linux/drivers/net/ethernet/cavium/liquidio/lio_main.c
<<
>>
Prefs
   1/**********************************************************************
   2* Author: Cavium, Inc.
   3*
   4* Contact: support@cavium.com
   5*          Please include "LiquidIO" in the subject.
   6*
   7* Copyright (c) 2003-2015 Cavium, Inc.
   8*
   9* This file is free software; you can redistribute it and/or modify
  10* it under the terms of the GNU General Public License, Version 2, as
  11* published by the Free Software Foundation.
  12*
  13* This file is distributed in the hope that it will be useful, but
  14* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
  15* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
  16* NONINFRINGEMENT.  See the GNU General Public License for more
  17* details.
  18*
  19* This file may also be available under a different license from Cavium.
  20* Contact Cavium, Inc. for more information
  21**********************************************************************/
  22#include <linux/version.h>
  23#include <linux/module.h>
  24#include <linux/crc32.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/pci.h>
  27#include <linux/pci_ids.h>
  28#include <linux/ip.h>
  29#include <net/ip.h>
  30#include <linux/ipv6.h>
  31#include <linux/net_tstamp.h>
  32#include <linux/if_vlan.h>
  33#include <linux/firmware.h>
  34#include <linux/ethtool.h>
  35#include <linux/ptp_clock_kernel.h>
  36#include <linux/types.h>
  37#include <linux/list.h>
  38#include <linux/workqueue.h>
  39#include <linux/interrupt.h>
  40#include "octeon_config.h"
  41#include "liquidio_common.h"
  42#include "octeon_droq.h"
  43#include "octeon_iq.h"
  44#include "response_manager.h"
  45#include "octeon_device.h"
  46#include "octeon_nic.h"
  47#include "octeon_main.h"
  48#include "octeon_network.h"
  49#include "cn66xx_regs.h"
  50#include "cn66xx_device.h"
  51#include "cn68xx_regs.h"
  52#include "cn68xx_device.h"
  53#include "liquidio_image.h"
  54
  55MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
  56MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
  57MODULE_LICENSE("GPL");
  58MODULE_VERSION(LIQUIDIO_VERSION);
  59MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
  60MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
  61MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
  62
  63static int ddr_timeout = 10000;
  64module_param(ddr_timeout, int, 0644);
  65MODULE_PARM_DESC(ddr_timeout,
  66                 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
  67
  68static u32 console_bitmask;
  69module_param(console_bitmask, int, 0644);
  70MODULE_PARM_DESC(console_bitmask,
  71                 "Bitmask indicating which consoles have debug output redirected to syslog.");
  72
  73#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  74
  75static int debug = -1;
  76module_param(debug, int, 0644);
  77MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
  78
  79static char fw_type[LIO_MAX_FW_TYPE_LEN];
  80module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
  81MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
  82
  83static int conf_type;
  84module_param(conf_type, int, 0);
  85MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
  86
  87/* Bit mask values for lio->ifstate */
  88#define   LIO_IFSTATE_DROQ_OPS             0x01
  89#define   LIO_IFSTATE_REGISTERED           0x02
  90#define   LIO_IFSTATE_RUNNING              0x04
  91#define   LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
  92
  93/* Polling interval for determining when NIC application is alive */
  94#define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
  95
  96/* runtime link query interval */
  97#define LIQUIDIO_LINK_QUERY_INTERVAL_MS         1000
  98
  99struct liquidio_if_cfg_context {
 100        int octeon_id;
 101
 102        wait_queue_head_t wc;
 103
 104        int cond;
 105};
 106
 107struct liquidio_if_cfg_resp {
 108        u64 rh;
 109        struct liquidio_if_cfg_info cfg_info;
 110        u64 status;
 111};
 112
 113struct oct_link_status_resp {
 114        u64 rh;
 115        struct oct_link_info link_info;
 116        u64 status;
 117};
 118
 119struct oct_timestamp_resp {
 120        u64 rh;
 121        u64 timestamp;
 122        u64 status;
 123};
 124
 125#define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
 126
 127union tx_info {
 128        u64 u64;
 129        struct {
 130#ifdef __BIG_ENDIAN_BITFIELD
 131                u16 gso_size;
 132                u16 gso_segs;
 133                u32 reserved;
 134#else
 135                u32 reserved;
 136                u16 gso_segs;
 137                u16 gso_size;
 138#endif
 139        } s;
 140};
 141
 142/** Octeon device properties to be used by the NIC module.
 143 * Each octeon device in the system will be represented
 144 * by this structure in the NIC module.
 145 */
 146
 147#define OCTNIC_MAX_SG  (MAX_SKB_FRAGS)
 148
 149#define OCTNIC_GSO_MAX_HEADER_SIZE 128
 150#define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
 151
 152/** Structure of a node in list of gather components maintained by
 153 * NIC driver for each network device.
 154 */
 155struct octnic_gather {
 156        /** List manipulation. Next and prev pointers. */
 157        struct list_head list;
 158
 159        /** Size of the gather component at sg in bytes. */
 160        int sg_size;
 161
 162        /** Number of bytes that sg was adjusted to make it 8B-aligned. */
 163        int adjust;
 164
 165        /** Gather component that can accommodate max sized fragment list
 166         *  received from the IP layer.
 167         */
 168        struct octeon_sg_entry *sg;
 169};
 170
 171/** This structure is used by NIC driver to store information required
 172 * to free the sk_buff when the packet has been fetched by Octeon.
 173 * Bytes offset below assume worst-case of a 64-bit system.
 174 */
 175struct octnet_buf_free_info {
 176        /** Bytes 1-8.  Pointer to network device private structure. */
 177        struct lio *lio;
 178
 179        /** Bytes 9-16.  Pointer to sk_buff. */
 180        struct sk_buff *skb;
 181
 182        /** Bytes 17-24.  Pointer to gather list. */
 183        struct octnic_gather *g;
 184
 185        /** Bytes 25-32. Physical address of skb->data or gather list. */
 186        u64 dptr;
 187
 188        /** Bytes 33-47. Piggybacked soft command, if any */
 189        struct octeon_soft_command *sc;
 190};
 191
 192struct handshake {
 193        struct completion init;
 194        struct completion started;
 195        struct pci_dev *pci_dev;
 196        int init_ok;
 197        int started_ok;
 198};
 199
 200struct octeon_device_priv {
 201        /** Tasklet structures for this device. */
 202        struct tasklet_struct droq_tasklet;
 203        unsigned long napi_mask;
 204};
 205
 206static int octeon_device_init(struct octeon_device *);
 207static void liquidio_remove(struct pci_dev *pdev);
 208static int liquidio_probe(struct pci_dev *pdev,
 209                          const struct pci_device_id *ent);
 210
 211static struct handshake handshake[MAX_OCTEON_DEVICES];
 212static struct completion first_stage;
 213
 214static void octeon_droq_bh(unsigned long pdev)
 215{
 216        int q_no;
 217        int reschedule = 0;
 218        struct octeon_device *oct = (struct octeon_device *)pdev;
 219        struct octeon_device_priv *oct_priv =
 220                (struct octeon_device_priv *)oct->priv;
 221
 222        /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
 223        for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES; q_no++) {
 224                if (!(oct->io_qmask.oq & (1UL << q_no)))
 225                        continue;
 226                reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
 227                                                          MAX_PACKET_BUDGET);
 228        }
 229
 230        if (reschedule)
 231                tasklet_schedule(&oct_priv->droq_tasklet);
 232}
 233
 234static int lio_wait_for_oq_pkts(struct octeon_device *oct)
 235{
 236        struct octeon_device_priv *oct_priv =
 237                (struct octeon_device_priv *)oct->priv;
 238        int retry = 100, pkt_cnt = 0, pending_pkts = 0;
 239        int i;
 240
 241        do {
 242                pending_pkts = 0;
 243
 244                for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
 245                        if (!(oct->io_qmask.oq & (1UL << i)))
 246                                continue;
 247                        pkt_cnt += octeon_droq_check_hw_for_pkts(oct,
 248                                                                 oct->droq[i]);
 249                }
 250                if (pkt_cnt > 0) {
 251                        pending_pkts += pkt_cnt;
 252                        tasklet_schedule(&oct_priv->droq_tasklet);
 253                }
 254                pkt_cnt = 0;
 255                schedule_timeout_uninterruptible(1);
 256
 257        } while (retry-- && pending_pkts);
 258
 259        return pkt_cnt;
 260}
 261
 262void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
 263                                        unsigned int bytes_compl)
 264{
 265        struct netdev_queue *netdev_queue = txq;
 266
 267        netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
 268}
 269
 270void octeon_update_tx_completion_counters(void *buf, int reqtype,
 271                                          unsigned int *pkts_compl,
 272                                          unsigned int *bytes_compl)
 273{
 274        struct octnet_buf_free_info *finfo;
 275        struct sk_buff *skb = NULL;
 276        struct octeon_soft_command *sc;
 277
 278        switch (reqtype) {
 279        case REQTYPE_NORESP_NET:
 280        case REQTYPE_NORESP_NET_SG:
 281                finfo = buf;
 282                skb = finfo->skb;
 283                break;
 284
 285        case REQTYPE_RESP_NET_SG:
 286        case REQTYPE_RESP_NET:
 287                sc = buf;
 288                skb = sc->callback_arg;
 289                break;
 290
 291        default:
 292                return;
 293        }
 294
 295        (*pkts_compl)++;
 296        *bytes_compl += skb->len;
 297}
 298
 299void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
 300{
 301        struct octnet_buf_free_info *finfo;
 302        struct sk_buff *skb;
 303        struct octeon_soft_command *sc;
 304        struct netdev_queue *txq;
 305
 306        switch (reqtype) {
 307        case REQTYPE_NORESP_NET:
 308        case REQTYPE_NORESP_NET_SG:
 309                finfo = buf;
 310                skb = finfo->skb;
 311                break;
 312
 313        case REQTYPE_RESP_NET_SG:
 314        case REQTYPE_RESP_NET:
 315                sc = buf;
 316                skb = sc->callback_arg;
 317                break;
 318
 319        default:
 320                return;
 321        }
 322
 323        txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
 324        netdev_tx_sent_queue(txq, skb->len);
 325}
 326
 327int octeon_console_debug_enabled(u32 console)
 328{
 329        return (console_bitmask >> (console)) & 0x1;
 330}
 331
 332/**
 333 * \brief Forces all IO queues off on a given device
 334 * @param oct Pointer to Octeon device
 335 */
 336static void force_io_queues_off(struct octeon_device *oct)
 337{
 338        if ((oct->chip_id == OCTEON_CN66XX) ||
 339            (oct->chip_id == OCTEON_CN68XX)) {
 340                /* Reset the Enable bits for Input Queues. */
 341                octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
 342
 343                /* Reset the Enable bits for Output Queues. */
 344                octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
 345        }
 346}
 347
 348/**
 349 * \brief wait for all pending requests to complete
 350 * @param oct Pointer to Octeon device
 351 *
 352 * Called during shutdown sequence
 353 */
 354static int wait_for_pending_requests(struct octeon_device *oct)
 355{
 356        int i, pcount = 0;
 357
 358        for (i = 0; i < 100; i++) {
 359                pcount =
 360                        atomic_read(&oct->response_list
 361                                [OCTEON_ORDERED_SC_LIST].pending_req_count);
 362                if (pcount)
 363                        schedule_timeout_uninterruptible(HZ / 10);
 364                 else
 365                        break;
 366        }
 367
 368        if (pcount)
 369                return 1;
 370
 371        return 0;
 372}
 373
 374/**
 375 * \brief Cause device to go quiet so it can be safely removed/reset/etc
 376 * @param oct Pointer to Octeon device
 377 */
 378static inline void pcierror_quiesce_device(struct octeon_device *oct)
 379{
 380        int i;
 381
 382        /* Disable the input and output queues now. No more packets will
 383         * arrive from Octeon, but we should wait for all packet processing
 384         * to finish.
 385         */
 386        force_io_queues_off(oct);
 387
 388        /* To allow for in-flight requests */
 389        schedule_timeout_uninterruptible(100);
 390
 391        if (wait_for_pending_requests(oct))
 392                dev_err(&oct->pci_dev->dev, "There were pending requests\n");
 393
 394        /* Force all requests waiting to be fetched by OCTEON to complete. */
 395        for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
 396                struct octeon_instr_queue *iq;
 397
 398                if (!(oct->io_qmask.iq & (1UL << i)))
 399                        continue;
 400                iq = oct->instr_queue[i];
 401
 402                if (atomic_read(&iq->instr_pending)) {
 403                        spin_lock_bh(&iq->lock);
 404                        iq->fill_cnt = 0;
 405                        iq->octeon_read_index = iq->host_write_index;
 406                        iq->stats.instr_processed +=
 407                                atomic_read(&iq->instr_pending);
 408                        lio_process_iq_request_list(oct, iq);
 409                        spin_unlock_bh(&iq->lock);
 410                }
 411        }
 412
 413        /* Force all pending ordered list requests to time out. */
 414        lio_process_ordered_list(oct, 1);
 415
 416        /* We do not need to wait for output queue packets to be processed. */
 417}
 418
 419/**
 420 * \brief Cleanup PCI AER uncorrectable error status
 421 * @param dev Pointer to PCI device
 422 */
 423static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
 424{
 425        int pos = 0x100;
 426        u32 status, mask;
 427
 428        pr_info("%s :\n", __func__);
 429
 430        pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
 431        pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
 432        if (dev->error_state == pci_channel_io_normal)
 433                status &= ~mask;        /* Clear corresponding nonfatal bits */
 434        else
 435                status &= mask;         /* Clear corresponding fatal bits */
 436        pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
 437}
 438
 439/**
 440 * \brief Stop all PCI IO to a given device
 441 * @param dev Pointer to Octeon device
 442 */
 443static void stop_pci_io(struct octeon_device *oct)
 444{
 445        /* No more instructions will be forwarded. */
 446        atomic_set(&oct->status, OCT_DEV_IN_RESET);
 447
 448        pci_disable_device(oct->pci_dev);
 449
 450        /* Disable interrupts  */
 451        oct->fn_list.disable_interrupt(oct->chip);
 452
 453        pcierror_quiesce_device(oct);
 454
 455        /* Release the interrupt line */
 456        free_irq(oct->pci_dev->irq, oct);
 457
 458        if (oct->flags & LIO_FLAG_MSI_ENABLED)
 459                pci_disable_msi(oct->pci_dev);
 460
 461        dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
 462                lio_get_state_string(&oct->status));
 463
 464        /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
 465        /* making it a common function for all OCTEON models */
 466        cleanup_aer_uncorrect_error_status(oct->pci_dev);
 467}
 468
 469/**
 470 * \brief called when PCI error is detected
 471 * @param pdev Pointer to PCI device
 472 * @param state The current pci connection state
 473 *
 474 * This function is called after a PCI bus error affecting
 475 * this device has been detected.
