linux/drivers/net/ethernet/micrel/ksz884x.c
<<
>>
Prefs
   1/**
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 *      Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL                  0x0000
  41#define DMA_TX_ENABLE                   0x00000001
  42#define DMA_TX_CRC_ENABLE               0x00000002
  43#define DMA_TX_PAD_ENABLE               0x00000004
  44#define DMA_TX_LOOPBACK                 0x00000100
  45#define DMA_TX_FLOW_ENABLE              0x00000200
  46#define DMA_TX_CSUM_IP                  0x00010000
  47#define DMA_TX_CSUM_TCP                 0x00020000
  48#define DMA_TX_CSUM_UDP                 0x00040000
  49#define DMA_TX_BURST_SIZE               0x3F000000
  50
  51#define KS_DMA_RX_CTRL                  0x0004
  52#define DMA_RX_ENABLE                   0x00000001
  53#define KS884X_DMA_RX_MULTICAST         0x00000002
  54#define DMA_RX_PROMISCUOUS              0x00000004
  55#define DMA_RX_ERROR                    0x00000008
  56#define DMA_RX_UNICAST                  0x00000010
  57#define DMA_RX_ALL_MULTICAST            0x00000020
  58#define DMA_RX_BROADCAST                0x00000040
  59#define DMA_RX_FLOW_ENABLE              0x00000200
  60#define DMA_RX_CSUM_IP                  0x00010000
  61#define DMA_RX_CSUM_TCP                 0x00020000
  62#define DMA_RX_CSUM_UDP                 0x00040000
  63#define DMA_RX_BURST_SIZE               0x3F000000
  64
  65#define DMA_BURST_SHIFT                 24
  66#define DMA_BURST_DEFAULT               8
  67
  68#define KS_DMA_TX_START                 0x0008
  69#define KS_DMA_RX_START                 0x000C
  70#define DMA_START                       0x00000001
  71
  72#define KS_DMA_TX_ADDR                  0x0010
  73#define KS_DMA_RX_ADDR                  0x0014
  74
  75#define DMA_ADDR_LIST_MASK              0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT             2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET       0x0020
  80#define KS884X_MULTICAST_1_OFFSET       0x0021
  81#define KS884X_MULTICAST_2_OFFSET       0x0022
  82#define KS884x_MULTICAST_3_OFFSET       0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET       0x0024
  85#define KS884X_MULTICAST_5_OFFSET       0x0025
  86#define KS884X_MULTICAST_6_OFFSET       0x0026
  87#define KS884X_MULTICAST_7_OFFSET       0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE        0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS        0x002C
  95
  96#define KS884X_INT_RX_STOPPED           0x02000000
  97#define KS884X_INT_TX_STOPPED           0x04000000
  98#define KS884X_INT_RX_OVERRUN           0x08000000
  99#define KS884X_INT_TX_EMPTY             0x10000000
 100#define KS884X_INT_RX                   0x20000000
 101#define KS884X_INT_TX                   0x40000000
 102#define KS884X_INT_PHY                  0x80000000
 103
 104#define KS884X_INT_RX_MASK              \
 105        (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK              \
 107        (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO                0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI                0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO                0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI                0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO                0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI                0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO                0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI                0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO                0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI                0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO                0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI                0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO                0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI                0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO                0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI                0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO                0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI                0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO                0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI                0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO                0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI                0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO                0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI                0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO                0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI                0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO                0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI                0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO                0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI                0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO                0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI                0x00FC
 176
 177#define ADD_ADDR_HI_MASK                0x0000FFFF
 178#define ADD_ADDR_ENABLE                 0x80000000
 179#define ADD_ADDR_INCR                   8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET            0x0200
 185#define KS884X_ADDR_1_OFFSET            0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET            0x0202
 188#define KS884X_ADDR_3_OFFSET            0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET            0x0204
 191#define KS884X_ADDR_5_OFFSET            0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET          0x0210
 195
 196#define BUS_SPEED_125_MHZ               0x0000
 197#define BUS_SPEED_62_5_MHZ              0x0001
 198#define BUS_SPEED_41_66_MHZ             0x0002
 199#define BUS_SPEED_25_MHZ                0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET       0x0212
 203
 204#define EEPROM_CHIP_SELECT              0x0001
 205#define EEPROM_SERIAL_CLOCK             0x0002
 206#define EEPROM_DATA_OUT                 0x0004
 207#define EEPROM_DATA_IN                  0x0008
 208#define EEPROM_ACCESS_ENABLE            0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET          0x0214
 212
 213#define RX_MEM_TEST_FAILED              0x0008
 214#define RX_MEM_TEST_FINISHED            0x0010
 215#define TX_MEM_TEST_FAILED              0x0800
 216#define TX_MEM_TEST_FINISHED            0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET       0x0216
 220#define GLOBAL_SOFTWARE_RESET           0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET      0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET          0x021A
 226#define KS8841_WOL_MAGIC_ENABLE         0x0080
 227#define KS8841_WOL_FRAME3_ENABLE        0x0008
 228#define KS8841_WOL_FRAME2_ENABLE        0x0004
 229#define KS8841_WOL_FRAME1_ENABLE        0x0002
 230#define KS8841_WOL_FRAME0_ENABLE        0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET     0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET   0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET   0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P                   0x04A0
 239#define KS884X_IACR_OFFSET              KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P                  0x04A2
 243#define KS884X_IADR2_P                  0x04A4
 244#define KS884X_IADR3_P                  0x04A6
 245#define KS884X_IADR4_P                  0x04A8
 246#define KS884X_IADR5_P                  0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET      KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET    (KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET        KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET        (KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET        KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET        (KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET        KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET        (KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET        KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET        (KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET        KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P                 0x04D0
 263#define KS884X_P1MBSR_P                 0x04D2
 264#define KS884X_PHY1ILR_P                0x04D4
 265#define KS884X_PHY1IHR_P                0x04D6
 266#define KS884X_P1ANAR_P                 0x04D8
 267#define KS884X_P1ANLPR_P                0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P                 0x04E0
 271#define KS884X_P2MBSR_P                 0x04E2
 272#define KS884X_PHY2ILR_P                0x04E4
 273#define KS884X_PHY2IHR_P                0x04E6
 274#define KS884X_P2ANAR_P                 0x04E8
 275#define KS884X_P2ANLPR_P                0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET        KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL               (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET          0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL                    0
 284
 285#define PHY_RESET                       0x8000
 286#define PHY_LOOPBACK                    0x4000
 287#define PHY_SPEED_100MBIT               0x2000
 288#define PHY_AUTO_NEG_ENABLE             0x1000
 289#define PHY_POWER_DOWN                  0x0800
 290#define PHY_MII_DISABLE                 0x0400
 291#define PHY_AUTO_NEG_RESTART            0x0200
 292#define PHY_FULL_DUPLEX                 0x0100
 293#define PHY_COLLISION_TEST              0x0080
 294#define PHY_HP_MDIX                     0x0020
 295#define PHY_FORCE_MDIX                  0x0010
 296#define PHY_AUTO_MDIX_DISABLE           0x0008
 297#define PHY_REMOTE_FAULT_DISABLE        0x0004
 298#define PHY_TRANSMIT_DISABLE            0x0002
 299#define PHY_LED_DISABLE                 0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET        0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS                  1
 305
 306#define PHY_100BT4_CAPABLE              0x8000
 307#define PHY_100BTX_FD_CAPABLE           0x4000
 308#define PHY_100BTX_CAPABLE              0x2000
 309#define PHY_10BT_FD_CAPABLE             0x1000
 310#define PHY_10BT_CAPABLE                0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE        0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE        0x0020
 313#define PHY_REMOTE_FAULT                0x0010
 314#define PHY_AUTO_NEG_CAPABLE            0x0008
 315#define PHY_LINK_STATUS                 0x0004
 316#define PHY_JABBER_DETECT               0x0002
 317#define PHY_EXTENDED_CAPABILITY         0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET          0x04
 320#define KS884X_PHY_ID_2_OFFSET          0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1                    2
 324#define PHY_REG_ID_2                    3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET      0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION        4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE          0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT       0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE         0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE          0x0400
 336#define PHY_AUTO_NEG_100BT4             0x0200
 337#define PHY_AUTO_NEG_100BTX_FD          0x0100
 338#define PHY_AUTO_NEG_100BTX             0x0080
 339#define PHY_AUTO_NEG_10BT_FD            0x0040
 340#define PHY_AUTO_NEG_10BT               0x0020
 341#define PHY_AUTO_NEG_SELECTOR           0x001F
 342#define PHY_AUTO_NEG_802_3              0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET    0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY       5
 350
 351#define PHY_REMOTE_NEXT_PAGE            0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE          0x4000
 353#define PHY_REMOTE_REMOTE_FAULT         0x2000
 354#define PHY_REMOTE_SYM_PAUSE            0x0400
 355#define PHY_REMOTE_100BTX_FD            0x0100
 356#define PHY_REMOTE_100BTX               0x0080
 357#define PHY_REMOTE_10BT_FD              0x0040
 358#define PHY_REMOTE_10BT                 0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P                  0x04F0
 362#define KS884X_P1PHYCTRL_P              0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P                  0x04F4
 366#define KS884X_P2PHYCTRL_P              0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET       KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL            (KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET       0x00
 372
 373#define PHY_START_CABLE_DIAG            0x8000
 374#define PHY_CABLE_DIAG_RESULT           0x6000
 375#define PHY_CABLE_STAT_NORMAL           0x0000
 376#define PHY_CABLE_STAT_OPEN             0x2000
 377#define PHY_CABLE_STAT_SHORT            0x4000
 378#define PHY_CABLE_STAT_FAILED           0x6000
 379#define PHY_CABLE_10M_SHORT             0x1000
 380#define PHY_CABLE_FAULT_COUNTER         0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET      0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY      0x0020
 385#define PHY_STAT_MDIX                   0x0010
 386#define PHY_FORCE_LINK                  0x0008
 387#define PHY_POWER_SAVING_DISABLE        0x0004
 388#define PHY_REMOTE_LOOPBACK             0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P                  0x0400
 392#define KS884X_CHIP_ID_OFFSET           KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET         (KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID                   0x88
 396
 397#define REG_CHIP_ID_41                  0x8810
 398#define REG_CHIP_ID_42                  0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41          0xFF10
 401#define KS884X_CHIP_ID_MASK             0xFFF0
 402#define KS884X_CHIP_ID_SHIFT            4
 403#define KS884X_REVISION_MASK            0x000E
 404#define KS884X_REVISION_SHIFT           1
 405#define KS8842_START                    0x0001
 406
 407#define CHIP_IP_41_M                    0x8810
 408#define CHIP_IP_42_M                    0x8800
 409#define CHIP_IP_61_M                    0x8890
 410#define CHIP_IP_62_M                    0x8880
 411
 412#define CHIP_IP_41_P                    0x8850
 413#define CHIP_IP_42_P                    0x8840
 414#define CHIP_IP_61_P                    0x88D0
 415#define CHIP_IP_62_P                    0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P                  0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET     KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL                 0x8000
 422#define SWITCH_TX_FLOW_CTRL             0x2000
 423#define SWITCH_RX_FLOW_CTRL             0x1000
 424#define SWITCH_CHECK_LENGTH             0x0800
 425#define SWITCH_AGING_ENABLE             0x0400
 426#define SWITCH_FAST_AGING               0x0200
 427#define SWITCH_AGGR_BACKOFF             0x0100
 428#define SWITCH_PASS_PAUSE               0x0008
 429#define SWITCH_LINK_AUTO_AGING          0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P                  0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET     KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE              0x8000
 436#define SWITCH_IGMP_SNOOP               0x4000
 437#define IPV6_MLD_SNOOP_ENABLE           0x2000
 438#define IPV6_MLD_SNOOP_OPTION           0x1000
 439#define PRIORITY_SCHEME_SELECT          0x0800
 440#define SWITCH_MIRROR_RX_TX             0x0100
 441#define UNICAST_VLAN_BOUNDARY           0x0080
 442#define MULTICAST_STORM_DISABLE         0x0040
 443#define SWITCH_BACK_PRESSURE            0x0020
 444#define FAIR_FLOW_CTRL                  0x0010
 445#define NO_EXC_COLLISION_DROP           0x0008
 446#define SWITCH_HUGE_PACKET              0x0004
 447#define SWITCH_LEGAL_PACKET             0x0002
 448#define SWITCH_BUF_RESERVE              0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P                  0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET     KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO         0xFF00
 455#define SWITCH_REPEATER                 0x0080
 456#define SWITCH_HALF_DUPLEX              0x0040
 457#define SWITCH_FLOW_CTRL                0x0020
 458#define SWITCH_10_MBIT                  0x0010
 459#define SWITCH_REPLACE_NULL_VID         0x0008
 460#define BROADCAST_STORM_RATE_HI         0x0007
 461
 462#define BROADCAST_STORM_RATE            0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P                  0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P                  0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET     KS8842_SGCR5_P
 470
 471#define LED_MODE                        0x8200
 472#define LED_SPEED_DUPLEX_ACT            0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT       0x8000
 474#define LED_DUPLEX_10_100               0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P                  0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET     KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK            3
