linux/drivers/md/raid1.c
<<
>>
Prefs
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70                          sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75        struct pool_info *pi = data;
  76        int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78        /* allocate a r1bio with room for raid_disks entries in the bios array */
  79        return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84        kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  94
  95static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97        struct pool_info *pi = data;
  98        struct r1bio *r1_bio;
  99        struct bio *bio;
 100        int need_pages;
 101        int i, j;
 102
 103        r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 104        if (!r1_bio)
 105                return NULL;
 106
 107        /*
 108         * Allocate bios : 1 for reading, n-1 for writing
 109         */
 110        for (j = pi->raid_disks ; j-- ; ) {
 111                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 112                if (!bio)
 113                        goto out_free_bio;
 114                r1_bio->bios[j] = bio;
 115        }
 116        /*
 117         * Allocate RESYNC_PAGES data pages and attach them to
 118         * the first bio.
 119         * If this is a user-requested check/repair, allocate
 120         * RESYNC_PAGES for each bio.
 121         */
 122        if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 123                need_pages = pi->raid_disks;
 124        else
 125                need_pages = 1;
 126        for (j = 0; j < need_pages; j++) {
 127                bio = r1_bio->bios[j];
 128                bio->bi_vcnt = RESYNC_PAGES;
 129
 130                if (bio_alloc_pages(bio, gfp_flags))
 131                        goto out_free_pages;
 132        }
 133        /* If not user-requests, copy the page pointers to all bios */
 134        if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 135                for (i=0; i<RESYNC_PAGES ; i++)
 136                        for (j=1; j<pi->raid_disks; j++)
 137                                r1_bio->bios[j]->bi_io_vec[i].bv_page =
 138                                        r1_bio->bios[0]->bi_io_vec[i].bv_page;
 139        }
 140
 141        r1_bio->master_bio = NULL;
 142
 143        return r1_bio;
 144
 145out_free_pages:
 146        while (--j >= 0) {
 147                struct bio_vec *bv;
 148
 149                bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 150                        __free_page(bv->bv_page);
 151        }
 152
 153out_free_bio:
 154        while (++j < pi->raid_disks)
 155                bio_put(r1_bio->bios[j]);
 156        r1bio_pool_free(r1_bio, data);
 157        return NULL;
 158}
 159
 160static void r1buf_pool_free(void *__r1_bio, void *data)
 161{
 162        struct pool_info *pi = data;
 163        int i,j;
 164        struct r1bio *r1bio = __r1_bio;
 165
 166        for (i = 0; i < RESYNC_PAGES; i++)
 167                for (j = pi->raid_disks; j-- ;) {
 168                        if (j == 0 ||
 169                            r1bio->bios[j]->bi_io_vec[i].bv_page !=
 170                            r1bio->bios[0]->bi_io_vec[i].bv_page)
 171                                safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 172                }
 173        for (i=0 ; i < pi->raid_disks; i++)
 174                bio_put(r1bio->bios[i]);
 175
 176        r1bio_pool_free(r1bio, data);
 177}
 178
 179static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 180{
 181        int i;
 182
 183        for (i = 0; i < conf->raid_disks * 2; i++) {
 184                struct bio **bio = r1_bio->bios + i;
 185                if (!BIO_SPECIAL(*bio))
 186                        bio_put(*bio);
 187                *bio = NULL;
 188        }
 189}
 190
 191static void free_r1bio(struct r1bio *r1_bio)
 192{
 193        struct r1conf *conf = r1_bio->mddev->private;
 194
 195        put_all_bios(conf, r1_bio);
 196        mempool_free(r1_bio, conf->r1bio_pool);
 197}
 198
 199static void put_buf(struct r1bio *r1_bio)
 200{
 201        struct r1conf *conf = r1_bio->mddev->private;
 202        int i;
 203
 204        for (i = 0; i < conf->raid_disks * 2; i++) {
 205                struct bio *bio = r1_bio->bios[i];
 206                if (bio->bi_end_io)
 207                        rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 208        }
 209
 210        mempool_free(r1_bio, conf->r1buf_pool);
 211
 212        lower_barrier(conf);
 213}
 214
 215static void reschedule_retry(struct r1bio *r1_bio)
 216{
 217        unsigned long flags;
 218        struct mddev *mddev = r1_bio->mddev;
 219        struct r1conf *conf = mddev->private;
 220
 221        spin_lock_irqsave(&conf->device_lock, flags);
 222        list_add(&r1_bio->retry_list, &conf->retry_list);
 223        conf->nr_queued ++;
 224        spin_unlock_irqrestore(&conf->device_lock, flags);
 225
 226        wake_up(&conf->wait_barrier);
 227        md_wakeup_thread(mddev->thread);
 228}
 229
 230/*
 231 * raid_end_bio_io() is called when we have finished servicing a mirrored
 232 * operation and are ready to return a success/failure code to the buffer
 233 * cache layer.
 234 */
 235static void call_bio_endio(struct r1bio *r1_bio)
 236{
 237        struct bio *bio = r1_bio->master_bio;
 238        int done;
 239        struct r1conf *conf = r1_bio->mddev->private;
 240        sector_t start_next_window = r1_bio->start_next_window;
 241        sector_t bi_sector = bio->bi_iter.bi_sector;
 242
 243        if (bio->bi_phys_segments) {
 244                unsigned long flags;
 245                spin_lock_irqsave(&conf->device_lock, flags);
 246                bio->bi_phys_segments--;
 247                done = (bio->bi_phys_segments == 0);
 248                spin_unlock_irqrestore(&conf->device_lock, flags);
 249                /*
 250                 * make_request() might be waiting for
 251                 * bi_phys_segments to decrease
 252                 */
 253                wake_up(&conf->wait_barrier);
 254        } else
 255                done = 1;
 256
 257        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 258                bio->bi_error = -EIO;
 259
 260        if (done) {
 261                bio_endio(bio);
 262                /*
 263                 * Wake up any possible resync thread that waits for the device
 264                 * to go idle.
 265                 */
 266                allow_barrier(conf, start_next_window, bi_sector);
 267        }
 268}
 269
 270static void raid_end_bio_io(struct r1bio *r1_bio)
 271{
 272        struct bio *bio = r1_bio->master_bio;
 273
 274        /* if nobody has done the final endio yet, do it now */
 275        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 276                pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 277                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
 278                         (unsigned long long) bio->bi_iter.bi_sector,
 279                         (unsigned long long) bio_end_sector(bio) - 1);
 280
 281                call_bio_endio(r1_bio);
 282        }
 283        free_r1bio(r1_bio);
 284}
 285
 286/*
 287 * Update disk head position estimator based on IRQ completion info.
 288 */
 289static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 290{
 291        struct r1conf *conf = r1_bio->mddev->private;
 292
 293        conf->mirrors[disk].head_position =
 294                r1_bio->sector + (r1_bio->sectors);
 295}
 296
 297/*
 298 * Find the disk number which triggered given bio
 299 */
 300static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 301{
 302        int mirror;
 303        struct r1conf *conf = r1_bio->mddev->private;
 304        int raid_disks = conf->raid_disks;
 305
 306        for (mirror = 0; mirror < raid_disks * 2; mirror++)
 307                if (r1_bio->bios[mirror] == bio)
 308                        break;
 309
 310        BUG_ON(mirror == raid_disks * 2);
 311        update_head_pos(mirror, r1_bio);
 312
 313        return mirror;
 314}
 315
 316static void raid1_end_read_request(struct bio *bio)
 317{
 318        int uptodate = !bio->bi_error;
 319        struct r1bio *r1_bio = bio->bi_private;
 320        int mirror;
 321        struct r1conf *conf = r1_bio->mddev->private;
 322
 323        mirror = r1_bio->read_disk;
 324        /*
 325         * this branch is our 'one mirror IO has finished' event handler:
 326         */
 327        update_head_pos(mirror, r1_bio);
 328
 329        if (uptodate)
 330                set_bit(R1BIO_Uptodate, &r1_bio->state);
 331        else {
 332                /* If all other devices have failed, we want to return
 333                 * the error upwards rather than fail the last device.
 334                 * Here we redefine "uptodate" to mean "Don't want to retry"
 335                 */
 336                unsigned long flags;
 337                spin_lock_irqsave(&conf->device_lock, flags);
 338                if (r1_bio->mddev->degraded == conf->raid_disks ||
 339                    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 340                     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
 341                        uptodate = 1;
 342                spin_unlock_irqrestore(&conf->device_lock, flags);
 343        }
 344
 345        if (uptodate) {
 346                raid_end_bio_io(r1_bio);
 347                rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 348        } else {
 349                /*
 350                 * oops, read error:
 351                 */
 352                char b[BDEVNAME_SIZE];
 353                printk_ratelimited(
 354                        KERN_ERR "md/raid1:%s: %s: "
 355                        "rescheduling sector %llu\n",
 356                        mdname(conf->mddev),
 357                        bdevname(conf->mirrors[mirror].rdev->bdev,
 358                                 b),
 359                        (unsigned long long)r1_bio->sector);
 360                set_bit(R1BIO_ReadError, &r1_bio->state);
 361                reschedule_retry(r1_bio);
 362                /* don't drop the reference on read_disk yet */
 363        }
 364}
 365
 366static void close_write(struct r1bio *r1_bio)
 367{
 368        /* it really is the end of this request */
 369        if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 370                /* free extra copy of the data pages */
 371                int i = r1_bio->behind_page_count;
 372                while (i--)
 373                        safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 374                kfree(r1_bio->behind_bvecs);
 375                r1_bio->behind_bvecs = NULL;
 376        }
 377        /* clear the bitmap if all writes complete successfully */
 378        bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 379                        r1_bio->sectors,
 380                        !test_bit(R1BIO_Degraded, &r1_bio->state),
 381                        test_bit(R1BIO_BehindIO, &r1_bio->state));
 382        md_write_end(r1_bio->mddev);
 383}
 384
 385static void r1_bio_write_done(struct r1bio *r1_bio)
 386{
 387        if (!atomic_dec_and_test(&r1_bio->remaining))
 388                return;
 389
 390        if (test_bit(R1BIO_WriteError, &r1_bio->state))
 391                reschedule_retry(r1_bio);
 392        else {
 393                close_write(r1_bio);
 394                if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 395                        reschedule_retry(r1_bio);
 396                else
 397                        raid_end_bio_io(r1_bio);
 398        }
 399}
 400
 401static void raid1_end_write_request(struct bio *bio)
 402{
 403        struct r1bio *r1_bio = bio->bi_private;
 404        int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 405        struct r1conf *conf = r1_bio->mddev->private;
 406        struct bio *to_put = NULL;
 407
 408        mirror = find_bio_disk(r1_bio, bio);
 409
 410        /*
 411         * 'one mirror IO has finished' event handler:
 412         */
 413        if (bio->bi_error) {
 414                set_bit(WriteErrorSeen,
 415                        &conf->mirrors[mirror].rdev->flags);
 416                if (!test_and_set_bit(WantReplacement,
 417                                      &conf->mirrors[mirror].rdev->flags))
 418                        set_bit(MD_RECOVERY_NEEDED, &
 419                                conf->mddev->recovery);
 420
 421                set_bit(R1BIO_WriteError, &r1_bio->state);
 422        } else {
 423                /*
 424                 * Set R1BIO_Uptodate in our master bio, so that we
 425                 * will return a good error code for to the higher
 426                 * levels even if IO on some other mirrored buffer
 427                 * fails.
 428                 *
 429                 * The 'master' represents the composite IO operation
 430                 * to user-side. So if something waits for IO, then it
 431                 * will wait for the 'master' bio.
 432                 */
 433                sector_t first_bad;
 434                int bad_sectors;
 435
 436                r1_bio->bios[mirror] = NULL;
 437                to_put = bio;
 438                /*
 439                 * Do not set R1BIO_Uptodate if the current device is
 440                 * rebuilding or Faulty. This is because we cannot use
 441                 * such device for properly reading the data back (we could
 442                 * potentially use it, if the current write would have felt
 443                 * before rdev->recovery_offset, but for simplicity we don't
 444                 * check this here.
 445                 */
 446                if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 447                    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 448                        set_bit(R1BIO_Uptodate, &r1_bio->state);
 449
 450                /* Maybe we can clear some bad blocks. */
 451                if (is_badblock(conf->mirrors[mirror].rdev,
 452                                r1_bio->sector, r1_bio->sectors,
 453                                &first_bad, &bad_sectors)) {
 454                        r1_bio->bios[mirror] = IO_MADE_GOOD;
 455                        set_bit(R1BIO_MadeGood, &r1_bio->state);
 456                }
 457        }
 458
 459        if (behind) {
 460                if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 461                        atomic_dec(&r1_bio->behind_remaining);
 462
 463                /*
 464                 * In behind mode, we ACK the master bio once the I/O
 465                 * has safely reached all non-writemostly
 466                 * disks. Setting the Returned bit ensures that this
 467                 * gets done only once -- we don't ever want to return
 468                 * -EIO here, instead we'll wait
 469                 */
 470                if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 471                    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 472                        /* Maybe we can return now */
 473                        if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 474                                struct bio *mbio = r1_bio->master_bio;
 475                                pr_debug("raid1: behind end write sectors"
 476                                         " %llu-%llu\n",
 477                                         (unsigned long long) mbio->bi_iter.bi_sector,
 478                                         (unsigned long long) bio_end_sector(mbio) - 1);
 479                                call_bio_endio(r1_bio);
 480                        }
 481                }
 482        }
 483        if (r1_bio->bios[mirror] == NULL)
 484                rdev_dec_pending(conf->mirrors[mirror].rdev,
 485                                 conf->mddev);
 486
 487        /*
 488         * Let's see if all mirrored write operations have finished
 489         * already.
