_xor(iv, (u8 *)&sector, 8);
 735        if (cc->iv_size > 8)
 736                crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 737
 738        return r;
 739}
 740
 741static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 742                             struct dm_crypt_request *dmreq)
 743{
 744        u8 *dst;
 745        int r;
 746
 747        if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 748                return 0;
 749
 750        /* Apply whitening on ciphertext */
 751        dst = kmap_atomic(sg_page(&dmreq->sg_out));
 752        r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 753        kunmap_atomic(dst);
 754
 755        return r;
 756}
 757
 758static struct crypt_iv_operations crypt_iv_plain_ops = {
 759        .generator = crypt_iv_plain_gen
 760};
 761
 762static struct crypt_iv_operations crypt_iv_plain64_ops = {
 763        .generator = crypt_iv_plain64_gen
 764};
 765
 766static struct crypt_iv_operations crypt_iv_essiv_ops = {
 767        .ctr       = crypt_iv_essiv_ctr,
 768        .dtr       = crypt_iv_essiv_dtr,
 769        .init      = crypt_iv_essiv_init,
 770        .wipe      = crypt_iv_essiv_wipe,
 771        .generator = crypt_iv_essiv_gen
 772};
 773
 774static struct crypt_iv_operations crypt_iv_benbi_ops = {
 775        .ctr       = crypt_iv_benbi_ctr,
 776        .dtr       = crypt_iv_benbi_dtr,
 777        .generator = crypt_iv_benbi_gen
 778};
 779
 780static struct crypt_iv_operations crypt_iv_null_ops = {
 781        .generator = crypt_iv_null_gen
 782};
 783
 784static struct crypt_iv_operations crypt_iv_lmk_ops = {
 785        .ctr       = crypt_iv_lmk_ctr,
 786        .dtr       = crypt_iv_lmk_dtr,
 787        .init      = crypt_iv_lmk_init,
 788        .wipe      = crypt_iv_lmk_wipe,
 789        .generator = crypt_iv_lmk_gen,
 790        .post      = crypt_iv_lmk_post
 791};
 792
 793static struct crypt_iv_operations crypt_iv_tcw_ops = {
 794        .ctr       = crypt_iv_tcw_ctr,
 795        .dtr       = crypt_iv_tcw_dtr,
 796        .init      = crypt_iv_tcw_init,
 797        .wipe      = crypt_iv_tcw_wipe,
 798        .generator = crypt_iv_tcw_gen,
 799        .post      = crypt_iv_tcw_post
 800};
 801
 802static void crypt_convert_init(struct crypt_config *cc,
 803                               struct convert_context *ctx,
 804                               struct bio *bio_out, struct bio *bio_in,
 805                               sector_t sector)
 806{
 807        ctx->bio_in = bio_in;
 808        ctx->bio_out = bio_out;
 809        if (bio_in)
 810                ctx->iter_in = bio_in->bi_iter;
 811        if (bio_out)
 812                ctx->iter_out = bio_out->bi_iter;
 813        ctx->cc_sector = sector + cc->iv_offset;
 814        init_completion(&ctx->restart);
 815}
 816
 817static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 818                                             struct ablkcipher_request *req)
 819{
 820        return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 821}
 822
 823static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
 824                                               struct dm_crypt_request *dmreq)
 825{
 826        return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
 827}
 828
 829static u8 *iv_of_dmreq(struct crypt_config *cc,
 830                       struct dm_crypt_request *dmreq)
 831{
 832        return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 833                crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
 834}
 835
 836static int crypt_convert_block(struct crypt_config *cc,
 837                               struct convert_context *ctx,
 838                               struct ablkcipher_request *req)
 839{
 840        struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 841        struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 842        struct dm_crypt_request *dmreq;
 843        u8 *iv;
 844        int r;
 845
 846        dmreq = dmreq_of_req(cc, req);
 847        iv = iv_of_dmreq(cc, dmreq);
 848
 849        dmreq->iv_sector = ctx->cc_sector;
 850        dmreq->ctx = ctx;
 851        sg_init_table(&dmreq->sg_in, 1);
 852        sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 853                    bv_in.bv_offset);
 854
 855        sg_init_table(&dmreq->sg_out, 1);
 856        sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 857                    bv_out.bv_offset);
 858
 859        bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 860        bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 861
 862        if (cc->iv_gen_ops) {
 863                r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 864                if (r < 0)
 865                        return r;
 866        }
 867
 868        ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 869                                     1 << SECTOR_SHIFT, iv);
 870
 871        if (bio_data_dir(ctx->bio_in) == WRITE)
 872                r = crypto_ablkcipher_encrypt(req);
 873        else
 874                r = crypto_ablkcipher_decrypt(req);
 875
 876        if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 877                r = cc->iv_gen_ops->post(cc, iv, dmreq);
 878
 879        return r;
 880}
 881
 882static void kcryptd_async_done(struct crypto_async_request *async_req,
 883                               int error);
 884
 885static void crypt_alloc_req(struct crypt_config *cc,
 886                            struct convert_context *ctx)
 887{
 888        unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 889
 890        if (!ctx->req)
 891                ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 892
 893        ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 894
 895        /*
 896         * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 897         * requests if driver request queue is full.
