linux/drivers/misc/genwqe/card_utils.c
<<
>>
Prefs
   1/**
   2 * IBM Accelerator Family 'GenWQE'
   3 *
   4 * (C) Copyright IBM Corp. 2013
   5 *
   6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
   7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
   8 * Author: Michael Jung <mijung@gmx.net>
   9 * Author: Michael Ruettger <michael@ibmra.de>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License (version 2 only)
  13 * as published by the Free Software Foundation.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18 * GNU General Public License for more details.
  19 */
  20
  21/*
  22 * Miscelanous functionality used in the other GenWQE driver parts.
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/sched.h>
  28#include <linux/vmalloc.h>
  29#include <linux/page-flags.h>
  30#include <linux/scatterlist.h>
  31#include <linux/hugetlb.h>
  32#include <linux/iommu.h>
  33#include <linux/delay.h>
  34#include <linux/pci.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/ctype.h>
  37#include <linux/module.h>
  38#include <linux/platform_device.h>
  39#include <linux/delay.h>
  40#include <asm/pgtable.h>
  41
  42#include "genwqe_driver.h"
  43#include "card_base.h"
  44#include "card_ddcb.h"
  45
  46/**
  47 * __genwqe_writeq() - Write 64-bit register
  48 * @cd:         genwqe device descriptor
  49 * @byte_offs:  byte offset within BAR
  50 * @val:        64-bit value
  51 *
  52 * Return: 0 if success; < 0 if error
  53 */
  54int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  55{
  56        struct pci_dev *pci_dev = cd->pci_dev;
  57
  58        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  59                return -EIO;
  60
  61        if (cd->mmio == NULL)
  62                return -EIO;
  63
  64        if (pci_channel_offline(pci_dev))
  65                return -EIO;
  66
  67        __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  68        return 0;
  69}
  70
  71/**
  72 * __genwqe_readq() - Read 64-bit register
  73 * @cd:         genwqe device descriptor
  74 * @byte_offs:  offset within BAR
  75 *
  76 * Return: value from register
  77 */
  78u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  79{
  80        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  81                return 0xffffffffffffffffull;
  82
  83        if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  84            (byte_offs == IO_SLC_CFGREG_GFIR))
  85                return 0x000000000000ffffull;
  86
  87        if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  88            (byte_offs == IO_SLC_CFGREG_GFIR))
  89                return 0x00000000ffff0000ull;
  90
  91        if (cd->mmio == NULL)
  92                return 0xffffffffffffffffull;
  93
  94        return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  95}
  96
  97/**
  98 * __genwqe_writel() - Write 32-bit register
  99 * @cd:         genwqe device descriptor
 100 * @byte_offs:  byte offset within BAR
 101 * @val:        32-bit value
 102 *
 103 * Return: 0 if success; < 0 if error
 104 */
 105int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
 106{
 107        struct pci_dev *pci_dev = cd->pci_dev;
 108
 109        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 110                return -EIO;
 111
 112        if (cd->mmio == NULL)
 113                return -EIO;
 114
 115        if (pci_channel_offline(pci_dev))
 116                return -EIO;
 117
 118        __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
 119        return 0;
 120}
 121
 122/**
 123 * __genwqe_readl() - Read 32-bit register
 124 * @cd:         genwqe device descriptor
 125 * @byte_offs:  offset within BAR
 126 *
 127 * Return: Value from register
 128 */
 129u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
 130{
 131        if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
 132                return 0xffffffff;
 133
 134        if (cd->mmio == NULL)
 135                return 0xffffffff;
 136
 137        return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
 138}
 139
 140/**
 141 * genwqe_read_app_id() - Extract app_id
 142 *
 143 * app_unitcfg need to be filled with valid data first
 144 */
 145int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
 146{
 147        int i, j;
 148        u32 app_id = (u32)cd->app_unitcfg;
 149
 150        memset(app_name, 0, len);
 151        for (i = 0, j = 0; j < min(len, 4); j++) {
 152                char ch = (char)((app_id >> (24 - j*8)) & 0xff);
 153
 154                if (ch == ' ')
 155                        continue;
 156                app_name[i++] = isprint(ch) ? ch : 'X';
 157        }
 158        return i;
 159}
 160
 161/**
 162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
 163 *
 164 * Existing kernel functions seem to use a different polynom,
 165 * therefore we could not use them here.