 476 */
 477static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
 478                                                     pci_channel_state_t state)
 479{
 480        struct octeon_device *oct = pci_get_drvdata(pdev);
 481
 482        /* Non-correctable Non-fatal errors */
 483        if (state == pci_channel_io_normal) {
 484                dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
 485                cleanup_aer_uncorrect_error_status(oct->pci_dev);
 486                return PCI_ERS_RESULT_CAN_RECOVER;
 487        }
 488
 489        /* Non-correctable Fatal errors */
 490        dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
 491        stop_pci_io(oct);
 492
 493        /* Always return a DISCONNECT. There is no support for recovery but only
 494         * for a clean shutdown.
 495         */
 496        return PCI_ERS_RESULT_DISCONNECT;
 497}
 498
 499/**
 500 * \brief mmio handler
 501 * @param pdev Pointer to PCI device
 502 */
 503static pci_ers_result_t liquidio_pcie_mmio_enabled(struct pci_dev *pdev)
 504{
 505        /* We should never hit this since we never ask for a reset for a Fatal
 506         * Error. We always return DISCONNECT in io_error above.
 507         * But play safe and return RECOVERED for now.
 508         */
 509        return PCI_ERS_RESULT_RECOVERED;
 510}
 511
 512/**
 513 * \brief called after the pci bus has been reset.
 514 * @param pdev Pointer to PCI device
 515 *
 516 * Restart the card from scratch, as if from a cold-boot. Implementation
 517 * resembles the first-half of the octeon_resume routine.
 518 */
 519static pci_ers_result_t liquidio_pcie_slot_reset(struct pci_dev *pdev)
 520{
 521        /* We should never hit this since we never ask for a reset for a Fatal
 522         * Error. We always return DISCONNECT in io_error above.
 523         * But play safe and return RECOVERED for now.
 524         */
 525        return PCI_ERS_RESULT_RECOVERED;
 526}
 527
 528/**
 529 * \brief called when traffic can start flowing again.
 530 * @param pdev Pointer to PCI device
 531 *
 532 * This callback is called when the error recovery driver tells us that
 533 * its OK to resume normal operation. Implementation resembles the
 534 * second-half of the octeon_resume routine.
 535 */
 536static void liquidio_pcie_resume(struct pci_dev *pdev)
 537{
 538        /* Nothing to be done here. */
 539}
 540
 541#ifdef CONFIG_PM
 542/**
 543 * \brief called when suspending
 544 * @param pdev Pointer to PCI device
 545 * @param state state to suspend to
 546 */
 547static int liquidio_suspend(struct pci_dev *pdev, pm_message_t state)
 548{
 549        return 0;
 550}
 551
 552/**
 553 * \brief called when resuming
 554 * @param pdev Pointer to PCI device
 555 */
 556static int liquidio_resume(struct pci_dev *pdev)
 557{
 558        return 0;
 559}
 560#endif
 561
 562/* For PCI-E Advanced Error Recovery (AER) Interface */
 563static struct pci_error_handlers liquidio_err_handler = {
 564        .error_detected = liquidio_pcie_error_detected,
 565        .mmio_enabled   = liquidio_pcie_mmio_enabled,
 566        .slot_reset     = liquidio_pcie_slot_reset,
 567        .resume         = liquidio_pcie_resume,
 568};
 569
 570static const struct pci_device_id liquidio_pci_tbl[] = {
 571        {       /* 68xx */
 572                PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
 573        },
 574        {       /* 66xx */
 575                PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
 576        },
 577        {
 578                0, 0, 0, 0, 0, 0, 0
 579        }
 580};
 581MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
 582
 583static struct pci_driver liquidio_pci_driver = {
 584        .name           = "LiquidIO",
 585        .id_table       = liquidio_pci_tbl,
 586        .probe          = liquidio_probe,
 587        .remove         = liquidio_remove,
 588        .err_handler    = &liquidio_err_handler,    /* For AER */
 589
 590#ifdef CONFIG_PM
 591        .suspend        = liquidio_suspend,
 592        .resume         = liquidio_resume,
 593#endif
 594
 595};
 596
 597/**
 598 * \brief register PCI driver
 599 */
 600static int liquidio_init_pci(void)
 601{
 602        return pci_register_driver(&liquidio_pci_driver);
 603}
 604
 605/**
 606 * \brief unregister PCI driver
 607 */
 608static void liquidio_deinit_pci(void)
 609{
 610        pci_unregister_driver(&liquidio_pci_driver);
 611}
 612
 613/**
 614 * \brief check interface state
 615 * @param lio per-network private data
 616 * @param state_flag flag state to check
 617 */
 618static inline int ifstate_check(struct lio *lio, int state_flag)
 619{
 620        return atomic_read(&lio->ifstate) & state_flag;
 621}
 622
 623/**
 624 * \brief set interface state
 625 * @param lio per-network private data
 626 * @param state_flag flag state to set
 627 */
 628static inline void ifstate_set(struct lio *lio, int state_flag)
 629{
 630        atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
 631}
 632
 633/**
 634 * \brief clear interface state
 635 * @param lio per-network private data
 636 * @param state_flag flag state to clear
 637 */
 638static inline void ifstate_reset(struct lio *lio, int state_flag)
 639{
 640        atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
 641}
 642
 643/**
 644 * \brief Stop Tx queues
 645 * @param netdev network device
 646 */
 647static inline void txqs_stop(struct net_device *netdev)
 648{
 649        if (netif_is_multiqueue(netdev)) {
 650                int i;
 651
 652                for (i = 0; i < netdev->num_tx_queues; i++)
 653                        netif_stop_subqueue(netdev, i);
 654        } else {
 655                netif_stop_queue(netdev);
 656        }
 657}
 658
 659/**
 660 * \brief Start Tx queues
 661 * @param netdev network device
 662 */
 663static inline void txqs_start(struct net_device *netdev)
 664{
 665        if (netif_is_multiqueue(netdev)) {
 666                int i;
 667
 668                for (i = 0; i < netdev->num_tx_queues; i++)
 669                        netif_start_subqueue(netdev, i);
 670        } else {
 671                netif_start_queue(netdev);
 672        }
 673}
 674
 675/**
 676 * \brief Wake Tx queues
 677 * @param netdev network device
 678 */
 679static inline void txqs_wake(struct net_device *netdev)
 680{
 681        if (netif_is_multiqueue(netdev)) {
 682                int i;
 683
 684                for (i = 0; i < netdev->num_tx_queues; i++)
 685                        netif_wake_subqueue(netdev, i);
 686        } else {
 687                netif_wake_queue(netdev);
 688        }
 689}
 690
 691/**
 692 * \brief Stop Tx queue
 693 * @param netdev network device
 694 */
 695static void stop_txq(struct net_device *netdev)
 696{
 697        txqs_stop(netdev);
 698}
 699
 700/**
 701 * \brief Start Tx queue
 702 * @param netdev network device
 703 */
 704static void start_txq(struct net_device *netdev)
 705{
 706        struct lio *lio = GET_LIO(netdev);
 707
 708        if (lio->linfo.link.s.status) {
 709                txqs_start(netdev);
 710                return;
 711        }
 712}
 713
 714/**
 715 * \brief Wake a queue
 716 * @param netdev network device
 717 * @param q which queue to wake
 718 */
 719static inline void wake_q(struct net_device *netdev, int q)
 720{
 721        if (netif_is_multiqueue(netdev))
 722                netif_wake_subqueue(netdev, q);
 723        else
 724                netif_wake_queue(netdev);
 725}
 726
 727/**
 728 * \brief Stop a queue
 729 * @param netdev network device
 730 * @param q which queue to stop
 731 */
 732static inline void stop_q(struct net_device *netdev, int q)
 733{
 734        if (netif_is_multiqueue(netdev))
 735                netif_stop_subqueue(netdev, q);
 736        else
 737                netif_stop_queue(netdev);
 738}
 739
 740/**
 741 * \brief Check Tx queue status, and take appropriate action
 742 * @param lio per-network private data
 743 * @returns 0 if full, number of queues woken up otherwise
 744 */
 745static inline int check_txq_status(struct lio *lio)
 746{
 747        int ret_val = 0;
 748
 749        if (netif_is_multiqueue(lio->netdev)) {
 750                int numqs = lio->netdev->num_tx_queues;
 751                int q, iq = 0;
 752
 753                /* check each sub-queue state */
 754                for (q = 0; q < numqs; q++) {
 755                        iq = lio->linfo.txpciq[q & (lio->linfo.num_txpciq - 1)];
 756                        if (octnet_iq_is_full(lio->oct_dev, iq))
 757                                continue;
 758                        wake_q(lio->netdev, q);
 759                        ret_val++;
 760                }
 761        } else {
 762                if (octnet_iq_is_full(lio->oct_dev, lio->txq))
 763                        return 0;
 764                wake_q(lio->netdev, lio->txq);
 765                ret_val = 1;
 766        }
 767        return ret_val;
 768}
 769
 770/**
 771 * Remove the node at the head of the list. The list would be empty at
 772 * the end of this call if there are no more nodes in the list.
 773 */
 774static inline struct list_head *list_delete_head(struct list_head *root)
 775{
 776        struct list_head *node;
 777
 778        if ((root->prev == root) && (root->next == root))
 779                node = NULL;
 780        else
 781                node = root->next;
 782
 783        if (node)
 784                list_del(node);
 785
 786        return node;
 787}
 788
 789/**
 790 * \brief Delete gather list
 791 * @param lio per-network private data
 792 */
 793static void delete_glist(struct lio *lio)
 794{
 795        struct octnic_gather *g;
 796
 797        do {
 798                g = (struct octnic_gather *)
 799                    list_delete_head(&lio->glist);
 800                if (g) {
 801                        if (g->sg)
 802                                kfree((void *)((unsigned long)g->sg -
 803                                                g->adjust));
 804                        kfree(g);
 805                }
 806        } while (g);
 807}
 808
 809/**
 810 * \brief Setup gather list
 811 * @param lio per-network private data
 812 */
 813static int setup_glist(struct lio *lio)
 814{
 815        int i;
 816        struct octnic_gather *g;
 817
 818        INIT_LIST_HEAD(&lio->glist);
 819
 820        for (i = 0; i < lio->tx_qsize; i++) {
 821                g = kzalloc(sizeof(*g), GFP_KERNEL);
 822                if (!g)
 823                        break;
 824
 825                g->sg_size =
 826                        ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
 827
 828                g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
 829                if (!g->sg) {
 830                        kfree(g);
 831                        break;
 832                }
 833
 834                /* The gather component should be aligned on 64-bit boundary */
 835                if (((unsigned long)g->sg) & 7) {
 836                        g->adjust = 8 - (((unsigned long)g->sg) & 7);
 837                        g->sg = (struct octeon_sg_entry *)
 838                                ((unsigned long)g->sg + g->adjust);
 839                }
 840                list_add_tail(&g->list, &lio->glist);
 841        }
 842
 843        if (i == lio->tx_qsize)
 844                return 0;
 845
 846        delete_glist(lio);
 847        return 1;
 848}
 849
 850/**
 851 * \brief Print link information
 852 * @param netdev network device
 853 */
 854static void print_link_info(struct net_device *netdev)
 855{
 856        struct lio *lio = GET_LIO(netdev);
 857
 858        if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
 859                struct oct_link_info *linfo = &lio->linfo;
 860
 861                if (linfo->link.s.status) {
 862                        netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
 863                                   linfo->link.s.speed,
 864                                   (linfo->link.s.duplex) ? "Full" : "Half");
 865                } else {
 866                        netif_info(lio, link, lio->netdev, "Link Down\n");
 867                }
 868        }
 869}
 870
 871/**
 872 * \brief Update link status
 873 * @param netdev network device
 874 * @param ls link status structure
 875 *
 876 * Called on receipt of a link status response from the core application to
 877 * update each interface's link status.
 878 */
 879static inline void update_link_status(struct net_device *netdev,
 880                                      union oct_link_status *ls)
 881{
 882        struct lio *lio = GET_LIO(netdev);
 883
 884        if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
 885                lio->linfo.link.u64 = ls->u64;
 886
 887                print_link_info(netdev);
 888
 889                if (lio->linfo.link.s.status) {
 890                        netif_carrier_on(netdev);
 891                        /* start_txq(netdev); */
 892                        txqs_wake(netdev);
 893                } else {
 894                        netif_carrier_off(netdev);
 895                        stop_txq(netdev);
 896                }
 897        }
 898}
 899
 900/**
 901 * \brief Droq packet processor sceduler
 902 * @param oct octeon device
 903 */
 904static
 905void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
 906{
 907        struct octeon_device_priv *oct_priv =
 908                (struct octeon_device_priv *)oct->priv;
 909        u64 oq_no;
 910        struct octeon_droq *droq;
 911
 912        if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
 913                for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
 914                        if (!(oct->droq_intr & (1 << oq_no)))
 915                                continue;
 916
 917                        droq = oct->droq[oq_no];
 918
 919                        if (droq->ops.poll_mode) {
 920                                droq->ops.napi_fn(droq);
 921                                oct_priv->napi_mask |= (1 << oq_no);
 922                        } else {
 923                                tasklet_schedule(&oct_priv->droq_tasklet);
 924                        }
 925                }
 926        }
 927}
 928
 929/**
 930 * \brief Interrupt handler for octeon
 931 * @param irq unused
 932 * @param dev octeon device
 933 */
 934static
 935irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
 936{
 937        struct octeon_device *oct = (struct octeon_device *)dev;
 938        irqreturn_t ret;
 939
 940        /* Disable our interrupts for the duration of ISR */
 941        oct->fn_list.disable_interrupt(oct->chip);
 942
 943        ret = oct->fn_list.process_interrupt_regs(oct);
 944
 945        if (ret == IRQ_HANDLED)
 946                liquidio_schedule_droq_pkt_handlers(oct);
 947
 948        /* Re-enable our interrupts  */
 949        if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
 950                oct->fn_list.enable_interrupt(oct->chip);
 951
 952        return ret;
 953}
 954
 955/**
 956 * \brief Setup interrupt for octeon device
 957 * @param oct octeon device
 958 *
 959 *  Enable interrupt in Octeon device as given in the PCI interrupt mask.