 898         */
 899        ablkcipher_request_set_callback(ctx->req,
 900            CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 901            kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 902}
 903
 904static void crypt_free_req(struct crypt_config *cc,
 905                           struct ablkcipher_request *req, struct bio *base_bio)
 906{
 907        struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 908
 909        if ((struct ablkcipher_request *)(io + 1) != req)
 910                mempool_free(req, cc->req_pool);
 911}
 912
 913/*
 914 * Encrypt / decrypt data from one bio to another one (can be the same one)
 915 */
 916static int crypt_convert(struct crypt_config *cc,
 917                         struct convert_context *ctx)
 918{
 919        int r;
 920
 921        atomic_set(&ctx->cc_pending, 1);
 922
 923        while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 924
 925                crypt_alloc_req(cc, ctx);
 926
 927                atomic_inc(&ctx->cc_pending);
 928
 929                r = crypt_convert_block(cc, ctx, ctx->req);
 930
 931                switch (r) {
 932                /*
 933                 * The request was queued by a crypto driver
 934                 * but the driver request queue is full, let's wait.
 935                 */
 936                case -EBUSY:
 937                        wait_for_completion(&ctx->restart);
 938                        reinit_completion(&ctx->restart);
 939                        /* fall through */
 940                /*
 941                 * The request is queued and processed asynchronously,
 942                 * completion function kcryptd_async_done() will be called.
 943                 */
 944                case -EINPROGRESS:
 945                        ctx->req = NULL;
 946                        ctx->cc_sector++;
 947                        continue;
 948                /*
 949                 * The request was already processed (synchronously).
 950                 */
 951                case 0:
 952                        atomic_dec(&ctx->cc_pending);
 953                        ctx->cc_sector++;
 954                        cond_resched();
 955                        continue;
 956
 957                /* There was an error while processing the request. */
 958                default:
 959                        atomic_dec(&ctx->cc_pending);
 960                        return r;
 961                }
 962        }
 963
 964        return 0;
 965}
 966
 967static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 968
 969/*
 970 * Generate a new unfragmented bio with the given size
 971 * This should never violate the device limitations (but only because
 972 * max_segment_size is being constrained to PAGE_SIZE).
 973 *
 974 * This function may be called concurrently. If we allocate from the mempool
 975 * concurrently, there is a possibility of deadlock. For example, if we have
 976 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 977 * the mempool concurrently, it may deadlock in a situation where both processes
 978 * have allocated 128 pages and the mempool is exhausted.
 979 *
 980 * In order to avoid this scenario we allocate the pages under a mutex.
 981 *
 982 * In order to not degrade performance with excessive locking, we try
 983 * non-blocking allocations without a mutex first but on failure we fallback
 984 * to blocking allocations with a mutex.
 985 */
 986static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 987{
 988        struct crypt_config *cc = io->cc;
 989        struct bio *clone;
 990        unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 991        gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 992        unsigned i, len, remaining_size;
 993        struct page *page;
 994        struct bio_vec *bvec;
 995
 996retry:
 997        if (unlikely(gfp_mask & __GFP_WAIT))
 998                mutex_lock(&cc->bio_alloc_lock);
 999
1000        clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1001        if (!clone)
1002                goto return_clone;
1003
1004        clone_init(io, clone);
1005
1006        remaining_size = size;
1007
1008        for (i = 0; i < nr_iovecs; i++) {
1009                page = mempool_alloc(cc->page_pool, gfp_mask);
1010                if (!page) {
1011                        crypt_free_buffer_pages(cc, clone);
1012                        bio_put(clone);
1013                        gfp_mask |= __GFP_WAIT;
1014                        goto retry;
1015                }
1016
1017                len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1018
1019                bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1020                bvec->bv_page = page;
1021                bvec->bv_len = len;
1022                bvec->bv_offset = 0;
1023
1024                clone->bi_iter.bi_size += len;
1025
1026                remaining_size -= len;
1027        }
1028
1029return_clone:
1030        if (unlikely(gfp_mask & __GFP_WAIT))
1031                mutex_unlock(&cc->bio_alloc_lock);
1032
1033        return clone;
1034}
1035
1036static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1037{
1038        unsigned int i;
1039        struct bio_vec *bv;
1040
1041        bio_for_each_segment_all(bv, clone, i) {
1042                BUG_ON(!bv->bv_page);
1043                mempool_free(bv->bv_page, cc->page_pool);
1044                bv->bv_page = NULL;
1045        }
1046}
1047
1048static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1049                          struct bio *bio, sector_t sector)
1050{
1051        io->cc = cc;
1052        io->base_bio = bio;
1053        io->sector = sector;
1054        io->error = 0;
1055        io->ctx.req = NULL;
1056        atomic_set(&io->io_pending, 0);
1057}
1058
1059static void crypt_inc_pending(struct dm_crypt_io *io)
1060{
1061        atomic_inc(&io->io_pending);
1062}
1063
1064/*
1065 * One of the bios was finished. Check for completion of
1066 * the whole request and correctly clean up the buffer.