 490         */
 491        r1_bio_write_done(r1_bio);
 492
 493        if (to_put)
 494                bio_put(to_put);
 495}
 496
 497/*
 498 * This routine returns the disk from which the requested read should
 499 * be done. There is a per-array 'next expected sequential IO' sector
 500 * number - if this matches on the next IO then we use the last disk.
 501 * There is also a per-disk 'last know head position' sector that is
 502 * maintained from IRQ contexts, both the normal and the resync IO
 503 * completion handlers update this position correctly. If there is no
 504 * perfect sequential match then we pick the disk whose head is closest.
 505 *
 506 * If there are 2 mirrors in the same 2 devices, performance degrades
 507 * because position is mirror, not device based.
 508 *
 509 * The rdev for the device selected will have nr_pending incremented.
 510 */
 511static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 512{
 513        const sector_t this_sector = r1_bio->sector;
 514        int sectors;
 515        int best_good_sectors;
 516        int best_disk, best_dist_disk, best_pending_disk;
 517        int has_nonrot_disk;
 518        int disk;
 519        sector_t best_dist;
 520        unsigned int min_pending;
 521        struct md_rdev *rdev;
 522        int choose_first;
 523        int choose_next_idle;
 524
 525        rcu_read_lock();
 526        /*
 527         * Check if we can balance. We can balance on the whole
 528         * device if no resync is going on, or below the resync window.
 529         * We take the first readable disk when above the resync window.
 530         */
 531 retry:
 532        sectors = r1_bio->sectors;
 533        best_disk = -1;
 534        best_dist_disk = -1;
 535        best_dist = MaxSector;
 536        best_pending_disk = -1;
 537        min_pending = UINT_MAX;
 538        best_good_sectors = 0;
 539        has_nonrot_disk = 0;
 540        choose_next_idle = 0;
 541
 542        if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 543            (mddev_is_clustered(conf->mddev) &&
 544            md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 545                    this_sector + sectors)))
 546                choose_first = 1;
 547        else
 548                choose_first = 0;
 549
 550        for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 551                sector_t dist;
 552                sector_t first_bad;
 553                int bad_sectors;
 554                unsigned int pending;
 555                bool nonrot;
 556
 557                rdev = rcu_dereference(conf->mirrors[disk].rdev);
 558                if (r1_bio->bios[disk] == IO_BLOCKED
 559                    || rdev == NULL
 560                    || test_bit(Faulty, &rdev->flags))
 561                        continue;
 562                if (!test_bit(In_sync, &rdev->flags) &&
 563                    rdev->recovery_offset < this_sector + sectors)
 564                        continue;
 565                if (test_bit(WriteMostly, &rdev->flags)) {
 566                        /* Don't balance among write-mostly, just
 567                         * use the first as a last resort */
 568                        if (best_dist_disk < 0) {
 569                                if (is_badblock(rdev, this_sector, sectors,
 570                                                &first_bad, &bad_sectors)) {
 571                                        if (first_bad < this_sector)
 572                                                /* Cannot use this */
 573                                                continue;
 574                                        best_good_sectors = first_bad - this_sector;
 575                                } else
 576                                        best_good_sectors = sectors;
 577                                best_dist_disk = disk;
 578                                best_pending_disk = disk;
 579                        }
 580                        continue;
 581                }
 582                /* This is a reasonable device to use.  It might
 583                 * even be best.
 584                 */
 585                if (is_badblock(rdev, this_sector, sectors,
 586                                &first_bad, &bad_sectors)) {
 587                        if (best_dist < MaxSector)
 588                                /* already have a better device */
 589                                continue;
 590                        if (first_bad <= this_sector) {
 591                                /* cannot read here. If this is the 'primary'
 592                                 * device, then we must not read beyond
 593                                 * bad_sectors from another device..
 594                                 */
 595                                bad_sectors -= (this_sector - first_bad);
 596                                if (choose_first && sectors > bad_sectors)
 597                                        sectors = bad_sectors;
 598                                if (best_good_sectors > sectors)
 599                                        best_good_sectors = sectors;
 600
 601                        } else {
 602                                sector_t good_sectors = first_bad - this_sector;
 603                                if (good_sectors > best_good_sectors) {
 604                                        best_good_sectors = good_sectors;
 605                                        best_disk = disk;
 606                                }
 607                                if (choose_first)
 608                                        break;
 609                        }
 610                        continue;
 611                } else
 612                        best_good_sectors = sectors;
 613
 614                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 615                has_nonrot_disk |= nonrot;
 616                pending = atomic_read(&rdev->nr_pending);
 617                dist = abs(this_sector - conf->mirrors[disk].head_position);
 618                if (choose_first) {
 619                        best_disk = disk;
 620                        break;
 621                }
 622                /* Don't change to another disk for sequential reads */
 623                if (conf->mirrors[disk].next_seq_sect == this_sector
 624                    || dist == 0) {
 625                        int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 626                        struct raid1_info *mirror = &conf->mirrors[disk];
 627
 628                        best_disk = disk;
 629                        /*
 630                         * If buffered sequential IO size exceeds optimal
 631                         * iosize, check if there is idle disk. If yes, choose
 632                         * the idle disk. read_balance could already choose an
 633                         * idle disk before noticing it's a sequential IO in
 634                         * this disk. This doesn't matter because this disk
 635                         * will idle, next time it will be utilized after the
 636                         * first disk has IO size exceeds optimal iosize. In
 637                         * this way, iosize of the first disk will be optimal
 638                         * iosize at least. iosize of the second disk might be
 639                         * small, but not a big deal since when the second disk
 640                         * starts IO, the first disk is likely still busy.
 641                         */
 642                        if (nonrot && opt_iosize > 0 &&
 643                            mirror->seq_start != MaxSector &&
 644                            mirror->next_seq_sect > opt_iosize &&
 645                            mirror->next_seq_sect - opt_iosize >=
 646                            mirror->seq_start) {
 647                                choose_next_idle = 1;
 648                                continue;
 649                        }
 650                        break;
 651                }
 652                /* If device is idle, use it */
 653                if (pending == 0) {
 654                        best_disk = disk;
 655                        break;
 656                }
 657
 658                if (choose_next_idle)
 659                        continue;
 660
 661                if (min_pending > pending) {
 662                        min_pending = pending;
 663                        best_pending_disk = disk;
 664                }
 665
 666                if (dist < best_dist) {
 667                        best_dist = dist;
 668                        best_dist_disk = disk;
 669                }
 670        }
 671
 672        /*
 673         * If all disks are rotational, choose the closest disk. If any disk is
 674         * non-rotational, choose the disk with less pending request even the
 675         * disk is rotational, which might/might not be optimal for raids with
 676         * mixed ratation/non-rotational disks depending on workload.
 677         */
 678        if (best_disk == -1) {
 679                if (has_nonrot_disk)
 680                        best_disk = best_pending_disk;
 681                else
 682                        best_disk = best_dist_disk;
 683        }
 684
 685        if (best_disk >= 0) {
 686                rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 687                if (!rdev)
 688                        goto retry;
 689                atomic_inc(&rdev->nr_pending);
 690                if (test_bit(Faulty, &rdev->flags)) {
 691                        /* cannot risk returning a device that failed
 692                         * before we inc'ed nr_pending
 693                         */
 694                        rdev_dec_pending(rdev, conf->mddev);
 695                        goto retry;
 696                }
 697                sectors = best_good_sectors;
 698
 699                if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 700                        conf->mirrors[best_disk].seq_start = this_sector;
 701
 702                conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 703        }
 704        rcu_read_unlock();
 705        *max_sectors = sectors;
 706
 707        return best_disk;
 708}
 709
 710static int raid1_congested(struct mddev *mddev, int bits)
 711{
 712        struct r1conf *conf = mddev->private;
 713        int i, ret = 0;
 714
 715        if ((bits & (1 << WB_async_congested)) &&
 716            conf->pending_count >= max_queued_requests)
 717                return 1;
 718
 719        rcu_read_lock();
 720        for (i = 0; i < conf->raid_disks * 2; i++) {
 721                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 722                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 723                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 724
 725                        BUG_ON(!q);
 726
 727                        /* Note the '|| 1' - when read_balance prefers
 728                         * non-congested targets, it can be removed
 729                         */
 730                        if ((bits & (1 << WB_async_congested)) || 1)
 731                                ret |= bdi_congested(&q->backing_dev_info, bits);
 732                        else
 733                                ret &= bdi_congested(&q->backing_dev_info, bits);
 734                }
 735        }
 736        rcu_read_unlock();
 737        return ret;
 738}
 739
 740static void flush_pending_writes(struct r1conf *conf)
 741{
 742        /* Any writes that have been queued but are awaiting
 743         * bitmap updates get flushed here.
 744         */
 745        spin_lock_irq(&conf->device_lock);
 746
 747        if (conf->pending_bio_list.head) {
 748                struct bio *bio;
 749                bio = bio_list_get(&conf->pending_bio_list);
 750                conf->pending_count = 0;
 751                spin_unlock_irq(&conf->device_lock);
 752                /* flush any pending bitmap writes to
 753                 * disk before proceeding w/ I/O */
 754                bitmap_unplug(conf->mddev->bitmap);
 755                wake_up(&conf->wait_barrier);
 756
 757                while (bio) { /* submit pending writes */
 758                        struct bio *next = bio->bi_next;
 759                        bio->bi_next = NULL;
 760                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 761                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 762                                /* Just ignore it */
 763                                bio_endio(bio);
 764                        else
 765                                generic_make_request(bio);
 766                        bio = next;
 767                }
 768        } else
 769                spin_unlock_irq(&conf->device_lock);
 770}
 771
 772/* Barriers....
 773 * Sometimes we need to suspend IO while we do something else,
 774 * either some resync/recovery, or reconfigure the array.
 775 * To do this we raise a 'barrier'.
 776 * The 'barrier' is a counter that can be raised multiple times
 777 * to count how many activities are happening which preclude
 778 * normal IO.
 779 * We can only raise the barrier if there is no pending IO.
 780 * i.e. if nr_pending == 0.
 781 * We choose only to raise the barrier if no-one is waiting for the
 782 * barrier to go down.  This means that as soon as an IO request
 783 * is ready, no other operations which require a barrier will start
 784 * until the IO request has had a chance.
 785 *
 786 * So: regular IO calls 'wait_barrier'.  When that returns there
 787 *    is no backgroup IO happening,  It must arrange to call
 788 *    allow_barrier when it has finished its IO.
 789 * backgroup IO calls must call raise_barrier.  Once that returns
 790 *    there is no normal IO happeing.  It must arrange to call
 791 *    lower_barrier when the particular background IO completes.
 792 */
 793static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 794{
 795        spin_lock_irq(&conf->resync_lock);
 796
 797        /* Wait until no block IO is waiting */
 798        wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 799                            conf->resync_lock);
 800
 801        /* block any new IO from starting */
 802        conf->barrier++;
 803        conf->next_resync = sector_nr;
 804
 805        /* For these conditions we must wait:
 806         * A: while the array is in frozen state
 807         * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 808         *    the max count which allowed.
 809         * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 810         *    next resync will reach to the window which normal bios are
 811         *    handling.
 812         * D: while there are any active requests in the current window.
 813         */
 814        wait_event_lock_irq(conf->wait_barrier,
 815                            !conf->array_frozen &&
 816                            conf->barrier < RESYNC_DEPTH &&
 817                            conf->current_window_requests == 0 &&
 818                            (conf->start_next_window >=
 819                             conf->next_resync + RESYNC_SECTORS),
 820                            conf->resync_lock);
 821
 822        conf->nr_pending++;
 823        spin_unlock_irq(&conf->resync_lock);
 824}
 825
 826static void lower_barrier(struct r1conf *conf)
 827{
 828        unsigned long flags;
 829        BUG_ON(conf->barrier <= 0);
 830        spin_lock_irqsave(&conf->resync_lock, flags);
 831        conf->barrier--;
 832        conf->nr_pending--;
 833        spin_unlock_irqrestore(&conf->resync_lock, flags);
 834        wake_up(&conf->wait_barrier);
 835}
 836
 837static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 838{
 839        bool wait = false;
 840
 841        if (conf->array_frozen || !bio)
 842                wait = true;
 843        else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 844                if ((conf->mddev->curr_resync_completed
 845                     >= bio_end_sector(bio)) ||
 846                    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 847                     <= bio->bi_iter.bi_sector))
 848                        wait = false;
 849                else
 850                        wait = true;
 851        }
 852
 853        return wait;
 854}
 855
 856static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 857{
 858        sector_t sector = 0;
 859
 860        spin_lock_irq(&conf->resync_lock);
 861        if (need_to_wait_for_sync(conf, bio)) {
 862                conf->nr_waiting++;
 863                /* Wait for the barrier to drop.
 864                 * However if there are already pending
 865                 * requests (preventing the barrier from
 866                 * rising completely), and the
 867                 * per-process bio queue isn't empty,
 868                 * then don't wait, as we need to empty
 869                 * that queue to allow conf->start_next_window
 870                 * to increase.
