linux/drivers/net/ethernet/broadcom/sb1250-mac.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 *
  18 *
  19 * This driver is designed for the Broadcom SiByte SOC built-in
  20 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  21 *
  22 * Updated to the driver model and the PHY abstraction layer
  23 * by Maciej W. Rozycki.
  24 */
  25
  26#include <linux/bug.h>
  27#include <linux/module.h>
  28#include <linux/kernel.h>
  29#include <linux/string.h>
  30#include <linux/timer.h>
  31#include <linux/errno.h>
  32#include <linux/ioport.h>
  33#include <linux/slab.h>
  34#include <linux/interrupt.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/bitops.h>
  39#include <linux/err.h>
  40#include <linux/ethtool.h>
  41#include <linux/mii.h>
  42#include <linux/phy.h>
  43#include <linux/platform_device.h>
  44#include <linux/prefetch.h>
  45
  46#include <asm/cache.h>
  47#include <asm/io.h>
  48#include <asm/processor.h>      /* Processor type for cache alignment. */
  49
  50/* Operational parameters that usually are not changed. */
  51
  52#define CONFIG_SBMAC_COALESCE
  53
  54/* Time in jiffies before concluding the transmitter is hung. */
  55#define TX_TIMEOUT  (2*HZ)
  56
  57
  58MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  59MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  60
  61/* A few user-configurable values which may be modified when a driver
  62   module is loaded. */
  63
  64/* 1 normal messages, 0 quiet .. 7 verbose. */
  65static int debug = 1;
  66module_param(debug, int, S_IRUGO);
  67MODULE_PARM_DESC(debug, "Debug messages");
  68
  69#ifdef CONFIG_SBMAC_COALESCE
  70static int int_pktcnt_tx = 255;
  71module_param(int_pktcnt_tx, int, S_IRUGO);
  72MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  73
  74static int int_timeout_tx = 255;
  75module_param(int_timeout_tx, int, S_IRUGO);
  76MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  77
  78static int int_pktcnt_rx = 64;
  79module_param(int_pktcnt_rx, int, S_IRUGO);
  80MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  81
  82static int int_timeout_rx = 64;
  83module_param(int_timeout_rx, int, S_IRUGO);
  84MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  85#endif
  86
  87#include <asm/sibyte/board.h>
  88#include <asm/sibyte/sb1250.h>
  89#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  90#include <asm/sibyte/bcm1480_regs.h>
  91#include <asm/sibyte/bcm1480_int.h>
  92#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  93#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  94#include <asm/sibyte/sb1250_regs.h>
  95#include <asm/sibyte/sb1250_int.h>
  96#else
  97#error invalid SiByte MAC configuration
  98#endif
  99#include <asm/sibyte/sb1250_scd.h>
 100#include <asm/sibyte/sb1250_mac.h>
 101#include <asm/sibyte/sb1250_dma.h>
 102
 103#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 104#define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
 105#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 106#define UNIT_INT(n)             (K_INT_MAC_0 + (n))
 107#else
 108#error invalid SiByte MAC configuration
 109#endif
 110
 111#ifdef K_INT_PHY
 112#define SBMAC_PHY_INT                   K_INT_PHY
 113#else
 114#define SBMAC_PHY_INT                   PHY_POLL
 115#endif
 116
 117/**********************************************************************
 118 *  Simple types
 119 ********************************************************************* */
 120
 121enum sbmac_speed {
 122        sbmac_speed_none = 0,
 123        sbmac_speed_10 = SPEED_10,
 124        sbmac_speed_100 = SPEED_100,
 125        sbmac_speed_1000 = SPEED_1000,
 126};
 127
 128enum sbmac_duplex {
 129        sbmac_duplex_none = -1,
 130        sbmac_duplex_half = DUPLEX_HALF,
 131        sbmac_duplex_full = DUPLEX_FULL,
 132};
 133
 134enum sbmac_fc {
 135        sbmac_fc_none,
 136        sbmac_fc_disabled,
 137        sbmac_fc_frame,
 138        sbmac_fc_collision,
 139        sbmac_fc_carrier,
 140};
 141
 142enum sbmac_state {
 143        sbmac_state_uninit,
 144        sbmac_state_off,
 145        sbmac_state_on,
 146        sbmac_state_broken,
 147};
 148
 149
 150/**********************************************************************
 151 *  Macros
 152 ********************************************************************* */
 153
 154
 155#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 156                          (d)->sbdma_dscrtable : (d)->f+1)
 157
 158
 159#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 160
 161#define SBMAC_MAX_TXDESCR       256
 162#define SBMAC_MAX_RXDESCR       256
 163
 164#define ENET_PACKET_SIZE        1518
 165/*#define ENET_PACKET_SIZE      9216 */
 166
 167/**********************************************************************
 168 *  DMA Descriptor structure
 169 ********************************************************************* */
 170
 171struct sbdmadscr {
 172        uint64_t  dscr_a;
 173        uint64_t  dscr_b;
 174};
 175
 176/**********************************************************************
 177 *  DMA Controller structure
 178 ********************************************************************* */
 179
 180struct sbmacdma {
 181
 182        /*
 183         * This stuff is used to identify the channel and the registers
 184         * associated with it.
 185         */
 186        struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 187                                                   MAC */
 188        int                     sbdma_channel;  /* channel number */
 189        int                     sbdma_txdir;    /* direction (1=transmit) */
 190        int                     sbdma_maxdescr; /* total # of descriptors
 191                                                   in ring */
 192#ifdef CONFIG_SBMAC_COALESCE
 193        int                     sbdma_int_pktcnt;
 194                                                /* # descriptors rx/tx
 195                                                   before interrupt */
 196        int                     sbdma_int_timeout;
 197                                                /* # usec rx/tx interrupt */
 198#endif
 199        void __iomem            *sbdma_config0; /* DMA config register 0 */
 200        void __iomem            *sbdma_config1; /* DMA config register 1 */
 201        void __iomem            *sbdma_dscrbase;
 202                                                /* descriptor base address */
 203        void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 204        void __iomem            *sbdma_curdscr; /* current descriptor
 205                                                   address */
 206        void __iomem            *sbdma_oodpktlost;
 207                                                /* pkt drop (rx only) */
 208
 209        /*
 210         * This stuff is for maintenance of the ring
 211         */
 212        void                    *sbdma_dscrtable_unaligned;
 213        struct sbdmadscr        *sbdma_dscrtable;
 214                                                /* base of descriptor table */
 215        struct sbdmadscr        *sbdma_dscrtable_end;
 216                                                /* end of descriptor table */
 217        struct sk_buff          **sbdma_ctxtable;
 218                                                /* context table, one
 219                                                   per descr */
 220        dma_addr_t              sbdma_dscrtable_phys;
 221                                                /* and also the phys addr */
 222        struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 223        struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 224                                                   to remove */
 225};
 226
 227
 228/**********************************************************************
 229 *  Ethernet softc structure
 230 ********************************************************************* */
 231
 232struct sbmac_softc {
 233
 234        /*
 235         * Linux-specific things
 236         */
 237        struct net_device       *sbm_dev;       /* pointer to linux device */
 238        struct napi_struct      napi;
 239        struct phy_device       *phy_dev;       /* the associated PHY device */
 240        struct mii_bus          *mii_bus;       /* the MII bus */
 241        int                     phy_irq[PHY_MAX_ADDR];
 242        spinlock_t              sbm_lock;       /* spin lock */
 243        int                     sbm_devflags;   /* current device flags */
 244
 245        /*
 246         * Controller-specific things
 247         */
 248        void __iomem            *sbm_base;      /* MAC's base address */
 249        enum sbmac_state        sbm_state;      /* current state */
 250
 251        void __iomem            *sbm_macenable; /* MAC Enable Register */
 252        void __iomem            *sbm_maccfg;    /* MAC Config Register */
 253        void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 254        void __iomem            *sbm_framecfg;  /* Frame Config Register */
 255        void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 256        void __iomem            *sbm_isr;       /* Interrupt Status Register */
 257        void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 258        void __iomem            *sbm_mdio;      /* MDIO Register */
 259
 260        enum sbmac_speed        sbm_speed;      /* current speed */
 261        enum sbmac_duplex       sbm_duplex;     /* current duplex */
 262        enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 263        int                     sbm_pause;      /* current pause setting */
 264        int                     sbm_link;       /* current link state */
 265
 266        unsigned char           sbm_hwaddr[ETH_ALEN];
 267
 268        struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 269        struct sbmacdma         sbm_rxdma;
 270        int                     rx_hw_checksum;
 271        int                     sbe_idx;
 272};
 273
 274
 275/**********************************************************************
 276 *  Externs
 277 ********************************************************************* */
 278
 279/**********************************************************************
 280 *  Prototypes
 281 ********************************************************************* */
 282
 283static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 284                          int txrx, int maxdescr);
 285static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 286static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 287                               struct sk_buff *m);
 288static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 289static void sbdma_emptyring(struct sbmacdma *d);
 290static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 291static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 292                            int work_to_do, int poll);
 293static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 294                             int poll);
 295static int sbmac_initctx(struct sbmac_softc *s);
 296static void sbmac_channel_start(struct sbmac_softc *s);
 297static void sbmac_channel_stop(struct sbmac_softc *s);
 298static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 299                                                enum sbmac_state);
 300static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 301static uint64_t sbmac_addr2reg(unsigned char *ptr);
 302static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 303static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 304static void sbmac_setmulti(struct sbmac_softc *sc);
 305static int sbmac_init(struct platform_device *pldev, long long base);
 306static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 307static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 308                            enum sbmac_fc fc);
 309
 310static int sbmac_open(struct net_device *dev);
 311static void sbmac_tx_timeout (struct net_device *dev);
 312static void sbmac_set_rx_mode(struct net_device *dev);
 313static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 314static int sbmac_close(struct net_device *dev);
 315static int sbmac_poll(struct napi_struct *napi, int budget);
 316
 317static void sbmac_mii_poll(struct net_device *dev);
 318static int sbmac_mii_probe(struct net_device *dev);
 319
 320static void sbmac_mii_sync(void __iomem *sbm_mdio);
 321static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 322                               int bitcnt);
 323static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 324static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 325                           u16 val);
 326
 327
 328/**********************************************************************
 329 *  Globals
 330 ********************************************************************* */
 331
 332static char sbmac_string[] = "sb1250-mac";
 333
 334static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 335
 336
 337/**********************************************************************
 338 *  MDIO constants
 339 ********************************************************************* */
 340
 341#define MII_COMMAND_START       0x01
 342#define MII_COMMAND_READ        0x02
 343#define MII_COMMAND_WRITE       0x01
 344#define MII_COMMAND_ACK         0x02
 345
 346#define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 347
 348#define ENABLE          1
 349#define DISABLE         0
 350
 351/**********************************************************************
 352 *  SBMAC_MII_SYNC(sbm_mdio)
 353 *
 354 *  Synchronize with the MII - send a pattern of bits to the MII
 355 *  that will guarantee that it is ready to accept a command.