 960 */
 961static int octeon_setup_interrupt(struct octeon_device *oct)
 962{
 963        int irqret, err;
 964
 965        err = pci_enable_msi(oct->pci_dev);
 966        if (err)
 967                dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
 968                         err);
 969        else
 970                oct->flags |= LIO_FLAG_MSI_ENABLED;
 971
 972        irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
 973                             IRQF_SHARED, "octeon", oct);
 974        if (irqret) {
 975                if (oct->flags & LIO_FLAG_MSI_ENABLED)
 976                        pci_disable_msi(oct->pci_dev);
 977                dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
 978                        irqret);
 979                return 1;
 980        }
 981
 982        return 0;
 983}
 984
 985/**
 986 * \brief PCI probe handler
 987 * @param pdev PCI device structure
 988 * @param ent unused
 989 */
 990static int liquidio_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 991{
 992        struct octeon_device *oct_dev = NULL;
 993        struct handshake *hs;
 994
 995        oct_dev = octeon_allocate_device(pdev->device,
 996                                         sizeof(struct octeon_device_priv));
 997        if (!oct_dev) {
 998                dev_err(&pdev->dev, "Unable to allocate device\n");
 999                return -ENOMEM;
1000        }
1001
1002        dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1003                 (u32)pdev->vendor, (u32)pdev->device);
1004
1005        /* Assign octeon_device for this device to the private data area. */
1006        pci_set_drvdata(pdev, oct_dev);
1007
1008        /* set linux specific device pointer */
1009        oct_dev->pci_dev = (void *)pdev;
1010
1011        hs = &handshake[oct_dev->octeon_id];
1012        init_completion(&hs->init);
1013        init_completion(&hs->started);
1014        hs->pci_dev = pdev;
1015
1016        if (oct_dev->octeon_id == 0)
1017                /* first LiquidIO NIC is detected */
1018                complete(&first_stage);
1019
1020        if (octeon_device_init(oct_dev)) {
1021                liquidio_remove(pdev);
1022                return -ENOMEM;
1023        }
1024
1025        dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1026
1027        return 0;
1028}
1029
1030/**
1031 *\brief Destroy resources associated with octeon device
1032 * @param pdev PCI device structure
1033 * @param ent unused
1034 */
1035static void octeon_destroy_resources(struct octeon_device *oct)
1036{
1037        int i;
1038        struct octeon_device_priv *oct_priv =
1039                (struct octeon_device_priv *)oct->priv;
1040
1041        struct handshake *hs;
1042
1043        switch (atomic_read(&oct->status)) {
1044        case OCT_DEV_RUNNING:
1045        case OCT_DEV_CORE_OK:
1046
1047                /* No more instructions will be forwarded. */
1048                atomic_set(&oct->status, OCT_DEV_IN_RESET);
1049
1050                oct->app_mode = CVM_DRV_INVALID_APP;
1051                dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1052                        lio_get_state_string(&oct->status));
1053
1054                schedule_timeout_uninterruptible(HZ / 10);
1055
1056                /* fallthrough */
1057        case OCT_DEV_HOST_OK:
1058
1059                /* fallthrough */
1060        case OCT_DEV_CONSOLE_INIT_DONE:
1061                /* Remove any consoles */
1062                octeon_remove_consoles(oct);
1063
1064                /* fallthrough */
1065        case OCT_DEV_IO_QUEUES_DONE:
1066                if (wait_for_pending_requests(oct))
1067                        dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1068
1069                if (lio_wait_for_instr_fetch(oct))
1070                        dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1071
1072                /* Disable the input and output queues now. No more packets will
1073                 * arrive from Octeon, but we should wait for all packet
1074                 * processing to finish.
1075                 */
1076                oct->fn_list.disable_io_queues(oct);
1077
1078                if (lio_wait_for_oq_pkts(oct))
1079                        dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1080
1081                /* Disable interrupts  */
1082                oct->fn_list.disable_interrupt(oct->chip);
1083
1084                /* Release the interrupt line */
1085                free_irq(oct->pci_dev->irq, oct);
1086
1087                if (oct->flags & LIO_FLAG_MSI_ENABLED)
1088                        pci_disable_msi(oct->pci_dev);
1089
1090                /* Soft reset the octeon device before exiting */
1091                oct->fn_list.soft_reset(oct);
1092
1093                /* Disable the device, releasing the PCI INT */
1094                pci_disable_device(oct->pci_dev);
1095
1096                /* fallthrough */
1097        case OCT_DEV_IN_RESET:
1098        case OCT_DEV_DROQ_INIT_DONE:
1099                /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1100                mdelay(100);
1101                for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
1102                        if (!(oct->io_qmask.oq & (1UL << i)))
1103                                continue;
1104                        octeon_delete_droq(oct, i);
1105                }
1106
1107                /* Force any pending handshakes to complete */
1108                for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1109                        hs = &handshake[i];
1110
1111                        if (hs->pci_dev) {
1112                                handshake[oct->octeon_id].init_ok = 0;
1113                                complete(&handshake[oct->octeon_id].init);
1114                                handshake[oct->octeon_id].started_ok = 0;
1115                                complete(&handshake[oct->octeon_id].started);
1116                        }
1117                }
1118
1119                /* fallthrough */
1120        case OCT_DEV_RESP_LIST_INIT_DONE:
1121                octeon_delete_response_list(oct);
1122
1123                /* fallthrough */
1124        case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1125                octeon_free_sc_buffer_pool(oct);
1126
1127                /* fallthrough */
1128        case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1129                for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
1130                        if (!(oct->io_qmask.iq & (1UL << i)))
1131                                continue;
1132                        octeon_delete_instr_queue(oct, i);
1133                }
1134
1135                /* fallthrough */
1136        case OCT_DEV_DISPATCH_INIT_DONE:
1137                octeon_delete_dispatch_list(oct);
1138                cancel_delayed_work_sync(&oct->nic_poll_work.work);
1139
1140                /* fallthrough */
1141        case OCT_DEV_PCI_MAP_DONE:
1142                octeon_unmap_pci_barx(oct, 0);
1143                octeon_unmap_pci_barx(oct, 1);
1144
1145                /* fallthrough */
1146        case OCT_DEV_BEGIN_STATE:
1147                /* Nothing to be done here either */
1148                break;
1149        }                       /* end switch(oct->status) */
1150
1151        tasklet_kill(&oct_priv->droq_tasklet);
1152}
1153
1154/**
1155 * \brief Send Rx control command
1156 * @param lio per-network private data
1157 * @param start_stop whether to start or stop
1158 */
1159static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1160{
1161        struct octnic_ctrl_pkt nctrl;
1162        struct octnic_ctrl_params nparams;
1163
1164        memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1165
1166        nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1167        nctrl.ncmd.s.param1 = lio->linfo.ifidx;
1168        nctrl.ncmd.s.param2 = start_stop;
1169        nctrl.netpndev = (u64)lio->netdev;
1170
1171        nparams.resp_order = OCTEON_RESP_NORESPONSE;
1172
1173        if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams) < 0)
1174                netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1175}
1176
1177/**
1178 * \brief Destroy NIC device interface
1179 * @param oct octeon device
1180 * @param ifidx which interface to destroy
1181 *
1182 * Cleanup associated with each interface for an Octeon device  when NIC
1183 * module is being unloaded or if initialization fails during load.
1184 */
1185static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1186{
1187        struct net_device *netdev = oct->props[ifidx].netdev;
1188        struct lio *lio;
1189
1190        if (!netdev) {
1191                dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1192                        __func__, ifidx);
1193                return;
1194        }
1195
1196        lio = GET_LIO(netdev);
1197
1198        dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1199
1200        send_rx_ctrl_cmd(lio, 0);
1201
1202        if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1203                txqs_stop(netdev);
1204
1205        if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1206                unregister_netdev(netdev);
1207
1208        delete_glist(lio);
1209
1210        free_netdev(netdev);
1211
1212        oct->props[ifidx].netdev = NULL;
1213}
1214
1215/**
1216 * \brief Stop complete NIC functionality
1217 * @param oct octeon device
1218 */
1219static int liquidio_stop_nic_module(struct octeon_device *oct)
1220{
1221        int i, j;
1222        struct lio *lio;
1223
1224        dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1225        if (!oct->ifcount) {
1226                dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1227                return 1;
1228        }
1229
1230        for (i = 0; i < oct->ifcount; i++) {
1231                lio = GET_LIO(oct->props[i].netdev);
1232                for (j = 0; j < lio->linfo.num_rxpciq; j++)
1233                        octeon_unregister_droq_ops(oct, lio->linfo.rxpciq[j]);
1234        }
1235
1236        for (i = 0; i < oct->ifcount; i++)
1237                liquidio_destroy_nic_device(oct, i);
1238
1239        dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1240        return 0;
1241}
1242
1243/**
1244 * \brief Cleans up resources at unload time
1245 * @param pdev PCI device structure
1246 */
1247static void liquidio_remove(struct pci_dev *pdev)
1248{
1249        struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1250
1251        dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1252
1253        if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1254                liquidio_stop_nic_module(oct_dev);
1255
1256        /* Reset the octeon device and cleanup all memory allocated for
1257         * the octeon device by driver.
1258         */
1259        octeon_destroy_resources(oct_dev);
1260
1261        dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1262
1263        /* This octeon device has been removed. Update the global
1264         * data structure to reflect this. Free the device structure.
1265         */
1266        octeon_free_device_mem(oct_dev);
1267}
1268
1269/**
1270 * \brief Identify the Octeon device and to map the BAR address space
1271 * @param oct octeon device
1272 */
1273static int octeon_chip_specific_setup(struct octeon_device *oct)
1274{
1275        u32 dev_id, rev_id;
1276        int ret = 1;
1277
1278        pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1279        pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1280        oct->rev_id = rev_id & 0xff;
1281
1282        switch (dev_id) {
1283        case OCTEON_CN68XX_PCIID:
1284                oct->chip_id = OCTEON_CN68XX;
1285                ret = lio_setup_cn68xx_octeon_device(oct);
1286                break;
1287
1288        case OCTEON_CN66XX_PCIID:
1289                oct->chip_id = OCTEON_CN66XX;
1290                ret = lio_setup_cn66xx_octeon_device(oct);
1291                break;
1292        default:
1293                dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1294                        dev_id);
1295        }
1296
1297        if (!ret)
1298                dev_info(&oct->pci_dev->dev, "CN68XX PASS%d.%d %s\n",
1299                         OCTEON_MAJOR_REV(oct),
1300                         OCTEON_MINOR_REV(oct),
1301                         octeon_get_conf(oct)->card_name);
1302
1303        return ret;
1304}
1305
1306/**
1307 * \brief PCI initialization for each Octeon device.
1308 * @param oct octeon device
1309 */
1310static int octeon_pci_os_setup(struct octeon_device *oct)
1311{
1312        /* setup PCI stuff first */
1313        if (pci_enable_device(oct->pci_dev)) {
1314                dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1315                return 1;
1316        }
1317
1318        if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1319                dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1320                return 1;
1321        }
1322
1323        /* Enable PCI DMA Master. */
1324        pci_set_master(oct->pci_dev);
1325
1326        return 0;
1327}
1328
1329/**
1330 * \brief Check Tx queue state for a given network buffer
1331 * @param lio per-network private data
1332 * @param skb network buffer
1333 */
1334static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1335{
1336        int q = 0, iq = 0;
1337
1338        if (netif_is_multiqueue(lio->netdev)) {
1339                q = skb->queue_mapping;
1340                iq = lio->linfo.txpciq[(q & (lio->linfo.num_txpciq - 1))];
1341        } else {
1342                iq = lio->txq;
1343        }
1344
1345        if (octnet_iq_is_full(lio->oct_dev, iq))
1346                return 0;
1347        wake_q(lio->netdev, q);
1348        return 1;
1349}
1350
1351/**
1352 * \brief Unmap and free network buffer
1353 * @param buf buffer
1354 */
1355static void free_netbuf(void *buf)
1356{
1357        struct sk_buff *skb;
1358        struct octnet_buf_free_info *finfo;
1359        struct lio *lio;
1360
1361        finfo = (struct octnet_buf_free_info *)buf;
1362        skb = finfo->skb;
1363        lio = finfo->lio;
1364
1365        dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1366                         DMA_TO_DEVICE);
1367
1368        check_txq_state(lio, skb);
1369
1370        recv_buffer_free((struct sk_buff *)skb);
1371}
1372
1373/**
1374 * \brief Unmap and free gather buffer
1375 * @param buf buffer
1376 */
1377static void free_netsgbuf(void *buf)
1378{
1379        struct octnet_buf_free_info *finfo;
1380        struct sk_buff *skb;
1381        struct lio *lio;
1382        struct octnic_gather *g;
1383        int i, frags;
1384
1385        finfo = (struct octnet_buf_free_info *)buf;
1386        skb = finfo->skb;
1387        lio = finfo->lio;
1388        g = finfo->g;
1389        frags = skb_shinfo(skb)->nr_frags;
1390
1391        dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1392                         g->sg[0].ptr[0], (skb->len - skb->data_len),
1393                         DMA_TO_DEVICE);
1394
1395        i = 1;
1396        while (frags--) {
1397                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1398
1399                pci_unmap_page((lio->oct_dev)->pci_dev,
1400                               g->sg[(i >> 2)].ptr[(i & 3)],
1401                               frag->size, DMA_TO_DEVICE);
1402                i++;
1403        }
1404
1405        dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1406                         finfo->dptr, g->sg_size,
1407                         DMA_TO_DEVICE);
1408
1409        spin_lock(&lio->lock);
1410        list_add_tail(&g->list, &lio->glist);
1411        spin_unlock(&lio->lock);
1412
1413        check_txq_state(lio, skb);     /* mq support: sub-queue state check */
1414
1415        recv_buffer_free((struct sk_buff *)skb);
1416}
1417
1418/**
1419 * \brief Unmap and free gather buffer with response
1420 * @param buf buffer
1421 */
1422static void free_netsgbuf_with_resp(void *buf)
1423{
1424        struct octeon_soft_command *sc;
1425        struct octnet_buf_free_info *finfo;
1426        struct sk_buff *skb;
1427        struct lio *lio;
1428        struct octnic_gather *g;
1429        int i, frags;
1430
1431        sc = (struct octeon_soft_command *)buf;
1432        skb = (struct sk_buff *)sc->callback_arg;
1433        finfo = (struct octnet_buf_free_info *)&skb->cb;
1434
1435        lio = finfo->lio;
1436        g = finfo->g;
1437        frags = skb_shinfo(skb)->nr_frags;
1438
1439        dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1440                         g->sg[0].ptr[0], (skb->len - skb->data_len),
1441                         DMA_TO_DEVICE);
1442
1443        i = 1;
1444        while (frags--) {
1445                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1446
1447                pci_unmap_page((lio->oct_dev)->pci_dev,
1448                               g->sg[(i >> 2)].ptr[(i & 3)],
1449                               frag->size, DMA_TO_DEVICE);
1450                i++;
1451        }
1452
1453        dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1454                         finfo->dptr, g->sg_size,
1455                         DMA_TO_DEVICE);
1456
1457        spin_lock(&lio->lock);
1458        list_add_tail(&g->list, &lio->glist);
1459        spin_unlock(&lio->lock);
1460
1461        /* Don't free the skb yet */
1462
1463        check_txq_state(lio, skb);
1464}
1465
1466/**
1467 * \brief Adjust ptp frequency
1468 * @param ptp PTP clock info
1469 * @param ppb how much to adjust by, in parts-per-billion
1470 */
1471static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1472{
1473        struct lio *lio = container_of(ptp, struct lio, ptp_info);
1474        struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1475        u64 comp, delta;
1476        unsigned long flags;
1477        bool neg_adj = false;
1478
1479        if (ppb < 0) {
1480                neg_adj = true;
1481                ppb = -ppb;
1482        }
1483
1484        /* The hardware adds the clock compensation value to the
1485         * PTP clock on every coprocessor clock cycle, so we
1486         * compute the delta in terms of coprocessor clocks.