 871                 */
 872                wait_event_lock_irq(conf->wait_barrier,
 873                                    !conf->array_frozen &&
 874                                    (!conf->barrier ||
 875                                     ((conf->start_next_window <
 876                                       conf->next_resync + RESYNC_SECTORS) &&
 877                                      current->bio_list &&
 878                                      !bio_list_empty(current->bio_list))),
 879                                    conf->resync_lock);
 880                conf->nr_waiting--;
 881        }
 882
 883        if (bio && bio_data_dir(bio) == WRITE) {
 884                if (bio->bi_iter.bi_sector >= conf->next_resync) {
 885                        if (conf->start_next_window == MaxSector)
 886                                conf->start_next_window =
 887                                        conf->next_resync +
 888                                        NEXT_NORMALIO_DISTANCE;
 889
 890                        if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 891                            <= bio->bi_iter.bi_sector)
 892                                conf->next_window_requests++;
 893                        else
 894                                conf->current_window_requests++;
 895                        sector = conf->start_next_window;
 896                }
 897        }
 898
 899        conf->nr_pending++;
 900        spin_unlock_irq(&conf->resync_lock);
 901        return sector;
 902}
 903
 904static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 905                          sector_t bi_sector)
 906{
 907        unsigned long flags;
 908
 909        spin_lock_irqsave(&conf->resync_lock, flags);
 910        conf->nr_pending--;
 911        if (start_next_window) {
 912                if (start_next_window == conf->start_next_window) {
 913                        if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 914                            <= bi_sector)
 915                                conf->next_window_requests--;
 916                        else
 917                                conf->current_window_requests--;
 918                } else
 919                        conf->current_window_requests--;
 920
 921                if (!conf->current_window_requests) {
 922                        if (conf->next_window_requests) {
 923                                conf->current_window_requests =
 924                                        conf->next_window_requests;
 925                                conf->next_window_requests = 0;
 926                                conf->start_next_window +=
 927                                        NEXT_NORMALIO_DISTANCE;
 928                        } else
 929                                conf->start_next_window = MaxSector;
 930                }
 931        }
 932        spin_unlock_irqrestore(&conf->resync_lock, flags);
 933        wake_up(&conf->wait_barrier);
 934}
 935
 936static void freeze_array(struct r1conf *conf, int extra)
 937{
 938        /* stop syncio and normal IO and wait for everything to
 939         * go quite.
 940         * We wait until nr_pending match nr_queued+extra
 941         * This is called in the context of one normal IO request
 942         * that has failed. Thus any sync request that might be pending
 943         * will be blocked by nr_pending, and we need to wait for
 944         * pending IO requests to complete or be queued for re-try.
 945         * Thus the number queued (nr_queued) plus this request (extra)
 946         * must match the number of pending IOs (nr_pending) before
 947         * we continue.
 948         */
 949        spin_lock_irq(&conf->resync_lock);
 950        conf->array_frozen = 1;
 951        wait_event_lock_irq_cmd(conf->wait_barrier,
 952                                conf->nr_pending == conf->nr_queued+extra,
 953                                conf->resync_lock,
 954                                flush_pending_writes(conf));
 955        spin_unlock_irq(&conf->resync_lock);
 956}
 957static void unfreeze_array(struct r1conf *conf)
 958{
 959        /* reverse the effect of the freeze */
 960        spin_lock_irq(&conf->resync_lock);
 961        conf->array_frozen = 0;
 962        wake_up(&conf->wait_barrier);
 963        spin_unlock_irq(&conf->resync_lock);
 964}
 965
 966/* duplicate the data pages for behind I/O
 967 */
 968static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 969{
 970        int i;
 971        struct bio_vec *bvec;
 972        struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 973                                        GFP_NOIO);
 974        if (unlikely(!bvecs))
 975                return;
 976
 977        bio_for_each_segment_all(bvec, bio, i) {
 978                bvecs[i] = *bvec;
 979                bvecs[i].bv_page = alloc_page(GFP_NOIO);
 980                if (unlikely(!bvecs[i].bv_page))
 981                        goto do_sync_io;
 982                memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 983                       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 984                kunmap(bvecs[i].bv_page);
 985                kunmap(bvec->bv_page);
 986        }
 987        r1_bio->behind_bvecs = bvecs;
 988        r1_bio->behind_page_count = bio->bi_vcnt;
 989        set_bit(R1BIO_BehindIO, &r1_bio->state);
 990        return;
 991
 992do_sync_io:
 993        for (i = 0; i < bio->bi_vcnt; i++)
 994                if (bvecs[i].bv_page)
 995                        put_page(bvecs[i].bv_page);
 996        kfree(bvecs);
 997        pr_debug("%dB behind alloc failed, doing sync I/O\n",
 998                 bio->bi_iter.bi_size);
 999}
1000
1001struct raid1_plug_cb {
1002        struct blk_plug_cb      cb;
1003        struct bio_list         pending;
1004        int                     pending_cnt;
1005};
1006
1007static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1008{
1009        struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1010                                                  cb);
1011        struct mddev *mddev = plug->cb.data;
1012        struct r1conf *conf = mddev->private;
1013        struct bio *bio;
1014
1015        if (from_schedule || current->bio_list) {
1016                spin_lock_irq(&conf->device_lock);
1017                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1018                conf->pending_count += plug->pending_cnt;
1019                spin_unlock_irq(&conf->device_lock);
1020                wake_up(&conf->wait_barrier);
1021                md_wakeup_thread(mddev->thread);
1022                kfree(plug);
1023                return;
1024        }
1025
1026        /* we aren't scheduling, so we can do the write-out directly. */
1027        bio = bio_list_get(&plug->pending);
1028        bitmap_unplug(mddev->bitmap);
1029        wake_up(&conf->wait_barrier);
1030
1031        while (bio) { /* submit pending writes */
1032                struct bio *next = bio->bi_next;
1033                bio->bi_next = NULL;
1034                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1035                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1036                        /* Just ignore it */
1037                        bio_endio(bio);
1038                else
1039                        generic_make_request(bio);
1040                bio = next;
1041        }
1042        kfree(plug);
1043}
1044
1045static void make_request(struct mddev *mddev, struct bio * bio)
1046{
1047        struct r1conf *conf = mddev->private;
1048        struct raid1_info *mirror;
1049        struct r1bio *r1_bio;
1050        struct bio *read_bio;
1051        int i, disks;
1052        struct bitmap *bitmap;
1053        unsigned long flags;
1054        const int rw = bio_data_dir(bio);
1055        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1056        const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1057        const unsigned long do_discard = (bio->bi_rw
1058                                          & (REQ_DISCARD | REQ_SECURE));
1059        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1060        struct md_rdev *blocked_rdev;
1061        struct blk_plug_cb *cb;
1062        struct raid1_plug_cb *plug = NULL;
1063        int first_clone;
1064        int sectors_handled;
1065        int max_sectors;
1066        sector_t start_next_window;
1067
1068        /*
1069         * Register the new request and wait if the reconstruction
1070         * thread has put up a bar for new requests.
1071         * Continue immediately if no resync is active currently.
1072         */
1073
1074        md_write_start(mddev, bio); /* wait on superblock update early */
1075
1076        if (bio_data_dir(bio) == WRITE &&
1077            ((bio_end_sector(bio) > mddev->suspend_lo &&
1078            bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1079            (mddev_is_clustered(mddev) &&
1080             md_cluster_ops->area_resyncing(mddev, WRITE,
1081                     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1082                /* As the suspend_* range is controlled by
1083                 * userspace, we want an interruptible
1084                 * wait.
1085                 */
1086                DEFINE_WAIT(w);
1087                for (;;) {
1088                        flush_signals(current);
1089                        prepare_to_wait(&conf->wait_barrier,
1090                                        &w, TASK_INTERRUPTIBLE);
1091                        if (bio_end_sector(bio) <= mddev->suspend_lo ||
1092                            bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1093                            (mddev_is_clustered(mddev) &&
1094                             !md_cluster_ops->area_resyncing(mddev, WRITE,
1095                                     bio->bi_iter.bi_sector, bio_end_sector(bio))))
1096                                break;
1097                        schedule();
1098                }
1099                finish_wait(&conf->wait_barrier, &w);
1100        }
1101
1102        start_next_window = wait_barrier(conf, bio);
1103
1104        bitmap = mddev->bitmap;
1105
1106        /*
1107         * make_request() can abort the operation when READA is being
1108         * used and no empty request is available.
1109         *
1110         */
1111        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1112
1113        r1_bio->master_bio = bio;
1114        r1_bio->sectors = bio_sectors(bio);
1115        r1_bio->state = 0;
1116        r1_bio->mddev = mddev;
1117        r1_bio->sector = bio->bi_iter.bi_sector;
1118
1119        /* We might need to issue multiple reads to different
1120         * devices if there are bad blocks around, so we keep
1121         * track of the number of reads in bio->bi_phys_segments.
1122         * If this is 0, there is only one r1_bio and no locking
1123         * will be needed when requests complete.  If it is
1124         * non-zero, then it is the number of not-completed requests.
1125         */
1126        bio->bi_phys_segments = 0;
1127        bio_clear_flag(bio, BIO_SEG_VALID);
1128
1129        if (rw == READ) {
1130                /*
1131                 * read balancing logic:
1132                 */
1133                int rdisk;
1134
1135read_again:
1136                rdisk = read_balance(conf, r1_bio, &max_sectors);
1137
1138                if (rdisk < 0) {
1139                        /* couldn't find anywhere to read from */
1140                        raid_end_bio_io(r1_bio);
1141                        return;
1142                }
1143                mirror = conf->mirrors + rdisk;
1144
1145                if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1146                    bitmap) {
1147                        /* Reading from a write-mostly device must
1148                         * take care not to over-take any writes
1149                         * that are 'behind'
1150                         */
1151                        wait_event(bitmap->behind_wait,
1152                                   atomic_read(&bitmap->behind_writes) == 0);
1153                }
1154                r1_bio->read_disk = rdisk;
1155                r1_bio->start_next_window = 0;
1156
1157                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1158                bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1159                         max_sectors);
1160
1161                r1_bio->bios[rdisk] = read_bio;
1162
1163                read_bio->bi_iter.bi_sector = r1_bio->sector +
1164                        mirror->rdev->data_offset;
1165                read_bio->bi_bdev = mirror->rdev->bdev;
1166                read_bio->bi_end_io = raid1_end_read_request;
1167                read_bio->bi_rw = READ | do_sync;
1168                read_bio->bi_private = r1_bio;
1169
1170                if (max_sectors < r1_bio->sectors) {
1171                        /* could not read all from this device, so we will
1172                         * need another r1_bio.
1173                         */
1174
1175                        sectors_handled = (r1_bio->sector + max_sectors
1176                                           - bio->bi_iter.bi_sector);
1177                        r1_bio->sectors = max_sectors;
1178                        spin_lock_irq(&conf->device_lock);
1179                        if (bio->bi_phys_segments == 0)
1180                                bio->bi_phys_segments = 2;
1181                        else
1182                                bio->bi_phys_segments++;
1183                        spin_unlock_irq(&conf->device_lock);
1184                        /* Cannot call generic_make_request directly
1185                         * as that will be queued in __make_request
1186                         * and subsequent mempool_alloc might block waiting
1187                         * for it.  So hand bio over to raid1d.
1188                         */
1189                        reschedule_retry(r1_bio);
1190
1191                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1192
1193                        r1_bio->master_bio = bio;
1194                        r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1195                        r1_bio->state = 0;
1196                        r1_bio->mddev = mddev;
1197                        r1_bio->sector = bio->bi_iter.bi_sector +
1198                                sectors_handled;
1199                        goto read_again;
1200                } else
1201                        generic_make_request(read_bio);
1202                return;
1203        }
1204
1205        /*
1206         * WRITE:
1207         */
1208        if (conf->pending_count >= max_queued_requests) {
1209                md_wakeup_thread(mddev->thread);
1210                wait_event(conf->wait_barrier,
1211                           conf->pending_count < max_queued_requests);
1212        }
1213        /* first select target devices under rcu_lock and
1214         * inc refcount on their rdev.  Record them by setting
1215         * bios[x] to bio
1216         * If there are known/acknowledged bad blocks on any device on
1217         * which we have seen a write error, we want to avoid writing those
1218         * blocks.
1219         * This potentially requires several writes to write around
1220         * the bad blocks.  Each set of writes gets it's own r1bio
1221         * with a set of bios attached.
1222         */
1223
1224        disks = conf->raid_disks * 2;
1225 retry_write:
1226        r1_bio->start_next_window = start_next_window;
1227        blocked_rdev = NULL;
1228        rcu_read_lock();
1229        max_sectors = r1_bio->sectors;
1230        for (i = 0;  i < disks; i++) {
1231                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1232                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1233                        atomic_inc(&rdev->nr_pending);
1234                        blocked_rdev = rdev;
1235                        break;
1236                }
1237                r1_bio->bios[i] = NULL;
1238                if (!rdev || test_bit(Faulty, &rdev->flags)) {
1239                        if (i < conf->raid_disks)
1240                                set_bit(R1BIO_Degraded, &r1_bio->state);
1241                        continue;
1242                }
1243
1244                atomic_inc(&rdev->nr_pending);
1245                if (test_bit(WriteErrorSeen, &rdev->flags)) {
1246                        sector_t first_bad;
1247                        int bad_sectors;
1248                        int is_bad;
1249
1250                        is_bad = is_badblock(rdev, r1_bio->sector,
1251                                             max_sectors,
1252                                             &first_bad, &bad_sectors);
1253                        if (is_bad < 0) {
1254                                /* mustn't write here until the bad block is
1255                                 * acknowledged*/
1256                                set_bit(BlockedBadBlocks, &rdev->flags);
1257                                blocked_rdev = rdev;
1258                                break;
1259                        }
1260                        if (is_bad && first_bad <= r1_bio->sector) {
1261                                /* Cannot write here at all */
1262                                bad_sectors -= (r1_bio->sector - first_bad);
1263                                if (bad_sectors < max_sectors)
1264                                        /* mustn't write more than bad_sectors
1265                                         * to other devices yet
1266                                         */
1267                                        max_sectors = bad_sectors;
1268                                rdev_dec_pending(rdev, mddev);
1269                                /* We don't set R1BIO_Degraded as that
1270                                 * only applies if the disk is
1271                                 * missing, so it might be re-added,
1272                                 * and we want to know to recover this
1273                                 * chunk.