1067 */
1068static void crypt_dec_pending(struct dm_crypt_io *io)
1069{
1070        struct crypt_config *cc = io->cc;
1071        struct bio *base_bio = io->base_bio;
1072        int error = io->error;
1073
1074        if (!atomic_dec_and_test(&io->io_pending))
1075                return;
1076
1077        if (io->ctx.req)
1078                crypt_free_req(cc, io->ctx.req, base_bio);
1079
1080        base_bio->bi_error = error;
1081        bio_endio(base_bio);
1082}
1083
1084/*
1085 * kcryptd/kcryptd_io:
1086 *
1087 * Needed because it would be very unwise to do decryption in an
1088 * interrupt context.
1089 *
1090 * kcryptd performs the actual encryption or decryption.
1091 *
1092 * kcryptd_io performs the IO submission.
1093 *
1094 * They must be separated as otherwise the final stages could be
1095 * starved by new requests which can block in the first stages due
1096 * to memory allocation.
1097 *
1098 * The work is done per CPU global for all dm-crypt instances.
1099 * They should not depend on each other and do not block.
1100 */
1101static void crypt_endio(struct bio *clone)
1102{
1103        struct dm_crypt_io *io = clone->bi_private;
1104        struct crypt_config *cc = io->cc;
1105        unsigned rw = bio_data_dir(clone);
1106        int error;
1107
1108        /*
1109         * free the processed pages
1110         */
1111        if (rw == WRITE)
1112                crypt_free_buffer_pages(cc, clone);
1113
1114        error = clone->bi_error;
1115        bio_put(clone);
1116
1117        if (rw == READ && !error) {
1118                kcryptd_queue_crypt(io);
1119                return;
1120        }
1121
1122        if (unlikely(error))
1123                io->error = error;
1124
1125        crypt_dec_pending(io);
1126}
1127
1128static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1129{
1130        struct crypt_config *cc = io->cc;
1131
1132        clone->bi_private = io;
1133        clone->bi_end_io  = crypt_endio;
1134        clone->bi_bdev    = cc->dev->bdev;
1135        clone->bi_rw      = io->base_bio->bi_rw;
1136}
1137
1138static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1139{
1140        struct crypt_config *cc = io->cc;
1141        struct bio *clone;
1142
1143        /*
1144         * We need the original biovec array in order to decrypt
1145         * the whole bio data *afterwards* -- thanks to immutable
1146         * biovecs we don't need to worry about the block layer
1147         * modifying the biovec array; so leverage bio_clone_fast().
1148         */
1149        clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1150        if (!clone)
1151                return 1;
1152
1153        crypt_inc_pending(io);
1154
1155        clone_init(io, clone);
1156        clone->bi_iter.bi_sector = cc->start + io->sector;
1157
1158        generic_make_request(clone);
1159        return 0;
1160}
1161
1162static void kcryptd_io_read_work(struct work_struct *work)
1163{
1164        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1165
1166        crypt_inc_pending(io);
1167        if (kcryptd_io_read(io, GFP_NOIO))
1168                io->error = -ENOMEM;
1169        crypt_dec_pending(io);
1170}
1171
1172static void kcryptd_queue_read(struct dm_crypt_io *io)
1173{
1174        struct crypt_config *cc = io->cc;
1175
1176        INIT_WORK(&io->work, kcryptd_io_read_work);
1177        queue_work(cc->io_queue, &io->work);
1178}
1179
1180static void kcryptd_io_write(struct dm_crypt_io *io)
1181{
1182        struct bio *clone = io->ctx.bio_out;
1183
1184        generic_make_request(clone);
1185}
1186
1187#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1188
1189static int dmcrypt_write(void *data)
1190{
1191        struct crypt_config *cc = data;
1192        struct dm_crypt_io *io;
1193
1194        while (1) {
1195                struct rb_root write_tree;
1196                struct blk_plug plug;
1197
1198                DECLARE_WAITQUEUE(wait, current);
1199
1200                spin_lock_irq(&cc->write_thread_wait.lock);
1201continue_locked:
1202
1203                if (!RB_EMPTY_ROOT(&cc->write_tree))
1204                        goto pop_from_list;
1205
1206                __set_current_state(TASK_INTERRUPTIBLE);
1207                __add_wait_queue(&cc->write_thread_wait, &wait);
1208
1209                spin_unlock_irq(&cc->write_thread_wait.lock);
1210
1211                if (unlikely(kthread_should_stop())) {
1212                        set_task_state(current, TASK_RUNNING);
1213                        remove_wait_queue(&cc->write_thread_wait, &wait);
1214                        break;
1215                }
1216
1217                schedule();
1218
1219                set_task_state(current, TASK_RUNNING);
1220                spin_lock_irq(&cc->write_thread_wait.lock);
1221                __remove_wait_queue(&cc->write_thread_wait, &wait);
1222                goto continue_locked;
1223
1224pop_from_list:
1225                write_tree = cc->write_tree;
1226                cc->write_tree = RB_ROOT;
1227                spin_unlock_irq(&cc->write_thread_wait.lock);
1228
1229                BUG_ON(rb_parent(write_tree.rb_node));
1230
1231                /*
1232                 * Note: we cannot walk the tree here with rb_next because
1233                 * the structures may be freed when kcryptd_io_write is called.