 166 *
 167 * Genwqe's Polynomial = 0x20044009
 168 */
 169#define CRC32_POLYNOMIAL        0x20044009
 170static u32 crc32_tab[256];      /* crc32 lookup table */
 171
 172void genwqe_init_crc32(void)
 173{
 174        int i, j;
 175        u32 crc;
 176
 177        for (i = 0;  i < 256;  i++) {
 178                crc = i << 24;
 179                for (j = 0;  j < 8;  j++) {
 180                        if (crc & 0x80000000)
 181                                crc = (crc << 1) ^ CRC32_POLYNOMIAL;
 182                        else
 183                                crc = (crc << 1);
 184                }
 185                crc32_tab[i] = crc;
 186        }
 187}
 188
 189/**
 190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
 191 * @buff:       pointer to data buffer
 192 * @len:        length of data for calculation
 193 * @init:       initial crc (0xffffffff at start)
 194 *
 195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
 196
 197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
 198 * result in a crc32 of 0xf33cb7d3.
 199 *
 200 * The existing kernel crc functions did not cover this polynom yet.
 201 *
 202 * Return: crc32 checksum.
 203 */
 204u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
 205{
 206        int i;
 207        u32 crc;
 208
 209        crc = init;
 210        while (len--) {
 211                i = ((crc >> 24) ^ *buff++) & 0xFF;
 212                crc = (crc << 8) ^ crc32_tab[i];
 213        }
 214        return crc;
 215}
 216
 217void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
 218                               dma_addr_t *dma_handle)
 219{
 220        if (get_order(size) > MAX_ORDER)
 221                return NULL;
 222
 223        return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
 224}
 225
 226void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
 227                             void *vaddr, dma_addr_t dma_handle)
 228{
 229        if (vaddr == NULL)
 230                return;
 231
 232        pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
 233}
 234
 235static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
 236                              int num_pages)
 237{
 238        int i;
 239        struct pci_dev *pci_dev = cd->pci_dev;
 240
 241        for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
 242                pci_unmap_page(pci_dev, dma_list[i],
 243                               PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 244                dma_list[i] = 0x0;
 245        }
 246}
 247
 248static int genwqe_map_pages(struct genwqe_dev *cd,
 249                           struct page **page_list, int num_pages,
 250                           dma_addr_t *dma_list)
 251{
 252        int i;
 253        struct pci_dev *pci_dev = cd->pci_dev;
 254
 255        /* establish DMA mapping for requested pages */
 256        for (i = 0; i < num_pages; i++) {
 257                dma_addr_t daddr;
 258
 259                dma_list[i] = 0x0;
 260                daddr = pci_map_page(pci_dev, page_list[i],
 261                                     0,  /* map_offs */
 262                                     PAGE_SIZE,
 263                                     PCI_DMA_BIDIRECTIONAL);  /* FIXME rd/rw */
 264
 265                if (pci_dma_mapping_error(pci_dev, daddr)) {
 266                        dev_err(&pci_dev->dev,
 267                                "[%s] err: no dma addr daddr=%016llx!\n",
 268                                __func__, (long long)daddr);
 269                        goto err;
 270                }
 271
 272                dma_list[i] = daddr;
 273        }
 274        return 0;
 275
 276 err:
 277        genwqe_unmap_pages(cd, dma_list, num_pages);
 278        return -EIO;
 279}
 280
 281static int genwqe_sgl_size(int num_pages)
 282{
 283        int len, num_tlb = num_pages / 7;
 284
 285        len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
 286        return roundup(len, PAGE_SIZE);
 287}
 288
 289/**
 290 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
 291 *
 292 * Allocates memory for sgl and overlapping pages. Pages which might
 293 * overlap other user-space memory blocks are being cached for DMAs,
 294 * such that we do not run into syncronization issues. Data is copied
 295 * from user-space into the cached pages.