1274                                 * In this case the device is here,
1275                                 * and the fact that this chunk is not
1276                                 * in-sync is recorded in the bad
1277                                 * block log
1278                                 */
1279                                continue;
1280                        }
1281                        if (is_bad) {
1282                                int good_sectors = first_bad - r1_bio->sector;
1283                                if (good_sectors < max_sectors)
1284                                        max_sectors = good_sectors;
1285                        }
1286                }
1287                r1_bio->bios[i] = bio;
1288        }
1289        rcu_read_unlock();
1290
1291        if (unlikely(blocked_rdev)) {
1292                /* Wait for this device to become unblocked */
1293                int j;
1294                sector_t old = start_next_window;
1295
1296                for (j = 0; j < i; j++)
1297                        if (r1_bio->bios[j])
1298                                rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1299                r1_bio->state = 0;
1300                allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1301                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1302                start_next_window = wait_barrier(conf, bio);
1303                /*
1304                 * We must make sure the multi r1bios of bio have
1305                 * the same value of bi_phys_segments
1306                 */
1307                if (bio->bi_phys_segments && old &&
1308                    old != start_next_window)
1309                        /* Wait for the former r1bio(s) to complete */
1310                        wait_event(conf->wait_barrier,
1311                                   bio->bi_phys_segments == 1);
1312                goto retry_write;
1313        }
1314
1315        if (max_sectors < r1_bio->sectors) {
1316                /* We are splitting this write into multiple parts, so
1317                 * we need to prepare for allocating another r1_bio.
1318                 */
1319                r1_bio->sectors = max_sectors;
1320                spin_lock_irq(&conf->device_lock);
1321                if (bio->bi_phys_segments == 0)
1322                        bio->bi_phys_segments = 2;
1323                else
1324                        bio->bi_phys_segments++;
1325                spin_unlock_irq(&conf->device_lock);
1326        }
1327        sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1328
1329        atomic_set(&r1_bio->remaining, 1);
1330        atomic_set(&r1_bio->behind_remaining, 0);
1331
1332        first_clone = 1;
1333        for (i = 0; i < disks; i++) {
1334                struct bio *mbio;
1335                if (!r1_bio->bios[i])
1336                        continue;
1337
1338                mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1339                bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1340
1341                if (first_clone) {
1342                        /* do behind I/O ?
1343                         * Not if there are too many, or cannot
1344                         * allocate memory, or a reader on WriteMostly
1345                         * is waiting for behind writes to flush */
1346                        if (bitmap &&
1347                            (atomic_read(&bitmap->behind_writes)
1348                             < mddev->bitmap_info.max_write_behind) &&
1349                            !waitqueue_active(&bitmap->behind_wait))
1350                                alloc_behind_pages(mbio, r1_bio);
1351
1352                        bitmap_startwrite(bitmap, r1_bio->sector,
1353                                          r1_bio->sectors,
1354                                          test_bit(R1BIO_BehindIO,
1355                                                   &r1_bio->state));
1356                        first_clone = 0;
1357                }
1358                if (r1_bio->behind_bvecs) {
1359                        struct bio_vec *bvec;
1360                        int j;
1361
1362                        /*
1363                         * We trimmed the bio, so _all is legit
1364                         */
1365                        bio_for_each_segment_all(bvec, mbio, j)
1366                                bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1367                        if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1368                                atomic_inc(&r1_bio->behind_remaining);
1369                }
1370
1371                r1_bio->bios[i] = mbio;
1372
1373                mbio->bi_iter.bi_sector = (r1_bio->sector +
1374                                   conf->mirrors[i].rdev->data_offset);
1375                mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1376                mbio->bi_end_io = raid1_end_write_request;
1377                mbio->bi_rw =
1378                        WRITE | do_flush_fua | do_sync | do_discard | do_same;
1379                mbio->bi_private = r1_bio;
1380
1381                atomic_inc(&r1_bio->remaining);
1382
1383                cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1384                if (cb)
1385                        plug = container_of(cb, struct raid1_plug_cb, cb);
1386                else
1387                        plug = NULL;
1388                spin_lock_irqsave(&conf->device_lock, flags);
1389                if (plug) {
1390                        bio_list_add(&plug->pending, mbio);
1391                        plug->pending_cnt++;
1392                } else {
1393                        bio_list_add(&conf->pending_bio_list, mbio);
1394                        conf->pending_count++;
1395                }
1396                spin_unlock_irqrestore(&conf->device_lock, flags);
1397                if (!plug)
1398                        md_wakeup_thread(mddev->thread);
1399        }
1400        /* Mustn't call r1_bio_write_done before this next test,
1401         * as it could result in the bio being freed.
1402         */
1403        if (sectors_handled < bio_sectors(bio)) {
1404                r1_bio_write_done(r1_bio);
1405                /* We need another r1_bio.  It has already been counted
1406                 * in bio->bi_phys_segments
1407                 */
1408                r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1409                r1_bio->master_bio = bio;
1410                r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1411                r1_bio->state = 0;
1412                r1_bio->mddev = mddev;
1413                r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1414                goto retry_write;
1415        }
1416
1417        r1_bio_write_done(r1_bio);
1418
1419        /* In case raid1d snuck in to freeze_array */
1420        wake_up(&conf->wait_barrier);
1421}
1422
1423static void status(struct seq_file *seq, struct mddev *mddev)
1424{
1425        struct r1conf *conf = mddev->private;
1426        int i;
1427
1428        seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1429                   conf->raid_disks - mddev->degraded);
1430        rcu_read_lock();
1431        for (i = 0; i < conf->raid_disks; i++) {
1432                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1433                seq_printf(seq, "%s",
1434                           rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1435        }
1436        rcu_read_unlock();
1437        seq_printf(seq, "]");
1438}
1439
1440static void error(struct mddev *mddev, struct md_rdev *rdev)
1441{
1442        char b[BDEVNAME_SIZE];
1443        struct r1conf *conf = mddev->private;
1444        unsigned long flags;
1445
1446        /*
1447         * If it is not operational, then we have already marked it as dead
1448         * else if it is the last working disks, ignore the error, let the
1449         * next level up know.
1450         * else mark the drive as failed
1451         */
1452        if (test_bit(In_sync, &rdev->flags)
1453            && (conf->raid_disks - mddev->degraded) == 1) {
1454                /*
1455                 * Don't fail the drive, act as though we were just a
1456                 * normal single drive.
1457                 * However don't try a recovery from this drive as
1458                 * it is very likely to fail.
1459                 */
1460                conf->recovery_disabled = mddev->recovery_disabled;
1461                return;
1462        }
1463        set_bit(Blocked, &rdev->flags);
1464        spin_lock_irqsave(&conf->device_lock, flags);
1465        if (test_and_clear_bit(In_sync, &rdev->flags)) {
1466                mddev->degraded++;
1467                set_bit(Faulty, &rdev->flags);
1468        } else
1469                set_bit(Faulty, &rdev->flags);
1470        spin_unlock_irqrestore(&conf->device_lock, flags);
1471        /*
1472         * if recovery is running, make sure it aborts.
1473         */
1474        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1475        set_bit(MD_CHANGE_DEVS, &mddev->flags);
1476        set_bit(MD_CHANGE_PENDING, &mddev->flags);
1477        printk(KERN_ALERT
1478               "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479               "md/raid1:%s: Operation continuing on %d devices.\n",
1480               mdname(mddev), bdevname(rdev->bdev, b),
1481               mdname(mddev), conf->raid_disks - mddev->degraded);
1482}
1483
1484static void print_conf(struct r1conf *conf)
1485{
1486        int i;
1487
1488        printk(KERN_DEBUG "RAID1 conf printout:\n");
1489        if (!conf) {
1490                printk(KERN_DEBUG "(!conf)\n");
1491                return;
1492        }
1493        printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1494                conf->raid_disks);
1495
1496        rcu_read_lock();
1497        for (i = 0; i < conf->raid_disks; i++) {
1498                char b[BDEVNAME_SIZE];
1499                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1500                if (rdev)
1501                        printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1502                               i, !test_bit(In_sync, &rdev->flags),
1503                               !test_bit(Faulty, &rdev->flags),
1504                               bdevname(rdev->bdev,b));
1505        }
1506        rcu_read_unlock();
1507}
1508
1509static void close_sync(struct r1conf *conf)
1510{
1511        wait_barrier(conf, NULL);
1512        allow_barrier(conf, 0, 0);
1513
1514        mempool_destroy(conf->r1buf_pool);
1515        conf->r1buf_pool = NULL;
1516
1517        spin_lock_irq(&conf->resync_lock);
1518        conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1519        conf->start_next_window = MaxSector;
1520        conf->current_window_requests +=
1521                conf->next_window_requests;
1522        conf->next_window_requests = 0;
1523        spin_unlock_irq(&conf->resync_lock);
1524}
1525
1526static int raid1_spare_active(struct mddev *mddev)
1527{
1528        int i;
1529        struct r1conf *conf = mddev->private;
1530        int count = 0;
1531        unsigned long flags;
1532
1533        /*
1534         * Find all failed disks within the RAID1 configuration
1535         * and mark them readable.
1536         * Called under mddev lock, so rcu protection not needed.
1537         * device_lock used to avoid races with raid1_end_read_request
1538         * which expects 'In_sync' flags and ->degraded to be consistent.
1539         */
1540        spin_lock_irqsave(&conf->device_lock, flags);
1541        for (i = 0; i < conf->raid_disks; i++) {
1542                struct md_rdev *rdev = conf->mirrors[i].rdev;
1543                struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544                if (repl
1545                    && !test_bit(Candidate, &repl->flags)
1546                    && repl->recovery_offset == MaxSector
1547                    && !test_bit(Faulty, &repl->flags)
1548                    && !test_and_set_bit(In_sync, &repl->flags)) {
1549                        /* replacement has just become active */
1550                        if (!rdev ||
1551                            !test_and_clear_bit(In_sync, &rdev->flags))
1552                                count++;
1553                        if (rdev) {
1554                                /* Replaced device not technically
1555                                 * faulty, but we need to be sure
1556                                 * it gets removed and never re-added
1557                                 */
1558                                set_bit(Faulty, &rdev->flags);
1559                                sysfs_notify_dirent_safe(
1560                                        rdev->sysfs_state);
1561                        }
1562                }
1563                if (rdev
1564                    && rdev->recovery_offset == MaxSector
1565                    && !test_bit(Faulty, &rdev->flags)
1566                    && !test_and_set_bit(In_sync, &rdev->flags)) {
1567                        count++;
1568                        sysfs_notify_dirent_safe(rdev->sysfs_state);
1569                }
1570        }
1571        mddev->degraded -= count;
1572        spin_unlock_irqrestore(&conf->device_lock, flags);
1573
1574        print_conf(conf);
1575        return count;
1576}
1577
1578static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1579{
1580        struct r1conf *conf = mddev->private;
1581        int err = -EEXIST;
1582        int mirror = 0;
1583        struct raid1_info *p;
1584        int first = 0;
1585        int last = conf->raid_disks - 1;
1586
1587        if (mddev->recovery_disabled == conf->recovery_disabled)
1588                return -EBUSY;
1589
1590        if (rdev->raid_disk >= 0)
1591                first = last = rdev->raid_disk;
1592
1593        for (mirror = first; mirror <= last; mirror++) {
1594                p = conf->mirrors+mirror;
1595                if (!p->rdev) {
1596
1597                        if (mddev->gendisk)
1598                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1599                                                  rdev->data_offset << 9);
1600
1601                        p->head_position = 0;
1602                        rdev->raid_disk = mirror;
1603                        err = 0;
1604                        /* As all devices are equivalent, we don't need a full recovery
1605                         * if this was recently any drive of the array
1606                         */
1607                        if (rdev->saved_raid_disk < 0)
1608                                conf->fullsync = 1;
1609                        rcu_assign_pointer(p->rdev, rdev);
1610                        break;
1611                }
1612                if (test_bit(WantReplacement, &p->rdev->flags) &&
1613                    p[conf->raid_disks].rdev == NULL) {
1614                        /* Add this device as a replacement */
1615                        clear_bit(In_sync, &rdev->flags);
1616                        set_bit(Replacement, &rdev->flags);
1617                        rdev->raid_disk = mirror;
1618                        err = 0;
1619                        conf->fullsync = 1;
1620                        rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1621                        break;
1622                }
1623        }
1624        md_integrity_add_rdev(rdev, mddev);
1625        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1626                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1627        print_conf(conf);
1628        return err;
1629}
1630
1631static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1632{
1633        struct r1conf *conf = mddev->private;
1634        int err = 0;
1635        int number = rdev->raid_disk;
1636        struct raid1_info *p = conf->mirrors + number;
1637
1638        if (rdev != p->rdev)
1639                p = conf->mirrors + conf->raid_disks + number;
1640
1641        print_conf(conf);
1642        if (rdev == p->rdev) {
1643                if (test_bit(In_sync, &rdev->flags) ||
1644                    atomic_read(&rdev->nr_pending)) {
1645                        err = -EBUSY;
1646                        goto abort;
1647                }
1648                /* Only remove non-faulty devices if recovery
1649                 * is not possible.