1234                 */
1235                blk_start_plug(&plug);
1236                do {
1237                        io = crypt_io_from_node(rb_first(&write_tree));
1238                        rb_erase(&io->rb_node, &write_tree);
1239                        kcryptd_io_write(io);
1240                } while (!RB_EMPTY_ROOT(&write_tree));
1241                blk_finish_plug(&plug);
1242        }
1243        return 0;
1244}
1245
1246static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1247{
1248        struct bio *clone = io->ctx.bio_out;
1249        struct crypt_config *cc = io->cc;
1250        unsigned long flags;
1251        sector_t sector;
1252        struct rb_node **rbp, *parent;
1253
1254        if (unlikely(io->error < 0)) {
1255                crypt_free_buffer_pages(cc, clone);
1256                bio_put(clone);
1257                crypt_dec_pending(io);
1258                return;
1259        }
1260
1261        /* crypt_convert should have filled the clone bio */
1262        BUG_ON(io->ctx.iter_out.bi_size);
1263
1264        clone->bi_iter.bi_sector = cc->start + io->sector;
1265
1266        if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1267                generic_make_request(clone);
1268                return;
1269        }
1270
1271        spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1272        rbp = &cc->write_tree.rb_node;
1273        parent = NULL;
1274        sector = io->sector;
1275        while (*rbp) {
1276                parent = *rbp;
1277                if (sector < crypt_io_from_node(parent)->sector)
1278                        rbp = &(*rbp)->rb_left;
1279                else
1280                        rbp = &(*rbp)->rb_right;
1281        }
1282        rb_link_node(&io->rb_node, parent, rbp);
1283        rb_insert_color(&io->rb_node, &cc->write_tree);
1284
1285        wake_up_locked(&cc->write_thread_wait);
1286        spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1287}
1288
1289static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1290{
1291        struct crypt_config *cc = io->cc;
1292        struct bio *clone;
1293        int crypt_finished;
1294        sector_t sector = io->sector;
1295        int r;
1296
1297        /*
1298         * Prevent io from disappearing until this function completes.
1299         */
1300        crypt_inc_pending(io);
1301        crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1302
1303        clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1304        if (unlikely(!clone)) {
1305                io->error = -EIO;
1306                goto dec;
1307        }
1308
1309        io->ctx.bio_out = clone;
1310        io->ctx.iter_out = clone->bi_iter;
1311
1312        sector += bio_sectors(clone);
1313
1314        crypt_inc_pending(io);
1315        r = crypt_convert(cc, &io->ctx);
1316        if (r)
1317                io->error = -EIO;
1318        crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1319
1320        /* Encryption was already finished, submit io now */
1321        if (crypt_finished) {
1322                kcryptd_crypt_write_io_submit(io, 0);
1323                io->sector = sector;
1324        }
1325
1326dec:
1327        crypt_dec_pending(io);
1328}
1329
1330static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1331{
1332        crypt_dec_pending(io);
1333}
1334
1335static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1336{
1337        struct crypt_config *cc = io->cc;
1338        int r = 0;
1339
1340        crypt_inc_pending(io);
1341
1342        crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1343                           io->sector);
1344
1345        r = crypt_convert(cc, &io->ctx);
1346        if (r < 0)
1347                io->error = -EIO;
1348
1349        if (atomic_dec_and_test(&io->ctx.cc_pending))
1350                kcryptd_crypt_read_done(io);
1351
1352        crypt_dec_pending(io);
1353}
1354
1355static void kcryptd_async_done(struct crypto_async_request *async_req,
1356                               int error)
1357{
1358        struct dm_crypt_request *dmreq = async_req->data;
1359        struct convert_context *ctx = dmreq->ctx;
1360        struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1361        struct crypt_config *cc = io->cc;
1362
1363        /*
1364         * A request from crypto driver backlog is going to be processed now,
1365         * finish the completion and continue in crypt_convert().
1366         * (Callback will be called for the second time for this request.)