 356 *
 357 *  Input parameters:
 358 *         sbm_mdio - address of the MAC's MDIO register
 359 *
 360 *  Return value:
 361 *         nothing
 362 ********************************************************************* */
 363
 364static void sbmac_mii_sync(void __iomem *sbm_mdio)
 365{
 366        int cnt;
 367        uint64_t bits;
 368        int mac_mdio_genc;
 369
 370        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 371
 372        bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 373
 374        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 375
 376        for (cnt = 0; cnt < 32; cnt++) {
 377                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 378                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 379        }
 380}
 381
 382/**********************************************************************
 383 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 384 *
 385 *  Send some bits to the MII.  The bits to be sent are right-
 386 *  justified in the 'data' parameter.
 387 *
 388 *  Input parameters:
 389 *         sbm_mdio - address of the MAC's MDIO register
 390 *         data     - data to send
 391 *         bitcnt   - number of bits to send
 392 ********************************************************************* */
 393
 394static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 395                               int bitcnt)
 396{
 397        int i;
 398        uint64_t bits;
 399        unsigned int curmask;
 400        int mac_mdio_genc;
 401
 402        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 403
 404        bits = M_MAC_MDIO_DIR_OUTPUT;
 405        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 406
 407        curmask = 1 << (bitcnt - 1);
 408
 409        for (i = 0; i < bitcnt; i++) {
 410                if (data & curmask)
 411                        bits |= M_MAC_MDIO_OUT;
 412                else bits &= ~M_MAC_MDIO_OUT;
 413                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 414                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 415                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 416                curmask >>= 1;
 417        }
 418}
 419
 420
 421
 422/**********************************************************************
 423 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 424 *  Read a PHY register.
 425 *
 426 *  Input parameters:
 427 *         bus     - MDIO bus handle
 428 *         phyaddr - PHY's address
 429 *         regnum  - index of register to read
 430 *
 431 *  Return value:
 432 *         value read, or 0xffff if an error occurred.
 433 ********************************************************************* */
 434
 435static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 436{
 437        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 438        void __iomem *sbm_mdio = sc->sbm_mdio;
 439        int idx;
 440        int error;
 441        int regval;
 442        int mac_mdio_genc;
 443
 444        /*
 445         * Synchronize ourselves so that the PHY knows the next
 446         * thing coming down is a command
 447         */
 448        sbmac_mii_sync(sbm_mdio);
 449
 450        /*
 451         * Send the data to the PHY.  The sequence is
 452         * a "start" command (2 bits)
 453         * a "read" command (2 bits)
 454         * the PHY addr (5 bits)
 455         * the register index (5 bits)
 456         */
 457        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 458        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 459        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 460        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 461
 462        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 463
 464        /*
 465         * Switch the port around without a clock transition.
 466         */
 467        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 468
 469        /*
 470         * Send out a clock pulse to signal we want the status
 471         */
 472        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 473                     sbm_mdio);
 474        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 475
 476        /*
 477         * If an error occurred, the PHY will signal '1' back
 478         */
 479        error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 480
 481        /*
 482         * Issue an 'idle' clock pulse, but keep the direction
 483         * the same.
 484         */
 485        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 486                     sbm_mdio);
 487        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 488
 489        regval = 0;
 490
 491        for (idx = 0; idx < 16; idx++) {
 492                regval <<= 1;
 493
 494                if (error == 0) {
 495                        if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 496                                regval |= 1;
 497                }
 498
 499                __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 500                             sbm_mdio);
 501                __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 502        }
 503
 504        /* Switch back to output */
 505        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 506
 507        if (error == 0)
 508                return regval;
 509        return 0xffff;
 510}
 511
 512
 513/**********************************************************************
 514 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 515 *
 516 *  Write a value to a PHY register.
 517 *
 518 *  Input parameters:
 519 *         bus     - MDIO bus handle
 520 *         phyaddr - PHY to use
 521 *         regidx  - register within the PHY
 522 *         regval  - data to write to register
 523 *
 524 *  Return value:
 525 *         0 for success
 526 ********************************************************************* */
 527
 528static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 529                           u16 regval)
 530{
 531        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 532        void __iomem *sbm_mdio = sc->sbm_mdio;
 533        int mac_mdio_genc;
 534
 535        sbmac_mii_sync(sbm_mdio);
 536
 537        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 538        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 539        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 540        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 541        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 542        sbmac_mii_senddata(sbm_mdio, regval, 16);
 543
 544        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 545
 546        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 547
 548        return 0;
 549}
 550
 551
 552
 553/**********************************************************************
 554 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 555 *
 556 *  Initialize a DMA channel context.  Since there are potentially
 557 *  eight DMA channels per MAC, it's nice to do this in a standard
 558 *  way.
 559 *
 560 *  Input parameters:
 561 *         d - struct sbmacdma (DMA channel context)
 562 *         s - struct sbmac_softc (pointer to a MAC)
 563 *         chan - channel number (0..1 right now)
 564 *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 565 *      maxdescr - number of descriptors
 566 *
 567 *  Return value:
 568 *         nothing
 569 ********************************************************************* */
 570
 571static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 572                          int txrx, int maxdescr)
 573{
 574#ifdef CONFIG_SBMAC_COALESCE
 575        int int_pktcnt, int_timeout;
 576#endif
 577
 578        /*
 579         * Save away interesting stuff in the structure
 580         */
 581
 582        d->sbdma_eth       = s;
 583        d->sbdma_channel   = chan;
 584        d->sbdma_txdir     = txrx;
 585
 586#if 0
 587        /* RMON clearing */
 588        s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 589#endif
 590
 591        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 592        __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 593        __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 594        __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 595        __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 596        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 597        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 598        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 599        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 600        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 601        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 602        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 603        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 604        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 605        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 606        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 607        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 608        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 609        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 610        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 611        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 612
 613        /*
 614         * initialize register pointers
 615         */
 616
 617        d->sbdma_config0 =
 618                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 619        d->sbdma_config1 =
 620                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 621        d->sbdma_dscrbase =
 622                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 623        d->sbdma_dscrcnt =
 624                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 625        d->sbdma_curdscr =
 626                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 627        if (d->sbdma_txdir)
 628                d->sbdma_oodpktlost = NULL;
 629        else
 630                d->sbdma_oodpktlost =
 631                        s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 632
 633        /*
 634         * Allocate memory for the ring
 635         */
 636
 637        d->sbdma_maxdescr = maxdescr;
 638
 639        d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 640                                               sizeof(*d->sbdma_dscrtable),
 641                                               GFP_KERNEL);
 642
 643        /*
 644         * The descriptor table must be aligned to at least 16 bytes or the
 645         * MAC will corrupt it.
 646         */
 647        d->sbdma_dscrtable = (struct sbdmadscr *)
 648                             ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 649                                   sizeof(*d->sbdma_dscrtable));
 650
 651        d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 652
 653        d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 654
 655        /*
 656         * And context table
 657         */
 658
 659        d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 660                                    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 661
 662#ifdef CONFIG_SBMAC_COALESCE
 663        /*
 664         * Setup Rx/Tx DMA coalescing defaults
 665         */
 666
 667        int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 668        if ( int_pktcnt ) {
 669                d->sbdma_int_pktcnt = int_pktcnt;
 670        } else {
 671                d->sbdma_int_pktcnt = 1;
 672        }
 673
 674        int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 675        if ( int_timeout ) {
 676                d->sbdma_int_timeout = int_timeout;
 677        } else {
 678                d->sbdma_int_timeout = 0;
 679        }
 680#endif
 681
 682}
 683
 684/**********************************************************************
 685 *  SBDMA_CHANNEL_START(d)
 686 *
 687 *  Initialize the hardware registers for a DMA channel.