1487         */
1488        delta = (u64)ppb << 32;
1489        do_div(delta, oct->coproc_clock_rate);
1490
1491        spin_lock_irqsave(&lio->ptp_lock, flags);
1492        comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1493        if (neg_adj)
1494                comp -= delta;
1495        else
1496                comp += delta;
1497        lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1498        spin_unlock_irqrestore(&lio->ptp_lock, flags);
1499
1500        return 0;
1501}
1502
1503/**
1504 * \brief Adjust ptp time
1505 * @param ptp PTP clock info
1506 * @param delta how much to adjust by, in nanosecs
1507 */
1508static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1509{
1510        unsigned long flags;
1511        struct lio *lio = container_of(ptp, struct lio, ptp_info);
1512
1513        spin_lock_irqsave(&lio->ptp_lock, flags);
1514        lio->ptp_adjust += delta;
1515        spin_unlock_irqrestore(&lio->ptp_lock, flags);
1516
1517        return 0;
1518}
1519
1520/**
1521 * \brief Get hardware clock time, including any adjustment
1522 * @param ptp PTP clock info
1523 * @param ts timespec
1524 */
1525static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1526                                struct timespec64 *ts)
1527{
1528        u64 ns;
1529        u32 remainder;
1530        unsigned long flags;
1531        struct lio *lio = container_of(ptp, struct lio, ptp_info);
1532        struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1533
1534        spin_lock_irqsave(&lio->ptp_lock, flags);
1535        ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1536        ns += lio->ptp_adjust;
1537        spin_unlock_irqrestore(&lio->ptp_lock, flags);
1538
1539        ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
1540        ts->tv_nsec = remainder;
1541
1542        return 0;
1543}
1544
1545/**
1546 * \brief Set hardware clock time. Reset adjustment
1547 * @param ptp PTP clock info
1548 * @param ts timespec
1549 */
1550static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1551                                const struct timespec64 *ts)
1552{
1553        u64 ns;
1554        unsigned long flags;
1555        struct lio *lio = container_of(ptp, struct lio, ptp_info);
1556        struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1557
1558        ns = timespec_to_ns(ts);
1559
1560        spin_lock_irqsave(&lio->ptp_lock, flags);
1561        lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1562        lio->ptp_adjust = 0;
1563        spin_unlock_irqrestore(&lio->ptp_lock, flags);
1564
1565        return 0;
1566}
1567
1568/**
1569 * \brief Check if PTP is enabled
1570 * @param ptp PTP clock info
1571 * @param rq request
1572 * @param on is it on
1573 */
1574static int liquidio_ptp_enable(struct ptp_clock_info *ptp,
1575                               struct ptp_clock_request *rq, int on)
1576{
1577        return -EOPNOTSUPP;
1578}
1579
1580/**
1581 * \brief Open PTP clock source
1582 * @param netdev network device
1583 */
1584static void oct_ptp_open(struct net_device *netdev)
1585{
1586        struct lio *lio = GET_LIO(netdev);
1587        struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1588
1589        spin_lock_init(&lio->ptp_lock);
1590
1591        snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1592        lio->ptp_info.owner = THIS_MODULE;
1593        lio->ptp_info.max_adj = 250000000;
1594        lio->ptp_info.n_alarm = 0;
1595        lio->ptp_info.n_ext_ts = 0;
1596        lio->ptp_info.n_per_out = 0;
1597        lio->ptp_info.pps = 0;
1598        lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1599        lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1600        lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1601        lio->ptp_info.settime64 = liquidio_ptp_settime;
1602        lio->ptp_info.enable = liquidio_ptp_enable;
1603
1604        lio->ptp_adjust = 0;
1605
1606        lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1607                                             &oct->pci_dev->dev);
1608
1609        if (IS_ERR(lio->ptp_clock))
1610                lio->ptp_clock = NULL;
1611}
1612
1613/**
1614 * \brief Init PTP clock
1615 * @param oct octeon device
1616 */
1617static void liquidio_ptp_init(struct octeon_device *oct)
1618{
1619        u64 clock_comp, cfg;
1620
1621        clock_comp = (u64)NSEC_PER_SEC << 32;
1622        do_div(clock_comp, oct->coproc_clock_rate);
1623        lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1624
1625        /* Enable */
1626        cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1627        lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1628}
1629
1630/**
1631 * \brief Load firmware to device
1632 * @param oct octeon device
1633 *
1634 * Maps device to firmware filename, requests firmware, and downloads it
1635 */
1636static int load_firmware(struct octeon_device *oct)
1637{
1638        int ret = 0;
1639        const struct firmware *fw;
1640        char fw_name[LIO_MAX_FW_FILENAME_LEN];
1641        char *tmp_fw_type;
1642
1643        if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1644                    sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1645                dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1646                return ret;
1647        }
1648
1649        if (fw_type[0] == '\0')
1650                tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1651        else
1652                tmp_fw_type = fw_type;
1653
1654        sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1655                octeon_get_conf(oct)->card_name, tmp_fw_type,
1656                LIO_FW_NAME_SUFFIX);
1657
1658        ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1659        if (ret) {
1660                dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1661                        fw_name);
1662                return ret;
1663        }
1664
1665        ret = octeon_download_firmware(oct, fw->data, fw->size);
1666
1667        release_firmware(fw);
1668
1669        return ret;
1670}
1671
1672/**
1673 * \brief Setup output queue
1674 * @param oct octeon device
1675 * @param q_no which queue
1676 * @param num_descs how many descriptors
1677 * @param desc_size size of each descriptor
1678 * @param app_ctx application context
1679 */
1680static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1681                             int desc_size, void *app_ctx)
1682{
1683        int ret_val = 0;
1684
1685        dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1686        /* droq creation and local register settings. */
1687        ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1688        if (ret_val == -1)
1689                return ret_val;
1690
1691        if (ret_val == 1) {
1692                dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1693                return 0;
1694        }
1695        /* tasklet creation for the droq */
1696
1697        /* Enable the droq queues */
1698        octeon_set_droq_pkt_op(oct, q_no, 1);
1699
1700        /* Send Credit for Octeon Output queues. Credits are always
1701         * sent after the output queue is enabled.
1702         */
1703        writel(oct->droq[q_no]->max_count,
1704               oct->droq[q_no]->pkts_credit_reg);
1705
1706        return ret_val;
1707}
1708
1709/**
1710 * \brief Callback for getting interface configuration
1711 * @param status status of request
1712 * @param buf pointer to resp structure
1713 */
1714static void if_cfg_callback(struct octeon_device *oct,
1715                            u32 status,
1716                            void *buf)
1717{
1718        struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1719        struct liquidio_if_cfg_resp *resp;
1720        struct liquidio_if_cfg_context *ctx;
1721
1722        resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1723        ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
1724
1725        oct = lio_get_device(ctx->octeon_id);
1726        if (resp->status)
1727                dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1728                        CVM_CAST64(resp->status));
1729        ACCESS_ONCE(ctx->cond) = 1;
1730
1731        /* This barrier is required to be sure that the response has been
1732         * written fully before waking up the handler
1733         */
1734        wmb();
1735
1736        wake_up_interruptible(&ctx->wc);
1737}
1738
1739/**
1740 * \brief Select queue based on hash
1741 * @param dev Net device
1742 * @param skb sk_buff structure
1743 * @returns selected queue number
1744 */
1745static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1746                    void *accel_priv, select_queue_fallback_t fallback)
1747{
1748        int qindex;
1749        struct lio *lio;
1750
1751        lio = GET_LIO(dev);
1752        /* select queue on chosen queue_mapping or core */
1753        qindex = skb_rx_queue_recorded(skb) ?
1754                 skb_get_rx_queue(skb) : smp_processor_id();
1755        return (u16)(qindex & (lio->linfo.num_txpciq - 1));
1756}
1757
1758/** Routine to push packets arriving on Octeon interface upto network layer.
1759 * @param oct_id   - octeon device id.
1760 * @param skbuff   - skbuff struct to be passed to network layer.
1761 * @param len      - size of total data received.
1762 * @param rh       - Control header associated with the packet
1763 * @param param    - additional control data with the packet
1764 */
1765static void
1766liquidio_push_packet(u32 octeon_id,
1767                     void *skbuff,
1768                     u32 len,
1769                     union octeon_rh *rh,
1770                     void *param)
1771{
1772        struct napi_struct *napi = param;
1773        struct octeon_device *oct = lio_get_device(octeon_id);
1774        struct sk_buff *skb = (struct sk_buff *)skbuff;
1775        struct skb_shared_hwtstamps *shhwtstamps;
1776        u64 ns;
1777        struct net_device *netdev =
1778                (struct net_device *)oct->props[rh->r_dh.link].netdev;
1779        struct octeon_droq *droq = container_of(param, struct octeon_droq,
1780                                                napi);
1781        if (netdev) {
1782                int packet_was_received;
1783                struct lio *lio = GET_LIO(netdev);
1784
1785                /* Do not proceed if the interface is not in RUNNING state. */
1786                if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1787                        recv_buffer_free(skb);
1788                        droq->stats.rx_dropped++;
1789                        return;
1790                }
1791
1792                skb->dev = netdev;
1793
1794                if (rh->r_dh.has_hwtstamp) {
1795                        /* timestamp is included from the hardware at the
1796                         * beginning of the packet.
1797                         */
1798                        if (ifstate_check(lio,
1799                                          LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1800                                /* Nanoseconds are in the first 64-bits
1801                                 * of the packet.
1802                                 */
1803                                memcpy(&ns, (skb->data), sizeof(ns));
1804                                shhwtstamps = skb_hwtstamps(skb);
1805                                shhwtstamps->hwtstamp =
1806                                        ns_to_ktime(ns + lio->ptp_adjust);
1807                        }
1808                        skb_pull(skb, sizeof(ns));
1809                }
1810
1811                skb->protocol = eth_type_trans(skb, skb->dev);
1812
1813                if ((netdev->features & NETIF_F_RXCSUM) &&
1814                    (rh->r_dh.csum_verified == CNNIC_CSUM_VERIFIED))
1815                        /* checksum has already been verified */
1816                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1817                else
1818                        skb->ip_summed = CHECKSUM_NONE;
1819
1820                packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
1821
1822                if (packet_was_received) {
1823                        droq->stats.rx_bytes_received += len;
1824                        droq->stats.rx_pkts_received++;
1825                        netdev->last_rx = jiffies;
1826                } else {
1827                        droq->stats.rx_dropped++;
1828                        netif_info(lio, rx_err, lio->netdev,
1829                                   "droq:%d  error rx_dropped:%llu\n",
1830                                   droq->q_no, droq->stats.rx_dropped);
1831                }
1832
1833        } else {
1834                recv_buffer_free(skb);
1835        }
1836}
1837
1838/**
1839 * \brief wrapper for calling napi_schedule
1840 * @param param parameters to pass to napi_schedule
1841 *
1842 * Used when scheduling on different CPUs
1843 */
1844static void napi_schedule_wrapper(void *param)
1845{
1846        struct napi_struct *napi = param;
1847
1848        napi_schedule(napi);
1849}
1850
1851/**
1852 * \brief callback when receive interrupt occurs and we are in NAPI mode
1853 * @param arg pointer to octeon output queue
1854 */
1855static void liquidio_napi_drv_callback(void *arg)
1856{
1857        struct octeon_droq *droq = arg;
1858        int this_cpu = smp_processor_id();
1859
1860        if (droq->cpu_id == this_cpu) {
1861                napi_schedule(&droq->napi);
1862        } else {
1863                struct call_single_data *csd = &droq->csd;
1864
1865                csd->func = napi_schedule_wrapper;
1866                csd->info = &droq->napi;
1867                csd->flags = 0;
1868
1869                smp_call_function_single_async(droq->cpu_id, csd);
1870        }
1871}
1872
1873/**
1874 * \brief Main NAPI poll function
1875 * @param droq octeon output queue
1876 * @param budget maximum number of items to process
1877 */
1878static int liquidio_napi_do_rx(struct octeon_droq *droq, int budget)
1879{
1880        int work_done;
1881        struct lio *lio = GET_LIO(droq->napi.dev);
1882        struct octeon_device *oct = lio->oct_dev;
1883
1884        work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1885                                                 POLL_EVENT_PROCESS_PKTS,
1886                                                 budget);
1887        if (work_done < 0) {
1888                netif_info(lio, rx_err, lio->netdev,
1889                           "Receive work_done < 0, rxq:%d\n", droq->q_no);
1890                goto octnet_napi_finish;
1891        }
1892
1893        if (work_done > budget)
1894                dev_err(&oct->pci_dev->dev, ">>>> %s work_done: %d budget: %d\n",
1895                        __func__, work_done, budget);
1896
1897        return work_done;
1898
1899octnet_napi_finish:
1900        napi_complete(&droq->napi);
1901        octeon_process_droq_poll_cmd(oct, droq->q_no, POLL_EVENT_ENABLE_INTR,
1902                                     0);
1903        return 0;
1904}
1905
1906/**
1907 * \brief Entry point for NAPI polling
1908 * @param napi NAPI structure
1909 * @param budget maximum number of items to process
1910 */
1911static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1912{
1913        struct octeon_droq *droq;
1914        int work_done;
1915
1916        droq = container_of(napi, struct octeon_droq, napi);
1917
1918        work_done = liquidio_napi_do_rx(droq, budget);
1919
1920        if (work_done < budget) {
1921                napi_complete(napi);
1922                octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1923                                             POLL_EVENT_ENABLE_INTR, 0);
1924                return 0;
1925        }
1926
1927        return work_done;
1928}
1929
1930/**
1931 * \brief Setup input and output queues
1932 * @param octeon_dev octeon device
1933 * @param net_device Net device
1934 *
1935 * Note: Queues are with respect to the octeon device. Thus
1936 * an input queue is for egress packets, and output queues
1937 * are for ingress packets.