1650                 */
1651                if (!test_bit(Faulty, &rdev->flags) &&
1652                    mddev->recovery_disabled != conf->recovery_disabled &&
1653                    mddev->degraded < conf->raid_disks) {
1654                        err = -EBUSY;
1655                        goto abort;
1656                }
1657                p->rdev = NULL;
1658                synchronize_rcu();
1659                if (atomic_read(&rdev->nr_pending)) {
1660                        /* lost the race, try later */
1661                        err = -EBUSY;
1662                        p->rdev = rdev;
1663                        goto abort;
1664                } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1665                        /* We just removed a device that is being replaced.
1666                         * Move down the replacement.  We drain all IO before
1667                         * doing this to avoid confusion.
1668                         */
1669                        struct md_rdev *repl =
1670                                conf->mirrors[conf->raid_disks + number].rdev;
1671                        freeze_array(conf, 0);
1672                        clear_bit(Replacement, &repl->flags);
1673                        p->rdev = repl;
1674                        conf->mirrors[conf->raid_disks + number].rdev = NULL;
1675                        unfreeze_array(conf);
1676                        clear_bit(WantReplacement, &rdev->flags);
1677                } else
1678                        clear_bit(WantReplacement, &rdev->flags);
1679                err = md_integrity_register(mddev);
1680        }
1681abort:
1682
1683        print_conf(conf);
1684        return err;
1685}
1686
1687static void end_sync_read(struct bio *bio)
1688{
1689        struct r1bio *r1_bio = bio->bi_private;
1690
1691        update_head_pos(r1_bio->read_disk, r1_bio);
1692
1693        /*
1694         * we have read a block, now it needs to be re-written,
1695         * or re-read if the read failed.
1696         * We don't do much here, just schedule handling by raid1d
1697         */
1698        if (!bio->bi_error)
1699                set_bit(R1BIO_Uptodate, &r1_bio->state);
1700
1701        if (atomic_dec_and_test(&r1_bio->remaining))
1702                reschedule_retry(r1_bio);
1703}
1704
1705static void end_sync_write(struct bio *bio)
1706{
1707        int uptodate = !bio->bi_error;
1708        struct r1bio *r1_bio = bio->bi_private;
1709        struct mddev *mddev = r1_bio->mddev;
1710        struct r1conf *conf = mddev->private;
1711        int mirror=0;
1712        sector_t first_bad;
1713        int bad_sectors;
1714
1715        mirror = find_bio_disk(r1_bio, bio);
1716
1717        if (!uptodate) {
1718                sector_t sync_blocks = 0;
1719                sector_t s = r1_bio->sector;
1720                long sectors_to_go = r1_bio->sectors;
1721                /* make sure these bits doesn't get cleared. */
1722                do {
1723                        bitmap_end_sync(mddev->bitmap, s,
1724                                        &sync_blocks, 1);
1725                        s += sync_blocks;
1726                        sectors_to_go -= sync_blocks;
1727                } while (sectors_to_go > 0);
1728                set_bit(WriteErrorSeen,
1729                        &conf->mirrors[mirror].rdev->flags);
1730                if (!test_and_set_bit(WantReplacement,
1731                                      &conf->mirrors[mirror].rdev->flags))
1732                        set_bit(MD_RECOVERY_NEEDED, &
1733                                mddev->recovery);
1734                set_bit(R1BIO_WriteError, &r1_bio->state);
1735        } else if (is_badblock(conf->mirrors[mirror].rdev,
1736                               r1_bio->sector,
1737                               r1_bio->sectors,
1738                               &first_bad, &bad_sectors) &&
1739                   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1740                                r1_bio->sector,
1741                                r1_bio->sectors,
1742                                &first_bad, &bad_sectors)
1743                )
1744                set_bit(R1BIO_MadeGood, &r1_bio->state);
1745
1746        if (atomic_dec_and_test(&r1_bio->remaining)) {
1747                int s = r1_bio->sectors;
1748                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1749                    test_bit(R1BIO_WriteError, &r1_bio->state))
1750                        reschedule_retry(r1_bio);
1751                else {
1752                        put_buf(r1_bio);
1753                        md_done_sync(mddev, s, uptodate);
1754                }
1755        }
1756}
1757
1758static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1759                            int sectors, struct page *page, int rw)
1760{
1761        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1762                /* success */
1763                return 1;
1764        if (rw == WRITE) {
1765                set_bit(WriteErrorSeen, &rdev->flags);
1766                if (!test_and_set_bit(WantReplacement,
1767                                      &rdev->flags))
1768                        set_bit(MD_RECOVERY_NEEDED, &
1769                                rdev->mddev->recovery);
1770        }
1771        /* need to record an error - either for the block or the device */
1772        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1773                md_error(rdev->mddev, rdev);
1774        return 0;
1775}
1776
1777static int fix_sync_read_error(struct r1bio *r1_bio)
1778{
1779        /* Try some synchronous reads of other devices to get
1780         * good data, much like with normal read errors.  Only
1781         * read into the pages we already have so we don't
1782         * need to re-issue the read request.
1783         * We don't need to freeze the array, because being in an
1784         * active sync request, there is no normal IO, and
1785         * no overlapping syncs.
1786         * We don't need to check is_badblock() again as we
1787         * made sure that anything with a bad block in range
1788         * will have bi_end_io clear.
1789         */
1790        struct mddev *mddev = r1_bio->mddev;
1791        struct r1conf *conf = mddev->private;
1792        struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1793        sector_t sect = r1_bio->sector;
1794        int sectors = r1_bio->sectors;
1795        int idx = 0;
1796
1797        while(sectors) {
1798                int s = sectors;
1799                int d = r1_bio->read_disk;
1800                int success = 0;
1801                struct md_rdev *rdev;
1802                int start;
1803
1804                if (s > (PAGE_SIZE>>9))
1805                        s = PAGE_SIZE >> 9;
1806                do {
1807                        if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1808                                /* No rcu protection needed here devices
1809                                 * can only be removed when no resync is
1810                                 * active, and resync is currently active
1811                                 */
1812                                rdev = conf->mirrors[d].rdev;
1813                                if (sync_page_io(rdev, sect, s<<9,
1814                                                 bio->bi_io_vec[idx].bv_page,
1815                                                 READ, false)) {
1816                                        success = 1;
1817                                        break;
1818                                }
1819                        }
1820                        d++;
1821                        if (d == conf->raid_disks * 2)
1822                                d = 0;
1823                } while (!success && d != r1_bio->read_disk);
1824
1825                if (!success) {
1826                        char b[BDEVNAME_SIZE];
1827                        int abort = 0;
1828                        /* Cannot read from anywhere, this block is lost.
1829                         * Record a bad block on each device.  If that doesn't
1830                         * work just disable and interrupt the recovery.
1831                         * Don't fail devices as that won't really help.
1832                         */
1833                        printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1834                               " for block %llu\n",
1835                               mdname(mddev),
1836                               bdevname(bio->bi_bdev, b),
1837                               (unsigned long long)r1_bio->sector);
1838                        for (d = 0; d < conf->raid_disks * 2; d++) {
1839                                rdev = conf->mirrors[d].rdev;
1840                                if (!rdev || test_bit(Faulty, &rdev->flags))
1841                                        continue;
1842                                if (!rdev_set_badblocks(rdev, sect, s, 0))
1843                                        abort = 1;
1844                        }
1845                        if (abort) {
1846                                conf->recovery_disabled =
1847                                        mddev->recovery_disabled;
1848                                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1849                                md_done_sync(mddev, r1_bio->sectors, 0);
1850                                put_buf(r1_bio);
1851                                return 0;
1852                        }
1853                        /* Try next page */
1854                        sectors -= s;
1855                        sect += s;
1856                        idx++;
1857                        continue;
1858                }
1859
1860                start = d;
1861                /* write it back and re-read */
1862                while (d != r1_bio->read_disk) {
1863                        if (d == 0)
1864                                d = conf->raid_disks * 2;
1865                        d--;
1866                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1867                                continue;
1868                        rdev = conf->mirrors[d].rdev;
1869                        if (r1_sync_page_io(rdev, sect, s,
1870                                            bio->bi_io_vec[idx].bv_page,
1871                                            WRITE) == 0) {
1872                                r1_bio->bios[d]->bi_end_io = NULL;
1873                                rdev_dec_pending(rdev, mddev);
1874                        }
1875                }
1876                d = start;
1877                while (d != r1_bio->read_disk) {
1878                        if (d == 0)
1879                                d = conf->raid_disks * 2;
1880                        d--;
1881                        if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1882                                continue;
1883                        rdev = conf->mirrors[d].rdev;
1884                        if (r1_sync_page_io(rdev, sect, s,
1885                                            bio->bi_io_vec[idx].bv_page,
1886                                            READ) != 0)
1887                                atomic_add(s, &rdev->corrected_errors);
1888                }
1889                sectors -= s;
1890                sect += s;
1891                idx ++;
1892        }
1893        set_bit(R1BIO_Uptodate, &r1_bio->state);
1894        bio->bi_error = 0;
1895        return 1;
1896}
1897
1898static void process_checks(struct r1bio *r1_bio)
1899{
1900        /* We have read all readable devices.  If we haven't
1901         * got the block, then there is no hope left.
1902         * If we have, then we want to do a comparison
1903         * and skip the write if everything is the same.
1904         * If any blocks failed to read, then we need to
1905         * attempt an over-write
1906         */
1907        struct mddev *mddev = r1_bio->mddev;
1908        struct r1conf *conf = mddev->private;
1909        int primary;
1910        int i;
1911        int vcnt;
1912
1913        /* Fix variable parts of all bios */
1914        vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1915        for (i = 0; i < conf->raid_disks * 2; i++) {
1916                int j;
1917                int size;
1918                int error;
1919                struct bio *b = r1_bio->bios[i];
1920                if (b->bi_end_io != end_sync_read)
1921                        continue;
1922                /* fixup the bio for reuse, but preserve errno */
1923                error = b->bi_error;
1924                bio_reset(b);
1925                b->bi_error = error;
1926                b->bi_vcnt = vcnt;
1927                b->bi_iter.bi_size = r1_bio->sectors << 9;
1928                b->bi_iter.bi_sector = r1_bio->sector +
1929                        conf->mirrors[i].rdev->data_offset;
1930                b->bi_bdev = conf->mirrors[i].rdev->bdev;
1931                b->bi_end_io = end_sync_read;
1932                b->bi_private = r1_bio;
1933
1934                size = b->bi_iter.bi_size;
1935                for (j = 0; j < vcnt ; j++) {
1936                        struct bio_vec *bi;
1937                        bi = &b->bi_io_vec[j];
1938                        bi->bv_offset = 0;
1939                        if (size > PAGE_SIZE)
1940                                bi->bv_len = PAGE_SIZE;
1941                        else
1942                                bi->bv_len = size;
1943                        size -= PAGE_SIZE;
1944                }
1945        }
1946        for (primary = 0; primary < conf->raid_disks * 2; primary++)
1947                if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1948                    !r1_bio->bios[primary]->bi_error) {
1949                        r1_bio->bios[primary]->bi_end_io = NULL;
1950                        rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1951                        break;
1952                }
1953        r1_bio->read_disk = primary;
1954        for (i = 0; i < conf->raid_disks * 2; i++) {
1955                int j;
1956                struct bio *pbio = r1_bio->bios[primary];
1957                struct bio *sbio = r1_bio->bios[i];
1958                int error = sbio->bi_error;
1959
1960                if (sbio->bi_end_io != end_sync_read)
1961                        continue;
1962                /* Now we can 'fixup' the error value */
1963                sbio->bi_error = 0;
1964
1965                if (!error) {
1966                        for (j = vcnt; j-- ; ) {
1967                                struct page *p, *s;
1968                                p = pbio->bi_io_vec[j].bv_page;
1969                                s = sbio->bi_io_vec[j].bv_page;
1970                                if (memcmp(page_address(p),
1971                                           page_address(s),
1972                                           sbio->bi_io_vec[j].bv_len))
1973                                        break;
1974                        }
1975                } else
1976                        j = 0;
1977                if (j >= 0)
1978                        atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1979                if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1980                              && !error)) {
1981                        /* No need to write to this device. */
1982                        sbio->bi_end_io = NULL;
1983                        rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1984                        continue;
1985                }
1986
1987                bio_copy_data(sbio, pbio);
1988        }
1989}
1990
1991static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1992{
1993        struct r1conf *conf = mddev->private;
1994        int i;
1995        int disks = conf->raid_disks * 2;
1996        struct bio *bio, *wbio;
1997
1998        bio = r1_bio->bios[r1_bio->read_disk];
1999
2000        if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2001                /* ouch - failed to read all of that. */
2002                if (!fix_sync_read_error(r1_bio))
2003                        return;
2004
2005        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2006                process_checks(r1_bio);
2007
2008        /*
2009         * schedule writes
2010         */
2011        atomic_set(&r1_bio->remaining, 1);
2012        for (i = 0; i < disks ; i++) {
2013                wbio = r1_bio->bios[i];
2014                if (wbio->bi_end_io == NULL ||
2015                    (wbio->bi_end_io == end_sync_read &&
2016                     (i == r1_bio->read_disk ||
2017                      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2018                        continue;
2019
2020                wbio->bi_rw = WRITE;
2021                wbio->bi_end_io = end_sync_write;
2022                atomic_inc(&r1_bio->remaining);
2023                md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2024
2025                generic_make_request(wbio);
2026        }
2027
2028        if (atomic_dec_and_test(&r1_bio->remaining)) {
2029                /* if we're here, all write(s) have completed, so clean up */
2030                int s = r1_bio->sectors;
2031                if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2032                    test_bit(R1BIO_WriteError, &r1_bio->state))
2033                        reschedule_retry(r1_bio);
2034                else {
2035                        put_buf(r1_bio);
2036                        md_done_sync(mddev, s, 1);
2037                }
2038        }
2039}
2040
2041/*
2042 * This is a kernel thread which:
2043 *
2044 *      1.      Retries failed read operations on working mirrors.