 688 *
 689 *  Input parameters:
 690 *         d - DMA channel to init (context must be previously init'd
 691 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 692 *
 693 *  Return value:
 694 *         nothing
 695 ********************************************************************* */
 696
 697static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 698{
 699        /*
 700         * Turn on the DMA channel
 701         */
 702
 703#ifdef CONFIG_SBMAC_COALESCE
 704        __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 705                       0, d->sbdma_config1);
 706        __raw_writeq(M_DMA_EOP_INT_EN |
 707                       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 708                       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 709                       0, d->sbdma_config0);
 710#else
 711        __raw_writeq(0, d->sbdma_config1);
 712        __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 713                       0, d->sbdma_config0);
 714#endif
 715
 716        __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 717
 718        /*
 719         * Initialize ring pointers
 720         */
 721
 722        d->sbdma_addptr = d->sbdma_dscrtable;
 723        d->sbdma_remptr = d->sbdma_dscrtable;
 724}
 725
 726/**********************************************************************
 727 *  SBDMA_CHANNEL_STOP(d)
 728 *
 729 *  Initialize the hardware registers for a DMA channel.
 730 *
 731 *  Input parameters:
 732 *         d - DMA channel to init (context must be previously init'd
 733 *
 734 *  Return value:
 735 *         nothing
 736 ********************************************************************* */
 737
 738static void sbdma_channel_stop(struct sbmacdma *d)
 739{
 740        /*
 741         * Turn off the DMA channel
 742         */
 743
 744        __raw_writeq(0, d->sbdma_config1);
 745
 746        __raw_writeq(0, d->sbdma_dscrbase);
 747
 748        __raw_writeq(0, d->sbdma_config0);
 749
 750        /*
 751         * Zero ring pointers
 752         */
 753
 754        d->sbdma_addptr = NULL;
 755        d->sbdma_remptr = NULL;
 756}
 757
 758static inline void sbdma_align_skb(struct sk_buff *skb,
 759                                   unsigned int power2, unsigned int offset)
 760{
 761        unsigned char *addr = skb->data;
 762        unsigned char *newaddr = PTR_ALIGN(addr, power2);
 763
 764        skb_reserve(skb, newaddr - addr + offset);
 765}
 766
 767
 768/**********************************************************************
 769 *  SBDMA_ADD_RCVBUFFER(d,sb)
 770 *
 771 *  Add a buffer to the specified DMA channel.   For receive channels,
 772 *  this queues a buffer for inbound packets.
 773 *
 774 *  Input parameters:
 775 *         sc - softc structure
 776 *          d - DMA channel descriptor
 777 *         sb - sk_buff to add, or NULL if we should allocate one
 778 *
 779 *  Return value:
 780 *         0 if buffer could not be added (ring is full)
 781 *         1 if buffer added successfully
 782 ********************************************************************* */
 783
 784
 785static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 786                               struct sk_buff *sb)
 787{
 788        struct net_device *dev = sc->sbm_dev;
 789        struct sbdmadscr *dsc;
 790        struct sbdmadscr *nextdsc;
 791        struct sk_buff *sb_new = NULL;
 792        int pktsize = ENET_PACKET_SIZE;
 793
 794        /* get pointer to our current place in the ring */
 795
 796        dsc = d->sbdma_addptr;
 797        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 798
 799        /*
 800         * figure out if the ring is full - if the next descriptor
 801         * is the same as the one that we're going to remove from
 802         * the ring, the ring is full
 803         */
 804
 805        if (nextdsc == d->sbdma_remptr) {
 806                return -ENOSPC;
 807        }
 808
 809        /*
 810         * Allocate a sk_buff if we don't already have one.
 811         * If we do have an sk_buff, reset it so that it's empty.
 812         *
 813         * Note: sk_buffs don't seem to be guaranteed to have any sort
 814         * of alignment when they are allocated.  Therefore, allocate enough
 815         * extra space to make sure that:
 816         *
 817         *    1. the data does not start in the middle of a cache line.
 818         *    2. The data does not end in the middle of a cache line
 819         *    3. The buffer can be aligned such that the IP addresses are
 820         *       naturally aligned.
 821         *
 822         *  Remember, the SOCs MAC writes whole cache lines at a time,
 823         *  without reading the old contents first.  So, if the sk_buff's
 824         *  data portion starts in the middle of a cache line, the SOC
 825         *  DMA will trash the beginning (and ending) portions.
 826         */
 827
 828        if (sb == NULL) {
 829                sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 830                                               SMP_CACHE_BYTES * 2 +
 831                                               NET_IP_ALIGN);
 832                if (sb_new == NULL)
 833                        return -ENOBUFS;
 834
 835                sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 836        }
 837        else {
 838                sb_new = sb;
 839                /*
 840                 * nothing special to reinit buffer, it's already aligned
 841                 * and sb->data already points to a good place.
 842                 */
 843        }
 844
 845        /*
 846         * fill in the descriptor
 847         */
 848
 849#ifdef CONFIG_SBMAC_COALESCE
 850        /*
 851         * Do not interrupt per DMA transfer.
 852         */
 853        dsc->dscr_a = virt_to_phys(sb_new->data) |
 854                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 855#else
 856        dsc->dscr_a = virt_to_phys(sb_new->data) |
 857                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 858                M_DMA_DSCRA_INTERRUPT;
 859#endif
 860
 861        /* receiving: no options */
 862        dsc->dscr_b = 0;
 863
 864        /*
 865         * fill in the context
 866         */
 867
 868        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 869
 870        /*
 871         * point at next packet
 872         */
 873
 874        d->sbdma_addptr = nextdsc;
 875
 876        /*
 877         * Give the buffer to the DMA engine.
 878         */
 879
 880        __raw_writeq(1, d->sbdma_dscrcnt);
 881
 882        return 0;                                       /* we did it */
 883}
 884
 885/**********************************************************************
 886 *  SBDMA_ADD_TXBUFFER(d,sb)
 887 *
 888 *  Add a transmit buffer to the specified DMA channel, causing a
 889 *  transmit to start.
 890 *
 891 *  Input parameters:
 892 *         d - DMA channel descriptor
 893 *         sb - sk_buff to add
 894 *
 895 *  Return value:
 896 *         0 transmit queued successfully
 897 *         otherwise error code
 898 ********************************************************************* */
 899
 900
 901static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 902{
 903        struct sbdmadscr *dsc;
 904        struct sbdmadscr *nextdsc;
 905        uint64_t phys;
 906        uint64_t ncb;
 907        int length;
 908
 909        /* get pointer to our current place in the ring */
 910
 911        dsc = d->sbdma_addptr;
 912        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 913
 914        /*
 915         * figure out if the ring is full - if the next descriptor
 916         * is the same as the one that we're going to remove from
 917         * the ring, the ring is full
 918         */
 919
 920        if (nextdsc == d->sbdma_remptr) {
 921                return -ENOSPC;
 922        }
 923
 924        /*
 925         * Under Linux, it's not necessary to copy/coalesce buffers
 926         * like it is on NetBSD.  We think they're all contiguous,
 927         * but that may not be true for GBE.
 928         */
 929
 930        length = sb->len;
 931
 932        /*
 933         * fill in the descriptor.  Note that the number of cache
 934         * blocks in the descriptor is the number of blocks
 935         * *spanned*, so we need to add in the offset (if any)
 936         * while doing the calculation.
 937         */
 938
 939        phys = virt_to_phys(sb->data);
 940        ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 941
 942        dsc->dscr_a = phys |
 943                V_DMA_DSCRA_A_SIZE(ncb) |
 944#ifndef CONFIG_SBMAC_COALESCE
 945                M_DMA_DSCRA_INTERRUPT |
 946#endif
 947                M_DMA_ETHTX_SOP;
 948
 949        /* transmitting: set outbound options and length */
 950
 951        dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 952                V_DMA_DSCRB_PKT_SIZE(length);
 953
 954        /*
 955         * fill in the context
 956         */
 957
 958        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 959
 960        /*
 961         * point at next packet
 962         */
 963
 964        d->sbdma_addptr = nextdsc;
 965
 966        /*
 967         * Give the buffer to the DMA engine.
 968         */
 969
 970        __raw_writeq(1, d->sbdma_dscrcnt);
 971
 972        return 0;                                       /* we did it */
 973}
 974
 975
 976
 977
 978/**********************************************************************
 979 *  SBDMA_EMPTYRING(d)
 980 *
 981 *  Free all allocated sk_buffs on the specified DMA channel;
 982 *
 983 *  Input parameters:
 984 *         d  - DMA channel
 985 *
 986 *  Return value:
 987 *         nothing
 988 ********************************************************************* */
 989
 990static void sbdma_emptyring(struct sbmacdma *d)
 991{
 992        int idx;
 993        struct sk_buff *sb;
 994
 995        for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
 996                sb = d->sbdma_ctxtable[idx];
 997                if (sb) {
 998                        dev_kfree_skb(sb);
 999                        d->sbdma_ctxtable[idx] = NULL;
1000                }
1001        }
1002}
1003
1004
1005/**********************************************************************
1006 *  SBDMA_FILLRING(d)
1007 *
1008 *  Fill the specified DMA channel (must be receive channel)
1009 *  with sk_buffs
1010 *
1011 *  Input parameters:
1012 *         sc - softc structure
1013 *          d - DMA channel
1014 *
1015 *  Return value:
1016 *         nothing
1017 ********************************************************************* */
1018
1019static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1020{
1021        int idx;
1022
1023        for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1024                if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1025                        break;
1026        }
1027}
1028
1029#ifdef CONFIG_NET_POLL_CONTROLLER
1030static void sbmac_netpoll(struct net_device *netdev)
1031{
1032        struct sbmac_softc *sc = netdev_priv(netdev);
1033        int irq = sc->sbm_dev->irq;
1034
1035        __raw_writeq(0, sc->sbm_imr);
1036
1037        sbmac_intr(irq, netdev);
1038
1039#ifdef CONFIG_SBMAC_COALESCE
1040        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1041        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1042        sc->sbm_imr);
1043#else
1044        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1045        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1046#endif
1047}
1048#endif
1049
1050/**********************************************************************
1051 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1052 *
1053 *  Process "completed" receive buffers on the specified DMA channel.