 481#define KS8842_PRIORITY_SHIFT           2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P                  0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET     KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE      0x0008
 488#define SWITCH_UNK_DEF_PORT_3           0x0004
 489#define SWITCH_UNK_DEF_PORT_2           0x0002
 490#define SWITCH_UNK_DEF_PORT_1           0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P                 0x0470
 494#define KS8842_MACAR2_P                 0x0472
 495#define KS8842_MACAR3_P                 0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET        KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET        (KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET        KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET        (KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET        KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET        (KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P                  0x0480
 505#define KS8842_TOSR2_P                  0x0482
 506#define KS8842_TOSR3_P                  0x0484
 507#define KS8842_TOSR4_P                  0x0486
 508#define KS8842_TOSR5_P                  0x0488
 509#define KS8842_TOSR6_P                  0x048A
 510#define KS8842_TOSR7_P                  0x0490
 511#define KS8842_TOSR8_P                  0x0492
 512#define KS8842_TOS_1_OFFSET             KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET             KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET             KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET             KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET             KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET             KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET             KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET             KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P                  0x0500
 524#define KS8842_P1CR2_P                  0x0502
 525#define KS8842_P1VIDR_P                 0x0504
 526#define KS8842_P1CR3_P                  0x0506
 527#define KS8842_P1IRCR_P                 0x0508
 528#define KS8842_P1ERCR_P                 0x050A
 529#define KS884X_P1SCSLMD_P               0x0510
 530#define KS884X_P1CR4_P                  0x0512
 531#define KS884X_P1SR_P                   0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P                  0x0520
 535#define KS8842_P2CR2_P                  0x0522
 536#define KS8842_P2VIDR_P                 0x0524
 537#define KS8842_P2CR3_P                  0x0526
 538#define KS8842_P2IRCR_P                 0x0528
 539#define KS8842_P2ERCR_P                 0x052A
 540#define KS884X_P2SCSLMD_P               0x0530
 541#define KS884X_P2CR4_P                  0x0532
 542#define KS884X_P2SR_P                   0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P                  0x0540
 546#define KS8842_P3CR2_P                  0x0542
 547#define KS8842_P3VIDR_P                 0x0544
 548#define KS8842_P3CR3_P                  0x0546
 549#define KS8842_P3IRCR_P                 0x0548
 550#define KS8842_P3ERCR_P                 0x054A
 551
 552#define KS8842_PORT_1_CTRL_1            KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1            KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1            KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)              \
 557        (addr = KS8842_PORT_1_CTRL_1 + (port) * \
 558                (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET       0x00
 561
 562#define PORT_BROADCAST_STORM            0x0080
 563#define PORT_DIFFSERV_ENABLE            0x0040
 564#define PORT_802_1P_ENABLE              0x0020
 565#define PORT_BASED_PRIORITY_MASK        0x0018
 566#define PORT_BASED_PRIORITY_BASE        0x0003
 567#define PORT_BASED_PRIORITY_SHIFT       3
 568#define PORT_BASED_PRIORITY_0           0x0000
 569#define PORT_BASED_PRIORITY_1           0x0008
 570#define PORT_BASED_PRIORITY_2           0x0010
 571#define PORT_BASED_PRIORITY_3           0x0018
 572#define PORT_INSERT_TAG                 0x0004
 573#define PORT_REMOVE_TAG                 0x0002
 574#define PORT_PRIO_QUEUE_ENABLE          0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET       0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER        0x4000
 579#define PORT_DISCARD_NON_VID            0x2000
 580#define PORT_FORCE_FLOW_CTRL            0x1000
 581#define PORT_BACK_PRESSURE              0x0800
 582#define PORT_TX_ENABLE                  0x0400
 583#define PORT_RX_ENABLE                  0x0200
 584#define PORT_LEARN_DISABLE              0x0100
 585#define PORT_MIRROR_SNIFFER             0x0080
 586#define PORT_MIRROR_RX                  0x0040
 587#define PORT_MIRROR_TX                  0x0020
 588#define PORT_USER_PRIORITY_CEILING      0x0008
 589#define PORT_VLAN_MEMBERSHIP            0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET     0x04
 592
 593#define PORT_DEFAULT_VID                0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET       0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE         0x000C
 598#define PORT_INGRESS_ALL                0x0000
 599#define PORT_INGRESS_UNICAST            0x0004
 600#define PORT_INGRESS_MULTICAST          0x0008
 601#define PORT_INGRESS_BROADCAST          0x000C
 602#define PORT_COUNT_IFG                  0x0002
 603#define PORT_COUNT_PREAMBLE             0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET      0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET     0x0A
 607
 608#define PORT_PRIORITY_RATE              0x0F
 609#define PORT_PRIORITY_RATE_SHIFT        4
 610
 611#define KS884X_PORT_LINK_MD             0x10
 612
 613#define PORT_CABLE_10M_SHORT            0x8000
 614#define PORT_CABLE_DIAG_RESULT          0x6000
 615#define PORT_CABLE_STAT_NORMAL          0x0000
 616#define PORT_CABLE_STAT_OPEN            0x2000
 617#define PORT_CABLE_STAT_SHORT           0x4000
 618#define PORT_CABLE_STAT_FAILED          0x6000
 619#define PORT_START_CABLE_DIAG           0x1000
 620#define PORT_FORCE_LINK                 0x0800
 621#define PORT_POWER_SAVING_DISABLE       0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK        0x0200
 623#define PORT_CABLE_FAULT_COUNTER        0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET       0x12
 626
 627#define PORT_LED_OFF                    0x8000
 628#define PORT_TX_DISABLE                 0x4000
 629#define PORT_AUTO_NEG_RESTART           0x2000
 630#define PORT_REMOTE_FAULT_DISABLE       0x1000
 631#define PORT_POWER_DOWN                 0x0800
 632#define PORT_AUTO_MDIX_DISABLE          0x0400
 633#define PORT_FORCE_MDIX                 0x0200
 634#define PORT_LOOPBACK                   0x0100
 635#define PORT_AUTO_NEG_ENABLE            0x0080
 636#define PORT_FORCE_100_MBIT             0x0040
 637#define PORT_FORCE_FULL_DUPLEX          0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE         0x0010
 639#define PORT_AUTO_NEG_100BTX_FD         0x0008
 640#define PORT_AUTO_NEG_100BTX            0x0004
 641#define PORT_AUTO_NEG_10BT_FD           0x0002
 642#define PORT_AUTO_NEG_10BT              0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET       0x14
 645
 646#define PORT_HP_MDIX                    0x8000
 647#define PORT_REVERSED_POLARITY          0x2000
 648#define PORT_RX_FLOW_CTRL               0x0800
 649#define PORT_TX_FLOW_CTRL               0x1000
 650#define PORT_STATUS_SPEED_100MBIT       0x0400
 651#define PORT_STATUS_FULL_DUPLEX         0x0200
 652#define PORT_REMOTE_FAULT               0x0100
 653#define PORT_MDIX_STATUS                0x0080
 654#define PORT_AUTO_NEG_COMPLETE          0x0040
 655#define PORT_STATUS_LINK_GOOD           0x0020
 656#define PORT_REMOTE_SYM_PAUSE           0x0010
 657#define PORT_REMOTE_100BTX_FD           0x0008
 658#define PORT_REMOTE_100BTX              0x0004
 659#define PORT_REMOTE_10BT_FD             0x0002
 660#define PORT_REMOTE_10BT                0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR           00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS      00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID          00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE       00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID        00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID            00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR           0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS      0x00070000
 673#define STATIC_MAC_TABLE_VALID          0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE       0x00100000
 675#define STATIC_MAC_TABLE_USE_FID        0x00200000
 676#define STATIC_MAC_TABLE_FID            0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT      16
 679#define STATIC_MAC_FID_SHIFT            22
 680
 681/*
 682#define VLAN_TABLE_VID                  00-00000000-00000FFF
 683#define VLAN_TABLE_FID                  00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP           00-00000000-00070000
 685#define VLAN_TABLE_VALID                00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID                  0x00000FFF
 689#define VLAN_TABLE_FID                  0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP           0x00070000
 691#define VLAN_TABLE_VALID                0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT            12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT     16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR          00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID           00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT      00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP     00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES       03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY     04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED      78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY     80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR          0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID           0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT      0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP     0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES       0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H     0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY     0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED      0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY     0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT           16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT      20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT     22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT       24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT     8
 723
 724/*
 725#define MIB_COUNTER_VALUE               00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID               00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW            00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE               0x3FFFFFFF
 731#define MIB_COUNTER_VALID               0x40000000
 732#define MIB_COUNTER_OVERFLOW            0x80000000
 733
 734#define MIB_PACKET_DROPPED              0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0      0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1      0x101
 738#define KS_MIB_PACKET_DROPPED_TX        0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0      0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1      0x104
 741#define KS_MIB_PACKET_DROPPED_RX        0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED                 LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)               (ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE          1500
 749#define ETHERNET_HEADER_SIZE            (14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE        \
 752        (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE             (MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE                 (1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES              16
 758#define MAX_MULTICAST_LIST              32
 759
 760#define HW_MULTICAST_SIZE               8
 761
 762#define HW_TO_DEV_PORT(port)            (port - 1)
 763
 764enum {
 765        media_connected,
 766        media_disconnected
 767};
 768
 769enum {
 770        OID_COUNTER_UNKOWN,
 771
 772        OID_COUNTER_FIRST,
 773
 774        /* total transmit errors */
 775        OID_COUNTER_XMIT_ERROR,
 776
 777        /* total receive errors */
 778        OID_COUNTER_RCV_ERROR,
 779
 780        OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT                  16
 788#define BUFFER_ALIGNMENT                8
 789
 790#define NUM_OF_RX_DESC                  64
 791#define NUM_OF_TX_DESC                  64
 792
 793#define KS_DESC_RX_FRAME_LEN            0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE           0x00008000
 795#define KS_DESC_RX_ERROR_CRC            0x00010000
 796#define KS_DESC_RX_ERROR_RUNT           0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG       0x00040000
 798#define KS_DESC_RX_ERROR_PHY            0x00080000
 799#define KS884X_DESC_RX_PORT_MASK        0x00300000
 800#define KS_DESC_RX_MULTICAST            0x01000000
 801#define KS_DESC_RX_ERROR                0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP       0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP       0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP        0x10000000
 805#define KS_DESC_RX_LAST                 0x20000000
 806#define KS_DESC_RX_FIRST                0x40000000
 807#define KS_DESC_RX_ERROR_COND           \
 808        (KS_DESC_RX_ERROR_CRC |         \
 809        KS_DESC_RX_ERROR_RUNT |         \
 810        KS_DESC_RX_ERROR_PHY |          \
 811        KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED                0x80000000
 814
 815#define KS_DESC_BUF_SIZE                0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK        0x00300000
 817#define KS_DESC_END_OF_RING             0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP         0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP         0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP          0x10000000
 821#define KS_DESC_TX_LAST                 0x20000000
 822#define KS_DESC_TX_FIRST                0x40000000
 823#define KS_DESC_TX_INTERRUPT            0x80000000
 824
 825#define KS_DESC_PORT_SHIFT              20
 826
 827#define KS_DESC_RX_MASK                 (KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK                 \
 830        (KS_DESC_TX_INTERRUPT |         \
 831        KS_DESC_TX_FIRST |              \
 832        KS_DESC_TX_LAST |               \
 833        KS_DESC_TX_CSUM_GEN_IP |        \
 834        KS_DESC_TX_CSUM_GEN_TCP |       \
 835        KS_DESC_TX_CSUM_GEN_UDP |       \
 836        KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840        u32 hw_owned:1;
 841        u32 first_desc:1;
 842        u32 last_desc:1;
 843        u32 csum_err_ip:1;
 844        u32 csum_err_tcp:1;
 845        u32 csum_err_udp:1;
 846        u32 error:1;
 847        u32 multicast:1;
 848        u32 src_port:4;
 849        u32 err_phy:1;
 850        u32 err_too_long:1;
 851        u32 err_runt:1;
 852        u32 err_crc:1;
 853        u32 frame_type:1;
 854        u32 reserved1:4;
 855        u32 frame_len:11;
 856#else
 857        u32 frame_len:11;
 858        u32 reserved1:4;
 859        u32 frame_type:1;
 860        u32 err_crc:1;
 861        u32 err_runt:1;
 862        u32 err_too_long:1;
 863        u32 err_phy:1;
 864        u32 src_port:4;
 865        u32 multicast:1;
 866        u32 error:1;
 867        u32 csum_err_udp:1;
 868        u32 csum_err_tcp:1;
 869        u32 csum_err_ip:1;
 870        u32 last_desc:1;
 871        u32 first_desc:1;
 872        u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878        u32 hw_owned:1;
 879        u32 reserved1:31;
 880#else
 881        u32 reserved1:31;
 882        u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888        u32 reserved4:6;
 889        u32 end_of_ring:1;
 890        u32 reserved3:14;
 891        u32 buf_size:11;
 892#else
 893        u32 buf_size:11;
 894        u32 reserved3:14;
 895        u32 end_of_ring:1;
 896        u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902        u32 intr:1;
 903        u32 first_seg:1;
 904        u32 last_seg:1;
 905        u32 csum_gen_ip:1;
 906        u32 csum_gen_tcp:1;
 907        u32 csum_gen_udp:1;
 908        u32 end_of_ring:1;
 909        u32 reserved4:1;
 910        u32 dest_port:4;
 911        u32 reserved3:9;
 912        u32 buf_size:11;
 913#else
 914        u32 buf_size:11;
 915        u32 reserved3:9;
 916        u32 dest_port:4;
 917        u32 reserved4:1;
 918        u32 end_of_ring:1;
 919        u32 csum_gen_udp:1;
 920        u32 csum_gen_tcp:1;
 921        u32 csum_gen_ip:1;
 922        u32 last_seg:1;
 923        u32 first_seg:1;
 924        u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929        struct ksz_desc_rx_stat rx;
 930        struct ksz_desc_tx_stat tx;
 931        u32 data;
 932};
 933
 934union desc_buf {
 935        struct ksz_desc_rx_buf rx;
 936        struct ksz_desc_tx_buf tx;
 937        u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:       Descriptor control value.