 296 */
 297int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 298                          void __user *user_addr, size_t user_size)
 299{
 300        int rc;
 301        struct pci_dev *pci_dev = cd->pci_dev;
 302
 303        sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
 304        sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
 305        sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
 306        sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
 307
 308        dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
 309                __func__, user_addr, user_size, sgl->nr_pages,
 310                sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
 311
 312        sgl->user_addr = user_addr;
 313        sgl->user_size = user_size;
 314        sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
 315
 316        if (get_order(sgl->sgl_size) > MAX_ORDER) {
 317                dev_err(&pci_dev->dev,
 318                        "[%s] err: too much memory requested!\n", __func__);
 319                return -ENOMEM;
 320        }
 321
 322        sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
 323                                             &sgl->sgl_dma_addr);
 324        if (sgl->sgl == NULL) {
 325                dev_err(&pci_dev->dev,
 326                        "[%s] err: no memory available!\n", __func__);
 327                return -ENOMEM;
 328        }
 329
 330        /* Only use buffering on incomplete pages */
 331        if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
 332                sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 333                                                       &sgl->fpage_dma_addr);
 334                if (sgl->fpage == NULL)
 335                        goto err_out;
 336
 337                /* Sync with user memory */
 338                if (copy_from_user(sgl->fpage + sgl->fpage_offs,
 339                                   user_addr, sgl->fpage_size)) {
 340                        rc = -EFAULT;
 341                        goto err_out;
 342                }
 343        }
 344        if (sgl->lpage_size != 0) {
 345                sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
 346                                                       &sgl->lpage_dma_addr);
 347                if (sgl->lpage == NULL)
 348                        goto err_out1;
 349
 350                /* Sync with user memory */
 351                if (copy_from_user(sgl->lpage, user_addr + user_size -
 352                                   sgl->lpage_size, sgl->lpage_size)) {
 353                        rc = -EFAULT;
 354                        goto err_out1;
 355                }
 356        }
 357        return 0;
 358
 359 err_out1:
 360        __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 361                                 sgl->fpage_dma_addr);
 362 err_out:
 363        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 364                                 sgl->sgl_dma_addr);
 365        return -ENOMEM;
 366}
 367
 368int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
 369                     dma_addr_t *dma_list)
 370{
 371        int i = 0, j = 0, p;
 372        unsigned long dma_offs, map_offs;
 373        dma_addr_t prev_daddr = 0;
 374        struct sg_entry *s, *last_s = NULL;
 375        size_t size = sgl->user_size;
 376
 377        dma_offs = 128;         /* next block if needed/dma_offset */
 378        map_offs = sgl->fpage_offs; /* offset in first page */
 379
 380        s = &sgl->sgl[0];       /* first set of 8 entries */
 381        p = 0;                  /* page */
 382        while (p < sgl->nr_pages) {
 383                dma_addr_t daddr;
 384                unsigned int size_to_map;
 385
 386                /* always write the chaining entry, cleanup is done later */
 387                j = 0;
 388                s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
 389                s[j].len         = cpu_to_be32(128);
 390                s[j].flags       = cpu_to_be32(SG_CHAINED);
 391                j++;
 392
 393                while (j < 8) {
 394                        /* DMA mapping for requested page, offs, size */
 395                        size_to_map = min(size, PAGE_SIZE - map_offs);
 396
 397                        if ((p == 0) && (sgl->fpage != NULL)) {
 398                                daddr = sgl->fpage_dma_addr + map_offs;
 399
 400                        } else if ((p == sgl->nr_pages - 1) &&
 401                                   (sgl->lpage != NULL)) {
 402                                daddr = sgl->lpage_dma_addr;
 403                        } else {
 404                                daddr = dma_list[p] + map_offs;
 405                        }
 406
 407                        size -= size_to_map;
 408                        map_offs = 0;
 409
 410                        if (prev_daddr == daddr) {
 411                                u32 prev_len = be32_to_cpu(last_s->len);
 412
 413                                /* pr_info("daddr combining: "
 414                                        "%016llx/%08x -> %016llx\n",
 415                                        prev_daddr, prev_len, daddr); */
 416
 417                                last_s->len = cpu_to_be32(prev_len +