1054 *
1055 *  Input parameters:
1056 *            sc - softc structure
1057 *             d - DMA channel context
1058 *    work_to_do - no. of packets to process before enabling interrupt
1059 *                 again (for NAPI)
1060 *          poll - 1: using polling (for NAPI)
1061 *
1062 *  Return value:
1063 *         nothing
1064 ********************************************************************* */
1065
1066static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1067                            int work_to_do, int poll)
1068{
1069        struct net_device *dev = sc->sbm_dev;
1070        int curidx;
1071        int hwidx;
1072        struct sbdmadscr *dsc;
1073        struct sk_buff *sb;
1074        int len;
1075        int work_done = 0;
1076        int dropped = 0;
1077
1078        prefetch(d);
1079
1080again:
1081        /* Check if the HW dropped any frames */
1082        dev->stats.rx_fifo_errors
1083            += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1084        __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1085
1086        while (work_to_do-- > 0) {
1087                /*
1088                 * figure out where we are (as an index) and where
1089                 * the hardware is (also as an index)
1090                 *
1091                 * This could be done faster if (for example) the
1092                 * descriptor table was page-aligned and contiguous in
1093                 * both virtual and physical memory -- you could then
1094                 * just compare the low-order bits of the virtual address
1095                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1096                 */
1097
1098                dsc = d->sbdma_remptr;
1099                curidx = dsc - d->sbdma_dscrtable;
1100
1101                prefetch(dsc);
1102                prefetch(&d->sbdma_ctxtable[curidx]);
1103
1104                hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1105                         d->sbdma_dscrtable_phys) /
1106                        sizeof(*d->sbdma_dscrtable);
1107
1108                /*
1109                 * If they're the same, that means we've processed all
1110                 * of the descriptors up to (but not including) the one that
1111                 * the hardware is working on right now.
1112                 */
1113
1114                if (curidx == hwidx)
1115                        goto done;
1116
1117                /*
1118                 * Otherwise, get the packet's sk_buff ptr back
1119                 */
1120
1121                sb = d->sbdma_ctxtable[curidx];
1122                d->sbdma_ctxtable[curidx] = NULL;
1123
1124                len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1125
1126                /*
1127                 * Check packet status.  If good, process it.
1128                 * If not, silently drop it and put it back on the
1129                 * receive ring.
1130                 */
1131
1132                if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1133
1134                        /*
1135                         * Add a new buffer to replace the old one.  If we fail
1136                         * to allocate a buffer, we're going to drop this
1137                         * packet and put it right back on the receive ring.
1138                         */
1139
1140                        if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1141                                     -ENOBUFS)) {
1142                                dev->stats.rx_dropped++;
1143                                /* Re-add old buffer */
1144                                sbdma_add_rcvbuffer(sc, d, sb);
1145                                /* No point in continuing at the moment */
1146                                printk(KERN_ERR "dropped packet (1)\n");
1147                                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1148                                goto done;
1149                        } else {
1150                                /*
1151                                 * Set length into the packet
1152                                 */
1153                                skb_put(sb,len);
1154
1155                                /*
1156                                 * Buffer has been replaced on the
1157                                 * receive ring.  Pass the buffer to
1158                                 * the kernel
1159                                 */
1160                                sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1161                                /* Check hw IPv4/TCP checksum if supported */
1162                                if (sc->rx_hw_checksum == ENABLE) {
1163                                        if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1164                                            !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1165                                                sb->ip_summed = CHECKSUM_UNNECESSARY;
1166                                                /* don't need to set sb->csum */
1167                                        } else {
1168                                                skb_checksum_none_assert(sb);
1169                                        }
1170                                }
1171                                prefetch(sb->data);
1172                                prefetch((const void *)(((char *)sb->data)+32));
1173                                if (poll)
1174                                        dropped = netif_receive_skb(sb);
1175                                else
1176                                        dropped = netif_rx(sb);
1177
1178                                if (dropped == NET_RX_DROP) {
1179                                        dev->stats.rx_dropped++;
1180                                        d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1181                                        goto done;
1182                                }
1183                                else {
1184                                        dev->stats.rx_bytes += len;
1185                                        dev->stats.rx_packets++;
1186                                }
1187                        }
1188                } else {
1189                        /*
1190                         * Packet was mangled somehow.  Just drop it and
1191                         * put it back on the receive ring.
1192                         */
1193                        dev->stats.rx_errors++;
1194                        sbdma_add_rcvbuffer(sc, d, sb);
1195                }
1196
1197
1198                /*
1199                 * .. and advance to the next buffer.
1200                 */
1201
1202                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1203                work_done++;
1204        }
1205        if (!poll) {
1206                work_to_do = 32;
1207                goto again; /* collect fifo drop statistics again */
1208        }
1209done:
1210        return work_done;
1211}
1212
1213/**********************************************************************
1214 *  SBDMA_TX_PROCESS(sc,d)
1215 *
1216 *  Process "completed" transmit buffers on the specified DMA channel.
1217 *  This is normally called within the interrupt service routine.
1218 *  Note that this isn't really ideal for priority channels, since
1219 *  it processes all of the packets on a given channel before
1220 *  returning.
1221 *
1222 *  Input parameters:
1223 *      sc - softc structure
1224 *       d - DMA channel context
1225 *    poll - 1: using polling (for NAPI)
1226 *
1227 *  Return value:
1228 *         nothing
1229 ********************************************************************* */
1230
1231static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1232                             int poll)
1233{
1234        struct net_device *dev = sc->sbm_dev;
1235        int curidx;
1236        int hwidx;
1237        struct sbdmadscr *dsc;
1238        struct sk_buff *sb;
1239        unsigned long flags;
1240        int packets_handled = 0;
1241
1242        spin_lock_irqsave(&(sc->sbm_lock), flags);
1243
1244        if (d->sbdma_remptr == d->sbdma_addptr)
1245          goto end_unlock;
1246
1247        hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1248                 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1249
1250        for (;;) {
1251                /*
1252                 * figure out where we are (as an index) and where
1253                 * the hardware is (also as an index)
1254                 *
1255                 * This could be done faster if (for example) the
1256                 * descriptor table was page-aligned and contiguous in
1257                 * both virtual and physical memory -- you could then
1258                 * just compare the low-order bits of the virtual address
1259                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1260                 */
1261
1262                curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1263
1264                /*
1265                 * If they're the same, that means we've processed all
1266                 * of the descriptors up to (but not including) the one that
1267                 * the hardware is working on right now.
1268                 */
1269
1270                if (curidx == hwidx)
1271                        break;
1272
1273                /*
1274                 * Otherwise, get the packet's sk_buff ptr back
1275                 */
1276
1277                dsc = &(d->sbdma_dscrtable[curidx]);
1278                sb = d->sbdma_ctxtable[curidx];
1279                d->sbdma_ctxtable[curidx] = NULL;
1280
1281                /*
1282                 * Stats
1283                 */
1284
1285                dev->stats.tx_bytes += sb->len;
1286                dev->stats.tx_packets++;
1287
1288                /*
1289                 * for transmits, we just free buffers.
1290                 */
1291
1292                dev_kfree_skb_irq(sb);
1293
1294                /*
1295                 * .. and advance to the next buffer.
1296                 */
1297
1298                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1299
1300                packets_handled++;
1301
1302        }
1303
1304        /*
1305         * Decide if we should wake up the protocol or not.
1306         * Other drivers seem to do this when we reach a low
1307         * watermark on the transmit queue.
1308         */
1309
1310        if (packets_handled)
1311                netif_wake_queue(d->sbdma_eth->sbm_dev);
1312
1313end_unlock:
1314        spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1315
1316}
1317
1318
1319
1320/**********************************************************************
1321 *  SBMAC_INITCTX(s)
1322 *
1323 *  Initialize an Ethernet context structure - this is called
1324 *  once per MAC on the 1250.  Memory is allocated here, so don't
1325 *  call it again from inside the ioctl routines that bring the
1326 *  interface up/down
1327 *
1328 *  Input parameters:
1329 *         s - sbmac context structure
1330 *
1331 *  Return value:
1332 *         0
1333 ********************************************************************* */
1334
1335static int sbmac_initctx(struct sbmac_softc *s)
1336{
1337
1338        /*
1339         * figure out the addresses of some ports
1340         */
1341
1342        s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1343        s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1344        s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1345        s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1346        s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1347        s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1348        s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1349        s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1350
1351        /*
1352         * Initialize the DMA channels.  Right now, only one per MAC is used
1353         * Note: Only do this _once_, as it allocates memory from the kernel!