 943 * @buf:        Descriptor buffer value.
 944 * @addr:       Physical address of memory buffer.
 945 * @next:       Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948        union desc_stat ctrl;
 949        union desc_buf buf;
 950        u32 addr;
 951        u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:       Descriptor control value.
 957 * @buf:        Descriptor buffer value.
 958 * @buf_size:   Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961        union desc_stat ctrl;
 962        union desc_buf buf;
 963        u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:        Associated socket buffer.
 969 * @dma:        Associated physical DMA address.
 970 * len:         Actual len used.
 971 */
 972struct ksz_dma_buf {
 973        struct sk_buff *skb;
 974        dma_addr_t dma;
 975        int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:        Hardware descriptor pointer to uncached physical memory.
 981 * @sw:         Cached memory to hold hardware descriptor values for
 982 *              manipulation.
 983 * @dma_buf:    Operating system dependent data structure to hold physical
 984 *              memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987        struct ksz_hw_desc *phw;
 988        struct ksz_sw_desc sw;
 989        struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:       First descriptor in the ring.
 997 * @cur:        Current descriptor being manipulated.
 998 * @ring_virt:  First hardware descriptor in the ring.
 999 * @ring_phys:  The physical address of the first descriptor of the ring.
1000 * @size:       Size of hardware descriptor.
1001 * @alloc:      Number of descriptors allocated.
1002 * @avail:      Number of descriptors available for use.
1003 * @last:       Index for last descriptor released to hardware.
1004 * @next:       Index for next descriptor available for use.
1005 * @mask:       Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008        struct ksz_desc *ring;
1009        struct ksz_desc *cur;
1010        struct ksz_hw_desc *ring_virt;
1011        u32 ring_phys;
1012        int size;
1013        int alloc;
1014        int avail;
1015        int last;
1016        int next;
1017        int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025        TABLE_STATIC_MAC = 0,
1026        TABLE_VLAN,
1027        TABLE_DYNAMIC_MAC,
1028        TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES       1024
1032#define STATIC_MAC_TABLE_ENTRIES        8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:   MAC address to filter.
1037 * @vid:        VID value.
1038 * @fid:        FID value.
1039 * @ports:      Port membership.
1040 * @override:   Override setting.
1041 * @use_fid:    FID use setting.
1042 * @valid:      Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045        u8 mac_addr[ETH_ALEN];
1046        u16 vid;
1047        u8 fid;
1048        u8 ports;
1049        u8 override:1;
1050        u8 use_fid:1;
1051        u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES              16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:        VID value.
1059 * @fid:        FID value.
1060 * @member:     Port membership.
1061 */
1062struct ksz_vlan_table {
1063        u16 vid;
1064        u8 fid;
1065        u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES                64
1069#define PRIO_802_1P_ENTRIES             8
1070#define PRIO_QUEUES                     4
1071
1072#define SWITCH_PORT_NUM                 2
1073#define TOTAL_PORT_NUM                  (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK                       (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK                       7
1076
1077#define MAIN_PORT                       0
1078#define OTHER_PORT                      1
1079#define HOST_PORT                       SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM                0x20
1082#define TOTAL_PORT_COUNTER_NUM          (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY      0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY      0x01
1086#define MIB_COUNTER_RX_UNDERSIZE        0x02
1087#define MIB_COUNTER_RX_FRAGMENT         0x03
1088#define MIB_COUNTER_RX_OVERSIZE         0x04
1089#define MIB_COUNTER_RX_JABBER           0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR       0x06
1091#define MIB_COUNTER_RX_CRC_ERR          0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR    0x08
1093#define MIB_COUNTER_RX_CTRL_8808        0x09
1094#define MIB_COUNTER_RX_PAUSE            0x0A
1095#define MIB_COUNTER_RX_BROADCAST        0x0B
1096#define MIB_COUNTER_RX_MULTICAST        0x0C
1097#define MIB_COUNTER_RX_UNICAST          0x0D
1098#define MIB_COUNTER_RX_OCTET_64         0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127     0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255    0x10
1101#define MIB_COUNTER_RX_OCTET_256_511    0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023   0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522  0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY      0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY      0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION   0x16
1107#define MIB_COUNTER_TX_PAUSE            0x17
1108#define MIB_COUNTER_TX_BROADCAST        0x18
1109#define MIB_COUNTER_TX_MULTICAST        0x19
1110#define MIB_COUNTER_TX_UNICAST          0x1A
1111#define MIB_COUNTER_TX_DEFERRED         0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION  0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION  0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET   0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET   0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:    Current pointer to MIB counter index.
1123 * @link_down:  Indication the link has just gone down.
1124 * @state:      Connection status of the port.
1125 * @mib_start:  The starting counter index.  Some ports do not start at 0.
1126 * @counter:    64-bit MIB counter value.
1127 * @dropped:    Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140        u8 cnt_ptr;
1141        u8 link_down;
1142        u8 state;
1143        u8 mib_start;
1144
1145        u64 counter[TOTAL_PORT_COUNTER_NUM];
1146        u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:        VID value.
1152 * @member:     Port membership.
1153 * @port_prio:  Port priority.
1154 * @rx_rate:    Receive priority rate.
1155 * @tx_rate:    Transmit priority rate.
1156 * @stp_state:  Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159        u16 vid;
1160        u8 member;
1161        u8 port_prio;
1162        u32 rx_rate[PRIO_QUEUES];
1163        u32 tx_rate[PRIO_QUEUES];
1164        int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:  MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg:   Port configuration information.
1172 * @diffserv:   DiffServ priority settings.  Possible values from 6-bit of ToS
1173 *              (bit7 ~ bit2) field.
1174 * @p_802_1p:   802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 *              Tag priority field.
1176 * @br_addr:    Bridge address.  Used for STP.
1177 * @other_addr: Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:  Broadcast storm percentage.
1179 * @member:     Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182        struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183        struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184        struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186        u8 diffserv[DIFFSERV_ENTRIES];
1187        u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189        u8 br_addr[ETH_ALEN];
1190        u8 other_addr[ETH_ALEN];
1191
1192        u8 broad_per;
1193        u8 member;
1194};
1195
1196#define TX_RATE_UNIT                    10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:      Connection status of the port.
1201 * @tx_rate:    Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:     Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:    Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:    Port index to access actual hardware register.
1206 * @pdev:       Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209        uint state;
1210        uint tx_rate;
1211        u8 duplex;
1212        u8 advertised;
1213        u8 partner;
1214        u8 port_id;
1215        void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE                52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING                (1 << 0)
1222#define SMALL_PACKET_TX_BUG             (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG          (1 << 2)
1224#define RX_HUGE_FRAME                   (1 << 4)
1225#define STP_SUPPORT                     (1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL                 (1 << 0)
1229#define FAST_AGING                      (1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:                 Virtual address assigned.
1234 * @ksz_switch:         Pointer to KSZ8842 switch.
1235 * @port_info:          Port information.
1236 * @port_mib:           Port MIB information.
1237 * @dev_count:          Number of network devices this hardware supports.
1238 * @dst_ports:          Destination ports in switch for transmission.
1239 * @id:                 Hardware ID.  Used for display only.
1240 * @mib_cnt:            Number of MIB counters this hardware has.
1241 * @mib_port_cnt:       Number of ports with MIB counters.
1242 * @tx_cfg:             Cached transmit control settings.
1243 * @rx_cfg:             Cached receive control settings.
1244 * @intr_mask:          Current interrupt mask.
1245 * @intr_set:           Current interrup set.
1246 * @intr_blocked:       Interrupt blocked.
1247 * @rx_desc_info:       Receive descriptor information.
1248 * @tx_desc_info:       Transmit descriptor information.
1249 * @tx_int_cnt:         Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:        Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:            Transmit data size.  Used for TX optimization.
1252 *                      The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:          Permanent MAC address.
1254 * @override_addr:      Overrided MAC address.
1255 * @address:            Additional MAC address entries.
1256 * @addr_list_size:     Additional MAC address list size.
1257 * @mac_override:       Indication of MAC address overrided.
1258 * @promiscuous:        Counter to keep track of promiscuous mode set.
1259 * @all_multi:          Counter to keep track of all multicast mode set.
1260 * @multi_list:         Multicast address entries.
1261 * @multi_bits:         Cached multicast hash table settings.
1262 * @multi_list_size:    Multicast address list size.
1263 * @enabled:            Indication of hardware enabled.
1264 * @rx_stop:            Indication of receive process stop.
1265 * @features:           Hardware features to enable.
1266 * @overrides:          Hardware features to override.
1267 * @parent:             Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270        void __iomem *io;
1271
1272        struct ksz_switch *ksz_switch;
1273        struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274        struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275        int dev_count;
1276        int dst_ports;
1277        int id;
1278        int mib_cnt;
1279        int mib_port_cnt;
1280
1281        u32 tx_cfg;
1282        u32 rx_cfg;
1283        u32 intr_mask;
1284        u32 intr_set;
1285        uint intr_blocked;
1286
1287        struct ksz_desc_info rx_desc_info;
1288        struct ksz_desc_info tx_desc_info;
1289
1290        int tx_int_cnt;
1291        int tx_int_mask;
1292        int tx_size;
1293
1294        u8 perm_addr[ETH_ALEN];
1295        u8 override_addr[ETH_ALEN];
1296        u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297        u8 addr_list_size;
1298        u8 mac_override;
1299        u8 promiscuous;
1300        u8 all_multi;
1301        u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302        u8 multi_bits[HW_MULTICAST_SIZE];
1303        u8 multi_list_size;
1304
1305        u8 enabled;
1306        u8 rx_stop;
1307        u8 reserved2[1];
1308
1309        uint features;
1310        uint overrides;
1311
1312        void *parent;
1313};
1314
1315enum {
1316        PHY_NO_FLOW_CTRL,
1317        PHY_FLOW_CTRL,
1318        PHY_TX_ONLY,
1319        PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:             Duplex mode setting.  1 for half duplex, 2 for full
1325 *                      duplex, and 0 for auto, which normally results in full
1326 *                      duplex.
1327 * @speed:              Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 *                      0 for auto, which normally results in 100 Mbit.
1329 * @force_link:         Force link setting.  0 for auto-negotiation, and 1 for
1330 *                      force.
1331 * @flow_ctrl:          Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 *                      control, and PHY_FLOW_CTRL for flow control.
1333 *                      PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 *                      Mbit PHY.
1335 * @first_port:         Index of first port this port supports.
1336 * @mib_port_cnt:       Number of ports with MIB counters.
1337 * @port_cnt:           Number of ports this port supports.
1338 * @counter:            Port statistics counter.
1339 * @hw:                 Pointer to hardware structure.
1340 * @linked:             Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343        u8 duplex;
1344        u8 speed;
1345        u8 force_link;
1346        u8 flow_ctrl;
1347
1348        int first_port;
1349        int mib_port_cnt;
1350        int port_cnt;
1351        u64 counter[OID_COUNTER_LAST];
1352
1353        struct ksz_hw *hw;
1354        struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:      Kernel timer.