1938 */
1939static inline int setup_io_queues(struct octeon_device *octeon_dev,
1940                                  struct net_device *net_device)
1941{
1942        static int first_time = 1;
1943        static struct octeon_droq_ops droq_ops;
1944        static int cpu_id;
1945        static int cpu_id_modulus;
1946        struct octeon_droq *droq;
1947        struct napi_struct *napi;
1948        int q, q_no, retval = 0;
1949        struct lio *lio;
1950        int num_tx_descs;
1951
1952        lio = GET_LIO(net_device);
1953        if (first_time) {
1954                first_time = 0;
1955                memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1956
1957                droq_ops.fptr = liquidio_push_packet;
1958
1959                droq_ops.poll_mode = 1;
1960                droq_ops.napi_fn = liquidio_napi_drv_callback;
1961                cpu_id = 0;
1962                cpu_id_modulus = num_present_cpus();
1963        }
1964
1965        /* set up DROQs. */
1966        for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1967                q_no = lio->linfo.rxpciq[q];
1968
1969                retval = octeon_setup_droq(octeon_dev, q_no,
1970                                           CFG_GET_NUM_RX_DESCS_NIC_IF
1971                                                   (octeon_get_conf(octeon_dev),
1972                                                   lio->ifidx),
1973                                           CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
1974                                                   (octeon_get_conf(octeon_dev),
1975                                                   lio->ifidx), NULL);
1976                if (retval) {
1977                        dev_err(&octeon_dev->pci_dev->dev,
1978                                " %s : Runtime DROQ(RxQ) creation failed.\n",
1979                                __func__);
1980                        return 1;
1981                }
1982
1983                droq = octeon_dev->droq[q_no];
1984                napi = &droq->napi;
1985                netif_napi_add(net_device, napi, liquidio_napi_poll, 64);
1986
1987                /* designate a CPU for this droq */
1988                droq->cpu_id = cpu_id;
1989                cpu_id++;
1990                if (cpu_id >= cpu_id_modulus)
1991                        cpu_id = 0;
1992
1993                octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1994        }
1995
1996        /* set up IQs. */
1997        for (q = 0; q < lio->linfo.num_txpciq; q++) {
1998                num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
1999                                                           (octeon_dev),
2000                                                           lio->ifidx);
2001                retval = octeon_setup_iq(octeon_dev, lio->linfo.txpciq[q],
2002                                         num_tx_descs,
2003                                         netdev_get_tx_queue(net_device, q));
2004                if (retval) {
2005                        dev_err(&octeon_dev->pci_dev->dev,
2006                                " %s : Runtime IQ(TxQ) creation failed.\n",
2007                                __func__);
2008                        return 1;
2009                }
2010        }
2011
2012        return 0;
2013}
2014
2015/**
2016 * \brief Poll routine for checking transmit queue status
2017 * @param work work_struct data structure
2018 */
2019static void octnet_poll_check_txq_status(struct work_struct *work)
2020{
2021        struct cavium_wk *wk = (struct cavium_wk *)work;
2022        struct lio *lio = (struct lio *)wk->ctxptr;
2023
2024        if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2025                return;
2026
2027        check_txq_status(lio);
2028        queue_delayed_work(lio->txq_status_wq.wq,
2029                           &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2030}
2031
2032/**
2033 * \brief Sets up the txq poll check
2034 * @param netdev network device
2035 */
2036static inline void setup_tx_poll_fn(struct net_device *netdev)
2037{
2038        struct lio *lio = GET_LIO(netdev);
2039        struct octeon_device *oct = lio->oct_dev;
2040
2041        lio->txq_status_wq.wq = create_workqueue("txq-status");
2042        if (!lio->txq_status_wq.wq) {
2043                dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2044                return;
2045        }
2046        INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2047                          octnet_poll_check_txq_status);
2048        lio->txq_status_wq.wk.ctxptr = lio;
2049        queue_delayed_work(lio->txq_status_wq.wq,
2050                           &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2051}
2052
2053/**
2054 * \brief Net device open for LiquidIO
2055 * @param netdev network device
2056 */
2057static int liquidio_open(struct net_device *netdev)
2058{
2059        struct lio *lio = GET_LIO(netdev);
2060        struct octeon_device *oct = lio->oct_dev;
2061        struct napi_struct *napi, *n;
2062
2063        list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2064                napi_enable(napi);
2065
2066        oct_ptp_open(netdev);
2067
2068        ifstate_set(lio, LIO_IFSTATE_RUNNING);
2069        setup_tx_poll_fn(netdev);
2070        start_txq(netdev);
2071
2072        netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2073        try_module_get(THIS_MODULE);
2074
2075        /* tell Octeon to start forwarding packets to host */
2076        send_rx_ctrl_cmd(lio, 1);
2077
2078        /* Ready for link status updates */
2079        lio->intf_open = 1;
2080
2081        dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2082                 netdev->name);
2083
2084        return 0;
2085}
2086
2087/**
2088 * \brief Net device stop for LiquidIO
2089 * @param netdev network device
2090 */
2091static int liquidio_stop(struct net_device *netdev)
2092{
2093        struct napi_struct *napi, *n;
2094        struct lio *lio = GET_LIO(netdev);
2095        struct octeon_device *oct = lio->oct_dev;
2096
2097        netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
2098        /* Inform that netif carrier is down */
2099        lio->intf_open = 0;
2100        lio->linfo.link.s.status = 0;
2101
2102        netif_carrier_off(netdev);
2103
2104        /* tell Octeon to stop forwarding packets to host */
2105        send_rx_ctrl_cmd(lio, 0);
2106
2107        cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2108        flush_workqueue(lio->txq_status_wq.wq);
2109        destroy_workqueue(lio->txq_status_wq.wq);
2110
2111        if (lio->ptp_clock) {
2112                ptp_clock_unregister(lio->ptp_clock);
2113                lio->ptp_clock = NULL;
2114        }
2115
2116        ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2117
2118        /* This is a hack that allows DHCP to continue working. */
2119        set_bit(__LINK_STATE_START, &lio->netdev->state);
2120
2121        list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2122                napi_disable(napi);
2123
2124        txqs_stop(netdev);
2125
2126        dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2127        module_put(THIS_MODULE);
2128
2129        return 0;
2130}
2131
2132void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2133{
2134        struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2135        struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2136        struct lio *lio = GET_LIO(netdev);
2137        struct octeon_device *oct = lio->oct_dev;
2138
2139        switch (nctrl->ncmd.s.cmd) {
2140        case OCTNET_CMD_CHANGE_DEVFLAGS:
2141        case OCTNET_CMD_SET_MULTI_LIST:
2142                break;
2143
2144        case OCTNET_CMD_CHANGE_MACADDR:
2145                /* If command is successful, change the MACADDR. */
2146                netif_info(lio, probe, lio->netdev, " MACAddr changed to 0x%llx\n",
2147                           CVM_CAST64(nctrl->udd[0]));
2148                dev_info(&oct->pci_dev->dev, "%s MACAddr changed to 0x%llx\n",
2149                         netdev->name, CVM_CAST64(nctrl->udd[0]));
2150                memcpy(netdev->dev_addr, ((u8 *)&nctrl->udd[0]) + 2, ETH_ALEN);
2151                break;
2152
2153        case OCTNET_CMD_CHANGE_MTU:
2154                /* If command is successful, change the MTU. */
2155                netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2156                           netdev->mtu, nctrl->ncmd.s.param2);
2157                dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2158                         netdev->name, netdev->mtu,
2159                         nctrl->ncmd.s.param2);
2160                netdev->mtu = nctrl->ncmd.s.param2;
2161                break;
2162
2163        case OCTNET_CMD_GPIO_ACCESS:
2164                netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2165
2166                break;
2167
2168        case OCTNET_CMD_LRO_ENABLE:
2169                dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2170                break;
2171
2172        case OCTNET_CMD_LRO_DISABLE:
2173                dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2174                         netdev->name);
2175                break;
2176
2177        case OCTNET_CMD_VERBOSE_ENABLE:
2178                dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2179                break;
2180
2181        case OCTNET_CMD_VERBOSE_DISABLE:
2182                dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2183                         netdev->name);
2184                break;
2185
2186        case OCTNET_CMD_SET_SETTINGS:
2187                dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2188                         netdev->name);
2189
2190                break;
2191
2192        default:
2193                dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2194                        nctrl->ncmd.s.cmd);
2195        }
2196}
2197
2198/**
2199 * \brief Converts a mask based on net device flags
2200 * @param netdev network device
2201 *
2202 * This routine generates a octnet_ifflags mask from the net device flags
2203 * received from the OS.
2204 */
2205static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2206{
2207        enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2208
2209        if (netdev->flags & IFF_PROMISC)
2210                f |= OCTNET_IFFLAG_PROMISC;
2211
2212        if (netdev->flags & IFF_ALLMULTI)
2213                f |= OCTNET_IFFLAG_ALLMULTI;
2214
2215        if (netdev->flags & IFF_MULTICAST) {
2216                f |= OCTNET_IFFLAG_MULTICAST;
2217
2218                /* Accept all multicast addresses if there are more than we
2219                 * can handle
2220                 */
2221                if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2222                        f |= OCTNET_IFFLAG_ALLMULTI;
2223        }
2224
2225        if (netdev->flags & IFF_BROADCAST)
2226                f |= OCTNET_IFFLAG_BROADCAST;
2227
2228        return f;
2229}
2230
2231/**
2232 * \brief Net device set_multicast_list
2233 * @param netdev network device
2234 */
2235static void liquidio_set_mcast_list(struct net_device *netdev)
2236{
2237        struct lio *lio = GET_LIO(netdev);
2238        struct octeon_device *oct = lio->oct_dev;
2239        struct octnic_ctrl_pkt nctrl;
2240        struct octnic_ctrl_params nparams;
2241        struct netdev_hw_addr *ha;
2242        u64 *mc;
2243        int ret, i;
2244        int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2245
2246        memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2247
2248        /* Create a ctrl pkt command to be sent to core app. */
2249        nctrl.ncmd.u64 = 0;
2250        nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2251        nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2252        nctrl.ncmd.s.param2 = get_new_flags(netdev);
2253        nctrl.ncmd.s.param3 = mc_count;
2254        nctrl.ncmd.s.more = mc_count;
2255        nctrl.netpndev = (u64)netdev;
2256        nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2257
2258        /* copy all the addresses into the udd */
2259        i = 0;
2260        mc = &nctrl.udd[0];
2261        netdev_for_each_mc_addr(ha, netdev) {
2262                *mc = 0;
2263                memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2264                /* no need to swap bytes */
2265
2266                if (++mc > &nctrl.udd[mc_count])
2267                        break;
2268        }
2269
2270        /* Apparently, any activity in this call from the kernel has to
2271         * be atomic. So we won't wait for response.