1354         */
1355
1356        sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1357        sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1358
1359        /*
1360         * initial state is OFF
1361         */
1362
1363        s->sbm_state = sbmac_state_off;
1364
1365        return 0;
1366}
1367
1368
1369static void sbdma_uninitctx(struct sbmacdma *d)
1370{
1371        if (d->sbdma_dscrtable_unaligned) {
1372                kfree(d->sbdma_dscrtable_unaligned);
1373                d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1374        }
1375
1376        if (d->sbdma_ctxtable) {
1377                kfree(d->sbdma_ctxtable);
1378                d->sbdma_ctxtable = NULL;
1379        }
1380}
1381
1382
1383static void sbmac_uninitctx(struct sbmac_softc *sc)
1384{
1385        sbdma_uninitctx(&(sc->sbm_txdma));
1386        sbdma_uninitctx(&(sc->sbm_rxdma));
1387}
1388
1389
1390/**********************************************************************
1391 *  SBMAC_CHANNEL_START(s)
1392 *
1393 *  Start packet processing on this MAC.
1394 *
1395 *  Input parameters:
1396 *         s - sbmac structure
1397 *
1398 *  Return value:
1399 *         nothing
1400 ********************************************************************* */
1401
1402static void sbmac_channel_start(struct sbmac_softc *s)
1403{
1404        uint64_t reg;
1405        void __iomem *port;
1406        uint64_t cfg,fifo,framecfg;
1407        int idx, th_value;
1408
1409        /*
1410         * Don't do this if running
1411         */
1412
1413        if (s->sbm_state == sbmac_state_on)
1414                return;
1415
1416        /*
1417         * Bring the controller out of reset, but leave it off.
1418         */
1419
1420        __raw_writeq(0, s->sbm_macenable);
1421
1422        /*
1423         * Ignore all received packets
1424         */
1425
1426        __raw_writeq(0, s->sbm_rxfilter);
1427
1428        /*
1429         * Calculate values for various control registers.
1430         */
1431
1432        cfg = M_MAC_RETRY_EN |
1433                M_MAC_TX_HOLD_SOP_EN |
1434                V_MAC_TX_PAUSE_CNT_16K |
1435                M_MAC_AP_STAT_EN |
1436                M_MAC_FAST_SYNC |
1437                M_MAC_SS_EN |
1438                0;
1439
1440        /*
1441         * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1442         * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1443         * Use a larger RD_THRSH for gigabit
1444         */
1445        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1446                th_value = 28;
1447        else
1448                th_value = 64;
1449
1450        fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1451                ((s->sbm_speed == sbmac_speed_1000)
1452                 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1453                V_MAC_TX_RL_THRSH(4) |
1454                V_MAC_RX_PL_THRSH(4) |
1455                V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1456                V_MAC_RX_RL_THRSH(8) |
1457                0;
1458
1459        framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1460                V_MAC_MAX_FRAMESZ_DEFAULT |
1461                V_MAC_BACKOFF_SEL(1);
1462
1463        /*
1464         * Clear out the hash address map
1465         */
1466
1467        port = s->sbm_base + R_MAC_HASH_BASE;
1468        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1469                __raw_writeq(0, port);
1470                port += sizeof(uint64_t);
1471        }
1472
1473        /*
1474         * Clear out the exact-match table
1475         */
1476
1477        port = s->sbm_base + R_MAC_ADDR_BASE;
1478        for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1479                __raw_writeq(0, port);
1480                port += sizeof(uint64_t);
1481        }
1482
1483        /*
1484         * Clear out the DMA Channel mapping table registers
1485         */
1486
1487        port = s->sbm_base + R_MAC_CHUP0_BASE;
1488        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1489                __raw_writeq(0, port);
1490                port += sizeof(uint64_t);
1491        }
1492
1493
1494        port = s->sbm_base + R_MAC_CHLO0_BASE;
1495        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1496                __raw_writeq(0, port);
1497                port += sizeof(uint64_t);
1498        }
1499
1500        /*
1501         * Program the hardware address.  It goes into the hardware-address
1502         * register as well as the first filter register.
1503         */
1504
1505        reg = sbmac_addr2reg(s->sbm_hwaddr);
1506
1507        port = s->sbm_base + R_MAC_ADDR_BASE;
1508        __raw_writeq(reg, port);
1509        port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1510
1511        __raw_writeq(reg, port);
1512
1513        /*
1514         * Set the receive filter for no packets, and write values
1515         * to the various config registers
1516         */
1517
1518        __raw_writeq(0, s->sbm_rxfilter);
1519        __raw_writeq(0, s->sbm_imr);
1520        __raw_writeq(framecfg, s->sbm_framecfg);
1521        __raw_writeq(fifo, s->sbm_fifocfg);
1522        __raw_writeq(cfg, s->sbm_maccfg);
1523
1524        /*
1525         * Initialize DMA channels (rings should be ok now)
1526         */
1527
1528        sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1529        sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1530
1531        /*
1532         * Configure the speed, duplex, and flow control
1533         */
1534
1535        sbmac_set_speed(s,s->sbm_speed);
1536        sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1537
1538        /*
1539         * Fill the receive ring
1540         */
1541
1542        sbdma_fillring(s, &(s->sbm_rxdma));
1543
1544        /*
1545         * Turn on the rest of the bits in the enable register
1546         */
1547
1548#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1549        __raw_writeq(M_MAC_RXDMA_EN0 |
1550                       M_MAC_TXDMA_EN0, s->sbm_macenable);
1551#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1552        __raw_writeq(M_MAC_RXDMA_EN0 |
1553                       M_MAC_TXDMA_EN0 |
1554                       M_MAC_RX_ENABLE |
1555                       M_MAC_TX_ENABLE, s->sbm_macenable);
1556#else
1557#error invalid SiByte MAC configuration
1558#endif
1559
1560#ifdef CONFIG_SBMAC_COALESCE
1561        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1562                       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1563#else
1564        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1565                       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1566#endif
1567
1568        /*
1569         * Enable receiving unicasts and broadcasts
1570         */
1571
1572        __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1573
1574        /*
1575         * we're running now.
1576         */
1577
1578        s->sbm_state = sbmac_state_on;
1579
1580        /*
1581         * Program multicast addresses
1582         */
1583
1584        sbmac_setmulti(s);
1585
1586        /*
1587         * If channel was in promiscuous mode before, turn that on
1588         */
1589
1590        if (s->sbm_devflags & IFF_PROMISC) {
1591                sbmac_promiscuous_mode(s,1);
1592        }
1593
1594}
1595
1596
1597/**********************************************************************
1598 *  SBMAC_CHANNEL_STOP(s)
1599 *
1600 *  Stop packet processing on this MAC.
1601 *
1602 *  Input parameters:
1603 *         s - sbmac structure
1604 *
1605 *  Return value:
1606 *         nothing
1607 ********************************************************************* */
1608
1609static void sbmac_channel_stop(struct sbmac_softc *s)
1610{
1611        /* don't do this if already stopped */
1612
1613        if (s->sbm_state == sbmac_state_off)
1614                return;
1615
1616        /* don't accept any packets, disable all interrupts */
1617
1618        __raw_writeq(0, s->sbm_rxfilter);
1619        __raw_writeq(0, s->sbm_imr);
1620
1621        /* Turn off ticker */
1622
1623        /* XXX */
1624
1625        /* turn off receiver and transmitter */
1626
1627        __raw_writeq(0, s->sbm_macenable);
1628
1629        /* We're stopped now. */
1630
1631        s->sbm_state = sbmac_state_off;
1632
1633        /*
1634         * Stop DMA channels (rings should be ok now)
1635         */
1636
1637        sbdma_channel_stop(&(s->sbm_rxdma));
1638        sbdma_channel_stop(&(s->sbm_txdma));
1639
1640        /* Empty the receive and transmit rings */
1641
1642        sbdma_emptyring(&(s->sbm_rxdma));
1643        sbdma_emptyring(&(s->sbm_txdma));
1644
1645}
1646
1647/**********************************************************************
1648 *  SBMAC_SET_CHANNEL_STATE(state)
1649 *
1650 *  Set the channel's state ON or OFF
1651 *
1652 *  Input parameters:
1653 *         state - new state
1654 *
1655 *  Return value:
1656 *         old state
1657 ********************************************************************* */
1658static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1659                                                enum sbmac_state state)
1660{
1661        enum sbmac_state oldstate = sc->sbm_state;
1662
1663        /*
1664         * If same as previous state, return
1665         */
1666
1667        if (state == oldstate) {
1668                return oldstate;
1669        }
1670
1671        /*
1672         * If new state is ON, turn channel on
1673         */
1674
1675        if (state == sbmac_state_on) {
1676                sbmac_channel_start(sc);
1677        }
1678        else {
1679                sbmac_channel_stop(sc);
1680        }
1681
1682        /*
1683         * Return previous state
1684         */
1685
1686        return oldstate;
1687}
1688
1689
1690/**********************************************************************
1691 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1692 *
1693 *  Turn on or off promiscuous mode
1694 *
1695 *  Input parameters:
1696 *         sc - softc
1697 *      onoff - 1 to turn on, 0 to turn off
1698 *
1699 *  Return value:
1700 *         nothing
1701 ********************************************************************* */
1702
1703static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1704{
1705        uint64_t reg;
1706
1707        if (sc->sbm_state != sbmac_state_on)
1708                return;
1709
1710        if (onoff) {
1711                reg = __raw_readq(sc->sbm_rxfilter);
1712                reg |= M_MAC_ALLPKT_EN;
1713                __raw_writeq(reg, sc->sbm_rxfilter);
1714        }
1715        else {
1716                reg = __raw_readq(sc->sbm_rxfilter);
1717                reg &= ~M_MAC_ALLPKT_EN;
1718                __raw_writeq(reg, sc->sbm_rxfilter);
1719        }
1720}
1721
1722/**********************************************************************
1723 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1724 *
1725 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1726 *
1727 *  Input parameters:
1728 *         sc - softc
1729 *
1730 *  Return value:
1731 *         nothing
1732 ********************************************************************* */
1733
1734static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1735{
1736        uint64_t reg;
1737
1738        /* Hard code the off set to 15 for now */
1739        reg = __raw_readq(sc->sbm_rxfilter);
1740        reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1741        __raw_writeq(reg, sc->sbm_rxfilter);
1742
1743        /* BCM1250 pass1 didn't have hardware checksum.  Everything
1744           later does.  */
1745        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1746                sc->rx_hw_checksum = DISABLE;
1747        } else {
1748                sc->rx_hw_checksum = ENABLE;
1749        }
1750}
1751
1752
1753/**********************************************************************
1754 *  SBMAC_ADDR2REG(ptr)
1755 *
1756 *  Convert six bytes into the 64-bit register value that
1757 *  we typically write into the SBMAC's address/mcast registers
1758 *
1759 *  Input parameters:
1760 *         ptr - pointer to 6 bytes
1761 *
1762 *  Return value:
1763 *         register value
1764 ********************************************************************* */
1765
1766static uint64_t sbmac_addr2reg(unsigned char *ptr)
1767{
1768        uint64_t reg = 0;
1769
1770        ptr += 6;
1771
1772        reg |= (uint64_t) *(--ptr);
1773        reg <<= 8;
1774        reg |= (uint64_t) *(--ptr);
1775        reg <<= 8;
1776        reg |= (uint64_t) *(--ptr);
1777        reg <<= 8;
1778        reg |= (uint64_t) *(--ptr);
1779        reg <<= 8;
1780        reg |= (uint64_t) *(--ptr);
1781        reg <<= 8;
1782        reg |= (uint64_t) *(--ptr);
1783
1784        return reg;
1785}
1786
1787
1788/**********************************************************************
1789 *  SBMAC_SET_SPEED(s,speed)
1790 *
1791 *  Configure LAN speed for the specified MAC.