1360 * @cnt:        Running timer counter.
1361 * @max:        Number of times to run timer; -1 for infinity.
1362 * @period:     Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365        struct timer_list timer;
1366        int cnt;
1367        int max;
1368        int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:   Physical DMA address allocated.
1374 * @alloc_size: Allocation size.
1375 * @phys:       Actual physical address used.
1376 * @alloc_virt: Virtual address allocated.
1377 * @virt:       Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380        dma_addr_t dma_addr;
1381        uint alloc_size;
1382        uint phys;
1383        u8 *alloc_virt;
1384        u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:    Wait queue to wakeup after counters are read.
1390 * @time:       Next time in jiffies to read counter.
1391 * @read:       Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394        wait_queue_head_t counter;
1395        unsigned long time;
1396        int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:                Pointer to network device.
1402 * @pdev:               Pointer to PCI device.
1403 * @hw:                 Hardware structure.
1404 * @desc_pool:          Physical memory used for descriptor pool.
1405 * @hwlock:             Spinlock to prevent hardware from accessing.
1406 * @lock:               Mutex lock to prevent device from accessing.
1407 * @dev_rcv:            Receive process function used.
1408 * @last_skb:           Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:          Buffer index for receiving fragments.
1410 * @skb_len:            Buffer length for receiving fragments.
1411 * @mib_read:           Workqueue to read MIB counters.
1412 * @mib_timer_info:     Timer to read MIB counters.
1413 * @counter:            Used for MIB reading.
1414 * @mtu:                Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 *                      the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:             Counter to keep track of device open.
1417 * @rx_tasklet:         Receive processing tasklet.
1418 * @tx_tasklet:         Transmit processing tasklet.
1419 * @wol_enable:         Wake-on-LAN enable set by ethtool.
1420 * @wol_support:        Wake-on-LAN support used by ethtool.
1421 * @pme_wait:           Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424        struct net_device *dev;
1425        struct pci_dev *pdev;
1426
1427        struct ksz_hw hw;
1428        struct ksz_shared_mem desc_pool;
1429
1430        spinlock_t hwlock;
1431        struct mutex lock;
1432
1433        int (*dev_rcv)(struct dev_info *);
1434
1435        struct sk_buff *last_skb;
1436        int skb_index;
1437        int skb_len;
1438
1439        struct work_struct mib_read;
1440        struct ksz_timer_info mib_timer_info;
1441        struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443        int mtu;
1444        int opened;
1445
1446        struct tasklet_struct rx_tasklet;
1447        struct tasklet_struct tx_tasklet;
1448
1449        int wol_enable;
1450        int wol_support;
1451        unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:            Adapter device information.
1457 * @port:               Port information.
1458 * @monitor_time_info:  Timer to monitor ports.
1459 * @proc_sem:           Semaphore for proc accessing.
1460 * @id:                 Device ID.
1461 * @mii_if:             MII interface information.
1462 * @advertising:        Temporary variable to store advertised settings.
1463 * @msg_enable:         The message flags controlling driver output.
1464 * @media_state:        The connection status of the device.
1465 * @multicast:          The all multicast state of the device.
1466 * @promiscuous:        The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469        struct dev_info *adapter;
1470        struct ksz_port port;
1471        struct ksz_timer_info monitor_timer_info;
1472
1473        struct semaphore proc_sem;
1474        int id;
1475
1476        struct mii_if_info mii_if;
1477        u32 advertising;
1478
1479        u32 msg_enable;
1480        int media_state;
1481        int multicast;
1482        int promiscuous;
1483};
1484
1485#define DRV_NAME                "KSZ884X PCI"
1486#define DEVICE_NAME             "KSZ884x PCI"
1487#define DRV_VERSION             "1.0.0"
1488#define DRV_RELDATE             "Feb 8, 2010"
1489
1490static char version[] =
1491        "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501        writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506        hw->intr_blocked = hw->intr_mask;
1507        writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508        hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513        hw->intr_set = interrupt;
1514        writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519        hw->intr_blocked = 0;
1520        hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525        hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530        u32 read_intr;
1531
1532        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533        hw->intr_set = read_intr & ~interrupt;
1534        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535        hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw:         The hardware instance.
1541 * @bit:        The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548        hw->intr_mask |= bit;
1549
1550        if (!hw->intr_blocked)
1551                hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556        u32 read_intr;
1557
1558        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559        hw->intr_set = read_intr | interrupt;
1560        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565        *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566        *status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571        if (interrupt)
1572                hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585        uint interrupt = 0;
1586
1587        if (!hw->intr_blocked) {
1588                hw_dis_intr(hw);
1589                interrupt = hw->intr_blocked;
1590        }
1591        return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600        status.rx.hw_owned = 0;
1601        desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606        desc->sw.ctrl.tx.hw_owned = 1;
1607        if (desc->sw.buf_size != desc->sw.buf.data) {
1608                desc->sw.buf_size = desc->sw.buf.data;
1609                desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610        }
1611        desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616        *desc = &info->ring[info->last];
1617        info->last++;
1618        info->last &= info->mask;
1619        info->avail--;
1620        (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625        desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630        desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634        struct ksz_desc **desc)
1635{
1636        *desc = &info->ring[info->next];
1637        info->next++;
1638        info->next &= info->mask;
1639        info->avail--;
1640        (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645        desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650        desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ                      0x10
1656#define TABLE_SEL_SHIFT                 2
1657
1658#define HW_DELAY(hw, reg)                       \
1659        do {                                    \
1660                u16 dummy;                      \
1661                dummy = readw(hw->io + reg);    \
1662        } while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:         The hardware instance.
1667 * @table:      The table selector.
1668 * @addr:       The address of the table entry.
1669 * @data:       Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676        u16 ctrl_addr;
1677        uint interrupt;
1678
1679        ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681        interrupt = hw_block_intr(hw);
1682
1683        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684        HW_DELAY(hw, KS884X_IACR_OFFSET);
1685        *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687        hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:         The hardware instance.
1693 * @table:      The table selector.
1694 * @addr:       The address of the table entry.
1695 * @data_hi:    The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:    The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702        u32 data_lo)
1703{
1704        u16 ctrl_addr;
1705        uint interrupt;
1706
1707        ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709        interrupt = hw_block_intr(hw);
1710
1711        writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712        writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715        HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717        hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw:         The hardware instance.
1723 * @addr:       The address of the table entry.
1724 * @mac_addr:   The MAC address.
1725 * @ports:      The port members.
1726 * @override:   The flag to override the port receive/transmit settings.
1727 * @valid:      The flag to indicate entry is valid.
1728 * @use_fid:    The flag to indicate the FID is valid.
1729 * @fid:        The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735        u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737        u32 data_hi;
1738        u32 data_lo;
1739
1740        data_lo = ((u32) mac_addr[2] << 24) |
1741                ((u32) mac_addr[3] << 16) |
1742                ((u32) mac_addr[4] << 8) | mac_addr[5];
1743        data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744        data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746        if (override)
1747                data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748        if (use_fid) {
1749                data_hi |= STATIC_MAC_TABLE_USE_FID;
1750                data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751        }
1752        if (valid)
1753                data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755        sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw:         The hardware instance.
1761 * @addr:       The address of the table entry.
1762 * @vid:        Buffer to store the VID.
1763 * @fid:        Buffer to store the VID.
1764 * @member:     Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772        u8 *member)
1773{
1774        u32 data;
1775
1776        sw_r_table(hw, TABLE_VLAN, addr, &data);
1777        if (data & VLAN_TABLE_VALID) {
1778                *vid = (u16)(data & VLAN_TABLE_VID);
1779                *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780                *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781                        VLAN_TABLE_MEMBERSHIP_SHIFT);
1782                return 0;
1783        }
1784        return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw:         The hardware instance.
1790 * @port:       The port index.
1791 * @addr:       The address of the counter.
1792 * @cnt:        Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799        u32 data;
1800        u16 ctrl_addr;
1801        uint interrupt;
1802        int timeout;
1803
1804        ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806        interrupt = hw_block_intr(hw);
1807
1808        ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810        HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812        for (timeout = 100; timeout > 0; timeout--) {
1813                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815                if (data & MIB_COUNTER_VALID) {
1816                        if (data & MIB_COUNTER_OVERFLOW)
1817                                *cnt += MIB_COUNTER_VALUE + 1;
1818                        *cnt += data & MIB_COUNTER_VALUE;
1819                        break;
1820                }
1821        }
1822
1823        hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw:         The hardware instance.
1829 * @port:       The port index.
1830 * @cnt:        Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837        u32 cur;
1838        u32 data;
1839        u16 ctrl_addr;
1840        uint interrupt;
1841        int index;
1842
1843        index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844        do {
1845                interrupt = hw_block_intr(hw);
1846
1847                ctrl_addr = (u16) index;
1848                ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849                        << 8);
1850                writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851                HW_DELAY(hw, KS884X_IACR_OFFSET);
1852                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854                hw_restore_intr(hw, interrupt);
1855
1856                data &= MIB_PACKET_DROPPED;
1857                cur = *last;
1858                if (data != cur) {
1859                        *last = data;
1860                        if (data < cur)
1861                                data += MIB_PACKET_DROPPED + 1;
1862                        data -= cur;
1863                        *cnt += data;
1864                }
1865                ++last;
1866                ++cnt;
1867                index -= KS_MIB_PACKET_DROPPED_TX -
1868                        KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869        } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw:         The hardware instance.
1875 * @port:       The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885        struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887        if (mib->mib_start < PORT_COUNTER_NUM)
1888                while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890                                &mib->counter[mib->cnt_ptr]);
1891                        ++mib->cnt_ptr;
1892                }
1893        if (hw->mib_cnt > PORT_COUNTER_NUM)
1894                port_r_mib_pkt(hw, port, mib->dropped,
1895                        &mib->counter[PORT_COUNTER_NUM]);
1896        mib->cnt_ptr = 0;
1897        return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw:         The hardware instance.
1903 * @port:       The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910        struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912        mib->cnt_ptr = 0;
1913        if (mib->mib_start < PORT_COUNTER_NUM)
1914                do {
1915                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916                                &mib->counter[mib->cnt_ptr]);
1917                        ++mib->cnt_ptr;
1918                } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919        if (hw->mib_cnt > PORT_COUNTER_NUM)
1920                port_r_mib_pkt(hw, port, mib->dropped,
1921                        &mib->counter[PORT_COUNTER_NUM]);
1922        memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923        mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw:         The hardware instance.
1933 * @port:       The port index.
1934 * @offset:     The offset of the port register.
1935 * @bits:       The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944        u32 addr;
1945        u16 data;
1946
1947        PORT_CTRL_ADDR(port, addr);
1948        addr += offset;
1949        data = readw(hw->io + addr);
1950        return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw:         The hardware instance.
1956 * @port:       The port index.
1957 * @offset:     The offset of the port register.
1958 * @bits:       The data bits to set.
1959 * @set:        The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964        int set)
1965{
1966        u32 addr;
1967        u16 data;
1968
1969        PORT_CTRL_ADDR(port, addr);
1970        addr += offset;
1971        data = readw(hw->io + addr);
1972        if (set)
1973                data |= bits;
1974        else
1975                data &= ~bits;
1976        writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw:         The hardware instance.
1982 * @port:       The port index.
1983 * @offset:     The offset of the register.
1984 * @shift:      Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993        u16 data;
1994        u16 bit = 1 << port;
1995
1996        data = readw(hw->io + addr);
1997        data >>= shift;
1998        return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw:         The hardware instance.
2004 * @port:       The port index.
2005 * @offset:     The offset of the register.
2006 * @shift:      Number of bits to shift.
2007 * @set:        The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012        int set)
2013{
2014        u16 data;
2015        u16 bits = 1 << port;
2016
2017        data = readw(hw->io + addr);
2018        bits <<= shift;
2019        if (set)
2020                data |= bits;
2021        else
2022                data &= ~bits;
2023        writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw:         The hardware instance.
2029 * @port:       The port index.
2030 * @offset:     The offset of the port register.
2031 * @data:       Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037        u32 addr;
2038
2039        PORT_CTRL_ADDR(port, addr);
2040        addr += offset;
2041        *data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw:         The hardware instance.
2047 * @port:       The port index.
2048 * @offset:     The offset of the port register.
2049 * @data:       Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055        u32 addr;
2056
2057        PORT_CTRL_ADDR(port, addr);
2058        addr += offset;
2059        *data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw:         The hardware instance.
2065 * @port:       The port index.
2066 * @offset:     The offset of the port register.
2067 * @data:       Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073        u32 addr;
2074
2075        PORT_CTRL_ADDR(port, addr);
2076        addr += offset;
2077        writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw:         The hardware instance.
2083 * @addr:       The address of the switch register.
2084 * @bits:       The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093        u16 data;
2094
2095        data = readw(hw->io + addr);
2096        return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw:         The hardware instance.