2045 *      2.      Updates the raid superblock when problems encounter.
2046 *      3.      Performs writes following reads for array synchronising.
2047 */
2048
2049static void fix_read_error(struct r1conf *conf, int read_disk,
2050                           sector_t sect, int sectors)
2051{
2052        struct mddev *mddev = conf->mddev;
2053        while(sectors) {
2054                int s = sectors;
2055                int d = read_disk;
2056                int success = 0;
2057                int start;
2058                struct md_rdev *rdev;
2059
2060                if (s > (PAGE_SIZE>>9))
2061                        s = PAGE_SIZE >> 9;
2062
2063                do {
2064                        /* Note: no rcu protection needed here
2065                         * as this is synchronous in the raid1d thread
2066                         * which is the thread that might remove
2067                         * a device.  If raid1d ever becomes multi-threaded....
2068                         */
2069                        sector_t first_bad;
2070                        int bad_sectors;
2071
2072                        rdev = conf->mirrors[d].rdev;
2073                        if (rdev &&
2074                            (test_bit(In_sync, &rdev->flags) ||
2075                             (!test_bit(Faulty, &rdev->flags) &&
2076                              rdev->recovery_offset >= sect + s)) &&
2077                            is_badblock(rdev, sect, s,
2078                                        &first_bad, &bad_sectors) == 0 &&
2079                            sync_page_io(rdev, sect, s<<9,
2080                                         conf->tmppage, READ, false))
2081                                success = 1;
2082                        else {
2083                                d++;
2084                                if (d == conf->raid_disks * 2)
2085                                        d = 0;
2086                        }
2087                } while (!success && d != read_disk);
2088
2089                if (!success) {
2090                        /* Cannot read from anywhere - mark it bad */
2091                        struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2092                        if (!rdev_set_badblocks(rdev, sect, s, 0))
2093                                md_error(mddev, rdev);
2094                        break;
2095                }
2096                /* write it back and re-read */
2097                start = d;
2098                while (d != read_disk) {
2099                        if (d==0)
2100                                d = conf->raid_disks * 2;
2101                        d--;
2102                        rdev = conf->mirrors[d].rdev;
2103                        if (rdev &&
2104                            !test_bit(Faulty, &rdev->flags))
2105                                r1_sync_page_io(rdev, sect, s,
2106                                                conf->tmppage, WRITE);
2107                }
2108                d = start;
2109                while (d != read_disk) {
2110                        char b[BDEVNAME_SIZE];
2111                        if (d==0)
2112                                d = conf->raid_disks * 2;
2113                        d--;
2114                        rdev = conf->mirrors[d].rdev;
2115                        if (rdev &&
2116                            !test_bit(Faulty, &rdev->flags)) {
2117                                if (r1_sync_page_io(rdev, sect, s,
2118                                                    conf->tmppage, READ)) {
2119                                        atomic_add(s, &rdev->corrected_errors);
2120                                        printk(KERN_INFO
2121                                               "md/raid1:%s: read error corrected "
2122                                               "(%d sectors at %llu on %s)\n",
2123                                               mdname(mddev), s,
2124                                               (unsigned long long)(sect +
2125                                                   rdev->data_offset),
2126                                               bdevname(rdev->bdev, b));
2127                                }
2128                        }
2129                }
2130                sectors -= s;
2131                sect += s;
2132        }
2133}
2134
2135static int narrow_write_error(struct r1bio *r1_bio, int i)
2136{
2137        struct mddev *mddev = r1_bio->mddev;
2138        struct r1conf *conf = mddev->private;
2139        struct md_rdev *rdev = conf->mirrors[i].rdev;
2140
2141        /* bio has the data to be written to device 'i' where
2142         * we just recently had a write error.
2143         * We repeatedly clone the bio and trim down to one block,
2144         * then try the write.  Where the write fails we record
2145         * a bad block.
2146         * It is conceivable that the bio doesn't exactly align with
2147         * blocks.  We must handle this somehow.
2148         *
2149         * We currently own a reference on the rdev.
2150         */
2151
2152        int block_sectors;
2153        sector_t sector;
2154        int sectors;
2155        int sect_to_write = r1_bio->sectors;
2156        int ok = 1;
2157
2158        if (rdev->badblocks.shift < 0)
2159                return 0;
2160
2161        block_sectors = roundup(1 << rdev->badblocks.shift,
2162                                bdev_logical_block_size(rdev->bdev) >> 9);
2163        sector = r1_bio->sector;
2164        sectors = ((sector + block_sectors)
2165                   & ~(sector_t)(block_sectors - 1))
2166                - sector;
2167
2168        while (sect_to_write) {
2169                struct bio *wbio;
2170                if (sectors > sect_to_write)
2171                        sectors = sect_to_write;
2172                /* Write at 'sector' for 'sectors'*/
2173
2174                if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2175                        unsigned vcnt = r1_bio->behind_page_count;
2176                        struct bio_vec *vec = r1_bio->behind_bvecs;
2177
2178                        while (!vec->bv_page) {
2179                                vec++;
2180                                vcnt--;
2181                        }
2182
2183                        wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2184                        memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2185
2186                        wbio->bi_vcnt = vcnt;
2187                } else {
2188                        wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2189                }
2190
2191                wbio->bi_rw = WRITE;
2192                wbio->bi_iter.bi_sector = r1_bio->sector;
2193                wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2194
2195                bio_trim(wbio, sector - r1_bio->sector, sectors);
2196                wbio->bi_iter.bi_sector += rdev->data_offset;
2197                wbio->bi_bdev = rdev->bdev;
2198                if (submit_bio_wait(WRITE, wbio) < 0)
2199                        /* failure! */
2200                        ok = rdev_set_badblocks(rdev, sector,
2201                                                sectors, 0)
2202                                && ok;
2203
2204                bio_put(wbio);
2205                sect_to_write -= sectors;
2206                sector += sectors;
2207                sectors = block_sectors;
2208        }
2209        return ok;
2210}
2211
2212static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2213{
2214        int m;
2215        int s = r1_bio->sectors;
2216        for (m = 0; m < conf->raid_disks * 2 ; m++) {
2217                struct md_rdev *rdev = conf->mirrors[m].rdev;
2218                struct bio *bio = r1_bio->bios[m];
2219                if (bio->bi_end_io == NULL)
2220                        continue;
2221                if (!bio->bi_error &&
2222                    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2223                        rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2224                }
2225                if (bio->bi_error &&
2226                    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2227                        if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2228                                md_error(conf->mddev, rdev);
2229                }
2230        }
2231        put_buf(r1_bio);
2232        md_done_sync(conf->mddev, s, 1);
2233}
2234
2235static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2236{
2237        int m;
2238        bool fail = false;
2239        for (m = 0; m < conf->raid_disks * 2 ; m++)
2240                if (r1_bio->bios[m] == IO_MADE_GOOD) {
2241                        struct md_rdev *rdev = conf->mirrors[m].rdev;
2242                        rdev_clear_badblocks(rdev,
2243                                             r1_bio->sector,
2244                                             r1_bio->sectors, 0);
2245                        rdev_dec_pending(rdev, conf->mddev);
2246                } else if (r1_bio->bios[m] != NULL) {
2247                        /* This drive got a write error.  We need to
2248                         * narrow down and record precise write
2249                         * errors.
2250                         */
2251                        fail = true;
2252                        if (!narrow_write_error(r1_bio, m)) {
2253                                md_error(conf->mddev,
2254                                         conf->mirrors[m].rdev);
2255                                /* an I/O failed, we can't clear the bitmap */
2256                                set_bit(R1BIO_Degraded, &r1_bio->state);
2257                        }
2258                        rdev_dec_pending(conf->mirrors[m].rdev,
2259                                         conf->mddev);
2260                }
2261        if (fail) {
2262                spin_lock_irq(&conf->device_lock);
2263                list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2264                spin_unlock_irq(&conf->device_lock);
2265                md_wakeup_thread(conf->mddev->thread);
2266        } else {
2267                if (test_bit(R1BIO_WriteError, &r1_bio->state))
2268                        close_write(r1_bio);
2269                raid_end_bio_io(r1_bio);
2270        }
2271}
2272
2273static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2274{
2275        int disk;
2276        int max_sectors;
2277        struct mddev *mddev = conf->mddev;
2278        struct bio *bio;
2279        char b[BDEVNAME_SIZE];
2280        struct md_rdev *rdev;
2281
2282        clear_bit(R1BIO_ReadError, &r1_bio->state);
2283        /* we got a read error. Maybe the drive is bad.  Maybe just
2284         * the block and we can fix it.
2285         * We freeze all other IO, and try reading the block from
2286         * other devices.  When we find one, we re-write
2287         * and check it that fixes the read error.
2288         * This is all done synchronously while the array is
2289         * frozen
2290         */
2291        if (mddev->ro == 0) {
2292                freeze_array(conf, 1);
2293                fix_read_error(conf, r1_bio->read_disk,
2294                               r1_bio->sector, r1_bio->sectors);
2295                unfreeze_array(conf);
2296        } else
2297                md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2298        rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2299
2300        bio = r1_bio->bios[r1_bio->read_disk];
2301        bdevname(bio->bi_bdev, b);
2302read_more:
2303        disk = read_balance(conf, r1_bio, &max_sectors);
2304        if (disk == -1) {
2305                printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2306                       " read error for block %llu\n",
2307                       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2308                raid_end_bio_io(r1_bio);
2309        } else {
2310                const unsigned long do_sync
2311                        = r1_bio->master_bio->bi_rw & REQ_SYNC;
2312                if (bio) {
2313                        r1_bio->bios[r1_bio->read_disk] =
2314                                mddev->ro ? IO_BLOCKED : NULL;
2315                        bio_put(bio);
2316                }
2317                r1_bio->read_disk = disk;
2318                bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2319                bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2320                         max_sectors);
2321                r1_bio->bios[r1_bio->read_disk] = bio;
2322                rdev = conf->mirrors[disk].rdev;
2323                printk_ratelimited(KERN_ERR
2324                                   "md/raid1:%s: redirecting sector %llu"
2325                                   " to other mirror: %s\n",
2326                                   mdname(mddev),
2327                                   (unsigned long long)r1_bio->sector,
2328                                   bdevname(rdev->bdev, b));
2329                bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2330                bio->bi_bdev = rdev->bdev;
2331                bio->bi_end_io = raid1_end_read_request;
2332                bio->bi_rw = READ | do_sync;
2333                bio->bi_private = r1_bio;
2334                if (max_sectors < r1_bio->sectors) {
2335                        /* Drat - have to split this up more */
2336                        struct bio *mbio = r1_bio->master_bio;
2337                        int sectors_handled = (r1_bio->sector + max_sectors
2338                                               - mbio->bi_iter.bi_sector);
2339                        r1_bio->sectors = max_sectors;
2340                        spin_lock_irq(&conf->device_lock);
2341                        if (mbio->bi_phys_segments == 0)
2342                                mbio->bi_phys_segments = 2;
2343                        else
2344                                mbio->bi_phys_segments++;
2345                        spin_unlock_irq(&conf->device_lock);
2346                        generic_make_request(bio);
2347                        bio = NULL;
2348
2349                        r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2350
2351                        r1_bio->master_bio = mbio;
2352                        r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2353                        r1_bio->state = 0;
2354                        set_bit(R1BIO_ReadError, &r1_bio->state);
2355                        r1_bio->mddev = mddev;
2356                        r1_bio->sector = mbio->bi_iter.bi_sector +
2357                                sectors_handled;
2358
2359                        goto read_more;
2360                } else
2361                        generic_make_request(bio);
2362        }
2363}
2364
2365static void raid1d(struct md_thread *thread)
2366{
2367        struct mddev *mddev = thread->mddev;
2368        struct r1bio *r1_bio;
2369        unsigned long flags;
2370        struct r1conf *conf = mddev->private;
2371        struct list_head *head = &conf->retry_list;
2372        struct blk_plug plug;
2373
2374        md_check_recovery(mddev);
2375
2376        if (!list_empty_careful(&conf->bio_end_io_list) &&
2377            !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2378                LIST_HEAD(tmp);
2379                spin_lock_irqsave(&conf->device_lock, flags);
2380                if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2381                        list_add(&tmp, &conf->bio_end_io_list);
2382                        list_del_init(&conf->bio_end_io_list);
2383                }
2384                spin_unlock_irqrestore(&conf->device_lock, flags);
2385                while (!list_empty(&tmp)) {
2386                        r1_bio = list_first_entry(&tmp, struct r1bio,
2387                                                  retry_list);
2388                        list_del(&r1_bio->retry_list);
2389                        if (mddev->degraded)
2390                                set_bit(R1BIO_Degraded, &r1_bio->state);
2391                        if (test_bit(R1BIO_WriteError, &r1_bio->state))
2392                                close_write(r1_bio);
2393                        raid_end_bio_io(r1_bio);
2394                }
2395        }
2396
2397        blk_start_plug(&plug);
2398        for (;;) {
2399
2400                flush_pending_writes(conf);
2401
2402                spin_lock_irqsave(&conf->device_lock, flags);
2403                if (list_empty(head)) {
2404                        spin_unlock_irqrestore(&conf->device_lock, flags);
2405                        break;
2406                }
2407                r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2408                list_del(head->prev);
2409                conf->nr_queued--;
2410                spin_unlock_irqrestore(&conf->device_lock, flags);
2411
2412                mddev = r1_bio->mddev;
2413                conf = mddev->private;
2414                if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2415                        if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2416                            test_bit(R1BIO_WriteError, &r1_bio->state))
2417                                handle_sync_write_finished(conf, r1_bio);
2418                        else
2419                                sync_request_write(mddev, r1_bio);
2420                } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2421                           test_bit(R1BIO_WriteError, &r1_bio->state))
2422                        handle_write_finished(conf, r1_bio);
2423                else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2424                        handle_read_error(conf, r1_bio);
2425                else
2426                        /* just a partial read to be scheduled from separate
2427                         * context
2428                         */
2429                        generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2430
2431                cond_resched();
2432                if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2433                        md_check_recovery(mddev);
2434        }
2435        blk_finish_plug(&plug);
2436}
2437
2438static int init_resync(struct r1conf *conf)
2439{
2440        int buffs;
2441
2442        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2443        BUG_ON(conf->r1buf_pool);
2444        conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2445                                          conf->poolinfo);
2446        if (!conf->r1buf_pool)
2447                return -ENOMEM;
2448        conf->next_resync = 0;
2449        return 0;
2450}
2451
2452/*
2453 * perform a "sync" on one "block"
2454 *
2455 * We need to make sure that no normal I/O request - particularly write
2456 * requests - conflict with active sync requests.