 418                                                          size_to_map);
 419
 420                                p++; /* process next page */
 421                                if (p == sgl->nr_pages)
 422                                        goto fixup;  /* nothing to do */
 423
 424                                prev_daddr = daddr + size_to_map;
 425                                continue;
 426                        }
 427
 428                        /* start new entry */
 429                        s[j].target_addr = cpu_to_be64(daddr);
 430                        s[j].len         = cpu_to_be32(size_to_map);
 431                        s[j].flags       = cpu_to_be32(SG_DATA);
 432                        prev_daddr = daddr + size_to_map;
 433                        last_s = &s[j];
 434                        j++;
 435
 436                        p++;    /* process next page */
 437                        if (p == sgl->nr_pages)
 438                                goto fixup;  /* nothing to do */
 439                }
 440                dma_offs += 128;
 441                s += 8;         /* continue 8 elements further */
 442        }
 443 fixup:
 444        if (j == 1) {           /* combining happend on last entry! */
 445                s -= 8;         /* full shift needed on previous sgl block */
 446                j =  7;         /* shift all elements */
 447        }
 448
 449        for (i = 0; i < j; i++) /* move elements 1 up */
 450                s[i] = s[i + 1];
 451
 452        s[i].target_addr = cpu_to_be64(0);
 453        s[i].len         = cpu_to_be32(0);
 454        s[i].flags       = cpu_to_be32(SG_END_LIST);
 455        return 0;
 456}
 457
 458/**
 459 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
 460 *
 461 * After the DMA transfer has been completed we free the memory for
 462 * the sgl and the cached pages. Data is being transfered from cached
 463 * pages into user-space buffers.
 464 */
 465int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
 466{
 467        int rc = 0;
 468        struct pci_dev *pci_dev = cd->pci_dev;
 469
 470        if (sgl->fpage) {
 471                if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
 472                                 sgl->fpage_size)) {
 473                        dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
 474                                __func__);
 475                        rc = -EFAULT;
 476                }
 477                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
 478                                         sgl->fpage_dma_addr);
 479                sgl->fpage = NULL;
 480                sgl->fpage_dma_addr = 0;
 481        }
 482        if (sgl->lpage) {
 483                if (copy_to_user(sgl->user_addr + sgl->user_size -
 484                                 sgl->lpage_size, sgl->lpage,
 485                                 sgl->lpage_size)) {
 486                        dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
 487                                __func__);
 488                        rc = -EFAULT;
 489                }
 490                __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
 491                                         sgl->lpage_dma_addr);
 492                sgl->lpage = NULL;
 493                sgl->lpage_dma_addr = 0;
 494        }
 495        __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
 496                                 sgl->sgl_dma_addr);
 497
 498        sgl->sgl = NULL;
 499        sgl->sgl_dma_addr = 0x0;
 500        sgl->sgl_size = 0;
 501        return rc;
 502}
 503
 504/**
 505 * free_user_pages() - Give pinned pages back
 506 *
 507 * Documentation of get_user_pages is in mm/memory.c:
 508 *
 509 * If the page is written to, set_page_dirty (or set_page_dirty_lock,
 510 * as appropriate) must be called after the page is finished with, and
 511 * before put_page is called.
 512 *
 513 * FIXME Could be of use to others and might belong in the generic
 514 * code, if others agree. E.g.
 515 *    ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
 516 *    ceph_put_page_vector in net/ceph/pagevec.c
 517 *    maybe more?
 518 */
 519static int free_user_pages(struct page **page_list, unsigned int nr_pages,
 520                           int dirty)
 521{
 522        unsigned int i;
 523
 524        for (i = 0; i < nr_pages; i++) {
 525                if (page_list[i] != NULL) {
 526                        if (dirty)
 527                                set_page_dirty_lock(page_list[i]);
 528                        put_page(page_list[i]);
 529                }
 530        }
 531        return 0;
 532}
 533
 534/**
 535 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
 536 * @cd:         pointer to genwqe device
 537 * @m:          mapping params
 538 * @uaddr:      user virtual address
 539 * @size:       size of memory to be mapped
 540 *
 541 * We need to think about how we could speed this up. Of course it is
 542 * not a good idea to do this over and over again, like we are
 543 * currently doing it. Nevertheless, I am curious where on the path
 544 * the performance is spend. Most probably within the memory
 545 * allocation functions, but maybe also in the DMA mapping code.