2102 * @addr:       The address of the switch register.
2103 * @bits:       The data bits to set.
2104 * @set:        The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110        u16 data;
2111
2112        data = readw(hw->io + addr);
2113        if (set)
2114                data |= bits;
2115        else
2116                data &= ~bits;
2117        writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124        port_cfg(hw, p,
2125                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130        return port_chk(hw, p,
2131                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE 10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE           9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw:         The hardware instance.
2143 * @percent:    Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149        u16 data;
2150        u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152        if (value > BROADCAST_STORM_RATE)
2153                value = BROADCAST_STORM_RATE;
2154
2155        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156        data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157        data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw:         The hardware instance.
2164 * @percent:    Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170        int num;
2171        u16 data;
2172
2173        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174        num = (data & BROADCAST_STORM_RATE_HI);
2175        num <<= 8;
2176        num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177        num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178        *percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw:         The hardware instance.
2184 * @port:       The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190        port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw:         The hardware instance.
2196 * @port:       The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203        port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw:         The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214        int port;
2215
2216        hw->ksz_switch->broad_per = 1;
2217        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218        for (port = 0; port < TOTAL_PORT_NUM; port++)
2219                sw_dis_broad_storm(hw, port);
2220        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw:         The hardware instance.
2226 * @percent:    Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233        if (percent > 100)
2234                percent = 100;
2235
2236        sw_cfg_broad_storm(hw, percent);
2237        sw_get_broad_storm(hw, &percent);
2238        hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw:         The hardware instance.
2244 * @port:       The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250        u32 addr;
2251
2252        PORT_CTRL_ADDR(port, addr);
2253        addr += KS8842_PORT_IN_RATE_OFFSET;
2254        writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw:         The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265        int port;
2266        int prio;
2267        struct ksz_switch *sw = hw->ksz_switch;
2268
2269        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270                for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271                        sw->port_cfg[port].rx_rate[prio] =
2272                        sw->port_cfg[port].tx_rate[prio] = 0;
2273                }
2274                sw_dis_prio_rate(hw, port);
2275        }
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282        port_cfg(hw, p,
2283                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288        port_cfg(hw, p,
2289                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294        return port_chk(hw, p,
2295                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300        return port_chk(hw, p,
2301                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308        port_cfg(hw, p,
2309                KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314        port_cfg(hw, p,
2315                KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325        if (!(hw->overrides & FAST_AGING)) {
2326                sw_cfg_fast_aging(hw, 1);
2327                mdelay(1);
2328                sw_cfg_fast_aging(hw, 0);
2329        }
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336        port_cfg(hw, p,
2337                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342        port_cfg(hw, p,
2343                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348        return port_chk(hw, p,
2349                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354        return port_chk(hw, p,
2355                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360        port_cfg(hw, p,
2361                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366        port_cfg(hw, p,
2367                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372        return port_chk(hw, p,
2373                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378        return port_chk(hw, p,
2379                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386        port_cfg(hw, p,
2387                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392        port_cfg(hw, p,
2393                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398        port_cfg(hw, p,
2399                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409        int port;
2410
2411        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412                port_cfg_mirror_sniffer(hw, port, 0);
2413                port_cfg_mirror_rx(hw, port, 0);
2414                port_cfg_mirror_tx(hw, port, 0);
2415        }
2416        sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421        sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422                SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427        return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428                SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433        port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438        return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445        port_cfg(hw, p,
2446                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451        port_cfg(hw, p,
2452                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457        port_cfg(hw, p,
2458                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463        port_cfg(hw, p,
2464                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469        return port_chk(hw, p,
2470                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475        return port_chk(hw, p,
2476                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481        return port_chk(hw, p,
2482                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487        return port_chk(hw, p,
2488                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw:         The hardware instance.
2494 * @port:       The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500        port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw:         The hardware instance.
2506 * @port:       The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512        port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw:         The hardware instance.
2518 * @set:        The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523        sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw:         The hardware instance.
2529 * @port:       The port index.
2530 * @set:        The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539        port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw:         The hardware instance.
2545 * @port:       The port index.
2546 * @prio:       The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552        u16 data;
2553
2554        if (prio > PORT_BASED_PRIORITY_BASE)
2555                prio = PORT_BASED_PRIORITY_BASE;
2556
2557        hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559        port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560        data &= ~PORT_BASED_PRIORITY_MASK;
2561        data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562        port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw:         The hardware instance.
2568 * @port:       The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port.  Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575        port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw:         The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586        int port;
2587        int tos;
2588        struct ksz_switch *sw = hw->ksz_switch;
2589
2590        /*
2591         * Init all the 802.1p tag priority value to be assigned to different
2592         * priority queue.
2593         */
2594        sw->p_802_1p[0] = 0;
2595        sw->p_802_1p[1] = 0;
2596        sw->p_802_1p[2] = 1;
2597        sw->p_802_1p[3] = 1;
2598        sw->p_802_1p[4] = 2;
2599        sw->p_802_1p[5] = 2;
2600        sw->p_802_1p[6] = 3;
2601        sw->p_802_1p[7] = 3;
2602
2603        /*
2604         * Init all the DiffServ priority value to be assigned to priority
2605         * queue 0.
2606         */
2607        for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608                sw->diffserv[tos] = 0;
2609
2610        /* All QoS functions disabled. */
2611        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612                sw_dis_multi_queue(hw, port);
2613                sw_dis_diffserv(hw, port);
2614                sw_dis_802_1p(hw, port);
2615                sw_cfg_replace_vid(hw, port, 0);
2616
2617                sw->port_cfg[port].port_prio = 0;
2618                sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619        }
2620        sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw:         The hardware instance.
2626 * @port:       The port index.
2627 * @vid:        Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633        u32 addr;
2634
2635        PORT_CTRL_ADDR(port, addr);
2636        addr += KS8842_PORT_CTRL_VID_OFFSET;
2637        *vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw:         The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648        int port;
2649        int entry;
2650        struct ksz_switch *sw = hw->ksz_switch;
2651
2652        /* Read 16 VLAN entries from device's VLAN table. */
2653        for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654                sw_r_vlan_table(hw, entry,
2655                        &sw->vlan_table[entry].vid,
2656                        &sw->vlan_table[entry].fid,
2657                        &sw->vlan_table[entry].member);
2658        }
2659
2660        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661                port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662                sw->port_cfg[port].member = PORT_MASK;
2663        }
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw:         The hardware instance.
2669 * @port:       The port index.
2670 * @member:     The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676        u32 addr;
2677        u8 data;
2678
2679        PORT_CTRL_ADDR(port, addr);
2680        addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682        data = readb(hw->io + addr);
2683        data &= ~PORT_VLAN_MEMBERSHIP;
2684        data |= (member & PORT_MASK);
2685        writeb(data, hw->io + addr);
2686
2687        hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw:         The hardware instance.
2693 * @mac_addr:   Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699        int i;
2700
2701        for (i = 0; i < 6; i += 2) {
2702                mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703                mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704        }
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw:         The hardware instance.
2710 * @mac_addr:   The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716        int i;
2717
2718        for (i = 0; i < 6; i += 2) {
2719                writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720                writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721        }
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw:         The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732        u16 data;
2733
2734        /* Enable switch MII flow control. */
2735        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736        data |= SWITCH_FLOW_CTRL;
2737        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739        data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741        /* Enable aggressive back off algorithm in half duplex mode. */
2742        data |= SWITCH_AGGR_BACKOFF;
2743
2744        /* Enable automatic fast aging when link changed detected. */
2745        data |= SWITCH_AGING_ENABLE;
2746        data |= SWITCH_LINK_AUTO_AGING;
2747
2748        if (hw->overrides & FAST_AGING)
2749                data |= SWITCH_FAST_AGING;
2750        else
2751                data &= ~SWITCH_FAST_AGING;
2752        writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754        data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756        /* Enable no excessive collision drop. */
2757        data |= NO_EXC_COLLISION_DROP;
2758        writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762        STP_STATE_DISABLED = 0,
2763        STP_STATE_LISTENING,
2764        STP_STATE_LEARNING,
2765        STP_STATE_FORWARDING,
2766        STP_STATE_BLOCKED,
2767        STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw:         The hardware instance.
2773 * @port:       The port index.
2774 * @state:      The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780        u16 data;
2781
2782        port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783        switch (state) {
2784        case STP_STATE_DISABLED:
2785                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786                data |= PORT_LEARN_DISABLE;
2787                break;
2788        case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793                data &= ~PORT_TX_ENABLE;
2794                data |= PORT_RX_ENABLE;
2795                data |= PORT_LEARN_DISABLE;
2796                break;
2797        case STP_STATE_LEARNING:
2798                data &= ~PORT_TX_ENABLE;
2799                data |= PORT_RX_ENABLE;
2800                data &= ~PORT_LEARN_DISABLE;
2801                break;
2802        case STP_STATE_FORWARDING:
2803                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804                data &= ~PORT_LEARN_DISABLE;
2805                break;
2806        case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages.  See sw_init_stp routine.
2810 */
2811                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812                data |= PORT_LEARN_DISABLE;
2813                break;
2814        case STP_STATE_SIMPLE:
2815                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816                data |= PORT_LEARN_DISABLE;
2817                break;
2818        }
2819        port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820        hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY                       0
2824#define BROADCAST_ENTRY                 1
2825#define BRIDGE_ADDR_ENTRY               2
2826#define IPV6_ADDR_ENTRY                 3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw:         The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836        struct ksz_mac_table *entry;
2837        int i;
2838
2839        for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840                entry = &hw->ksz_switch->mac_table[i];
2841                sw_w_sta_mac_table(hw, i,
2842                        entry->mac_addr, entry->ports,
2843                        entry->override, 0,
2844                        entry->use_fid, entry->fid);
2845        }
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw:         The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856        struct ksz_mac_table *entry;
2857
2858        entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859        entry->mac_addr[0] = 0x01;
2860        entry->mac_addr[1] = 0x80;
2861        entry->mac_addr[2] = 0xC2;
2862        entry->mac_addr[3] = 0x00;
2863        entry->mac_addr[4] = 0x00;
2864        entry->mac_addr[5] = 0x00;
2865        entry->ports = HOST_MASK;
2866        entry->override = 1;
2867        entry->valid = 1;
2868        sw_w_sta_mac_table(hw, STP_ENTRY,
2869                entry->mac_addr, entry->ports,
2870                entry->override, entry->valid,
2871                entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw:         The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882        struct ksz_mac_table *entry;
2883        int i;
2884
2885        for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886                entry = &hw->ksz_switch->mac_table[i];
2887                entry->valid = 0;
2888                sw_w_sta_mac_table(hw, i,
2889                        entry->mac_addr, entry->ports,
2890                        entry->override, entry->valid,
2891                        entry->use_fid, entry->fid);
2892        }
2893}
2894
2895#define PHY_LINK_SUPPORT                \
2896        (PHY_AUTO_NEG_ASYM_PAUSE |      \
2897        PHY_AUTO_NEG_SYM_PAUSE |        \
2898        PHY_AUTO_NEG_100BT4 |           \
2899        PHY_AUTO_NEG_100BTX_FD |        \
2900        PHY_AUTO_NEG_100BTX |           \
2901        PHY_AUTO_NEG_10BT_FD |          \
2902        PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916        *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921        *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926        writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931        *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946        *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951        writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956        *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961        writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw:         The hardware instance.
2967 * @port:       Port to read.
2968 * @reg:        PHY register to read.
2969 * @val:        Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975        int phy;
2976
2977        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978        *val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw:         The hardware instance.
2984 * @port:       Port to write.
2985 * @reg:        PHY register to write.
2986 * @val:        Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992        int phy;
2993
2994        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995        writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE                      0
3003#define AT93C_WR_OFF                    0x00
3004#define AT93C_WR_ALL                    0x10
3005#define AT93C_ER_ALL                    0x20
3006#define AT93C_WR_ON                     0x30
3007
3008#define AT93C_WRITE                     1
3009#define AT93C_READ                      2
3010#define AT93C_ERASE                     3
3011
3012#define EEPROM_DELAY                    4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016        u16 data;
3017
3018        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019        data &= ~gpio;
3020        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025        u16 data;
3026
3027        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028        data |= gpio;
3029        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034        u16 data;
3035
3036        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037        return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042        raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043        udelay(EEPROM_DELAY);
3044        drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045        udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050        int i;
3051        u16 temp = 0;
3052
3053        for (i = 15; i >= 0; i--) {
3054                raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055                udelay(EEPROM_DELAY);
3056
3057                temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059                drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060                udelay(EEPROM_DELAY);
3061        }
3062        return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067        int i;
3068
3069        for (i = 15; i >= 0; i--) {
3070                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071                        drop_gpio(hw, EEPROM_DATA_OUT);
3072                eeprom_clk(hw);
3073        }
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078        int i;
3079
3080        /* Initial start bit */
3081        raise_gpio(hw, EEPROM_DATA_OUT);
3082        eeprom_clk(hw);
3083
3084        /* AT93C operation */
3085        for (i = 1; i >= 0; i--) {
3086                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087                        drop_gpio(hw, EEPROM_DATA_OUT);
3088                eeprom_clk(hw);
3089        }
3090
3091        /* Address location */
3092        for (i = 5; i >= 0; i--) {
3093                (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094                        drop_gpio(hw, EEPROM_DATA_OUT);
3095                eeprom_clk(hw);
3096        }
3097}
3098
3099#define EEPROM_DATA_RESERVED            0
3100#define EEPROM_DATA_MAC_ADDR_0          1
3101#define EEPROM_DATA_MAC_ADDR_1          2
3102#define EEPROM_DATA_MAC_ADDR_2          3
3103#define EEPROM_DATA_SUBSYS_ID           4
3104#define EEPROM_DATA_SUBSYS_VEN_ID       5
3105#define EEPROM_DATA_PM_CAP              6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR      9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw:         The hardware instance.