2272         */
2273        nctrl.wait_time = 0;
2274
2275        nparams.resp_order = OCTEON_RESP_NORESPONSE;
2276
2277        ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2278        if (ret < 0) {
2279                dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2280                        ret);
2281        }
2282}
2283
2284/**
2285 * \brief Net device set_mac_address
2286 * @param netdev network device
2287 */
2288static int liquidio_set_mac(struct net_device *netdev, void *p)
2289{
2290        int ret = 0;
2291        struct lio *lio = GET_LIO(netdev);
2292        struct octeon_device *oct = lio->oct_dev;
2293        struct sockaddr *addr = (struct sockaddr *)p;
2294        struct octnic_ctrl_pkt nctrl;
2295        struct octnic_ctrl_params nparams;
2296
2297        if ((!is_valid_ether_addr(addr->sa_data)) ||
2298            (ifstate_check(lio, LIO_IFSTATE_RUNNING)))
2299                return -EADDRNOTAVAIL;
2300
2301        memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2302
2303        nctrl.ncmd.u64 = 0;
2304        nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2305        nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2306        nctrl.ncmd.s.param2 = 0;
2307        nctrl.ncmd.s.more = 1;
2308        nctrl.netpndev = (u64)netdev;
2309        nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2310        nctrl.wait_time = 100;
2311
2312        nctrl.udd[0] = 0;
2313        /* The MAC Address is presented in network byte order. */
2314        memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2315
2316        nparams.resp_order = OCTEON_RESP_ORDERED;
2317
2318        ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2319        if (ret < 0) {
2320                dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2321                return -ENOMEM;
2322        }
2323        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2324        memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2325
2326        return 0;
2327}
2328
2329/**
2330 * \brief Net device get_stats
2331 * @param netdev network device
2332 */
2333static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2334{
2335        struct lio *lio = GET_LIO(netdev);
2336        struct net_device_stats *stats = &netdev->stats;
2337        struct octeon_device *oct;
2338        u64 pkts = 0, drop = 0, bytes = 0;
2339        struct oct_droq_stats *oq_stats;
2340        struct oct_iq_stats *iq_stats;
2341        int i, iq_no, oq_no;
2342
2343        oct = lio->oct_dev;
2344
2345        for (i = 0; i < lio->linfo.num_txpciq; i++) {
2346                iq_no = lio->linfo.txpciq[i];
2347                iq_stats = &oct->instr_queue[iq_no]->stats;
2348                pkts += iq_stats->tx_done;
2349                drop += iq_stats->tx_dropped;
2350                bytes += iq_stats->tx_tot_bytes;
2351        }
2352
2353        stats->tx_packets = pkts;
2354        stats->tx_bytes = bytes;
2355        stats->tx_dropped = drop;
2356
2357        pkts = 0;
2358        drop = 0;
2359        bytes = 0;
2360
2361        for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2362                oq_no = lio->linfo.rxpciq[i];
2363                oq_stats = &oct->droq[oq_no]->stats;
2364                pkts += oq_stats->rx_pkts_received;
2365                drop += (oq_stats->rx_dropped +
2366                         oq_stats->dropped_nodispatch +
2367                         oq_stats->dropped_toomany +
2368                         oq_stats->dropped_nomem);
2369                bytes += oq_stats->rx_bytes_received;
2370        }
2371
2372        stats->rx_bytes = bytes;
2373        stats->rx_packets = pkts;
2374        stats->rx_dropped = drop;
2375
2376        return stats;
2377}
2378
2379/**
2380 * \brief Net device change_mtu
2381 * @param netdev network device
2382 */
2383static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2384{
2385        struct lio *lio = GET_LIO(netdev);
2386        struct octeon_device *oct = lio->oct_dev;
2387        struct octnic_ctrl_pkt nctrl;
2388        struct octnic_ctrl_params nparams;
2389        int max_frm_size = new_mtu + OCTNET_FRM_HEADER_SIZE;
2390        int ret = 0;
2391
2392        /* Limit the MTU to make sure the ethernet packets are between 64 bytes
2393         * and 65535 bytes
2394         */
2395        if ((max_frm_size < OCTNET_MIN_FRM_SIZE) ||
2396            (max_frm_size > OCTNET_MAX_FRM_SIZE)) {
2397                dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2398                dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2399                        (OCTNET_MIN_FRM_SIZE - OCTNET_FRM_HEADER_SIZE),
2400                        (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE));
2401                return -EINVAL;
2402        }
2403
2404        memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2405
2406        nctrl.ncmd.u64 = 0;
2407        nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2408        nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2409        nctrl.ncmd.s.param2 = new_mtu;
2410        nctrl.wait_time = 100;
2411        nctrl.netpndev = (u64)netdev;
2412        nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2413
2414        nparams.resp_order = OCTEON_RESP_ORDERED;
2415
2416        ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2417        if (ret < 0) {
2418                dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2419                return -1;
2420        }
2421
2422        lio->mtu = new_mtu;
2423
2424        return 0;
2425}
2426
2427/**
2428 * \brief Handler for SIOCSHWTSTAMP ioctl
2429 * @param netdev network device
2430 * @param ifr interface request
2431 * @param cmd command
2432 */
2433static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2434{
2435        struct hwtstamp_config conf;
2436        struct lio *lio = GET_LIO(netdev);
2437
2438        if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2439                return -EFAULT;
2440
2441        if (conf.flags)
2442                return -EINVAL;
2443
2444        switch (conf.tx_type) {
2445        case HWTSTAMP_TX_ON:
2446        case HWTSTAMP_TX_OFF:
2447                break;
2448        default:
2449                return -ERANGE;
2450        }
2451
2452        switch (conf.rx_filter) {
2453        case HWTSTAMP_FILTER_NONE:
2454                break;
2455        case HWTSTAMP_FILTER_ALL:
2456        case HWTSTAMP_FILTER_SOME:
2457        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2458        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2459        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2460        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2461        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2462        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2463        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2464        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2465        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2466        case HWTSTAMP_FILTER_PTP_V2_EVENT:
2467        case HWTSTAMP_FILTER_PTP_V2_SYNC:
2468        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2469                conf.rx_filter = HWTSTAMP_FILTER_ALL;
2470                break;
2471        default:
2472                return -ERANGE;
2473        }
2474
2475        if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2476                ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2477
2478        else
2479                ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2480
2481        return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2482}
2483
2484/**
2485 * \brief ioctl handler
2486 * @param netdev network device
2487 * @param ifr interface request
2488 * @param cmd command
2489 */
2490static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2491{
2492        switch (cmd) {
2493        case SIOCSHWTSTAMP:
2494                return hwtstamp_ioctl(netdev, ifr, cmd);
2495        default:
2496                return -EOPNOTSUPP;
2497        }
2498}
2499
2500/**
2501 * \brief handle a Tx timestamp response
2502 * @param status response status
2503 * @param buf pointer to skb
2504 */
2505static void handle_timestamp(struct octeon_device *oct,
2506                             u32 status,
2507                             void *buf)
2508{
2509        struct octnet_buf_free_info *finfo;
2510        struct octeon_soft_command *sc;
2511        struct oct_timestamp_resp *resp;
2512        struct lio *lio;
2513        struct sk_buff *skb = (struct sk_buff *)buf;
2514
2515        finfo = (struct octnet_buf_free_info *)skb->cb;
2516        lio = finfo->lio;
2517        sc = finfo->sc;
2518        oct = lio->oct_dev;
2519        resp = (struct oct_timestamp_resp *)sc->virtrptr;
2520
2521        if (status != OCTEON_REQUEST_DONE) {
2522                dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2523                        CVM_CAST64(status));
2524                resp->timestamp = 0;
2525        }
2526
2527        octeon_swap_8B_data(&resp->timestamp, 1);
2528
2529        if (unlikely((skb_shinfo(skb)->tx_flags | SKBTX_IN_PROGRESS) != 0)) {
2530                struct skb_shared_hwtstamps ts;
2531                u64 ns = resp->timestamp;
2532
2533                netif_info(lio, tx_done, lio->netdev,
2534                           "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2535                           skb, (unsigned long long)ns);
2536                ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2537                skb_tstamp_tx(skb, &ts);
2538        }
2539
2540        octeon_free_soft_command(oct, sc);
2541        recv_buffer_free(skb);
2542}
2543
2544/* \brief Send a data packet that will be timestamped
2545 * @param oct octeon device
2546 * @param ndata pointer to network data
2547 * @param finfo pointer to private network data
2548 */
2549static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2550                                         struct octnic_data_pkt *ndata,
2551                                         struct octnet_buf_free_info *finfo,
2552                                         int xmit_more)
2553{
2554        int retval;
2555        struct octeon_soft_command *sc;
2556        struct octeon_instr_ih *ih;
2557        struct octeon_instr_rdp *rdp;
2558        struct lio *lio;
2559        int ring_doorbell;
2560
2561        lio = finfo->lio;
2562
2563        sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2564                                            sizeof(struct oct_timestamp_resp));
2565        finfo->sc = sc;
2566
2567        if (!sc) {
2568                dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2569                return IQ_SEND_FAILED;
2570        }
2571
2572        if (ndata->reqtype == REQTYPE_NORESP_NET)
2573                ndata->reqtype = REQTYPE_RESP_NET;
2574        else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2575                ndata->reqtype = REQTYPE_RESP_NET_SG;
2576
2577        sc->callback = handle_timestamp;
2578        sc->callback_arg = finfo->skb;
2579        sc->iq_no = ndata->q_no;
2580
2581        ih = (struct octeon_instr_ih *)&sc->cmd.ih;
2582        rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
2583
2584        ring_doorbell = !xmit_more;
2585        retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2586                                     sc, ih->dlengsz, ndata->reqtype);
2587
2588        if (retval) {
2589                dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2590                        retval);
2591                octeon_free_soft_command(oct, sc);
2592        } else {
2593                netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2594        }
2595
2596        return retval;
2597}
2598
2599static inline int is_ipv4(struct sk_buff *skb)
2600{
2601        return (skb->protocol == htons(ETH_P_IP)) &&
2602               (ip_hdr(skb)->version == 4);
2603}
2604
2605static inline int is_vlan(struct sk_buff *skb)
2606{
2607        return skb->protocol == htons(ETH_P_8021Q);
2608}
2609
2610static inline int is_ip_fragmented(struct sk_buff *skb)
2611{
2612        /* The Don't fragment and Reserved flag fields are ignored.
2613         * IP is fragmented if
2614         * -  the More fragments bit is set (indicating this IP is a fragment
2615         * with more to follow; the current offset could be 0 ).
2616         * -  ths offset field is non-zero.
2617         */
2618        return (ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)) ? 1 : 0;
2619}
2620
2621static inline int is_ipv6(struct sk_buff *skb)
2622{
2623        return (skb->protocol == htons(ETH_P_IPV6)) &&
2624               (ipv6_hdr(skb)->version == 6);
2625}
2626
2627static inline int is_with_extn_hdr(struct sk_buff *skb)
2628{
2629        return (ipv6_hdr(skb)->nexthdr != IPPROTO_TCP) &&
2630               (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP);
2631}
2632
2633static inline int is_tcpudp(struct sk_buff *skb)
2634{
2635        return (ip_hdr(skb)->protocol == IPPROTO_TCP) ||
2636               (ip_hdr(skb)->protocol == IPPROTO_UDP);
2637}
2638
2639static inline u32 get_ipv4_5tuple_tag(struct sk_buff *skb)
2640{
2641        u32 tag;
2642        struct iphdr *iphdr = ip_hdr(skb);
2643
2644        tag = crc32(0, &iphdr->protocol, 1);
2645        tag = crc32(tag, (u8 *)&iphdr->saddr, 8);
2646        tag = crc32(tag, skb_transport_header(skb), 4);
2647        return tag;
2648}
2649
2650static inline u32 get_ipv6_5tuple_tag(struct sk_buff *skb)
2651{
2652        u32 tag;
2653        struct ipv6hdr *ipv6hdr = ipv6_hdr(skb);
2654
2655        tag = crc32(0, &ipv6hdr->nexthdr, 1);
2656        tag = crc32(tag, (u8 *)&ipv6hdr->saddr, 32);
2657        tag = crc32(tag, skb_transport_header(skb), 4);
2658        return tag;
2659}
2660
2661/** \brief Transmit networks packets to the Octeon interface
2662 * @param skbuff   skbuff struct to be passed to network layer.
2663 * @param netdev    pointer to network device
2664 * @returns whether the packet was transmitted to the device okay or not
2665 *             (NETDEV_TX_OK or NETDEV_TX_BUSY)
2666 */
2667static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2668{
2669        struct lio *lio;
2670        struct octnet_buf_free_info *finfo;
2671        union octnic_cmd_setup cmdsetup;
2672        struct octnic_data_pkt ndata;
2673        struct octeon_device *oct;
2674        struct oct_iq_stats *stats;
2675        int cpu = 0, status = 0;
2676        int q_idx = 0, iq_no = 0;
2677        int xmit_more;
2678        u32 tag = 0;
2679
2680        lio = GET_LIO(netdev);
2681        oct = lio->oct_dev;
2682
2683        if (netif_is_multiqueue(netdev)) {
2684                cpu = skb->queue_mapping;
2685                q_idx = (cpu & (lio->linfo.num_txpciq - 1));
2686                iq_no = lio->linfo.txpciq[q_idx];
2687        } else {
2688                iq_no = lio->txq;
2689        }
2690
2691        stats = &oct->instr_queue[iq_no]->stats;
2692
2693        /* Check for all conditions in which the current packet cannot be
2694         * transmitted.
2695         */
2696        if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2697            (!lio->linfo.link.s.status) ||
2698            (skb->len <= 0)) {
2699                netif_info(lio, tx_err, lio->netdev,
2700                           "Transmit failed link_status : %d\n",
2701                           lio->linfo.link.s.status);
2702                goto lio_xmit_failed;
2703        }
2704
2705        /* Use space in skb->cb to store info used to unmap and
2706         * free the buffers.