 546 *
 547 * Restrictions: The maximum size of the possible mapping currently depends
 548 *               on the amount of memory we can get using kzalloc() for the
 549 *               page_list and pci_alloc_consistent for the sg_list.
 550 *               The sg_list is currently itself not scattered, which could
 551 *               be fixed with some effort. The page_list must be split into
 552 *               PAGE_SIZE chunks too. All that will make the complicated
 553 *               code more complicated.
 554 *
 555 * Return: 0 if success
 556 */
 557int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
 558                     unsigned long size, struct ddcb_requ *req)
 559{
 560        int rc = -EINVAL;
 561        unsigned long data, offs;
 562        struct pci_dev *pci_dev = cd->pci_dev;
 563
 564        if ((uaddr == NULL) || (size == 0)) {
 565                m->size = 0;    /* mark unused and not added */
 566                return -EINVAL;
 567        }
 568        m->u_vaddr = uaddr;
 569        m->size    = size;
 570
 571        /* determine space needed for page_list. */
 572        data = (unsigned long)uaddr;
 573        offs = offset_in_page(data);
 574        m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
 575
 576        m->page_list = kcalloc(m->nr_pages,
 577                               sizeof(struct page *) + sizeof(dma_addr_t),
 578                               GFP_KERNEL);
 579        if (!m->page_list) {
 580                dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
 581                m->nr_pages = 0;
 582                m->u_vaddr = NULL;
 583                m->size = 0;    /* mark unused and not added */
 584                return -ENOMEM;
 585        }
 586        m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
 587
 588        /* pin user pages in memory */
 589        rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
 590                                 m->nr_pages,
 591                                 1,             /* write by caller */
 592                                 m->page_list); /* ptrs to pages */
 593        if (rc < 0)
 594                goto fail_get_user_pages;
 595
 596        /* assumption: get_user_pages can be killed by signals. */
 597        if (rc < m->nr_pages) {
 598                free_user_pages(m->page_list, rc, 0);
 599                rc = -EFAULT;
 600                goto fail_get_user_pages;
 601        }
 602
 603        rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
 604        if (rc != 0)
 605                goto fail_free_user_pages;
 606
 607        return 0;
 608
 609 fail_free_user_pages:
 610        free_user_pages(m->page_list, m->nr_pages, 0);
 611
 612 fail_get_user_pages:
 613        kfree(m->page_list);
 614        m->page_list = NULL;
 615        m->dma_list = NULL;
 616        m->nr_pages = 0;
 617        m->u_vaddr = NULL;
 618        m->size = 0;            /* mark unused and not added */
 619        return rc;
 620}
 621
 622/**
 623 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
 624 *                        memory
 625 * @cd:         pointer to genwqe device
 626 * @m:          mapping params
 627 */
 628int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
 629                       struct ddcb_requ *req)
 630{
 631        struct pci_dev *pci_dev = cd->pci_dev;
 632
 633        if (!dma_mapping_used(m)) {
 634                dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
 635                        __func__, m);
 636                return -EINVAL;
 637        }
 638
 639        if (m->dma_list)
 640                genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
 641
 642        if (m->page_list) {
 643                free_user_pages(m->page_list, m->nr_pages, 1);
 644
 645                kfree(m->page_list);
 646                m->page_list = NULL;
 647                m->dma_list = NULL;
 648                m->nr_pages = 0;
 649        }
 650
 651        m->u_vaddr = NULL;
 652        m->size = 0;            /* mark as unused and not added */
 653        return 0;
 654}
 655
 656/**
 657 * genwqe_card_type() - Get chip type SLU Configuration Register
 658 * @cd:         pointer to the genwqe device descriptor
 659 * Return: 0: Altera Stratix-IV 230
 660 *         1: Altera Stratix-IV 530
 661 *         2: Altera Stratix-V A4
 662 *         3: Altera Stratix-V A7
 663 */
 664u8 genwqe_card_type(struct genwqe_dev *cd)
 665{
 666        u64 card_type = cd->slu_unitcfg;
 667
 668        return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
 669}
 670
 671/**
 672 * genwqe_card_reset() - Reset the card
 673 * @cd:         pointer to the genwqe device descriptor
 674 */
 675int genwqe_card_reset(struct genwqe_dev *cd)
 676{
 677        u64 softrst;
 678        struct pci_dev *pci_dev = cd->pci_dev;
 679
 680        if (!genwqe_is_privileged(cd))
 681                return -ENODEV;
 682
 683        /* new SL */
 684        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
 685        msleep(1000);
 686        __genwqe_readq(cd, IO_HSU_FIR_CLR);
 687        __genwqe_readq(cd, IO_APP_FIR_CLR);
 688        __genwqe_readq(cd, IO_SLU_FIR_CLR);
 689
 690        /*
 691         * Read-modify-write to preserve the stealth bits
 692         *
 693         * For SL >= 039, Stealth WE bit allows removing
 694         * the read-modify-wrote.