3113 * @reg:        The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121        u16 data;
3122
3123        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125        spi_reg(hw, AT93C_READ, reg);
3126        data = spi_r(hw);
3127
3128        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130        return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw:         The hardware instance.
3136 * @reg:        The register offset.
3137 * @data:       The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143        int timeout;
3144
3145        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147        /* Enable write. */
3148        spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149        drop_gpio(hw, EEPROM_CHIP_SELECT);
3150        udelay(1);
3151
3152        /* Erase the register. */
3153        raise_gpio(hw, EEPROM_CHIP_SELECT);
3154        spi_reg(hw, AT93C_ERASE, reg);
3155        drop_gpio(hw, EEPROM_CHIP_SELECT);
3156        udelay(1);
3157
3158        /* Check operation complete. */
3159        raise_gpio(hw, EEPROM_CHIP_SELECT);
3160        timeout = 8;
3161        mdelay(2);
3162        do {
3163                mdelay(1);
3164        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165        drop_gpio(hw, EEPROM_CHIP_SELECT);
3166        udelay(1);
3167
3168        /* Write the register. */
3169        raise_gpio(hw, EEPROM_CHIP_SELECT);
3170        spi_reg(hw, AT93C_WRITE, reg);
3171        spi_w(hw, data);
3172        drop_gpio(hw, EEPROM_CHIP_SELECT);
3173        udelay(1);
3174
3175        /* Check operation complete. */
3176        raise_gpio(hw, EEPROM_CHIP_SELECT);
3177        timeout = 8;
3178        mdelay(2);
3179        do {
3180                mdelay(1);
3181        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182        drop_gpio(hw, EEPROM_CHIP_SELECT);
3183        udelay(1);
3184
3185        /* Disable write. */
3186        raise_gpio(hw, EEPROM_CHIP_SELECT);
3187        spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198        ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199        switch (port->flow_ctrl) {
3200        case PHY_FLOW_CTRL:
3201                ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202                break;
3203        /* Not supported. */
3204        case PHY_TX_ONLY:
3205        case PHY_RX_ONLY:
3206        default:
3207                break;
3208        }
3209        return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214        u32 rx_cfg;
3215        u32 tx_cfg;
3216
3217        rx_cfg = hw->rx_cfg;
3218        tx_cfg = hw->tx_cfg;
3219        if (rx)
3220                hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221        else
3222                hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223        if (tx)
3224                hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225        else
3226                hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227        if (hw->enabled) {
3228                if (rx_cfg != hw->rx_cfg)
3229                        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230                if (tx_cfg != hw->tx_cfg)
3231                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232        }
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236        u16 local, u16 remote)
3237{
3238        int rx;
3239        int tx;
3240
3241        if (hw->overrides & PAUSE_FLOW_CTRL)
3242                return;
3243
3244        rx = tx = 0;
3245        if (port->force_link)
3246                rx = tx = 1;
3247        if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248                if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249                        rx = tx = 1;
3250                } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251                                (local & PHY_AUTO_NEG_PAUSE) ==
3252                                PHY_AUTO_NEG_ASYM_PAUSE) {
3253                        tx = 1;
3254                }
3255        } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256                if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257                        rx = 1;
3258        }
3259        if (!hw->ksz_switch)
3260                set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264        struct ksz_port_info *info, u16 link_status)
3265{
3266        if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267                        !(hw->overrides & PAUSE_FLOW_CTRL)) {
3268                u32 cfg = hw->tx_cfg;
3269
3270                /* Disable flow control in the half duplex mode. */
3271                if (1 == info->duplex)
3272                        hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273                if (hw->enabled && cfg != hw->tx_cfg)
3274                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275        }
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port:       The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287        uint interrupt;
3288        struct ksz_port_info *info;
3289        struct ksz_port_info *linked = NULL;
3290        struct ksz_hw *hw = port->hw;
3291        u16 data;
3292        u16 status;
3293        u8 local;
3294        u8 remote;
3295        int i;
3296        int p;
3297        int change = 0;
3298
3299        interrupt = hw_block_intr(hw);
3300
3301        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302                info = &hw->port_info[p];
3303                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304                port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306                /*
3307                 * Link status is changing all the time even when there is no
3308                 * cable connection!
3309                 */
3310                remote = status & (PORT_AUTO_NEG_COMPLETE |
3311                        PORT_STATUS_LINK_GOOD);
3312                local = (u8) data;
3313
3314                /* No change to status. */
3315                if (local == info->advertised && remote == info->partner)
3316                        continue;
3317
3318                info->advertised = local;
3319                info->partner = remote;
3320                if (status & PORT_STATUS_LINK_GOOD) {
3321
3322                        /* Remember the first linked port. */
3323                        if (!linked)
3324                                linked = info;
3325
3326                        info->tx_rate = 10 * TX_RATE_UNIT;
3327                        if (status & PORT_STATUS_SPEED_100MBIT)
3328                                info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330                        info->duplex = 1;
3331                        if (status & PORT_STATUS_FULL_DUPLEX)
3332                                info->duplex = 2;
3333
3334                        if (media_connected != info->state) {
3335                                hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336                                        &data);
3337                                hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338                                        &status);
3339                                determine_flow_ctrl(hw, port, data, status);
3340                                if (hw->ksz_switch) {
3341                                        port_cfg_back_pressure(hw, p,
3342                                                (1 == info->duplex));
3343                                }
3344                                change |= 1 << i;
3345                                port_cfg_change(hw, port, info, status);
3346                        }
3347                        info->state = media_connected;
3348                } else {
3349                        if (media_disconnected != info->state) {
3350                                change |= 1 << i;
3351
3352                                /* Indicate the link just goes down. */
3353                                hw->port_mib[p].link_down = 1;
3354                        }
3355                        info->state = media_disconnected;
3356                }
3357                hw->port_mib[p].state = (u8) info->state;
3358        }
3359
3360        if (linked && media_disconnected == port->linked->state)
3361                port->linked = linked;
3362
3363        hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT               10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port:       The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376        struct ksz_port_info *info;
3377        struct ksz_hw *hw = port->hw;
3378        u16 data;
3379        u16 cfg;
3380        u8 status;
3381        int i;
3382        int p;
3383
3384        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385                info = &hw->port_info[p];
3386
3387                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388                port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389
3390                cfg = 0;
3391                if (status & PORT_STATUS_LINK_GOOD)
3392                        cfg = data;
3393
3394                data |= PORT_AUTO_NEG_ENABLE;
3395                data = advertised_flow_ctrl(port, data);
3396
3397                data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398                        PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399
3400                /* Check if manual configuration is specified by the user. */
3401                if (port->speed || port->duplex) {
3402                        if (10 == port->speed)
3403                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404                                        PORT_AUTO_NEG_100BTX);
3405                        else if (100 == port->speed)
3406                                data &= ~(PORT_AUTO_NEG_10BT_FD |
3407                                        PORT_AUTO_NEG_10BT);
3408                        if (1 == port->duplex)
3409                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410                                        PORT_AUTO_NEG_10BT_FD);
3411                        else if (2 == port->duplex)
3412                                data &= ~(PORT_AUTO_NEG_100BTX |
3413                                        PORT_AUTO_NEG_10BT);
3414                }
3415                if (data != cfg) {
3416                        data |= PORT_AUTO_NEG_RESTART;
3417                        port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418                }
3419        }
3420}
3421
3422/**
3423 * port_force_link_speed - force port speed
3424 * @port:       The port instance.
3425 *
3426 * This routine forces the link speed of the switch ports.
3427 */
3428static void port_force_link_speed(struct ksz_port *port)
3429{
3430        struct ksz_hw *hw = port->hw;
3431        u16 data;
3432        int i;
3433        int phy;
3434        int p;
3435
3436        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437                phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438                hw_r_phy_ctrl(hw, phy, &data);
3439
3440                data &= ~PHY_AUTO_NEG_ENABLE;
3441
3442                if (10 == port->speed)
3443                        data &= ~PHY_SPEED_100MBIT;
3444                else if (100 == port->speed)
3445                        data |= PHY_SPEED_100MBIT;
3446                if (1 == port->duplex)
3447                        data &= ~PHY_FULL_DUPLEX;
3448                else if (2 == port->duplex)
3449                        data |= PHY_FULL_DUPLEX;
3450                hw_w_phy_ctrl(hw, phy, data);
3451        }
3452}
3453
3454static void port_set_power_saving(struct ksz_port *port, int enable)
3455{
3456        struct ksz_hw *hw = port->hw;
3457        int i;
3458        int p;
3459
3460        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461                port_cfg(hw, p,
3462                        KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463}
3464
3465/*
3466 * KSZ8841 power management functions
3467 */
3468
3469/**
3470 * hw_chk_wol_pme_status - check PMEN pin
3471 * @hw:         The hardware instance.
3472 *
3473 * This function is used to check PMEN pin is asserted.
3474 *
3475 * Return 1 if PMEN pin is asserted; otherwise, 0.
3476 */
3477static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478{
3479        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480        struct pci_dev *pdev = hw_priv->pdev;
3481        u16 data;
3482
3483        if (!pdev->pm_cap)
3484                return 0;
3485        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486        return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487}
3488
3489/**
3490 * hw_clr_wol_pme_status - clear PMEN pin
3491 * @hw:         The hardware instance.
3492 *
3493 * This routine is used to clear PME_Status to deassert PMEN pin.
3494 */
3495static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496{
3497        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498        struct pci_dev *pdev = hw_priv->pdev;
3499        u16 data;
3500
3501        if (!pdev->pm_cap)
3502                return;
3503
3504        /* Clear PME_Status to deassert PMEN pin. */
3505        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506        data |= PCI_PM_CTRL_PME_STATUS;
3507        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508}
3509
3510/**
3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512 * @hw:         The hardware instance.
3513 * @set:        The flag indicating whether to enable or disable.
3514 *
3515 * This routine is used to enable or disable Wake-on-LAN.
3516 */
3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518{
3519        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520        struct pci_dev *pdev = hw_priv->pdev;
3521        u16 data;
3522
3523        if (!pdev->pm_cap)
3524                return;
3525        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526        data &= ~PCI_PM_CTRL_STATE_MASK;
3527        if (set)
3528                data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529        else
3530                data &= ~PCI_PM_CTRL_PME_ENABLE;
3531        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532}
3533
3534/**
3535 * hw_cfg_wol - configure Wake-on-LAN features
3536 * @hw:         The hardware instance.
3537 * @frame:      The pattern frame bit.
3538 * @set:        The flag indicating whether to enable or disable.
3539 *
3540 * This routine is used to enable or disable certain Wake-on-LAN features.
3541 */
3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543{
3544        u16 data;
3545
3546        data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547        if (set)
3548                data |= frame;
3549        else
3550                data &= ~frame;
3551        writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552}
3553
3554/**
3555 * hw_set_wol_frame - program Wake-on-LAN pattern
3556 * @hw:         The hardware instance.
3557 * @i:          The frame index.
3558 * @mask_size:  The size of the mask.
3559 * @mask:       Mask to ignore certain bytes in the pattern.
3560 * @frame_size: The size of the frame.
3561 * @pattern:    The frame data.
3562 *
3563 * This routine is used to program Wake-on-LAN pattern.