1367         */
1368        if (error == -EINPROGRESS) {
1369                complete(&ctx->restart);
1370                return;
1371        }
1372
1373        if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1374                error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1375
1376        if (error < 0)
1377                io->error = -EIO;
1378
1379        crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1380
1381        if (!atomic_dec_and_test(&ctx->cc_pending))
1382                return;
1383
1384        if (bio_data_dir(io->base_bio) == READ)
1385                kcryptd_crypt_read_done(io);
1386        else
1387                kcryptd_crypt_write_io_submit(io, 1);
1388}
1389
1390static void kcryptd_crypt(struct work_struct *work)
1391{
1392        struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1393
1394        if (bio_data_dir(io->base_bio) == READ)
1395                kcryptd_crypt_read_convert(io);
1396        else
1397                kcryptd_crypt_write_convert(io);
1398}
1399
1400static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1401{
1402        struct crypt_config *cc = io->cc;
1403
1404        INIT_WORK(&io->work, kcryptd_crypt);
1405        queue_work(cc->crypt_queue, &io->work);
1406}
1407
1408/*
1409 * Decode key from its hex representation
1410 */
1411static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1412{
1413        char buffer[3];
1414        unsigned int i;
1415
1416        buffer[2] = '\0';
1417
1418        for (i = 0; i < size; i++) {
1419                buffer[0] = *hex++;
1420                buffer[1] = *hex++;
1421
1422                if (kstrtou8(buffer, 16, &key[i]))
1423                        return -EINVAL;
1424        }
1425
1426        if (*hex != '\0')
1427                return -EINVAL;
1428
1429        return 0;
1430}
1431
1432static void crypt_free_tfms(struct crypt_config *cc)
1433{
1434        unsigned i;
1435
1436        if (!cc->tfms)
1437                return;
1438
1439        for (i = 0; i < cc->tfms_count; i++)
1440                if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1441                        crypto_free_ablkcipher(cc->tfms[i]);
1442                        cc->tfms[i] = NULL;
1443                }
1444
1445        kfree(cc->tfms);
1446        cc->tfms = NULL;
1447}
1448
1449static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1450{
1451        unsigned i;
1452        int err;
1453
1454        cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1455                           GFP_KERNEL);
1456        if (!cc->tfms)
1457                return -ENOMEM;
1458
1459        for (i = 0; i < cc->tfms_count; i++) {
1460                cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1461                if (IS_ERR(cc->tfms[i])) {
1462                        err = PTR_ERR(cc->tfms[i]);
1463                        crypt_free_tfms(cc);
1464                        return err;
1465                }
1466        }
1467
1468        return 0;
1469}
1470
1471static int crypt_setkey_allcpus(struct crypt_config *cc)
1472{
1473        unsigned subkey_size;
1474        int err = 0, i, r;
1475
1476        /* Ignore extra keys (which are used for IV etc) */
1477        subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1478
1479        for (i = 0; i < cc->tfms_count; i++) {
1480                r = crypto_ablkcipher_setkey(cc->tfms[i],
1481                                             cc->key + (i * subkey_size),
1482                                             subkey_size);
1483                if (r)
1484                        err = r;
1485        }
1486
1487        return err;
1488}
1489
1490static int crypt_set_key(struct crypt_config *cc, char *key)
1491{
1492        int r = -EINVAL;
1493        int key_string_len = strlen(key);
1494
1495        /* The key size may not be changed. */
1496        if (cc->key_size != (key_string_len >> 1))
1497                goto out;
1498
1499        /* Hyphen (which gives a key_size of zero) means there is no key. */
1500        if (!cc->key_size && strcmp(key, "-"))
1501                goto out;
1502
1503        if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1504                goto out;
1505
1506        set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1507
1508        r = crypt_setkey_allcpus(cc);
1509
1510out:
1511        /* Hex key string not needed after here, so wipe it. */
1512        memset(key, '0', key_string_len);
1513
1514        return r;
1515}
1516
1517static int crypt_wipe_key(struct crypt_config *cc)
1518{
1519        clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1520        memset(&cc->key, 0, cc->key_size * sizeof(u8));
1521
1522        return crypt_setkey_allcpus(cc);
1523}
1524
1525static void crypt_dtr(struct dm_target *ti)
1526{
1527        struct crypt_config *cc = ti->private;
1528
1529        ti->private = NULL;
1530
1531        if (!cc)
1532                return;
1533
1534        if (cc->write_thread)
1535                kthread_stop(cc->write_thread);
1536
1537        if (cc->io_queue)
1538                destroy_workqueue(cc->io_queue);
1539        if (cc->crypt_queue)
1540                destroy_workqueue(cc->crypt_queue);
1541
1542        crypt_free_tfms(cc);
1543
1544        if (cc->bs)
1545                bioset_free(cc->bs);
1546
1547        if (cc->page_pool)
1548                mempool_destroy(cc->page_pool);
1549        if (cc->req_pool)
1550                mempool_destroy(cc->req_pool);
1551
1552        if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1553                cc->iv_gen_ops->dtr(cc);
1554
1555        if (cc->dev)
1556                dm_put_device(ti, cc->dev);
1557
1558        kzfree(cc->cipher);
1559        kzfree(cc->cipher_string);
1560
1561        /* Must zero key material before freeing */
1562        kzfree(cc);
1563}
1564
1565static int crypt_ctr_cipher(struct dm_target *ti,
1566                            char *cipher_in, char *key)
1567{
1568        struct crypt_config *cc = ti->private;
1569        char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1570        char *cipher_api = NULL;
1571        int ret = -EINVAL;
1572        char dummy;
1573
1574        /* Convert to crypto api definition? */
1575        if (strchr(cipher_in, '(')) {
1576                ti->error = "Bad cipher specification";
1577                return -EINVAL;
1578        }
1579
1580        cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1581        if (!cc->cipher_string)
1582                goto bad_mem;
1583
1584        /*
1585         * Legacy dm-crypt cipher specification
1586         * cipher[:keycount]-mode-iv:ivopts
1587         */
1588        tmp = cipher_in;
1589        keycount = strsep(&tmp, "-");
1590        cipher = strsep(&keycount, ":");
1591
1592        if (!keycount)
1593                cc->tfms_count = 1;
1594        else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1595                 !is_power_of_2(cc->tfms_count)) {
1596                ti->error = "Bad cipher key count specification";
1597                return -EINVAL;
1598        }
1599        cc->key_parts = cc->tfms_count;
1600        cc->key_extra_size = 0;
1601
1602        cc->cipher = kstrdup(cipher, GFP_KERNEL);
1603        if (!cc->cipher)
1604                goto bad_mem;
1605
1606        chainmode = strsep(&tmp, "-");
1607        ivopts = strsep(&tmp, "-");
1608        ivmode = strsep(&ivopts, ":");
1609
1610        if (tmp)
1611                DMWARN("Ignoring unexpected additional cipher options");
1612
1613        /*
1614         * For compatibility with the original dm-crypt mapping format, if
1615         * only the cipher name is supplied, use cbc-plain.