1792 *  Warning: must be called when MAC is off!
1793 *
1794 *  Input parameters:
1795 *         s - sbmac structure
1796 *         speed - speed to set MAC to (see enum sbmac_speed)
1797 *
1798 *  Return value:
1799 *         1 if successful
1800 *      0 indicates invalid parameters
1801 ********************************************************************* */
1802
1803static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1804{
1805        uint64_t cfg;
1806        uint64_t framecfg;
1807
1808        /*
1809         * Save new current values
1810         */
1811
1812        s->sbm_speed = speed;
1813
1814        if (s->sbm_state == sbmac_state_on)
1815                return 0;       /* save for next restart */
1816
1817        /*
1818         * Read current register values
1819         */
1820
1821        cfg = __raw_readq(s->sbm_maccfg);
1822        framecfg = __raw_readq(s->sbm_framecfg);
1823
1824        /*
1825         * Mask out the stuff we want to change
1826         */
1827
1828        cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1829        framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1830                      M_MAC_SLOT_SIZE);
1831
1832        /*
1833         * Now add in the new bits
1834         */
1835
1836        switch (speed) {
1837        case sbmac_speed_10:
1838                framecfg |= V_MAC_IFG_RX_10 |
1839                        V_MAC_IFG_TX_10 |
1840                        K_MAC_IFG_THRSH_10 |
1841                        V_MAC_SLOT_SIZE_10;
1842                cfg |= V_MAC_SPEED_SEL_10MBPS;
1843                break;
1844
1845        case sbmac_speed_100:
1846                framecfg |= V_MAC_IFG_RX_100 |
1847                        V_MAC_IFG_TX_100 |
1848                        V_MAC_IFG_THRSH_100 |
1849                        V_MAC_SLOT_SIZE_100;
1850                cfg |= V_MAC_SPEED_SEL_100MBPS ;
1851                break;
1852
1853        case sbmac_speed_1000:
1854                framecfg |= V_MAC_IFG_RX_1000 |
1855                        V_MAC_IFG_TX_1000 |
1856                        V_MAC_IFG_THRSH_1000 |
1857                        V_MAC_SLOT_SIZE_1000;
1858                cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1859                break;
1860
1861        default:
1862                return 0;
1863        }
1864
1865        /*
1866         * Send the bits back to the hardware
1867         */
1868
1869        __raw_writeq(framecfg, s->sbm_framecfg);
1870        __raw_writeq(cfg, s->sbm_maccfg);
1871
1872        return 1;
1873}
1874
1875/**********************************************************************
1876 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1877 *
1878 *  Set Ethernet duplex and flow control options for this MAC
1879 *  Warning: must be called when MAC is off!
1880 *
1881 *  Input parameters:
1882 *         s - sbmac structure
1883 *         duplex - duplex setting (see enum sbmac_duplex)
1884 *         fc - flow control setting (see enum sbmac_fc)
1885 *
1886 *  Return value:
1887 *         1 if ok
1888 *         0 if an invalid parameter combination was specified
1889 ********************************************************************* */
1890
1891static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1892                            enum sbmac_fc fc)
1893{
1894        uint64_t cfg;
1895
1896        /*
1897         * Save new current values
1898         */
1899
1900        s->sbm_duplex = duplex;
1901        s->sbm_fc = fc;
1902
1903        if (s->sbm_state == sbmac_state_on)
1904                return 0;       /* save for next restart */
1905
1906        /*
1907         * Read current register values
1908         */
1909
1910        cfg = __raw_readq(s->sbm_maccfg);
1911
1912        /*
1913         * Mask off the stuff we're about to change
1914         */
1915
1916        cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1917
1918
1919        switch (duplex) {
1920        case sbmac_duplex_half:
1921                switch (fc) {
1922                case sbmac_fc_disabled:
1923                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1924                        break;
1925
1926                case sbmac_fc_collision:
1927                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1928                        break;
1929
1930                case sbmac_fc_carrier:
1931                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1932                        break;
1933
1934                case sbmac_fc_frame:            /* not valid in half duplex */
1935                default:                        /* invalid selection */
1936                        return 0;
1937                }
1938                break;
1939
1940        case sbmac_duplex_full:
1941                switch (fc) {
1942                case sbmac_fc_disabled:
1943                        cfg |= V_MAC_FC_CMD_DISABLED;
1944                        break;
1945
1946                case sbmac_fc_frame:
1947                        cfg |= V_MAC_FC_CMD_ENABLED;
1948                        break;
1949
1950                case sbmac_fc_collision:        /* not valid in full duplex */
1951                case sbmac_fc_carrier:          /* not valid in full duplex */
1952                default:
1953                        return 0;
1954                }
1955                break;
1956        default:
1957                return 0;
1958        }
1959
1960        /*
1961         * Send the bits back to the hardware
1962         */
1963
1964        __raw_writeq(cfg, s->sbm_maccfg);
1965
1966        return 1;
1967}
1968
1969
1970
1971
1972/**********************************************************************
1973 *  SBMAC_INTR()
1974 *
1975 *  Interrupt handler for MAC interrupts
1976 *
1977 *  Input parameters:
1978 *         MAC structure
1979 *
1980 *  Return value:
1981 *         nothing
1982 ********************************************************************* */
1983static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1984{
1985        struct net_device *dev = (struct net_device *) dev_instance;
1986        struct sbmac_softc *sc = netdev_priv(dev);
1987        uint64_t isr;
1988        int handled = 0;
1989
1990        /*
1991         * Read the ISR (this clears the bits in the real
1992         * register, except for counter addr)
1993         */
1994
1995        isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
1996
1997        if (isr == 0)
1998                return IRQ_RETVAL(0);
1999        handled = 1;
2000
2001        /*
2002         * Transmits on channel 0
2003         */
2004
2005        if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2006                sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2007
2008        if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2009                if (napi_schedule_prep(&sc->napi)) {
2010                        __raw_writeq(0, sc->sbm_imr);
2011                        __napi_schedule(&sc->napi);
2012                        /* Depend on the exit from poll to reenable intr */
2013                }
2014                else {
2015                        /* may leave some packets behind */
2016                        sbdma_rx_process(sc,&(sc->sbm_rxdma),
2017                                         SBMAC_MAX_RXDESCR * 2, 0);
2018                }
2019        }
2020        return IRQ_RETVAL(handled);
2021}
2022
2023/**********************************************************************
2024 *  SBMAC_START_TX(skb,dev)
2025 *
2026 *  Start output on the specified interface.  Basically, we
2027 *  queue as many buffers as we can until the ring fills up, or
2028 *  we run off the end of the queue, whichever comes first.
2029 *
2030 *  Input parameters:
2031 *
2032 *
2033 *  Return value:
2034 *         nothing
2035 ********************************************************************* */
2036static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2037{
2038        struct sbmac_softc *sc = netdev_priv(dev);
2039        unsigned long flags;
2040
2041        /* lock eth irq */
2042        spin_lock_irqsave(&sc->sbm_lock, flags);
2043
2044        /*
2045         * Put the buffer on the transmit ring.  If we
2046         * don't have room, stop the queue.