3564 */
3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566        const u8 *mask, uint frame_size, const u8 *pattern)
3567{
3568        int bits;
3569        int from;
3570        int len;
3571        int to;
3572        u32 crc;
3573        u8 data[64];
3574        u8 val = 0;
3575
3576        if (frame_size > mask_size * 8)
3577                frame_size = mask_size * 8;
3578        if (frame_size > 64)
3579                frame_size = 64;
3580
3581        i *= 0x10;
3582        writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583        writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584
3585        bits = len = from = to = 0;
3586        do {
3587                if (bits) {
3588                        if ((val & 1))
3589                                data[to++] = pattern[from];
3590                        val >>= 1;
3591                        ++from;
3592                        --bits;
3593                } else {
3594                        val = mask[len];
3595                        writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596                                + len);
3597                        ++len;
3598                        if (val)
3599                                bits = 8;
3600                        else
3601                                from += 8;
3602                }
3603        } while (from < (int) frame_size);
3604        if (val) {
3605                bits = mask[len - 1];
3606                val <<= (from % 8);
3607                bits &= ~val;
3608                writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609                        1);
3610        }
3611        crc = ether_crc(to, data);
3612        writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613}
3614
3615/**
3616 * hw_add_wol_arp - add ARP pattern
3617 * @hw:         The hardware instance.
3618 * @ip_addr:    The IPv4 address assigned to the device.
3619 *
3620 * This routine is used to add ARP pattern for waking up the host.
3621 */
3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623{
3624        static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625        u8 pattern[42] = {
3626                0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628                0x08, 0x06,
3629                0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631                0x00, 0x00, 0x00, 0x00,
3632                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633                0x00, 0x00, 0x00, 0x00 };
3634
3635        memcpy(&pattern[38], ip_addr, 4);
3636        hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637}
3638
3639/**
3640 * hw_add_wol_bcast - add broadcast pattern
3641 * @hw:         The hardware instance.
3642 *
3643 * This routine is used to add broadcast pattern for waking up the host.
3644 */
3645static void hw_add_wol_bcast(struct ksz_hw *hw)
3646{
3647        static const u8 mask[] = { 0x3F };
3648        static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649
3650        hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651}
3652
3653/**
3654 * hw_add_wol_mcast - add multicast pattern
3655 * @hw:         The hardware instance.
3656 *
3657 * This routine is used to add multicast pattern for waking up the host.
3658 *
3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660 * by IPv6 ping command.  Note that multicast packets are filtred through the
3661 * multicast hash table, so not all multicast packets can wake up the host.
3662 */
3663static void hw_add_wol_mcast(struct ksz_hw *hw)
3664{
3665        static const u8 mask[] = { 0x3F };
3666        u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667
3668        memcpy(&pattern[3], &hw->override_addr[3], 3);
3669        hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670}
3671
3672/**
3673 * hw_add_wol_ucast - add unicast pattern
3674 * @hw:         The hardware instance.
3675 *
3676 * This routine is used to add unicast pattern to wakeup the host.
3677 *
3678 * It is assumed the unicast packet is directed to the device, as the hardware
3679 * can only receive them in normal case.
3680 */
3681static void hw_add_wol_ucast(struct ksz_hw *hw)
3682{
3683        static const u8 mask[] = { 0x3F };
3684
3685        hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686}
3687
3688/**
3689 * hw_enable_wol - enable Wake-on-LAN
3690 * @hw:         The hardware instance.
3691 * @wol_enable: The Wake-on-LAN settings.
3692 * @net_addr:   The IPv4 address assigned to the device.
3693 *
3694 * This routine is used to enable Wake-on-LAN depending on driver settings.
3695 */
3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697{
3698        hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699        hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700        hw_add_wol_ucast(hw);
3701        hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702        hw_add_wol_mcast(hw);
3703        hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704        hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705        hw_add_wol_arp(hw, net_addr);
3706}
3707
3708/**
3709 * hw_init - check driver is correct for the hardware
3710 * @hw:         The hardware instance.
3711 *
3712 * This function checks the hardware is correct for this driver and sets the
3713 * hardware up for proper initialization.
3714 *
3715 * Return number of ports or 0 if not right.
3716 */
3717static int hw_init(struct ksz_hw *hw)
3718{
3719        int rc = 0;
3720        u16 data;
3721        u16 revision;
3722
3723        /* Set bus speed to 125MHz. */
3724        writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725
3726        /* Check KSZ884x chip ID. */
3727        data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728
3729        revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730        data &= KS884X_CHIP_ID_MASK_41;
3731        if (REG_CHIP_ID_41 == data)
3732                rc = 1;
3733        else if (REG_CHIP_ID_42 == data)
3734                rc = 2;
3735        else
3736                return 0;
3737
3738        /* Setup hardware features or bug workarounds. */
3739        if (revision <= 1) {
3740                hw->features |= SMALL_PACKET_TX_BUG;
3741                if (1 == rc)
3742                        hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743        }
3744        return rc;
3745}
3746
3747/**
3748 * hw_reset - reset the hardware
3749 * @hw:         The hardware instance.
3750 *
3751 * This routine resets the hardware.
3752 */
3753static void hw_reset(struct ksz_hw *hw)
3754{
3755        writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756
3757        /* Wait for device to reset. */
3758        mdelay(10);
3759
3760        /* Write 0 to clear device reset. */
3761        writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762}
3763
3764/**
3765 * hw_setup - setup the hardware
3766 * @hw:         The hardware instance.
3767 *
3768 * This routine setup the hardware for proper operation.
3769 */
3770static void hw_setup(struct ksz_hw *hw)
3771{
3772#if SET_DEFAULT_LED
3773        u16 data;
3774
3775        /* Change default LED mode. */
3776        data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777        data &= ~LED_MODE;
3778        data |= SET_DEFAULT_LED;
3779        writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780#endif
3781
3782        /* Setup transmit control. */
3783        hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785
3786        /* Setup receive control. */
3787        hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789        hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790
3791        /* Hardware cannot handle UDP packet in IP fragments. */
3792        hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793
3794        if (hw->all_multi)
3795                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796        if (hw->promiscuous)
3797                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798}
3799
3800/**
3801 * hw_setup_intr - setup interrupt mask
3802 * @hw:         The hardware instance.
3803 *
3804 * This routine setup the interrupt mask for proper operation.
3805 */
3806static void hw_setup_intr(struct ksz_hw *hw)
3807{
3808        hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809}
3810
3811static void ksz_check_desc_num(struct ksz_desc_info *info)
3812{
3813#define MIN_DESC_SHIFT  2
3814
3815        int alloc = info->alloc;
3816        int shift;
3817
3818        shift = 0;
3819        while (!(alloc & 1)) {
3820                shift++;
3821                alloc >>= 1;
3822        }
3823        if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824                pr_alert("Hardware descriptor numbers not right!\n");
3825                while (alloc) {
3826                        shift++;
3827                        alloc >>= 1;
3828                }
3829                if (shift < MIN_DESC_SHIFT)
3830                        shift = MIN_DESC_SHIFT;
3831                alloc = 1 << shift;
3832                info->alloc = alloc;
3833        }
3834        info->mask = info->alloc - 1;
3835}
3836
3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838{
3839        int i;
3840        u32 phys = desc_info->ring_phys;
3841        struct ksz_hw_desc *desc = desc_info->ring_virt;
3842        struct ksz_desc *cur = desc_info->ring;
3843        struct ksz_desc *previous = NULL;
3844
3845        for (i = 0; i < desc_info->alloc; i++) {
3846                cur->phw = desc++;
3847                phys += desc_info->size;
3848                previous = cur++;
3849                previous->phw->next = cpu_to_le32(phys);
3850        }
3851        previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852        previous->sw.buf.rx.end_of_ring = 1;
3853        previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854
3855        desc_info->avail = desc_info->alloc;
3856        desc_info->last = desc_info->next = 0;
3857
3858        desc_info->cur = desc_info->ring;
3859}
3860
3861/**
3862 * hw_set_desc_base - set descriptor base addresses
3863 * @hw:         The hardware instance.
3864 * @tx_addr:    The transmit descriptor base.
3865 * @rx_addr:    The receive descriptor base.
3866 *
3867 * This routine programs the descriptor base addresses after reset.
3868 */
3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870{
3871        /* Set base address of Tx/Rx descriptors. */
3872        writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873        writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874}
3875
3876static void hw_reset_pkts(struct ksz_desc_info *info)
3877{
3878        info->cur = info->ring;
3879        info->avail = info->alloc;
3880        info->last = info->next = 0;
3881}
3882
3883static inline void hw_resume_rx(struct ksz_hw *hw)
3884{
3885        writel(DMA_START, hw->io + KS_DMA_RX_START);
3886}
3887
3888/**
3889 * hw_start_rx - start receiving
3890 * @hw:         The hardware instance.
3891 *
3892 * This routine starts the receive function of the hardware.
3893 */
3894static void hw_start_rx(struct ksz_hw *hw)
3895{
3896        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897
3898        /* Notify when the receive stops. */
3899        hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900
3901        writel(DMA_START, hw->io + KS_DMA_RX_START);
3902        hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903        hw->rx_stop++;
3904
3905        /* Variable overflows. */
3906        if (0 == hw->rx_stop)
3907                hw->rx_stop = 2;
3908}
3909
3910/**
3911 * hw_stop_rx - stop receiving
3912 * @hw:         The hardware instance.
3913 *
3914 * This routine stops the receive function of the hardware.
3915 */
3916static void hw_stop_rx(struct ksz_hw *hw)
3917{
3918        hw->rx_stop = 0;
3919        hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920        writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921}
3922
3923/**
3924 * hw_start_tx - start transmitting
3925 * @hw:         The hardware instance.
3926 *
3927 * This routine starts the transmit function of the hardware.
3928 */
3929static void hw_start_tx(struct ksz_hw *hw)
3930{
3931        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_stop_tx - stop transmitting
3936 * @hw:         The hardware instance.
3937 *
3938 * This routine stops the transmit function of the hardware.
3939 */
3940static void hw_stop_tx(struct ksz_hw *hw)
3941{
3942        writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943}
3944
3945/**
3946 * hw_disable - disable hardware
3947 * @hw:         The hardware instance.
3948 *
3949 * This routine disables the hardware.
3950 */
3951static void hw_disable(struct ksz_hw *hw)
3952{
3953        hw_stop_rx(hw);
3954        hw_stop_tx(hw);
3955        hw->enabled = 0;
3956}
3957
3958/**
3959 * hw_enable - enable hardware
3960 * @hw:         The hardware instance.
3961 *
3962 * This routine enables the hardware.
3963 */
3964static void hw_enable(struct ksz_hw *hw)
3965{
3966        hw_start_tx(hw);
3967        hw_start_rx(hw);
3968        hw->enabled = 1;
3969}
3970
3971/**
3972 * hw_alloc_pkt - allocate enough descriptors for transmission
3973 * @hw:         The hardware instance.
3974 * @length:     The length of the packet.
3975 * @physical:   Number of descriptors required.
3976 *
3977 * This function allocates descriptors for transmission.
3978 *
3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980 */
3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982{
3983        /* Always leave one descriptor free. */
3984        if (hw->tx_desc_info.avail <= 1)
3985                return 0;
3986
3987        /* Allocate a descriptor for transmission and mark it current. */
3988        get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989        hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990
3991        /* Keep track of number of transmit descriptors used so far. */
3992        ++hw->tx_int_cnt;
3993        hw->tx_size += length;
3994
3995        /* Cannot hold on too much data. */
3996        if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997                hw->tx_int_cnt = hw->tx_int_mask + 1;
3998
3999        if (physical > hw->tx_desc_info.avail)
4000                return 1;
4001
4002        return hw->tx_desc_info.avail;
4003}
4004
4005/**
4006 * hw_send_pkt - mark packet for transmission
4007 * @hw:         The hardware instance.
4008 *
4009 * This routine marks the packet for transmission in PCI version.
4010 */
4011static void hw_send_pkt(struct ksz_hw *hw)
4012{
4013        struct ksz_desc *cur = hw->tx_desc_info.cur;
4014
4015        cur->sw.buf.tx.last_seg = 1;
4016
4017        /* Interrupt only after specified number of descriptors used. */
4018        if (hw->tx_int_cnt > hw->tx_int_mask) {
4019                cur->sw.buf.tx.intr = 1;
4020                hw->tx_int_cnt = 0;
4021                hw->tx_size = 0;
4022        }
4023
4024        /* KSZ8842 supports port directed transmission. */
4025        cur->sw.buf.tx.dest_port = hw->dst_ports;
4026
4027        release_desc(cur);
4028
4029        writel(0, hw->io + KS_DMA_TX_START);
4030}
4031
4032static int empty_addr(u8 *addr)
4033{
4034        u32 *addr1 = (u32 *) addr;
4035        u16 *addr2 = (u16 *) &addr[4];
4036
4037        return 0 == *addr1 && 0 == *addr2;
4038}
4039
4040/**
4041 * hw_set_addr - set MAC address
4042 * @hw:         The hardware instance.
4043 *
4044 * This routine programs the MAC address of the hardware when the address is
4045 * overrided.