1616         */
1617        if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1618                chainmode = "cbc";
1619                ivmode = "plain";
1620        }
1621
1622        if (strcmp(chainmode, "ecb") && !ivmode) {
1623                ti->error = "IV mechanism required";
1624                return -EINVAL;
1625        }
1626
1627        cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1628        if (!cipher_api)
1629                goto bad_mem;
1630
1631        ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1632                       "%s(%s)", chainmode, cipher);
1633        if (ret < 0) {
1634                kfree(cipher_api);
1635                goto bad_mem;
1636        }
1637
1638        /* Allocate cipher */
1639        ret = crypt_alloc_tfms(cc, cipher_api);
1640        if (ret < 0) {
1641                ti->error = "Error allocating crypto tfm";
1642                goto bad;
1643        }
1644
1645        /* Initialize IV */
1646        cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1647        if (cc->iv_size)
1648                /* at least a 64 bit sector number should fit in our buffer */
1649                cc->iv_size = max(cc->iv_size,
1650                                  (unsigned int)(sizeof(u64) / sizeof(u8)));
1651        else if (ivmode) {
1652                DMWARN("Selected cipher does not support IVs");
1653                ivmode = NULL;
1654        }
1655
1656        /* Choose ivmode, see comments at iv code. */
1657        if (ivmode == NULL)
1658                cc->iv_gen_ops = NULL;
1659        else if (strcmp(ivmode, "plain") == 0)
1660                cc->iv_gen_ops = &crypt_iv_plain_ops;
1661        else if (strcmp(ivmode, "plain64") == 0)
1662                cc->iv_gen_ops = &crypt_iv_plain64_ops;
1663        else if (strcmp(ivmode, "essiv") == 0)
1664                cc->iv_gen_ops = &crypt_iv_essiv_ops;
1665        else if (strcmp(ivmode, "benbi") == 0)
1666                cc->iv_gen_ops = &crypt_iv_benbi_ops;
1667        else if (strcmp(ivmode, "null") == 0)
1668                cc->iv_gen_ops = &crypt_iv_null_ops;
1669        else if (strcmp(ivmode, "lmk") == 0) {
1670                cc->iv_gen_ops = &crypt_iv_lmk_ops;
1671                /*
1672                 * Version 2 and 3 is recognised according
1673                 * to length of provided multi-key string.
1674                 * If present (version 3), last key is used as IV seed.
1675                 * All keys (including IV seed) are always the same size.
1676                 */
1677                if (cc->key_size % cc->key_parts) {
1678                        cc->key_parts++;
1679                        cc->key_extra_size = cc->key_size / cc->key_parts;
1680                }
1681        } else if (strcmp(ivmode, "tcw") == 0) {
1682                cc->iv_gen_ops = &crypt_iv_tcw_ops;
1683                cc->key_parts += 2; /* IV + whitening */
1684                cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1685        } else {
1686                ret = -EINVAL;
1687                ti->error = "Invalid IV mode";
1688                goto bad;
1689        }
1690
1691        /* Initialize and set key */
1692        ret = crypt_set_key(cc, key);
1693        if (ret < 0) {
1694                ti->error = "Error decoding and setting key";
1695                goto bad;
1696        }
1697
1698        /* Allocate IV */
1699        if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1700                ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1701                if (ret < 0) {
1702                        ti->error = "Error creating IV";
1703                        goto bad;
1704                }
1705        }
1706
1707        /* Initialize IV (set keys for ESSIV etc) */
1708        if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1709                ret = cc->iv_gen_ops->init(cc);
1710                if (ret < 0) {
1711                        ti->error = "Error initialising IV";
1712                        goto bad;
1713                }
1714        }
1715
1716        ret = 0;
1717bad:
1718        kfree(cipher_api);
1719        return ret;
1720
1721bad_mem:
1722        ti->error = "Cannot allocate cipher strings";
1723        return -ENOMEM;
1724}
1725
1726/*
1727 * Construct an encryption mapping:
1728 * <cipher> <key> <iv_offset> <dev_path> <start>
1729 */
1730static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1731{
1732        struct crypt_config *cc;
1733        unsigned int key_size, opt_params;
1734        unsigned long long tmpll;
1735        int ret;
1736        size_t iv_size_padding;
1737        struct dm_arg_set as;
1738        const char *opt_string;
1739        char dummy;
1740
1741        static struct dm_arg _args[] = {
1742                {0, 3, "Invalid number of feature args"},
1743        };
1744
1745        if (argc < 5) {
1746                ti->error = "Not enough arguments";
1747                return -EINVAL;
1748        }
1749
1750        key_size = strlen(argv[1]) >> 1;
1751
1752        cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1753        if (!cc) {
1754                ti->error = "Cannot allocate encryption context";
1755                return -ENOMEM;
1756        }
1757        cc->key_size = key_size;
1758
1759        ti->private = cc;
1760        ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1761        if (ret < 0)
1762                goto bad;
1763
1764        cc->dmreq_start = sizeof(struct ablkcipher_request);
1765        cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1766        cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1767
1768        if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1769                /* Allocate the padding exactly */
1770                iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1771                                & crypto_ablkcipher_alignmask(any_tfm(cc));
1772        } else {
1773                /*
1774                 * If the cipher requires greater alignment than kmalloc
1775                 * alignment, we don't know the exact position of the
1776                 * initialization vector. We must assume worst case.