2047         */
2048
2049        if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2050                /* XXX save skb that we could not send */
2051                netif_stop_queue(dev);
2052                spin_unlock_irqrestore(&sc->sbm_lock, flags);
2053
2054                return NETDEV_TX_BUSY;
2055        }
2056
2057        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2058
2059        return NETDEV_TX_OK;
2060}
2061
2062/**********************************************************************
2063 *  SBMAC_SETMULTI(sc)
2064 *
2065 *  Reprogram the multicast table into the hardware, given
2066 *  the list of multicasts associated with the interface
2067 *  structure.
2068 *
2069 *  Input parameters:
2070 *         sc - softc
2071 *
2072 *  Return value:
2073 *         nothing
2074 ********************************************************************* */
2075
2076static void sbmac_setmulti(struct sbmac_softc *sc)
2077{
2078        uint64_t reg;
2079        void __iomem *port;
2080        int idx;
2081        struct netdev_hw_addr *ha;
2082        struct net_device *dev = sc->sbm_dev;
2083
2084        /*
2085         * Clear out entire multicast table.  We do this by nuking
2086         * the entire hash table and all the direct matches except
2087         * the first one, which is used for our station address
2088         */
2089
2090        for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2091                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2092                __raw_writeq(0, port);
2093        }
2094
2095        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2096                port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2097                __raw_writeq(0, port);
2098        }
2099
2100        /*
2101         * Clear the filter to say we don't want any multicasts.
2102         */
2103
2104        reg = __raw_readq(sc->sbm_rxfilter);
2105        reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2106        __raw_writeq(reg, sc->sbm_rxfilter);
2107
2108        if (dev->flags & IFF_ALLMULTI) {
2109                /*
2110                 * Enable ALL multicasts.  Do this by inverting the
2111                 * multicast enable bit.
2112                 */
2113                reg = __raw_readq(sc->sbm_rxfilter);
2114                reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2115                __raw_writeq(reg, sc->sbm_rxfilter);
2116                return;
2117        }
2118
2119
2120        /*
2121         * Progam new multicast entries.  For now, only use the
2122         * perfect filter.  In the future we'll need to use the
2123         * hash filter if the perfect filter overflows
2124         */
2125
2126        /* XXX only using perfect filter for now, need to use hash
2127         * XXX if the table overflows */
2128
2129        idx = 1;                /* skip station address */
2130        netdev_for_each_mc_addr(ha, dev) {
2131                if (idx == MAC_ADDR_COUNT)
2132                        break;
2133                reg = sbmac_addr2reg(ha->addr);
2134                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2135                __raw_writeq(reg, port);
2136                idx++;
2137        }
2138
2139        /*
2140         * Enable the "accept multicast bits" if we programmed at least one
2141         * multicast.
2142         */
2143
2144        if (idx > 1) {
2145                reg = __raw_readq(sc->sbm_rxfilter);
2146                reg |= M_MAC_MCAST_EN;
2147                __raw_writeq(reg, sc->sbm_rxfilter);
2148        }
2149}
2150
2151static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2152{
2153        if (new_mtu >  ENET_PACKET_SIZE)
2154                return -EINVAL;
2155        _dev->mtu = new_mtu;
2156        pr_info("changing the mtu to %d\n", new_mtu);
2157        return 0;
2158}
2159
2160static const struct net_device_ops sbmac_netdev_ops = {
2161        .ndo_open               = sbmac_open,
2162        .ndo_stop               = sbmac_close,
2163        .ndo_start_xmit         = sbmac_start_tx,
2164        .ndo_set_rx_mode        = sbmac_set_rx_mode,
2165        .ndo_tx_timeout         = sbmac_tx_timeout,
2166        .ndo_do_ioctl           = sbmac_mii_ioctl,
2167        .ndo_change_mtu         = sb1250_change_mtu,
2168        .ndo_validate_addr      = eth_validate_addr,
2169        .ndo_set_mac_address    = eth_mac_addr,
2170#ifdef CONFIG_NET_POLL_CONTROLLER
2171        .ndo_poll_controller    = sbmac_netpoll,
2172#endif
2173};
2174
2175/**********************************************************************
2176 *  SBMAC_INIT(dev)
2177 *
2178 *  Attach routine - init hardware and hook ourselves into linux
2179 *
2180 *  Input parameters:
2181 *         dev - net_device structure
2182 *
2183 *  Return value:
2184 *         status
2185 ********************************************************************* */
2186
2187static int sbmac_init(struct platform_device *pldev, long long base)
2188{
2189        struct net_device *dev = platform_get_drvdata(pldev);
2190        int idx = pldev->id;
2191        struct sbmac_softc *sc = netdev_priv(dev);
2192        unsigned char *eaddr;
2193        uint64_t ea_reg;
2194        int i;
2195        int err;
2196
2197        sc->sbm_dev = dev;
2198        sc->sbe_idx = idx;
2199
2200        eaddr = sc->sbm_hwaddr;
2201
2202        /*
2203         * Read the ethernet address.  The firmware left this programmed
2204         * for us in the ethernet address register for each mac.
2205         */
2206
2207        ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2208        __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2209        for (i = 0; i < 6; i++) {
2210                eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2211                ea_reg >>= 8;
2212        }
2213
2214        for (i = 0; i < 6; i++) {
2215                dev->dev_addr[i] = eaddr[i];
2216        }
2217
2218        /*
2219         * Initialize context (get pointers to registers and stuff), then
2220         * allocate the memory for the descriptor tables.
2221         */
2222
2223        sbmac_initctx(sc);
2224
2225        /*
2226         * Set up Linux device callins
2227         */
2228
2229        spin_lock_init(&(sc->sbm_lock));
2230
2231        dev->netdev_ops = &sbmac_netdev_ops;
2232        dev->watchdog_timeo = TX_TIMEOUT;
2233
2234        netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2235
2236        dev->irq                = UNIT_INT(idx);
2237
2238        /* This is needed for PASS2 for Rx H/W checksum feature */
2239        sbmac_set_iphdr_offset(sc);
2240
2241        sc->mii_bus = mdiobus_alloc();
2242        if (sc->mii_bus == NULL) {
2243                err = -ENOMEM;
2244                goto uninit_ctx;
2245        }
2246
2247        sc->mii_bus->name = sbmac_mdio_string;
2248        snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2249                pldev->name, idx);
2250        sc->mii_bus->priv = sc;
2251        sc->mii_bus->read = sbmac_mii_read;
2252        sc->mii_bus->write = sbmac_mii_write;
2253        sc->mii_bus->irq = sc->phy_irq;
2254        for (i = 0; i < PHY_MAX_ADDR; ++i)
2255                sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2256
2257        sc->mii_bus->parent = &pldev->dev;
2258        /*
2259         * Probe PHY address
2260         */
2261        err = mdiobus_register(sc->mii_bus);
2262        if (err) {
2263                printk(KERN_ERR "%s: unable to register MDIO bus\n",
2264                       dev->name);
2265                goto free_mdio;
2266        }
2267        platform_set_drvdata(pldev, sc->mii_bus);
2268
2269        err = register_netdev(dev);
2270        if (err) {
2271                printk(KERN_ERR "%s.%d: unable to register netdev\n",
2272                       sbmac_string, idx);
2273                goto unreg_mdio;
2274        }
2275
2276        pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2277
2278        if (sc->rx_hw_checksum == ENABLE)
2279                pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2280
2281        /*
2282         * Display Ethernet address (this is called during the config
2283         * process so we need to finish off the config message that
2284         * was being displayed)
2285         */
2286        pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2287               dev->name, base, eaddr);
2288
2289        return 0;
2290unreg_mdio:
2291        mdiobus_unregister(sc->mii_bus);
2292free_mdio:
2293        mdiobus_free(sc->mii_bus);
2294uninit_ctx:
2295        sbmac_uninitctx(sc);
2296        return err;
2297}
2298
2299
2300static int sbmac_open(struct net_device *dev)
2301{
2302        struct sbmac_softc *sc = netdev_priv(dev);
2303        int err;
2304
2305        if (debug > 1)
2306                pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2307
2308        /*
2309         * map/route interrupt (clear status first, in case something
2310         * weird is pending; we haven't initialized the mac registers
2311         * yet)
2312         */
2313
2314        __raw_readq(sc->sbm_isr);
2315        err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2316        if (err) {
2317                printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2318                       dev->irq);
2319                goto out_err;
2320        }
2321
2322        sc->sbm_speed = sbmac_speed_none;
2323        sc->sbm_duplex = sbmac_duplex_none;
2324        sc->sbm_fc = sbmac_fc_none;
2325        sc->sbm_pause = -1;
2326        sc->sbm_link = 0;
2327
2328        /*
2329         * Attach to the PHY
2330         */
2331        err = sbmac_mii_probe(dev);
2332        if (err)
2333                goto out_unregister;
2334
2335        /*
2336         * Turn on the channel
2337         */
2338
2339        sbmac_set_channel_state(sc,sbmac_state_on);
2340
2341        netif_start_queue(dev);
2342
2343        sbmac_set_rx_mode(dev);
2344
2345        phy_start(sc->phy_dev);
2346
2347        napi_enable(&sc->napi);
2348
2349        return 0;
2350
2351out_unregister:
2352        free_irq(dev->irq, dev);
2353out_err:
2354        return err;
2355}
2356