 695         * r-m-w may require a mask 0x3C to avoid hitting hard
 696         * reset again for error reset (should be 0, chicken).
 697         */
 698        softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
 699        __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
 700
 701        /* give ERRORRESET some time to finish */
 702        msleep(50);
 703
 704        if (genwqe_need_err_masking(cd)) {
 705                dev_info(&pci_dev->dev,
 706                         "[%s] masking errors for old bitstreams\n", __func__);
 707                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
 708        }
 709        return 0;
 710}
 711
 712int genwqe_read_softreset(struct genwqe_dev *cd)
 713{
 714        u64 bitstream;
 715
 716        if (!genwqe_is_privileged(cd))
 717                return -ENODEV;
 718
 719        bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
 720        cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
 721        return 0;
 722}
 723
 724/**
 725 * genwqe_set_interrupt_capability() - Configure MSI capability structure
 726 * @cd:         pointer to the device
 727 * Return: 0 if no error
 728 */
 729int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
 730{
 731        int rc;
 732        struct pci_dev *pci_dev = cd->pci_dev;
 733
 734        rc = pci_enable_msi_range(pci_dev, 1, count);
 735        if (rc < 0)
 736                return rc;
 737
 738        cd->flags |= GENWQE_FLAG_MSI_ENABLED;
 739        return 0;
 740}
 741
 742/**
 743 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
 744 * @cd:         pointer to the device
 745 */
 746void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
 747{
 748        struct pci_dev *pci_dev = cd->pci_dev;
 749
 750        if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
 751                pci_disable_msi(pci_dev);
 752                cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
 753        }
 754}
 755
 756/**
 757 * set_reg_idx() - Fill array with data. Ignore illegal offsets.
 758 * @cd:         card device
 759 * @r:          debug register array
 760 * @i:          index to desired entry
 761 * @m:          maximum possible entries
 762 * @addr:       addr which is read
 763 * @index:      index in debug array
 764 * @val:        read value
 765 */
 766static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
 767                       unsigned int *i, unsigned int m, u32 addr, u32 idx,
 768                       u64 val)
 769{
 770        if (WARN_ON_ONCE(*i >= m))
 771                return -EFAULT;
 772
 773        r[*i].addr = addr;
 774        r[*i].idx = idx;
 775        r[*i].val = val;
 776        ++*i;
 777        return 0;
 778}
 779
 780static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
 781                   unsigned int *i, unsigned int m, u32 addr, u64 val)
 782{
 783        return set_reg_idx(cd, r, i, m, addr, 0, val);
 784}
 785
 786int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
 787                         unsigned int max_regs, int all)
 788{
 789        unsigned int i, j, idx = 0;
 790        u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
 791        u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
 792
 793        /* Global FIR */
 794        gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
 795        set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
 796
 797        /* UnitCfg for SLU */
 798        sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
 799        set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
 800
 801        /* UnitCfg for APP */
 802        appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
 803        set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
 804
 805        /* Check all chip Units */
 806        for (i = 0; i < GENWQE_MAX_UNITS; i++) {
 807
 808                /* Unit FIR */
 809                ufir_addr = (i << 24) | 0x008;
 810                ufir = __genwqe_readq(cd, ufir_addr);
 811                set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
 812
 813                /* Unit FEC */
 814                ufec_addr = (i << 24) | 0x018;
 815                ufec = __genwqe_readq(cd, ufec_addr);
 816                set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
 817
 818                for (j = 0; j < 64; j++) {
 819                        /* wherever there is a primary 1, read the 2ndary */
 820                        if (!all && (!(ufir & (1ull << j))))
 821                                continue;
 822
 823                        sfir_addr = (i << 24) | (0x100 + 8 * j);
 824                        sfir = __genwqe_readq(cd, sfir_addr);
 825                        set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