1777                 */
1778                iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1779        }
1780
1781        ret = -ENOMEM;
1782        cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1783                        sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1784        if (!cc->req_pool) {
1785                ti->error = "Cannot allocate crypt request mempool";
1786                goto bad;
1787        }
1788
1789        cc->per_bio_data_size = ti->per_bio_data_size =
1790                ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1791                      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1792                      ARCH_KMALLOC_MINALIGN);
1793
1794        cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1795        if (!cc->page_pool) {
1796                ti->error = "Cannot allocate page mempool";
1797                goto bad;
1798        }
1799
1800        cc->bs = bioset_create(MIN_IOS, 0);
1801        if (!cc->bs) {
1802                ti->error = "Cannot allocate crypt bioset";
1803                goto bad;
1804        }
1805
1806        mutex_init(&cc->bio_alloc_lock);
1807
1808        ret = -EINVAL;
1809        if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1810                ti->error = "Invalid iv_offset sector";
1811                goto bad;
1812        }
1813        cc->iv_offset = tmpll;
1814
1815        ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1816        if (ret) {
1817                ti->error = "Device lookup failed";
1818                goto bad;
1819        }
1820
1821        ret = -EINVAL;
1822        if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1823                ti->error = "Invalid device sector";
1824                goto bad;
1825        }
1826        cc->start = tmpll;
1827
1828        argv += 5;
1829        argc -= 5;
1830
1831        /* Optional parameters */
1832        if (argc) {
1833                as.argc = argc;
1834                as.argv = argv;
1835
1836                ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1837                if (ret)
1838                        goto bad;
1839
1840                ret = -EINVAL;
1841                while (opt_params--) {
1842                        opt_string = dm_shift_arg(&as);
1843                        if (!opt_string) {
1844                                ti->error = "Not enough feature arguments";
1845                                goto bad;
1846                        }
1847
1848                        if (!strcasecmp(opt_string, "allow_discards"))
1849                                ti->num_discard_bios = 1;
1850
1851                        else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1852                                set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1853
1854                        else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1855                                set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1856
1857                        else {
1858                                ti->error = "Invalid feature arguments";
1859                                goto bad;
1860                        }
1861                }
1862        }
1863
1864        ret = -ENOMEM;
1865        cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1866        if (!cc->io_queue) {
1867                ti->error = "Couldn't create kcryptd io queue";
1868                goto bad;
1869        }
1870
1871        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1872                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1873        else
1874                cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1875                                                  num_online_cpus());
1876        if (!cc->crypt_queue) {
1877                ti->error = "Couldn't create kcryptd queue";
1878                goto bad;
1879        }
1880
1881        init_waitqueue_head(&cc->write_thread_wait);
1882        cc->write_tree = RB_ROOT;
1883
1884        cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1885        if (IS_ERR(cc->write_thread)) {
1886                ret = PTR_ERR(cc->write_thread);
1887                cc->write_thread = NULL;
1888                ti->error = "Couldn't spawn write thread";
1889                goto bad;
1890        }
1891        wake_up_process(cc->write_thread);
1892
1893        ti->num_flush_bios = 1;
1894        ti->discard_zeroes_data_unsupported = true;
1895
1896        return 0;
1897
1898bad:
1899        crypt_dtr(ti);
1900        return ret;
1901}
1902
1903static int crypt_map(struct dm_target *ti, struct bio *bio)
1904{
1905        struct dm_crypt_io *io;
1906        struct crypt_config *cc = ti->private;
1907
1908        /*
1909         * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1910         * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1911         * - for REQ_DISCARD caller must use flush if IO ordering matters
1912         */
1913        if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1914                bio->bi_bdev = cc->dev->bdev;
1915                if (bio_sectors(bio))
1916                        bio->bi_iter.bi_sector = cc->start +
1917                                dm_target_offset(ti, bio->bi_iter.bi_sector);
1918                return DM_MAPIO_REMAPPED;
1919        }
1920
1921        io = dm_per_bio_data(bio, cc->per_bio_data_size);
1922        crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1923        io->ctx.req = (struct ablkcipher_request *)(io + 1);
1924
1925        if (bio_data_dir(io->base_bio) == READ) {
1926                if (kcryptd_io_read(io, GFP_NOWAIT))
1927                        kcryptd_queue_read(io);
1928        } else
1929                kcryptd_queue_crypt(io);
1930
1931        return DM_MAPIO_SUBMITTED;
1932}
1933