2357static int sbmac_mii_probe(struct net_device *dev)
2358{
2359        struct sbmac_softc *sc = netdev_priv(dev);
2360        struct phy_device *phy_dev;
2361        int i;
2362
2363        for (i = 0; i < PHY_MAX_ADDR; i++) {
2364                phy_dev = sc->mii_bus->phy_map[i];
2365                if (phy_dev)
2366                        break;
2367        }
2368        if (!phy_dev) {
2369                printk(KERN_ERR "%s: no PHY found\n", dev->name);
2370                return -ENXIO;
2371        }
2372
2373        phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll,
2374                              PHY_INTERFACE_MODE_GMII);
2375        if (IS_ERR(phy_dev)) {
2376                printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2377                return PTR_ERR(phy_dev);
2378        }
2379
2380        /* Remove any features not supported by the controller */
2381        phy_dev->supported &= SUPPORTED_10baseT_Half |
2382                              SUPPORTED_10baseT_Full |
2383                              SUPPORTED_100baseT_Half |
2384                              SUPPORTED_100baseT_Full |
2385                              SUPPORTED_1000baseT_Half |
2386                              SUPPORTED_1000baseT_Full |
2387                              SUPPORTED_Autoneg |
2388                              SUPPORTED_MII |
2389                              SUPPORTED_Pause |
2390                              SUPPORTED_Asym_Pause;
2391        phy_dev->advertising = phy_dev->supported;
2392
2393        pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2394                dev->name, phy_dev->drv->name,
2395                dev_name(&phy_dev->dev), phy_dev->irq);
2396
2397        sc->phy_dev = phy_dev;
2398
2399        return 0;
2400}
2401
2402
2403static void sbmac_mii_poll(struct net_device *dev)
2404{
2405        struct sbmac_softc *sc = netdev_priv(dev);
2406        struct phy_device *phy_dev = sc->phy_dev;
2407        unsigned long flags;
2408        enum sbmac_fc fc;
2409        int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2410
2411        link_chg = (sc->sbm_link != phy_dev->link);
2412        speed_chg = (sc->sbm_speed != phy_dev->speed);
2413        duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2414        pause_chg = (sc->sbm_pause != phy_dev->pause);
2415
2416        if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2417                return;                                 /* Hmmm... */
2418
2419        if (!phy_dev->link) {
2420                if (link_chg) {
2421                        sc->sbm_link = phy_dev->link;
2422                        sc->sbm_speed = sbmac_speed_none;
2423                        sc->sbm_duplex = sbmac_duplex_none;
2424                        sc->sbm_fc = sbmac_fc_disabled;
2425                        sc->sbm_pause = -1;
2426                        pr_info("%s: link unavailable\n", dev->name);
2427                }
2428                return;
2429        }
2430
2431        if (phy_dev->duplex == DUPLEX_FULL) {
2432                if (phy_dev->pause)
2433                        fc = sbmac_fc_frame;
2434                else
2435                        fc = sbmac_fc_disabled;
2436        } else
2437                fc = sbmac_fc_collision;
2438        fc_chg = (sc->sbm_fc != fc);
2439
2440        pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2441                phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2442
2443        spin_lock_irqsave(&sc->sbm_lock, flags);
2444
2445        sc->sbm_speed = phy_dev->speed;
2446        sc->sbm_duplex = phy_dev->duplex;
2447        sc->sbm_fc = fc;
2448        sc->sbm_pause = phy_dev->pause;
2449        sc->sbm_link = phy_dev->link;
2450
2451        if ((speed_chg || duplex_chg || fc_chg) &&
2452            sc->sbm_state != sbmac_state_off) {
2453                /*
2454                 * something changed, restart the channel
2455                 */
2456                if (debug > 1)
2457                        pr_debug("%s: restarting channel "
2458                                 "because PHY state changed\n", dev->name);
2459                sbmac_channel_stop(sc);
2460                sbmac_channel_start(sc);
2461        }
2462
2463        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2464}
2465
2466
2467static void sbmac_tx_timeout (struct net_device *dev)
2468{
2469        struct sbmac_softc *sc = netdev_priv(dev);
2470        unsigned long flags;
2471
2472        spin_lock_irqsave(&sc->sbm_lock, flags);
2473
2474
2475        dev->trans_start = jiffies; /* prevent tx timeout */
2476        dev->stats.tx_errors++;
2477
2478        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479
2480        printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2481}
2482
2483
2484
2485
2486static void sbmac_set_rx_mode(struct net_device *dev)
2487{
2488        unsigned long flags;
2489        struct sbmac_softc *sc = netdev_priv(dev);
2490
2491        spin_lock_irqsave(&sc->sbm_lock, flags);
2492        if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2493                /*
2494                 * Promiscuous changed.
2495                 */
2496
2497                if (dev->flags & IFF_PROMISC) {
2498                        sbmac_promiscuous_mode(sc,1);
2499                }
2500                else {
2501                        sbmac_promiscuous_mode(sc,0);
2502                }
2503        }
2504        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2505
2506        /*
2507         * Program the multicasts.  Do this every time.
2508         */
2509
2510        sbmac_setmulti(sc);
2511
2512}
2513
2514static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2515{
2516        struct sbmac_softc *sc = netdev_priv(dev);
2517
2518        if (!netif_running(dev) || !sc->phy_dev)
2519                return -EINVAL;
2520
2521        return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2522}
2523
2524static int sbmac_close(struct net_device *dev)
2525{
2526        struct sbmac_softc *sc = netdev_priv(dev);
2527
2528        napi_disable(&sc->napi);
2529
2530        phy_stop(sc->phy_dev);
2531
2532        sbmac_set_channel_state(sc, sbmac_state_off);
2533
2534        netif_stop_queue(dev);
2535
2536        if (debug > 1)
2537                pr_debug("%s: Shutting down ethercard\n", dev->name);
2538
2539        phy_disconnect(sc->phy_dev);
2540        sc->phy_dev = NULL;
2541        free_irq(dev->irq, dev);
2542
2543        sbdma_emptyring(&(sc->sbm_txdma));
2544        sbdma_emptyring(&(sc->sbm_rxdma));
2545
2546        return 0;
2547}
2548
2549static int sbmac_poll(struct napi_struct *napi, int budget)
2550{
2551        struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2552        int work_done;
2553
2554        work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2555        sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2556
2557        if (work_done < budget) {
2558                napi_complete(napi);
2559
2560#ifdef CONFIG_SBMAC_COALESCE
2561                __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2562                             ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2563                             sc->sbm_imr);
2564#else
2565                __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2566                             (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2567#endif
2568        }
2569
2570        return work_done;
2571}
2572
2573
2574static int sbmac_probe(struct platform_device *pldev)
2575{
2576        struct net_device *dev;
2577        struct sbmac_softc *sc;
2578        void __iomem *sbm_base;
2579        struct resource *res;
2580        u64 sbmac_orig_hwaddr;
2581        int err;
2582
2583        res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2584        BUG_ON(!res);
2585        sbm_base = ioremap_nocache(res->start, resource_size(res));
2586        if (!sbm_base) {
2587                printk(KERN_ERR "%s: unable to map device registers\n",
2588                       dev_name(&pldev->dev));
2589                err = -ENOMEM;
2590                goto out_out;
2591        }
2592
2593        /*
2594         * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2595         * value for us by the firmware if we're going to use this MAC.
2596         * If we find a zero, skip this MAC.
2597         */
2598        sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2599        pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2600                 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2601        if (sbmac_orig_hwaddr == 0) {
2602                err = 0;
2603                goto out_unmap;
2604        }
2605
2606        /*
2607         * Okay, cool.  Initialize this MAC.
2608         */
2609        dev = alloc_etherdev(sizeof(struct sbmac_softc));
2610        if (!dev) {
2611                err = -ENOMEM;
2612                goto out_unmap;
2613        }
2614
2615        platform_set_drvdata(pldev, dev);
2616        SET_NETDEV_DEV(dev, &pldev->dev);
2617
2618        sc = netdev_priv(dev);
2619        sc->sbm_base = sbm_base;
2620
2621        err = sbmac_init(pldev, res->start);
2622        if (err)
2623                goto out_kfree;
2624
2625        return 0;
2626
2627out_kfree:
2628        free_netdev(dev);
2629        __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2630
2631out_unmap:
2632        iounmap(sbm_base);
2633
2634out_out:
2635        return err;
2636}
2637
2638static int __exit sbmac_remove(struct platform_device *pldev)
2639{
2640        struct net_device *dev = platform_get_drvdata(pldev);
2641        struct sbmac_softc *sc = netdev_priv(dev);
2642
2643        unregister_netdev(dev);
2644        sbmac_uninitctx(sc);
2645        mdiobus_unregister(sc->mii_bus);
2646        mdiobus_free(sc->mii_bus);
2647        iounmap(sc->sbm_base);
2648        free_netdev(dev);
2649
2650        return 0;
2651}
2652
2653static struct platform_driver sbmac_driver = {
2654        .probe = sbmac_probe,
2655        .remove = __exit_p(sbmac_remove),
2656        .driver = {
2657                .name = sbmac_string,
2658        },
2659};
2660
2661module_platform_driver(sbmac_driver);
2662