2457 *
2458 * This is achieved by tracking pending requests and a 'barrier' concept
2459 * that can be installed to exclude normal IO requests.
2460 */
2461
2462static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2463{
2464        struct r1conf *conf = mddev->private;
2465        struct r1bio *r1_bio;
2466        struct bio *bio;
2467        sector_t max_sector, nr_sectors;
2468        int disk = -1;
2469        int i;
2470        int wonly = -1;
2471        int write_targets = 0, read_targets = 0;
2472        sector_t sync_blocks;
2473        int still_degraded = 0;
2474        int good_sectors = RESYNC_SECTORS;
2475        int min_bad = 0; /* number of sectors that are bad in all devices */
2476
2477        if (!conf->r1buf_pool)
2478                if (init_resync(conf))
2479                        return 0;
2480
2481        max_sector = mddev->dev_sectors;
2482        if (sector_nr >= max_sector) {
2483                /* If we aborted, we need to abort the
2484                 * sync on the 'current' bitmap chunk (there will
2485                 * only be one in raid1 resync.
2486                 * We can find the current addess in mddev->curr_resync
2487                 */
2488                if (mddev->curr_resync < max_sector) /* aborted */
2489                        bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2490                                                &sync_blocks, 1);
2491                else /* completed sync */
2492                        conf->fullsync = 0;
2493
2494                bitmap_close_sync(mddev->bitmap);
2495                close_sync(conf);
2496                return 0;
2497        }
2498
2499        if (mddev->bitmap == NULL &&
2500            mddev->recovery_cp == MaxSector &&
2501            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2502            conf->fullsync == 0) {
2503                *skipped = 1;
2504                return max_sector - sector_nr;
2505        }
2506        /* before building a request, check if we can skip these blocks..
2507         * This call the bitmap_start_sync doesn't actually record anything
2508         */
2509        if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2510            !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2511                /* We can skip this block, and probably several more */
2512                *skipped = 1;
2513                return sync_blocks;
2514        }
2515
2516        bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2517        r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2518
2519        raise_barrier(conf, sector_nr);
2520
2521        rcu_read_lock();
2522        /*
2523         * If we get a correctably read error during resync or recovery,
2524         * we might want to read from a different device.  So we
2525         * flag all drives that could conceivably be read from for READ,
2526         * and any others (which will be non-In_sync devices) for WRITE.
2527         * If a read fails, we try reading from something else for which READ
2528         * is OK.
2529         */
2530
2531        r1_bio->mddev = mddev;
2532        r1_bio->sector = sector_nr;
2533        r1_bio->state = 0;
2534        set_bit(R1BIO_IsSync, &r1_bio->state);
2535
2536        for (i = 0; i < conf->raid_disks * 2; i++) {
2537                struct md_rdev *rdev;
2538                bio = r1_bio->bios[i];
2539                bio_reset(bio);
2540
2541                rdev = rcu_dereference(conf->mirrors[i].rdev);
2542                if (rdev == NULL ||
2543                    test_bit(Faulty, &rdev->flags)) {
2544                        if (i < conf->raid_disks)
2545                                still_degraded = 1;
2546                } else if (!test_bit(In_sync, &rdev->flags)) {
2547                        bio->bi_rw = WRITE;
2548                        bio->bi_end_io = end_sync_write;
2549                        write_targets ++;
2550                } else {
2551                        /* may need to read from here */
2552                        sector_t first_bad = MaxSector;
2553                        int bad_sectors;
2554
2555                        if (is_badblock(rdev, sector_nr, good_sectors,
2556                                        &first_bad, &bad_sectors)) {
2557                                if (first_bad > sector_nr)
2558                                        good_sectors = first_bad - sector_nr;
2559                                else {
2560                                        bad_sectors -= (sector_nr - first_bad);
2561                                        if (min_bad == 0 ||
2562                                            min_bad > bad_sectors)
2563                                                min_bad = bad_sectors;
2564                                }
2565                        }
2566                        if (sector_nr < first_bad) {
2567                                if (test_bit(WriteMostly, &rdev->flags)) {
2568                                        if (wonly < 0)
2569                                                wonly = i;
2570                                } else {
2571                                        if (disk < 0)
2572                                                disk = i;
2573                                }
2574                                bio->bi_rw = READ;
2575                                bio->bi_end_io = end_sync_read;
2576                                read_targets++;
2577                        } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2578                                test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2579                                !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2580                                /*
2581                                 * The device is suitable for reading (InSync),
2582                                 * but has bad block(s) here. Let's try to correct them,
2583                                 * if we are doing resync or repair. Otherwise, leave
2584                                 * this device alone for this sync request.
2585                                 */
2586                                bio->bi_rw = WRITE;
2587                                bio->bi_end_io = end_sync_write;
2588                                write_targets++;
2589                        }
2590                }
2591                if (bio->bi_end_io) {
2592                        atomic_inc(&rdev->nr_pending);
2593                        bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2594                        bio->bi_bdev = rdev->bdev;
2595                        bio->bi_private = r1_bio;
2596                }
2597        }
2598        rcu_read_unlock();
2599        if (disk < 0)
2600                disk = wonly;
2601        r1_bio->read_disk = disk;
2602
2603        if (read_targets == 0 && min_bad > 0) {
2604                /* These sectors are bad on all InSync devices, so we
2605                 * need to mark them bad on all write targets
2606                 */
2607                int ok = 1;
2608                for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2609                        if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2610                                struct md_rdev *rdev = conf->mirrors[i].rdev;
2611                                ok = rdev_set_badblocks(rdev, sector_nr,
2612                                                        min_bad, 0
2613                                        ) && ok;
2614                        }
2615                set_bit(MD_CHANGE_DEVS, &mddev->flags);
2616                *skipped = 1;
2617                put_buf(r1_bio);
2618
2619                if (!ok) {
2620                        /* Cannot record the badblocks, so need to
2621                         * abort the resync.
2622                         * If there are multiple read targets, could just
2623                         * fail the really bad ones ???
2624                         */
2625                        conf->recovery_disabled = mddev->recovery_disabled;
2626                        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2627                        return 0;
2628                } else
2629                        return min_bad;
2630
2631        }
2632        if (min_bad > 0 && min_bad < good_sectors) {
2633                /* only resync enough to reach the next bad->good
2634                 * transition */
2635                good_sectors = min_bad;
2636        }
2637
2638        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2639                /* extra read targets are also write targets */
2640                write_targets += read_targets-1;
2641
2642        if (write_targets == 0 || read_targets == 0) {
2643                /* There is nowhere to write, so all non-sync
2644                 * drives must be failed - so we are finished
2645                 */
2646                sector_t rv;
2647                if (min_bad > 0)
2648                        max_sector = sector_nr + min_bad;
2649                rv = max_sector - sector_nr;
2650                *skipped = 1;
2651                put_buf(r1_bio);
2652                return rv;
2653        }
2654
2655        if (max_sector > mddev->resync_max)
2656                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2657        if (max_sector > sector_nr + good_sectors)
2658                max_sector = sector_nr + good_sectors;
2659        nr_sectors = 0;
2660        sync_blocks = 0;
2661        do {
2662                struct page *page;
2663                int len = PAGE_SIZE;
2664                if (sector_nr + (len>>9) > max_sector)
2665                        len = (max_sector - sector_nr) << 9;
2666                if (len == 0)
2667                        break;
2668                if (sync_blocks == 0) {
2669                        if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2670                                               &sync_blocks, still_degraded) &&
2671                            !conf->fullsync &&
2672                            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2673                                break;
2674                        BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2675                        if ((len >> 9) > sync_blocks)
2676                                len = sync_blocks<<9;
2677                }
2678
2679                for (i = 0 ; i < conf->raid_disks * 2; i++) {
2680                        bio = r1_bio->bios[i];
2681                        if (bio->bi_end_io) {
2682                                page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2683                                if (bio_add_page(bio, page, len, 0) == 0) {
2684                                        /* stop here */
2685                                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2686                                        while (i > 0) {
2687                                                i--;
2688                                                bio = r1_bio->bios[i];
2689                                                if (bio->bi_end_io==NULL)
2690                                                        continue;
2691                                                /* remove last page from this bio */
2692                                                bio->bi_vcnt--;
2693                                                bio->bi_iter.bi_size -= len;
2694                                                bio_clear_flag(bio, BIO_SEG_VALID);
2695                                        }
2696                                        goto bio_full;
2697                                }
2698                        }
2699                }
2700                nr_sectors += len>>9;
2701                sector_nr += len>>9;
2702                sync_blocks -= (len>>9);
2703        } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2704 bio_full:
2705        r1_bio->sectors = nr_sectors;
2706
2707        /* For a user-requested sync, we read all readable devices and do a
2708         * compare
2709         */
2710        if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2711                atomic_set(&r1_bio->remaining, read_targets);
2712                for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2713                        bio = r1_bio->bios[i];
2714                        if (bio->bi_end_io == end_sync_read) {
2715                                read_targets--;
2716                                md_sync_acct(bio->bi_bdev, nr_sectors);
2717                                generic_make_request(bio);
2718                        }
2719                }
2720        } else {
2721                atomic_set(&r1_bio->remaining, 1);
2722                bio = r1_bio->bios[r1_bio->read_disk];
2723                md_sync_acct(bio->bi_bdev, nr_sectors);
2724                generic_make_request(bio);
2725
2726        }
2727        return nr_sectors;
2728}
2729
2730static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2731{
2732        if (sectors)
2733                return sectors;
2734
2735        return mddev->dev_sectors;
2736}
2737
2738static struct r1conf *setup_conf(struct mddev *mddev)
2739{
2740        struct r1conf *conf;
2741        int i;
2742        struct raid1_info *disk;
2743        struct md_rdev *rdev;
2744        int err = -ENOMEM;
2745
2746        conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2747        if (!conf)
2748                goto abort;
2749
2750        conf->mirrors = kzalloc(sizeof(struct raid1_info)
2751                                * mddev->raid_disks * 2,
2752                                 GFP_KERNEL);
2753        if (!conf->mirrors)
2754                goto abort;
2755
2756        conf->tmppage = alloc_page(GFP_KERNEL);
2757        if (!conf->tmppage)
2758                goto abort;
2759
2760        conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2761        if (!conf->poolinfo)
2762                goto abort;
2763        conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2764        conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2765                                          r1bio_pool_free,
2766                                          conf->poolinfo);
2767        if (!conf->r1bio_pool)
2768                goto abort;
2769
2770        conf->poolinfo->mddev = mddev;
2771
2772        err = -EINVAL;
2773        spin_lock_init(&conf->device_lock);
2774        rdev_for_each(rdev, mddev) {
2775                struct request_queue *q;
2776                int disk_idx = rdev->raid_disk;
2777                if (disk_idx >= mddev->raid_disks
2778                    || disk_idx < 0)
2779                        continue;
2780                if (test_bit(Replacement, &rdev->flags))