1934static void crypt_status(struct dm_target *ti, status_type_t type,
1935                         unsigned status_flags, char *result, unsigned maxlen)
1936{
1937        struct crypt_config *cc = ti->private;
1938        unsigned i, sz = 0;
1939        int num_feature_args = 0;
1940
1941        switch (type) {
1942        case STATUSTYPE_INFO:
1943                result[0] = '\0';
1944                break;
1945
1946        case STATUSTYPE_TABLE:
1947                DMEMIT("%s ", cc->cipher_string);
1948
1949                if (cc->key_size > 0)
1950                        for (i = 0; i < cc->key_size; i++)
1951                                DMEMIT("%02x", cc->key[i]);
1952                else
1953                        DMEMIT("-");
1954
1955                DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1956                                cc->dev->name, (unsigned long long)cc->start);
1957
1958                num_feature_args += !!ti->num_discard_bios;
1959                num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1960                num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1961                if (num_feature_args) {
1962                        DMEMIT(" %d", num_feature_args);
1963                        if (ti->num_discard_bios)
1964                                DMEMIT(" allow_discards");
1965                        if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1966                                DMEMIT(" same_cpu_crypt");
1967                        if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1968                                DMEMIT(" submit_from_crypt_cpus");
1969                }
1970
1971                break;
1972        }
1973}
1974
1975static void crypt_postsuspend(struct dm_target *ti)
1976{
1977        struct crypt_config *cc = ti->private;
1978
1979        set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1980}
1981
1982static int crypt_preresume(struct dm_target *ti)
1983{
1984        struct crypt_config *cc = ti->private;
1985
1986        if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1987                DMERR("aborting resume - crypt key is not set.");
1988                return -EAGAIN;
1989        }
1990
1991        return 0;
1992}
1993
1994static void crypt_resume(struct dm_target *ti)
1995{
1996        struct crypt_config *cc = ti->private;
1997
1998        clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1999}
2000
2001/* Message interface
2002 *      key set <key>
2003 *      key wipe
2004 */
2005static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
2006{
2007        struct crypt_config *cc = ti->private;
2008        int ret = -EINVAL;
2009
2010        if (argc < 2)
2011                goto error;
2012
2013        if (!strcasecmp(argv[0], "key")) {
2014                if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2015                        DMWARN("not suspended during key manipulation.");
2016                        return -EINVAL;
2017                }
2018                if (argc == 3 && !strcasecmp(argv[1], "set")) {
2019                        ret = crypt_set_key(cc, argv[2]);
2020                        if (ret)
2021                                return ret;
2022                        if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2023                                ret = cc->iv_gen_ops->init(cc);
2024                        return ret;
2025                }
2026                if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2027                        if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2028                                ret = cc->iv_gen_ops->wipe(cc);
2029                                if (ret)
2030                                        return ret;
2031                        }
2032                        return crypt_wipe_key(cc);
2033                }
2034        }
2035
2036error:
2037        DMWARN("unrecognised message received.");
2038        return -EINVAL;
2039}
2040
2041static int crypt_iterate_devices(struct dm_target *ti,
2042                                 iterate_devices_callout_fn fn, void *data)
2043{
2044        struct crypt_config *cc = ti->private;
2045
2046        return fn(ti, cc->dev, cc->start, ti->len, data);
2047}
2048
2049static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2050{
2051        /*
2052         * Unfortunate constraint that is required to avoid the potential
2053         * for exceeding underlying device's max_segments limits -- due to
2054         * crypt_alloc_buffer() possibly allocating pages for the encryption
2055         * bio that are not as physically contiguous as the original bio.
2056         */
2057        limits->max_segment_size = PAGE_SIZE;
2058}
2059
2060static struct target_type crypt_target = {
2061        .name   = "crypt",
2062        .version = {1, 14, 1},
2063        .module = THIS_MODULE,
2064        .ctr    = crypt_ctr,
2065        .dtr    = crypt_dtr,
2066        .map    = crypt_map,
2067        .status = crypt_status,
2068        .postsuspend = crypt_postsuspend,
2069        .preresume = crypt_preresume,
2070        .resume = crypt_resume,
2071        .message = crypt_message,
2072        .iterate_devices = crypt_iterate_devices,
2073        .io_hints = crypt_io_hints,
2074};
2075
2076static int __init dm_crypt_init(void)
2077{
2078        int r;
2079
2080        r = dm_register_target(&crypt_target);
2081        if (r < 0)
2082                DMERR("register failed %d", r);
2083
2084        return r;
2085}
2086
2087static void __exit dm_crypt_exit(void)
2088{
2089        dm_unregister_target(&crypt_target);
2090}
2091
2092module_init(dm_crypt_init);
2093module_exit(dm_crypt_exit);
2094
2095MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2096MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2097MODULE_LICENSE("GPL");
2098