2707         */
2708        finfo = (struct octnet_buf_free_info *)skb->cb;
2709        finfo->lio = lio;
2710        finfo->skb = skb;
2711        finfo->sc = NULL;
2712
2713        /* Prepare the attributes for the data to be passed to OSI. */
2714        memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2715
2716        ndata.buf = (void *)finfo;
2717
2718        ndata.q_no = iq_no;
2719
2720        if (netif_is_multiqueue(netdev)) {
2721                if (octnet_iq_is_full(oct, ndata.q_no)) {
2722                        /* defer sending if queue is full */
2723                        netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2724                                   ndata.q_no);
2725                        stats->tx_iq_busy++;
2726                        return NETDEV_TX_BUSY;
2727                }
2728        } else {
2729                if (octnet_iq_is_full(oct, lio->txq)) {
2730                        /* defer sending if queue is full */
2731                        stats->tx_iq_busy++;
2732                        netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2733                                   ndata.q_no);
2734                        return NETDEV_TX_BUSY;
2735                }
2736        }
2737        /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu:  %d, q_no:%d\n",
2738         *      lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no );
2739         */
2740
2741        ndata.datasize = skb->len;
2742
2743        cmdsetup.u64 = 0;
2744        cmdsetup.s.ifidx = lio->linfo.ifidx;
2745
2746        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2747                if (is_ipv4(skb) && !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2748                        tag = get_ipv4_5tuple_tag(skb);
2749
2750                        cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2751
2752                        if (ip_hdr(skb)->ihl > 5)
2753                                cmdsetup.s.ipv4opts_ipv6exthdr =
2754                                                OCT_PKT_PARAM_IPV4OPTS;
2755
2756                } else if (is_ipv6(skb)) {
2757                        tag = get_ipv6_5tuple_tag(skb);
2758
2759                        cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2760
2761                        if (is_with_extn_hdr(skb))
2762                                cmdsetup.s.ipv4opts_ipv6exthdr =
2763                                                OCT_PKT_PARAM_IPV6EXTHDR;
2764
2765                } else if (is_vlan(skb)) {
2766                        if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2767                                == htons(ETH_P_IP) &&
2768                                !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2769                                tag = get_ipv4_5tuple_tag(skb);
2770
2771                                cmdsetup.s.cksum_offset =
2772                                        sizeof(struct vlan_ethhdr) + 1;
2773
2774                                if (ip_hdr(skb)->ihl > 5)
2775                                        cmdsetup.s.ipv4opts_ipv6exthdr =
2776                                                OCT_PKT_PARAM_IPV4OPTS;
2777
2778                        } else if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2779                                == htons(ETH_P_IPV6)) {
2780                                tag = get_ipv6_5tuple_tag(skb);
2781
2782                                cmdsetup.s.cksum_offset =
2783                                        sizeof(struct vlan_ethhdr) + 1;
2784
2785                                if (is_with_extn_hdr(skb))
2786                                        cmdsetup.s.ipv4opts_ipv6exthdr =
2787                                                OCT_PKT_PARAM_IPV6EXTHDR;
2788                        }
2789                }
2790        }
2791        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2792                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2793                cmdsetup.s.timestamp = 1;
2794        }
2795
2796        if (skb_shinfo(skb)->nr_frags == 0) {
2797                cmdsetup.s.u.datasize = skb->len;
2798                octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2799                /* Offload checksum calculation for TCP/UDP packets */
2800                ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2801                                                skb->data,
2802                                                skb->len,
2803                                                DMA_TO_DEVICE);
2804                if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2805                        dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2806                                __func__);
2807                        return NETDEV_TX_BUSY;
2808                }
2809
2810                finfo->dptr = ndata.cmd.dptr;
2811
2812                ndata.reqtype = REQTYPE_NORESP_NET;
2813
2814        } else {
2815                int i, frags;
2816                struct skb_frag_struct *frag;
2817                struct octnic_gather *g;
2818
2819                spin_lock(&lio->lock);
2820                g = (struct octnic_gather *)list_delete_head(&lio->glist);
2821                spin_unlock(&lio->lock);
2822
2823                if (!g) {
2824                        netif_info(lio, tx_err, lio->netdev,
2825                                   "Transmit scatter gather: glist null!\n");
2826                        goto lio_xmit_failed;
2827                }
2828
2829                cmdsetup.s.gather = 1;
2830                cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2831                octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2832
2833                memset(g->sg, 0, g->sg_size);
2834
2835                g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2836                                                 skb->data,
2837                                                 (skb->len - skb->data_len),
2838                                                 DMA_TO_DEVICE);
2839                if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2840                        dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2841                                __func__);
2842                        return NETDEV_TX_BUSY;
2843                }
2844                add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2845
2846                frags = skb_shinfo(skb)->nr_frags;
2847                i = 1;
2848                while (frags--) {
2849                        frag = &skb_shinfo(skb)->frags[i - 1];
2850
2851                        g->sg[(i >> 2)].ptr[(i & 3)] =
2852                                dma_map_page(&oct->pci_dev->dev,
2853                                             frag->page.p,
2854                                             frag->page_offset,
2855                                             frag->size,
2856                                             DMA_TO_DEVICE);
2857
2858                        add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2859                        i++;
2860                }
2861
2862                ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2863                                                g->sg, g->sg_size,
2864                                                DMA_TO_DEVICE);
2865                if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2866                        dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2867                                __func__);
2868                        dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2869                                         skb->len - skb->data_len,
2870                                         DMA_TO_DEVICE);
2871                        return NETDEV_TX_BUSY;
2872                }
2873
2874                finfo->dptr = ndata.cmd.dptr;
2875                finfo->g = g;
2876
2877                ndata.reqtype = REQTYPE_NORESP_NET_SG;
2878        }
2879
2880        if (skb_shinfo(skb)->gso_size) {
2881                struct octeon_instr_irh *irh =
2882                        (struct octeon_instr_irh *)&ndata.cmd.irh;
2883                union tx_info *tx_info = (union tx_info *)&ndata.cmd.ossp[0];
2884
2885                irh->len = 1;   /* to indicate that ossp[0] contains tx_info */
2886                tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2887                tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2888        }
2889
2890        xmit_more = skb->xmit_more;
2891
2892        if (unlikely(cmdsetup.s.timestamp))
2893                status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
2894        else
2895                status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
2896        if (status == IQ_SEND_FAILED)
2897                goto lio_xmit_failed;
2898
2899        netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2900
2901        if (status == IQ_SEND_STOP)
2902                stop_q(lio->netdev, q_idx);
2903
2904        netdev->trans_start = jiffies;
2905
2906        stats->tx_done++;
2907        stats->tx_tot_bytes += skb->len;
2908
2909        return NETDEV_TX_OK;
2910
2911lio_xmit_failed:
2912        stats->tx_dropped++;
2913        netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2914                   iq_no, stats->tx_dropped);
2915        dma_unmap_single(&oct->pci_dev->dev, ndata.cmd.dptr,
2916                         ndata.datasize, DMA_TO_DEVICE);
2917        recv_buffer_free(skb);
2918        return NETDEV_TX_OK;
2919}
2920
2921/** \brief Network device Tx timeout
2922 * @param netdev    pointer to network device
2923 */
2924static void liquidio_tx_timeout(struct net_device *netdev)
2925{
2926        struct lio *lio;
2927
2928        lio = GET_LIO(netdev);
2929
2930        netif_info(lio, tx_err, lio->netdev,
2931                   "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2932                   netdev->stats.tx_dropped);
2933        netdev->trans_start = jiffies;
2934        txqs_wake(netdev);
2935}
2936
2937int liquidio_set_feature(struct net_device *netdev, int cmd)
2938{
2939        struct lio *lio = GET_LIO(netdev);
2940        struct octeon_device *oct = lio->oct_dev;
2941        struct octnic_ctrl_pkt nctrl;
2942        struct octnic_ctrl_params nparams;
2943        int ret = 0;
2944
2945        memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2946
2947        nctrl.ncmd.u64 = 0;
2948        nctrl.ncmd.s.cmd = cmd;
2949        nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2950        nctrl.ncmd.s.param2 = OCTNIC_LROIPV4 | OCTNIC_LROIPV6;
2951        nctrl.wait_time = 100;
2952        nctrl.netpndev = (u64)netdev;
2953        nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2954
2955        nparams.resp_order = OCTEON_RESP_NORESPONSE;
2956
2957        ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2958        if (ret < 0) {
2959                dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
2960                        ret);
2961        }
2962        return ret;
2963}
2964
2965/** \brief Net device fix features
2966 * @param netdev  pointer to network device
2967 * @param request features requested
2968 * @returns updated features list
2969 */
2970static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2971                                               netdev_features_t request)
2972{
2973        struct lio *lio = netdev_priv(netdev);
2974
2975        if ((request & NETIF_F_RXCSUM) &&
2976            !(lio->dev_capability & NETIF_F_RXCSUM))
2977                request &= ~NETIF_F_RXCSUM;
2978
2979        if ((request & NETIF_F_HW_CSUM) &&
2980            !(lio->dev_capability & NETIF_F_HW_CSUM))
2981                request &= ~NETIF_F_HW_CSUM;
2982
2983        if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2984                request &= ~NETIF_F_TSO;
2985
2986        if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2987                request &= ~NETIF_F_TSO6;
2988
2989        if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2990                request &= ~NETIF_F_LRO;
2991
2992        /*Disable LRO if RXCSUM is off */
2993        if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2994            (lio->dev_capability & NETIF_F_LRO))
2995                request &= ~NETIF_F_LRO;
2996
2997        return request;
2998}
2999
3000/** \brief Net device set features
3001 * @param netdev  pointer to network device
3002 * @param features features to enable/disable
3003 */
3004static int liquidio_set_features(struct net_device *netdev,
3005                                 netdev_features_t features)
3006{
3007        struct lio *lio = netdev_priv(netdev);
3008
3009        if (!((netdev->features ^ features) & NETIF_F_LRO))
3010                return 0;
3011
3012        if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3013                liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3014        else if (!(features & NETIF_F_LRO) &&
3015                 (lio->dev_capability & NETIF_F_LRO))
3016                liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE);
3017
3018        return 0;
3019}
3020
3021static struct net_device_ops lionetdevops = {
3022        .ndo_open               = liquidio_open,
3023        .ndo_stop               = liquidio_stop,
3024        .ndo_start_xmit         = liquidio_xmit,
3025        .ndo_get_stats          = liquidio_get_stats,
3026        .ndo_set_mac_address    = liquidio_set_mac,
3027        .ndo_set_rx_mode        = liquidio_set_mcast_list,
3028        .ndo_tx_timeout         = liquidio_tx_timeout,
3029        .ndo_change_mtu         = liquidio_change_mtu,
3030        .ndo_do_ioctl           = liquidio_ioctl,
3031        .ndo_fix_features       = liquidio_fix_features,
3032        .ndo_set_features       = liquidio_set_features,
3033};
3034
3035/** \brief Entry point for the liquidio module
3036 */
3037static int __init liquidio_init(void)
3038{
3039        int i;
3040        struct handshake *hs;
3041
3042        init_completion(&first_stage);
3043
3044        octeon_init_device_list(conf_type);
3045
3046        if (liquidio_init_pci())
3047                return -EINVAL;
3048
3049        wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3050
3051        for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3052                hs = &handshake[i];
3053                if (hs->pci_dev) {
3054                        wait_for_completion(&hs->init);
3055                        if (!hs->init_ok) {
3056                                /* init handshake failed */
3057                                dev_err(&hs->pci_dev->dev,
3058                                        "Failed to init device\n");
3059                                liquidio_deinit_pci();
3060                                return -EIO;
3061                        }
3062                }
3063        }
3064
3065        for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3066                hs = &handshake[i];
3067                if (hs->pci_dev) {
3068                        wait_for_completion_timeout(&hs->started,
3069                                                    msecs_to_jiffies(30000));
3070                        if (!hs->started_ok) {
3071                                /* starter handshake failed */
3072                                dev_err(&hs->pci_dev->dev,
3073                                        "Firmware failed to start\n");
3074                                liquidio_deinit_pci();
3075                                return -EIO;
3076                        }
3077                }
3078        }
3079
3080        return 0;
3081}
3082
3083static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3084{
3085        struct octeon_device *oct = (struct octeon_device *)buf;
3086        struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3087        int ifidx = 0;
3088        union oct_link_status *ls;
3089        int i;
3090
3091        if ((recv_pkt->buffer_size[0] != sizeof(*ls)) ||
3092            (recv_pkt->rh.r_nic_info.ifidx > oct->ifcount)) {
3093                dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3094                        recv_pkt->buffer_size[0],
3095                        recv_pkt->rh.r_nic_info.ifidx);
3096                goto nic_info_err;
3097        }
3098
3099        ifidx = recv_pkt->rh.r_nic_info.ifidx;
3100        ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3101
3102        octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3103
3104        update_link_status(oct->props[ifidx].netdev, ls);
3105
3106nic_info_err:
3107        for (i = 0; i < recv_pkt->buffer_count; i++)
3108                recv_buffer_free(recv_pkt->buffer_ptr[i]);
3109        octeon_free_recv_info(recv_info);
3110        return 0;
3111}
3112
3113/**
3114 * \brief Setup network interfaces
3115 * @param octeon_dev  octeon device
3116 *
3117 * Called during init time for each device. It assumes the NIC
3118 * is already up and running.  The link information for each
3119 * interface is passed in link_info.
3120 */
3121static int setup_nic_devices(struct octeon_device *octeon_dev)
3122{
3123        struct lio *lio = NULL;
3124        struct net_device *netdev;
3125        u8 mac[6], i, j;
3126        struct octeon_soft_command *sc;
3127        struct liquidio_if_cfg_context *ctx;
3128        struct liquidio_if_cfg_resp *resp;
3129        struct octdev_props *props;
3130        int retval, num_iqueues, num_oqueues, q_no;
3131        u64 q_mask;
3132        int num_cpus = num_online_cpus();
3133        union oct_nic_if_cfg if_cfg;
3134        unsigned int base_queue;
3135        unsigned int gmx_port_id;
3136        u32 resp_size, ctx_size;
3137
3138        /* This is to handle link status changes */
3139        octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3140                                    OPCODE_NIC_INFO,
3141                                    lio_nic_info, octeon_dev);
3142
3143        /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3144         * They are handled directly.
3145         */
3146        octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3147                                        free_netbuf);
3148
3149        octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3150                                        free_netsgbuf);
3151
3152        octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3153                                        free_netsgbuf_with_resp);
3154
3155        for (i = 0; i < octeon_dev->ifcount; i++) {
3156                resp_size = sizeof(struct liquidio_if_cfg_resp);
3157                ctx_size = sizeof(struct liquidio_if_cfg_context);
3158                sc = (struct octeon_soft_command *)
3159                        octeon_alloc_soft_command(octeon_dev, 0,
3160                                                  resp_size, ctx_size);
3161                resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3162                ctx  = (struct liquidio_if_cfg_context *)sc->ctxptr;
3163
3164                num_iqueues =
3165                        CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3166                num_oqueues =
3167                        CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3168                base_queue =
3169                        CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3170                gmx_port_id =
3171                        CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3172                if (num_iqueues > num_cpus)
3173                        num_iqueues = num_cpus;
3174                if (num_oqueues > num_cpus)
3175                        num_oqueues = num_cpus;
3176                dev_dbg(&octeon_dev->pci_dev->dev,
3177                        "requesting config for interface %d, iqs %d, oqs %d\n",
3178                        i, num_iqueues, num_oqueues);
3179                ACCESS_ONCE(ctx->cond) = 0;
3180                ctx->octeon_id = lio_get_device_id(octeon_dev);
3181                init_waitqueue_head(&ctx->wc);
3182
3183                if_cfg.u64 = 0;
3184                if_cfg.s.num_iqueues = num_iqueues;
3185                if_cfg.s.num_oqueues = num_oqueues;
3186                if_cfg.s.base_queue = base_queue;
3187                if_cfg.s.gmx_port_id = gmx_port_id;
3188                octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3189                                            OPCODE_NIC_IF_CFG, i,
3190                                            if_cfg.u64, 0);
3191
3192                sc->callback = if_cfg_callback;
3193                sc->callback_arg = sc;
3194                sc->wait_time = 1000;
3195
3196                retval = octeon_send_soft_command(octeon_dev, sc);
3197                if (retval) {
3198                        dev_err(&octeon_dev->pci_dev->dev,
3199                                "iq/oq config failed status: %x\n",
3200                                retval);
3201                        /* Soft instr is freed by driver in case of failure. */
3202                        goto setup_nic_dev_fail;
3203                }
3204
3205                /* Sleep on a wait queue till the cond flag indicates that the
3206                 * response arrived or timed-out.