 826
 827                        sfec_addr = (i << 24) | (0x300 + 8 * j);
 828                        sfec = __genwqe_readq(cd, sfec_addr);
 829                        set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
 830                }
 831        }
 832
 833        /* fill with invalid data until end */
 834        for (i = idx; i < max_regs; i++) {
 835                regs[i].addr = 0xffffffff;
 836                regs[i].val = 0xffffffffffffffffull;
 837        }
 838        return idx;
 839}
 840
 841/**
 842 * genwqe_ffdc_buff_size() - Calculates the number of dump registers
 843 */
 844int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
 845{
 846        int entries = 0, ring, traps, traces, trace_entries;
 847        u32 eevptr_addr, l_addr, d_len, d_type;
 848        u64 eevptr, val, addr;
 849
 850        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 851        eevptr = __genwqe_readq(cd, eevptr_addr);
 852
 853        if ((eevptr != 0x0) && (eevptr != -1ull)) {
 854                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 855
 856                while (1) {
 857                        val = __genwqe_readq(cd, l_addr);
 858
 859                        if ((val == 0x0) || (val == -1ull))
 860                                break;
 861
 862                        /* 38:24 */
 863                        d_len  = (val & 0x0000007fff000000ull) >> 24;
 864
 865                        /* 39 */
 866                        d_type = (val & 0x0000008000000000ull) >> 36;
 867
 868                        if (d_type) {   /* repeat */
 869                                entries += d_len;
 870                        } else {        /* size in bytes! */
 871                                entries += d_len >> 3;
 872                        }
 873
 874                        l_addr += 8;
 875                }
 876        }
 877
 878        for (ring = 0; ring < 8; ring++) {
 879                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 880                val = __genwqe_readq(cd, addr);
 881
 882                if ((val == 0x0ull) || (val == -1ull))
 883                        continue;
 884
 885                traps = (val >> 24) & 0xff;
 886                traces = (val >> 16) & 0xff;
 887                trace_entries = val & 0xffff;
 888
 889                entries += traps + (traces * trace_entries);
 890        }
 891        return entries;
 892}
 893
 894/**
 895 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
 896 */
 897int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
 898                          struct genwqe_reg *regs, unsigned int max_regs)
 899{
 900        int i, traps, traces, trace, trace_entries, trace_entry, ring;
 901        unsigned int idx = 0;
 902        u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
 903        u64 eevptr, e, val, addr;
 904
 905        eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
 906        eevptr = __genwqe_readq(cd, eevptr_addr);
 907
 908        if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
 909                l_addr = GENWQE_UID_OFFS(uid) | eevptr;
 910                while (1) {
 911                        e = __genwqe_readq(cd, l_addr);
 912                        if ((e == 0x0) || (e == 0xffffffffffffffffull))
 913                                break;
 914
 915                        d_addr = (e & 0x0000000000ffffffull);       /* 23:0 */
 916                        d_len  = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
 917                        d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
 918                        d_addr |= GENWQE_UID_OFFS(uid);
 919
 920                        if (d_type) {
 921                                for (i = 0; i < (int)d_len; i++) {
 922                                        val = __genwqe_readq(cd, d_addr);
 923                                        set_reg_idx(cd, regs, &idx, max_regs,
 924                                                    d_addr, i, val);
 925                                }
 926                        } else {
 927                                d_len >>= 3; /* Size in bytes! */
 928                                for (i = 0; i < (int)d_len; i++, d_addr += 8) {
 929                                        val = __genwqe_readq(cd, d_addr);
 930                                        set_reg_idx(cd, regs, &idx, max_regs,
 931                                                    d_addr, 0, val);
 932                                }
 933                        }
 934                        l_addr += 8;
 935                }
 936        }
 937
 938        /*
 939         * To save time, there are only 6 traces poplulated on Uid=2,
 940         * Ring=1. each with iters=512.