2781                        disk = conf->mirrors + mddev->raid_disks + disk_idx;
2782                else
2783                        disk = conf->mirrors + disk_idx;
2784
2785                if (disk->rdev)
2786                        goto abort;
2787                disk->rdev = rdev;
2788                q = bdev_get_queue(rdev->bdev);
2789
2790                disk->head_position = 0;
2791                disk->seq_start = MaxSector;
2792        }
2793        conf->raid_disks = mddev->raid_disks;
2794        conf->mddev = mddev;
2795        INIT_LIST_HEAD(&conf->retry_list);
2796        INIT_LIST_HEAD(&conf->bio_end_io_list);
2797
2798        spin_lock_init(&conf->resync_lock);
2799        init_waitqueue_head(&conf->wait_barrier);
2800
2801        bio_list_init(&conf->pending_bio_list);
2802        conf->pending_count = 0;
2803        conf->recovery_disabled = mddev->recovery_disabled - 1;
2804
2805        conf->start_next_window = MaxSector;
2806        conf->current_window_requests = conf->next_window_requests = 0;
2807
2808        err = -EIO;
2809        for (i = 0; i < conf->raid_disks * 2; i++) {
2810
2811                disk = conf->mirrors + i;
2812
2813                if (i < conf->raid_disks &&
2814                    disk[conf->raid_disks].rdev) {
2815                        /* This slot has a replacement. */
2816                        if (!disk->rdev) {
2817                                /* No original, just make the replacement
2818                                 * a recovering spare
2819                                 */
2820                                disk->rdev =
2821                                        disk[conf->raid_disks].rdev;
2822                                disk[conf->raid_disks].rdev = NULL;
2823                        } else if (!test_bit(In_sync, &disk->rdev->flags))
2824                                /* Original is not in_sync - bad */
2825                                goto abort;
2826                }
2827
2828                if (!disk->rdev ||
2829                    !test_bit(In_sync, &disk->rdev->flags)) {
2830                        disk->head_position = 0;
2831                        if (disk->rdev &&
2832                            (disk->rdev->saved_raid_disk < 0))
2833                                conf->fullsync = 1;
2834                }
2835        }
2836
2837        err = -ENOMEM;
2838        conf->thread = md_register_thread(raid1d, mddev, "raid1");
2839        if (!conf->thread) {
2840                printk(KERN_ERR
2841                       "md/raid1:%s: couldn't allocate thread\n",
2842                       mdname(mddev));
2843                goto abort;
2844        }
2845
2846        return conf;
2847
2848 abort:
2849        if (conf) {
2850                mempool_destroy(conf->r1bio_pool);
2851                kfree(conf->mirrors);
2852                safe_put_page(conf->tmppage);
2853                kfree(conf->poolinfo);
2854                kfree(conf);
2855        }
2856        return ERR_PTR(err);
2857}
2858
2859static void raid1_free(struct mddev *mddev, void *priv);
2860static int run(struct mddev *mddev)
2861{
2862        struct r1conf *conf;
2863        int i;
2864        struct md_rdev *rdev;
2865        int ret;
2866        bool discard_supported = false;
2867
2868        if (mddev->level != 1) {
2869                printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2870                       mdname(mddev), mddev->level);
2871                return -EIO;
2872        }
2873        if (mddev->reshape_position != MaxSector) {
2874                printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2875                       mdname(mddev));
2876                return -EIO;
2877        }
2878        /*
2879         * copy the already verified devices into our private RAID1
2880         * bookkeeping area. [whatever we allocate in run(),
2881         * should be freed in raid1_free()]
2882         */
2883        if (mddev->private == NULL)
2884                conf = setup_conf(mddev);
2885        else
2886                conf = mddev->private;
2887
2888        if (IS_ERR(conf))
2889                return PTR_ERR(conf);
2890
2891        if (mddev->queue)
2892                blk_queue_max_write_same_sectors(mddev->queue, 0);
2893
2894        rdev_for_each(rdev, mddev) {
2895                if (!mddev->gendisk)
2896                        continue;
2897                disk_stack_limits(mddev->gendisk, rdev->bdev,
2898                                  rdev->data_offset << 9);
2899                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2900                        discard_supported = true;
2901        }
2902
2903        mddev->degraded = 0;
2904        for (i=0; i < conf->raid_disks; i++)
2905                if (conf->mirrors[i].rdev == NULL ||
2906                    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2907                    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2908                        mddev->degraded++;
2909
2910        if (conf->raid_disks - mddev->degraded == 1)
2911                mddev->recovery_cp = MaxSector;
2912
2913        if (mddev->recovery_cp != MaxSector)
2914                printk(KERN_NOTICE "md/raid1:%s: not clean"
2915                       " -- starting background reconstruction\n",
2916                       mdname(mddev));
2917        printk(KERN_INFO
2918                "md/raid1:%s: active with %d out of %d mirrors\n",
2919                mdname(mddev), mddev->raid_disks - mddev->degraded,
2920                mddev->raid_disks);
2921
2922        /*
2923         * Ok, everything is just fine now
2924         */
2925        mddev->thread = conf->thread;
2926        conf->thread = NULL;
2927        mddev->private = conf;
2928
2929        md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2930
2931        if (mddev->queue) {
2932                if (discard_supported)
2933                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2934                                                mddev->queue);
2935                else
2936                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2937                                                  mddev->queue);
2938        }
2939
2940        ret =  md_integrity_register(mddev);
2941        if (ret) {
2942                md_unregister_thread(&mddev->thread);
2943                raid1_free(mddev, conf);
2944        }
2945        return ret;
2946}
2947
2948static void raid1_free(struct mddev *mddev, void *priv)
2949{
2950        struct r1conf *conf = priv;
2951
2952        mempool_destroy(conf->r1bio_pool);
2953        kfree(conf->mirrors);
2954        safe_put_page(conf->tmppage);
2955        kfree(conf->poolinfo);
2956        kfree(conf);
2957}
2958
2959static int raid1_resize(struct mddev *mddev, sector_t sectors)
2960{
2961        /* no resync is happening, and there is enough space
2962         * on all devices, so we can resize.
2963         * We need to make sure resync covers any new space.
2964         * If the array is shrinking we should possibly wait until
2965         * any io in the removed space completes, but it hardly seems
2966         * worth it.
2967         */
2968        sector_t newsize = raid1_size(mddev, sectors, 0);
2969        if (mddev->external_size &&
2970            mddev->array_sectors > newsize)
2971                return -EINVAL;
2972        if (mddev->bitmap) {
2973                int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2974                if (ret)
2975                        return ret;
2976        }
2977        md_set_array_sectors(mddev, newsize);
2978        set_capacity(mddev->gendisk, mddev->array_sectors);
2979        revalidate_disk(mddev->gendisk);
2980        if (sectors > mddev->dev_sectors &&
2981            mddev->recovery_cp > mddev->dev_sectors) {
2982                mddev->recovery_cp = mddev->dev_sectors;
2983                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2984        }
2985        mddev->dev_sectors = sectors;
2986        mddev->resync_max_sectors = sectors;
2987        return 0;
2988}
2989
2990static int raid1_reshape(struct mddev *mddev)
2991{
2992        /* We need to:
2993         * 1/ resize the r1bio_pool
2994         * 2/ resize conf->mirrors
2995         *
2996         * We allocate a new r1bio_pool if we can.
2997         * Then raise a device barrier and wait until all IO stops.
2998         * Then resize conf->mirrors and swap in the new r1bio pool.
2999         *
3000         * At the same time, we "pack" the devices so that all the missing
3001         * devices have the higher raid_disk numbers.
3002         */
3003        mempool_t *newpool, *oldpool;
3004        struct pool_info *newpoolinfo;
3005        struct raid1_info *newmirrors;
3006        struct r1conf *conf = mddev->private;
3007        int cnt, raid_disks;
3008        unsigned long flags;
3009        int d, d2, err;
3010
3011        /* Cannot change chunk_size, layout, or level */
3012        if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3013            mddev->layout != mddev->new_layout ||
3014            mddev->level != mddev->new_level) {
3015                mddev->new_chunk_sectors = mddev->chunk_sectors;
3016                mddev->new_layout = mddev->layout;
3017                mddev->new_level = mddev->level;
3018                return -EINVAL;
3019        }
3020
3021        err = md_allow_write(mddev);
3022        if (err)
3023                return err;
3024
3025        raid_disks = mddev->raid_disks + mddev->delta_disks;
3026
3027        if (raid_disks < conf->raid_disks) {
3028                cnt=0;
3029                for (d= 0; d < conf->raid_disks; d++)
3030                        if (conf->mirrors[d].rdev)
3031                                cnt++;
3032                if (cnt > raid_disks)
3033                        return -EBUSY;
3034        }
3035
3036        newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3037        if (!newpoolinfo)
3038                return -ENOMEM;
3039        newpoolinfo->mddev = mddev;
3040        newpoolinfo->raid_disks = raid_disks * 2;
3041
3042        newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3043                                 r1bio_pool_free, newpoolinfo);
3044        if (!newpool) {
3045                kfree(newpoolinfo);
3046                return -ENOMEM;
3047        }
3048        newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3049                             GFP_KERNEL);
3050        if (!newmirrors) {
3051                kfree(newpoolinfo);
3052                mempool_destroy(newpool);
3053                return -ENOMEM;
3054        }
3055
3056        freeze_array(conf, 0);
3057
3058        /* ok, everything is stopped */
3059        oldpool = conf->r1bio_pool;
3060        conf->r1bio_pool = newpool;
3061
3062        for (d = d2 = 0; d < conf->raid_disks; d++) {
3063                struct md_rdev *rdev = conf->mirrors[d].rdev;
3064                if (rdev && rdev->raid_disk != d2) {
3065                        sysfs_unlink_rdev(mddev, rdev);
3066                        rdev->raid_disk = d2;
3067                        sysfs_unlink_rdev(mddev, rdev);
3068                        if (sysfs_link_rdev(mddev, rdev))
3069                                printk(KERN_WARNING
3070                                       "md/raid1:%s: cannot register rd%d\n",
3071                                       mdname(mddev), rdev->raid_disk);
3072                }
3073                if (rdev)
3074                        newmirrors[d2++].rdev = rdev;
3075        }
3076        kfree(conf->mirrors);
3077        conf->mirrors = newmirrors;
3078        kfree(conf->poolinfo);
3079        conf->poolinfo = newpoolinfo;
3080
3081        spin_lock_irqsave(&conf->device_lock, flags);
3082        mddev->degraded += (raid_disks - conf->raid_disks);
3083        spin_unlock_irqrestore(&conf->device_lock, flags);
3084        conf->raid_disks = mddev->raid_disks = raid_disks;
3085        mddev->delta_disks = 0;
3086
3087        unfreeze_array(conf);
3088
3089        set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3090        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3091        md_wakeup_thread(mddev->thread);
3092
3093        mempool_destroy(oldpool);
3094        return 0;
3095}
3096
3097static void raid1_quiesce(struct mddev *mddev, int state)
3098{
3099        struct r1conf *conf = mddev->private;
3100
3101        switch(state) {
3102        case 2: /* wake for suspend */
3103                wake_up(&conf->wait_barrier);
3104                break;
3105        case 1:
3106                freeze_array(conf, 0);
3107                break;
3108        case 0:
3109                unfreeze_array(conf);
3110                break;
3111        }
3112}
3113
3114static void *raid1_takeover(struct mddev *mddev)
3115{
3116        /* raid1 can take over:
3117         *  raid5 with 2 devices, any layout or chunk size
3118         */
3119        if (mddev->level == 5 && mddev->raid_disks == 2) {
3120                struct r1conf *conf;
3121                mddev->new_level = 1;
3122                mddev->new_layout = 0;
3123                mddev->new_chunk_sectors = 0;
3124                conf = setup_conf(mddev);
3125                if (!IS_ERR(conf))
3126                        /* Array must appear to be quiesced */
3127                        conf->array_frozen = 1;
3128                return conf;
3129        }
3130        return ERR_PTR(-EINVAL);
3131}
3132
3133static struct md_personality raid1_personality =
3134{
3135        .name           = "raid1",
3136        .level          = 1,
3137        .owner          = THIS_MODULE,
3138        .make_request   = make_request,
3139        .run            = run,
3140        .free           = raid1_free,
3141        .status         = status,
3142        .error_handler  = error,
3143        .hot_add_disk   = raid1_add_disk,
3144        .hot_remove_disk= raid1_remove_disk,
3145        .spare_active   = raid1_spare_active,
3146        .sync_request   = sync_request,
3147        .resize         = raid1_resize,
3148        .size           = raid1_size,
3149        .check_reshape  = raid1_reshape,
3150        .quiesce        = raid1_quiesce,
3151        .takeover       = raid1_takeover,
3152        .congested      = raid1_congested,
3153};
3154
3155static int __init raid_init(void)
3156{
3157        return register_md_personality(&raid1_personality);
3158}
3159
3160static void raid_exit(void)
3161{
3162        unregister_md_personality(&raid1_personality);
3163}
3164
3165module_init(raid_init);
3166module_exit(raid_exit);
3167MODULE_LICENSE("GPL");
3168MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3169MODULE_ALIAS("md-personality-3"); /* RAID1 */
3170MODULE_ALIAS("md-raid1");
3171MODULE_ALIAS("md-level-1");
3172
3173module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3174