3207                 */
3208                sleep_cond(&ctx->wc, &ctx->cond);
3209                retval = resp->status;
3210                if (retval) {
3211                        dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3212                        goto setup_nic_dev_fail;
3213                }
3214
3215                octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3216                                    (sizeof(struct liquidio_if_cfg_info)) >> 3);
3217
3218                num_iqueues = hweight64(resp->cfg_info.iqmask);
3219                num_oqueues = hweight64(resp->cfg_info.oqmask);
3220
3221                if (!(num_iqueues) || !(num_oqueues)) {
3222                        dev_err(&octeon_dev->pci_dev->dev,
3223                                "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3224                                resp->cfg_info.iqmask,
3225                                resp->cfg_info.oqmask);
3226                        goto setup_nic_dev_fail;
3227                }
3228                dev_dbg(&octeon_dev->pci_dev->dev,
3229                        "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3230                        i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3231                        num_iqueues, num_oqueues);
3232                netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3233
3234                if (!netdev) {
3235                        dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3236                        goto setup_nic_dev_fail;
3237                }
3238
3239                props = &octeon_dev->props[i];
3240                props->netdev = netdev;
3241
3242                if (num_iqueues > 1)
3243                        lionetdevops.ndo_select_queue = select_q;
3244
3245                /* Associate the routines that will handle different
3246                 * netdev tasks.
3247                 */
3248                netdev->netdev_ops = &lionetdevops;
3249
3250                lio = GET_LIO(netdev);
3251
3252                memset(lio, 0, sizeof(struct lio));
3253
3254                lio->linfo.ifidx = resp->cfg_info.ifidx;
3255                lio->ifidx = resp->cfg_info.ifidx;
3256
3257                lio->linfo.num_rxpciq = num_oqueues;
3258                lio->linfo.num_txpciq = num_iqueues;
3259                q_mask = resp->cfg_info.oqmask;
3260                /* q_mask is 0-based and already verified mask is nonzero */
3261                for (j = 0; j < num_oqueues; j++) {
3262                        q_no = __ffs64(q_mask);
3263                        q_mask &= (~(1UL << q_no));
3264                        lio->linfo.rxpciq[j] = q_no;
3265                }
3266                q_mask = resp->cfg_info.iqmask;
3267                for (j = 0; j < num_iqueues; j++) {
3268                        q_no = __ffs64(q_mask);
3269                        q_mask &= (~(1UL << q_no));
3270                        lio->linfo.txpciq[j] = q_no;
3271                }
3272                lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3273                lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3274                lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3275
3276                lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3277
3278                lio->dev_capability = NETIF_F_HIGHDMA
3279                                      | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3280                                      | NETIF_F_SG | NETIF_F_RXCSUM
3281                                      | NETIF_F_TSO | NETIF_F_TSO6
3282                                      | NETIF_F_LRO;
3283                netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3284
3285                netdev->features = lio->dev_capability;
3286                netdev->vlan_features = lio->dev_capability;
3287
3288                netdev->hw_features = lio->dev_capability;
3289
3290                /* Point to the  properties for octeon device to which this
3291                 * interface belongs.
3292                 */
3293                lio->oct_dev = octeon_dev;
3294                lio->octprops = props;
3295                lio->netdev = netdev;
3296                spin_lock_init(&lio->lock);
3297
3298                dev_dbg(&octeon_dev->pci_dev->dev,
3299                        "if%d gmx: %d hw_addr: 0x%llx\n", i,
3300                        lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3301
3302                /* 64-bit swap required on LE machines */
3303                octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3304                for (j = 0; j < 6; j++)
3305                        mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3306
3307                /* Copy MAC Address to OS network device structure */
3308
3309                ether_addr_copy(netdev->dev_addr, mac);
3310
3311                if (setup_io_queues(octeon_dev, netdev)) {
3312                        dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3313                        goto setup_nic_dev_fail;
3314                }
3315
3316                ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3317
3318                /* By default all interfaces on a single Octeon uses the same
3319                 * tx and rx queues
3320                 */
3321                lio->txq = lio->linfo.txpciq[0];
3322                lio->rxq = lio->linfo.rxpciq[0];
3323
3324                lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3325                lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3326
3327                if (setup_glist(lio)) {
3328                        dev_err(&octeon_dev->pci_dev->dev,
3329                                "Gather list allocation failed\n");
3330                        goto setup_nic_dev_fail;
3331                }
3332
3333                /* Register ethtool support */
3334                liquidio_set_ethtool_ops(netdev);
3335
3336                liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3337
3338                if ((debug != -1) && (debug & NETIF_MSG_HW))
3339                        liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE);
3340
3341                /* Register the network device with the OS */
3342                if (register_netdev(netdev)) {
3343                        dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3344                        goto setup_nic_dev_fail;
3345                }
3346
3347                dev_dbg(&octeon_dev->pci_dev->dev,
3348                        "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3349                        i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3350                netif_carrier_off(netdev);
3351
3352                if (lio->linfo.link.s.status) {
3353                        netif_carrier_on(netdev);
3354                        start_txq(netdev);
3355                } else {
3356                        netif_carrier_off(netdev);
3357                }
3358
3359                ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3360
3361                dev_dbg(&octeon_dev->pci_dev->dev,
3362                        "NIC ifidx:%d Setup successful\n", i);
3363
3364                octeon_free_soft_command(octeon_dev, sc);
3365        }
3366
3367        return 0;
3368
3369setup_nic_dev_fail:
3370
3371        octeon_free_soft_command(octeon_dev, sc);
3372
3373        while (i--) {
3374                dev_err(&octeon_dev->pci_dev->dev,
3375                        "NIC ifidx:%d Setup failed\n", i);
3376                liquidio_destroy_nic_device(octeon_dev, i);
3377        }
3378        return -ENODEV;
3379}
3380
3381/**
3382 * \brief initialize the NIC
3383 * @param oct octeon device
3384 *
3385 * This initialization routine is called once the Octeon device application is
3386 * up and running
3387 */
3388static int liquidio_init_nic_module(struct octeon_device *oct)
3389{
3390        struct oct_intrmod_cfg *intrmod_cfg;
3391        int retval = 0;
3392        int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3393
3394        dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3395
3396        /* only default iq and oq were initialized
3397         * initialize the rest as well
3398         */
3399        /* run port_config command for each port */
3400        oct->ifcount = num_nic_ports;
3401
3402        memset(oct->props, 0,
3403               sizeof(struct octdev_props) * num_nic_ports);
3404
3405        retval = setup_nic_devices(oct);
3406        if (retval) {
3407                dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3408                goto octnet_init_failure;
3409        }
3410
3411        liquidio_ptp_init(oct);
3412
3413        /* Initialize interrupt moderation params */
3414        intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3415        intrmod_cfg->intrmod_enable = 1;
3416        intrmod_cfg->intrmod_check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3417        intrmod_cfg->intrmod_maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3418        intrmod_cfg->intrmod_minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3419        intrmod_cfg->intrmod_maxcnt_trigger = LIO_INTRMOD_MAXCNT_TRIGGER;
3420        intrmod_cfg->intrmod_maxtmr_trigger = LIO_INTRMOD_MAXTMR_TRIGGER;
3421        intrmod_cfg->intrmod_mintmr_trigger = LIO_INTRMOD_MINTMR_TRIGGER;
3422        intrmod_cfg->intrmod_mincnt_trigger = LIO_INTRMOD_MINCNT_TRIGGER;
3423
3424        dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3425
3426        return retval;
3427
3428octnet_init_failure:
3429
3430        oct->ifcount = 0;
3431
3432        return retval;
3433}
3434
3435/**
3436 * \brief starter callback that invokes the remaining initialization work after
3437 * the NIC is up and running.
3438 * @param octptr  work struct work_struct
3439 */
3440static void nic_starter(struct work_struct *work)
3441{
3442        struct octeon_device *oct;
3443        struct cavium_wk *wk = (struct cavium_wk *)work;
3444
3445        oct = (struct octeon_device *)wk->ctxptr;
3446
3447        if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3448                return;
3449
3450        /* If the status of the device is CORE_OK, the core
3451         * application has reported its application type. Call
3452         * any registered handlers now and move to the RUNNING
3453         * state.
3454         */
3455        if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3456                schedule_delayed_work(&oct->nic_poll_work.work,
3457                                      LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3458                return;
3459        }
3460
3461        atomic_set(&oct->status, OCT_DEV_RUNNING);
3462
3463        if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3464                dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3465
3466                if (liquidio_init_nic_module(oct))
3467                        dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3468                else
3469                        handshake[oct->octeon_id].started_ok = 1;
3470        } else {
3471                dev_err(&oct->pci_dev->dev,
3472                        "Unexpected application running on NIC (%d). Check firmware.\n",
3473                        oct->app_mode);
3474        }
3475
3476        complete(&handshake[oct->octeon_id].started);
3477}
3478
3479/**
3480 * \brief Device initialization for each Octeon device that is probed
3481 * @param octeon_dev  octeon device
3482 */
3483static int octeon_device_init(struct octeon_device *octeon_dev)
3484{
3485        int j, ret;
3486        struct octeon_device_priv *oct_priv =
3487                (struct octeon_device_priv *)octeon_dev->priv;
3488        atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3489
3490        /* Enable access to the octeon device and make its DMA capability
3491         * known to the OS.
3492         */
3493        if (octeon_pci_os_setup(octeon_dev))
3494                return 1;
3495
3496        /* Identify the Octeon type and map the BAR address space. */
3497        if (octeon_chip_specific_setup(octeon_dev)) {
3498                dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3499                return 1;
3500        }
3501
3502        atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3503
3504        octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3505
3506        /* Do a soft reset of the Octeon device. */
3507        if (octeon_dev->fn_list.soft_reset(octeon_dev))
3508                return 1;
3509
3510        /* Initialize the dispatch mechanism used to push packets arriving on
3511         * Octeon Output queues.
3512         */
3513        if (octeon_init_dispatch_list(octeon_dev))
3514                return 1;
3515
3516        octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3517                                    OPCODE_NIC_CORE_DRV_ACTIVE,
3518                                    octeon_core_drv_init,
3519                                    octeon_dev);
3520
3521        INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3522        octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3523        schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3524                              LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3525
3526        atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3527
3528        octeon_set_io_queues_off(octeon_dev);
3529
3530        /*  Setup the data structures that manage this Octeon's Input queues. */
3531        if (octeon_setup_instr_queues(octeon_dev)) {
3532                dev_err(&octeon_dev->pci_dev->dev,
3533                        "instruction queue initialization failed\n");
3534                /* On error, release any previously allocated queues */
3535                for (j = 0; j < octeon_dev->num_iqs; j++)
3536                        octeon_delete_instr_queue(octeon_dev, j);
3537                return 1;
3538        }
3539        atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3540
3541        /* Initialize soft command buffer pool
3542         */
3543        if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3544                dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3545                return 1;
3546        }
3547        atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3548
3549        /* Initialize lists to manage the requests of different types that
3550         * arrive from user & kernel applications for this octeon device.
3551         */
3552        if (octeon_setup_response_list(octeon_dev)) {
3553                dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3554                return 1;
3555        }
3556        atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3557
3558        if (octeon_setup_output_queues(octeon_dev)) {
3559                dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3560                /* Release any previously allocated queues */
3561                for (j = 0; j < octeon_dev->num_oqs; j++)
3562                        octeon_delete_droq(octeon_dev, j);
3563        }
3564
3565        atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3566
3567        /* The input and output queue registers were setup earlier (the queues
3568         * were not enabled). Any additional registers that need to be
3569         * programmed should be done now.
3570         */
3571        ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3572        if (ret) {
3573                dev_err(&octeon_dev->pci_dev->dev,
3574                        "Failed to configure device registers\n");
3575                return ret;
3576        }
3577
3578        /* Initialize the tasklet that handles output queue packet processing.*/
3579        dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3580        tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3581                     (unsigned long)octeon_dev);
3582
3583        /* Setup the interrupt handler and record the INT SUM register address
3584         */
3585        octeon_setup_interrupt(octeon_dev);
3586
3587        /* Enable Octeon device interrupts */
3588        octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3589
3590        /* Enable the input and output queues for this Octeon device */
3591        octeon_dev->fn_list.enable_io_queues(octeon_dev);
3592
3593        atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3594
3595        dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3596
3597        if (ddr_timeout == 0) {
3598                dev_info(&octeon_dev->pci_dev->dev,
3599                         "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3600        }
3601
3602        schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
3603
3604        /* Wait for the octeon to initialize DDR after the soft-reset. */
3605        ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
3606        if (ret) {
3607                dev_err(&octeon_dev->pci_dev->dev,
3608                        "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
3609                        ret);
3610                return 1;
3611        }
3612
3613        if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
3614                dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
3615                return 1;
3616        }
3617
3618        dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
3619        ret = octeon_init_consoles(octeon_dev);
3620        if (ret) {
3621                dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
3622                return 1;
3623        }
3624        ret = octeon_add_console(octeon_dev, 0);
3625        if (ret) {
3626                dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
3627                return 1;
3628        }
3629
3630        atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
3631
3632        dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
3633        ret = load_firmware(octeon_dev);
3634        if (ret) {
3635                dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
3636                return 1;
3637        }
3638
3639        handshake[octeon_dev->octeon_id].init_ok = 1;
3640        complete(&handshake[octeon_dev->octeon_id].init);
3641
3642        atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
3643
3644        /* Send Credit for Octeon Output queues. Credits are always sent after
3645         * the output queue is enabled.
3646         */
3647        for (j = 0; j < octeon_dev->num_oqs; j++)
3648                writel(octeon_dev->droq[j]->max_count,
3649                       octeon_dev->droq[j]->pkts_credit_reg);
3650
3651        /* Packets can start arriving on the output queues from this point. */
3652
3653        return 0;
3654}
3655
3656/**
3657 * \brief Exits the module
3658 */
3659static void __exit liquidio_exit(void)
3660{
3661        liquidio_deinit_pci();
3662
3663        pr_info("LiquidIO network module is now unloaded\n");
3664}
3665
3666module_init(liquidio_init);
3667module_exit(liquidio_exit);
3668