 941         */
 942        for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
 943                                              2...7 are ASI rings */
 944                addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
 945                val = __genwqe_readq(cd, addr);
 946
 947                if ((val == 0x0ull) || (val == -1ull))
 948                        continue;
 949
 950                traps = (val >> 24) & 0xff;     /* Number of Traps      */
 951                traces = (val >> 16) & 0xff;    /* Number of Traces     */
 952                trace_entries = val & 0xffff;   /* Entries per trace    */
 953
 954                /* Note: This is a combined loop that dumps both the traps */
 955                /* (for the trace == 0 case) as well as the traces 1 to    */
 956                /* 'traces'.                                               */
 957                for (trace = 0; trace <= traces; trace++) {
 958                        u32 diag_sel =
 959                                GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
 960
 961                        addr = (GENWQE_UID_OFFS(uid) |
 962                                IO_EXTENDED_DIAG_SELECTOR);
 963                        __genwqe_writeq(cd, addr, diag_sel);
 964
 965                        for (trace_entry = 0;
 966                             trace_entry < (trace ? trace_entries : traps);
 967                             trace_entry++) {
 968                                addr = (GENWQE_UID_OFFS(uid) |
 969                                        IO_EXTENDED_DIAG_READ_MBX);
 970                                val = __genwqe_readq(cd, addr);
 971                                set_reg_idx(cd, regs, &idx, max_regs, addr,
 972                                            (diag_sel<<16) | trace_entry, val);
 973                        }
 974                }
 975        }
 976        return 0;
 977}
 978
 979/**
 980 * genwqe_write_vreg() - Write register in virtual window
 981 *
 982 * Note, these registers are only accessible to the PF through the
 983 * VF-window. It is not intended for the VF to access.
 984 */
 985int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
 986{
 987        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
 988        __genwqe_writeq(cd, reg, val);
 989        return 0;
 990}
 991
 992/**
 993 * genwqe_read_vreg() - Read register in virtual window
 994 *
 995 * Note, these registers are only accessible to the PF through the
 996 * VF-window. It is not intended for the VF to access.
 997 */
 998u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
 999{
1000        __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
1001        return __genwqe_readq(cd, reg);
1002}
1003
1004/**
1005 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
1006 *
1007 * Note: From a design perspective it turned out to be a bad idea to
1008 * use codes here to specifiy the frequency/speed values. An old
1009 * driver cannot understand new codes and is therefore always a
1010 * problem. Better is to measure out the value or put the
1011 * speed/frequency directly into a register which is always a valid
1012 * value for old as well as for new software.
1013 *
1014 * Return: Card clock in MHz
1015 */
1016int genwqe_base_clock_frequency(struct genwqe_dev *cd)
1017{
1018        u16 speed;              /*         MHz  MHz  MHz  MHz */
1019        static const int speed_grade[] = { 250, 200, 166, 175 };
1020
1021        speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
1022        if (speed >= ARRAY_SIZE(speed_grade))
1023                return 0;       /* illegal value */
1024
1025        return speed_grade[speed];
1026}
1027
1028/**
1029 * genwqe_stop_traps() - Stop traps
1030 *
1031 * Before reading out the analysis data, we need to stop the traps.
1032 */
1033void genwqe_stop_traps(struct genwqe_dev *cd)
1034{
1035        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
1036}
1037
1038/**
1039 * genwqe_start_traps() - Start traps
1040 *
1041 * After having read the data, we can/must enable the traps again.
1042 */
1043void genwqe_start_traps(struct genwqe_dev *cd)
1044{
1045        __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
1046
1047        if (genwqe_need_err_masking(cd))
1048                __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
1049}
1050