4046 */
4047static void hw_set_addr(struct ksz_hw *hw)
4048{
4049        int i;
4050
4051        for (i = 0; i < ETH_ALEN; i++)
4052                writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053                        hw->io + KS884X_ADDR_0_OFFSET + i);
4054
4055        sw_set_addr(hw, hw->override_addr);
4056}
4057
4058/**
4059 * hw_read_addr - read MAC address
4060 * @hw:         The hardware instance.
4061 *
4062 * This routine retrieves the MAC address of the hardware.
4063 */
4064static void hw_read_addr(struct ksz_hw *hw)
4065{
4066        int i;
4067
4068        for (i = 0; i < ETH_ALEN; i++)
4069                hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070                        KS884X_ADDR_0_OFFSET + i);
4071
4072        if (!hw->mac_override) {
4073                memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074                if (empty_addr(hw->override_addr)) {
4075                        memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076                        memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077                               ETH_ALEN);
4078                        hw->override_addr[5] += hw->id;
4079                        hw_set_addr(hw);
4080                }
4081        }
4082}
4083
4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085{
4086        int i;
4087        u32 mac_addr_lo;
4088        u32 mac_addr_hi;
4089
4090        mac_addr_hi = 0;
4091        for (i = 0; i < 2; i++) {
4092                mac_addr_hi <<= 8;
4093                mac_addr_hi |= mac_addr[i];
4094        }
4095        mac_addr_hi |= ADD_ADDR_ENABLE;
4096        mac_addr_lo = 0;
4097        for (i = 2; i < 6; i++) {
4098                mac_addr_lo <<= 8;
4099                mac_addr_lo |= mac_addr[i];
4100        }
4101        index *= ADD_ADDR_INCR;
4102
4103        writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104        writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105}
4106
4107static void hw_set_add_addr(struct ksz_hw *hw)
4108{
4109        int i;
4110
4111        for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112                if (empty_addr(hw->address[i]))
4113                        writel(0, hw->io + ADD_ADDR_INCR * i +
4114                                KS_ADD_ADDR_0_HI);
4115                else
4116                        hw_ena_add_addr(hw, i, hw->address[i]);
4117        }
4118}
4119
4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121{
4122        int i;
4123        int j = ADDITIONAL_ENTRIES;
4124
4125        if (ether_addr_equal(hw->override_addr, mac_addr))
4126                return 0;
4127        for (i = 0; i < hw->addr_list_size; i++) {
4128                if (ether_addr_equal(hw->address[i], mac_addr))
4129                        return 0;
4130                if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131                        j = i;
4132        }
4133        if (j < ADDITIONAL_ENTRIES) {
4134                memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135                hw_ena_add_addr(hw, j, hw->address[j]);
4136                return 0;
4137        }
4138        return -1;
4139}
4140
4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142{
4143        int i;
4144
4145        for (i = 0; i < hw->addr_list_size; i++) {
4146                if (ether_addr_equal(hw->address[i], mac_addr)) {
4147                        eth_zero_addr(hw->address[i]);
4148                        writel(0, hw->io + ADD_ADDR_INCR * i +
4149                                KS_ADD_ADDR_0_HI);
4150                        return 0;
4151                }
4152        }
4153        return -1;
4154}
4155
4156/**
4157 * hw_clr_multicast - clear multicast addresses
4158 * @hw:         The hardware instance.
4159 *
4160 * This routine removes all multicast addresses set in the hardware.
4161 */
4162static void hw_clr_multicast(struct ksz_hw *hw)
4163{
4164        int i;
4165
4166        for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167                hw->multi_bits[i] = 0;
4168
4169                writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170        }
4171}
4172
4173/**
4174 * hw_set_grp_addr - set multicast addresses
4175 * @hw:         The hardware instance.
4176 *
4177 * This routine programs multicast addresses for the hardware to accept those
4178 * addresses.
4179 */
4180static void hw_set_grp_addr(struct ksz_hw *hw)
4181{
4182        int i;
4183        int index;
4184        int position;
4185        int value;
4186
4187        memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188
4189        for (i = 0; i < hw->multi_list_size; i++) {
4190                position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191                index = position >> 3;
4192                value = 1 << (position & 7);
4193                hw->multi_bits[index] |= (u8) value;
4194        }
4195
4196        for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197                writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198                        i);
4199}
4200
4201/**
4202 * hw_set_multicast - enable or disable all multicast receiving
4203 * @hw:         The hardware instance.
4204 * @multicast:  To turn on or off the all multicast feature.
4205 *
4206 * This routine enables/disables the hardware to accept all multicast packets.
4207 */
4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209{
4210        /* Stop receiving for reconfiguration. */
4211        hw_stop_rx(hw);
4212
4213        if (multicast)
4214                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215        else
4216                hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217
4218        if (hw->enabled)
4219                hw_start_rx(hw);
4220}
4221
4222/**
4223 * hw_set_promiscuous - enable or disable promiscuous receiving
4224 * @hw:         The hardware instance.
4225 * @prom:       To turn on or off the promiscuous feature.
4226 *
4227 * This routine enables/disables the hardware to accept all packets.
4228 */
4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230{
4231        /* Stop receiving for reconfiguration. */
4232        hw_stop_rx(hw);
4233
4234        if (prom)
4235                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236        else
4237                hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238
4239        if (hw->enabled)
4240                hw_start_rx(hw);
4241}
4242
4243/**
4244 * sw_enable - enable the switch
4245 * @hw:         The hardware instance.
4246 * @enable:     The flag to enable or disable the switch
4247 *
4248 * This routine is used to enable/disable the switch in KSZ8842.
4249 */
4250static void sw_enable(struct ksz_hw *hw, int enable)
4251{
4252        int port;
4253
4254        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255                if (hw->dev_count > 1) {
4256                        /* Set port-base vlan membership with host port. */
4257                        sw_cfg_port_base_vlan(hw, port,
4258                                HOST_MASK | (1 << port));
4259                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260                } else {
4261                        sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262                        port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263                }
4264        }
4265        if (hw->dev_count > 1)
4266                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267        else
4268                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269
4270        if (enable)
4271                enable = KS8842_START;
4272        writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273}
4274
4275/**
4276 * sw_setup - setup the switch
4277 * @hw:         The hardware instance.
4278 *
4279 * This routine setup the hardware switch engine for default operation.
4280 */
4281static void sw_setup(struct ksz_hw *hw)
4282{
4283        int port;
4284
4285        sw_set_global_ctrl(hw);
4286
4287        /* Enable switch broadcast storm protection at 10% percent rate. */
4288        sw_init_broad_storm(hw);
4289        hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290        for (port = 0; port < SWITCH_PORT_NUM; port++)
4291                sw_ena_broad_storm(hw, port);
4292
4293        sw_init_prio(hw);
4294
4295        sw_init_mirror(hw);
4296
4297        sw_init_prio_rate(hw);
4298
4299        sw_init_vlan(hw);
4300
4301        if (hw->features & STP_SUPPORT)
4302                sw_init_stp(hw);
4303        if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304                        SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305                hw->overrides |= PAUSE_FLOW_CTRL;
4306        sw_enable(hw, 1);
4307}
4308
4309/**
4310 * ksz_start_timer - start kernel timer
4311 * @info:       Kernel timer information.
4312 * @time:       The time tick.
4313 *
4314 * This routine starts the kernel timer after the specified time tick.
4315 */
4316static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317{
4318        info->cnt = 0;
4319        info->timer.expires = jiffies + time;
4320        add_timer(&info->timer);
4321
4322        /* infinity */
4323        info->max = -1;
4324}
4325
4326/**
4327 * ksz_stop_timer - stop kernel timer
4328 * @info:       Kernel timer information.
4329 *
4330 * This routine stops the kernel timer.
4331 */
4332static void ksz_stop_timer(struct ksz_timer_info *info)
4333{
4334        if (info->max) {
4335                info->max = 0;
4336                del_timer_sync(&info->timer);
4337        }
4338}
4339
4340static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341        void (*function)(unsigned long), void *data)
4342{
4343        info->max = 0;
4344        info->period = period;
4345        setup_timer(&info->timer, function, (unsigned long)data);
4346}
4347
4348static void ksz_update_timer(struct ksz_timer_info *info)
4349{
4350        ++info->cnt;
4351        if (info->max > 0) {
4352                if (info->cnt < info->max) {
4353                        info->timer.expires = jiffies + info->period;
4354                        add_timer(&info->timer);
4355                } else
4356                        info->max = 0;
4357        } else if (info->max < 0) {
4358                info->timer.expires = jiffies + info->period;
4359                add_timer(&info->timer);
4360        }
4361}
4362
4363/**
4364 * ksz_alloc_soft_desc - allocate software descriptors
4365 * @desc_info:  Descriptor information structure.
4366 * @transmit:   Indication that descriptors are for transmit.
4367 *
4368 * This local function allocates software descriptors for manipulation in
4369 * memory.
4370 *
4371 * Return 0 if successful.
4372 */
4373static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4374{
4375        desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4376                                  GFP_KERNEL);
4377        if (!desc_info->ring)
4378                return 1;
4379        hw_init_desc(desc_info, transmit);
4380        return 0;
4381}
4382
4383/**
4384 * ksz_alloc_desc - allocate hardware descriptors
4385 * @adapter:    Adapter information structure.
4386 *
4387 * This local function allocates hardware descriptors for receiving and
4388 * transmitting.
4389 *
4390 * Return 0 if successful.
4391 */
4392static int ksz_alloc_desc(struct dev_info *adapter)
4393{
4394        struct ksz_hw *hw = &adapter->hw;
4395        int offset;
4396
4397        /* Allocate memory for RX & TX descriptors. */
4398        adapter->desc_pool.alloc_size =
4399                hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4400                hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4401                DESC_ALIGNMENT;
4402
4403        adapter->desc_pool.alloc_virt =
4404                pci_zalloc_consistent(adapter->pdev,
4405                                      adapter->desc_pool.alloc_size,
4406                                      &adapter->desc_pool.dma_addr);
4407        if (adapter->desc_pool.alloc_virt == NULL) {
4408                adapter->desc_pool.alloc_size = 0;
4409                return 1;
4410        }
4411
4412        /* Align to the next cache line boundary. */
4413        offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4414                (DESC_ALIGNMENT -
4415                ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4416        adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4417        adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4418
4419        /* Allocate receive/transmit descriptors. */
4420        hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4421                adapter->desc_pool.virt;
4422        hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4423        offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4424        hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4425                (adapter->desc_pool.virt + offset);
4426        hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4427
4428        if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4429                return 1;
4430        if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4431                return 1;
4432
4433        return 0;
4434}
4435
4436/**
4437 * free_dma_buf - release DMA buffer resources
4438 * @adapter:    Adapter information structure.
4439 *
4440 * This routine is just a helper function to release the DMA buffer resources.
4441 */
4442static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4443        int direction)
4444{
4445        pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4446        dev_kfree_skb(dma_buf->skb);
4447        dma_buf->skb = NULL;
4448        dma_buf->dma = 0;
4449}
4450
4451/**
4452 * ksz_init_rx_buffers - initialize receive descriptors
4453 * @adapter:    Adapter information structure.
4454 *
4455 * This routine initializes DMA buffers for receiving.
4456 */
4457static void ksz_init_rx_buffers(struct dev_info *adapter)
4458{
4459        int i;
4460        struct ksz_desc *desc;
4461        struct ksz_dma_buf *dma_buf;
4462        struct ksz_hw *hw = &adapter->hw;
4463        struct ksz_desc_info *info = &hw->rx_desc_info;
4464
4465        for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4466                get_rx_pkt(info, &desc);
4467
4468                dma_buf = DMA_BUFFER(desc);
4469                if (dma_buf->skb && dma_buf->len != adapter->mtu)
4470                        free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4471                dma_buf->len = adapter->mtu;
4472                if (!dma_buf->skb)
4473                        dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4474                if (dma_buf->skb && !dma_buf->dma)
4475                        dma_buf->dma = pci_map_single(
4476                                adapter->pdev,
4477                                skb_tail_pointer(dma_buf->skb),
4478                                dma_buf->len,
4479                                PCI_DMA_FROMDEVICE);
4480
4481                /* Set descriptor. */
4482                set_rx_buf(desc, dma_buf->dma);
4483                set_rx_len(desc, dma_buf->len);
4484                release_desc(desc);
4485        }
4486}
4487
4488/**
4489 * ksz_alloc_mem - allocate memory for hardware descriptors
4490 * @adapter:    Adapter information structure.
4491 *
4492 * This function allocates memory for use by hardware descriptors for receiving
4493 * and transmitting.
4494 *
4495 * Return 0 if successful.
4496 */
4497static int ksz_alloc_mem(struct dev_info *adapter)
4498{
4499        struct ksz_hw *hw = &adapter->hw;
4500
4501        /* Determine the number of receive and transmit descriptors. */
4502        hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4503        hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4504
4505        /* Determine how many descriptors to skip transmit interrupt. */
4506        hw->tx_int_cnt = 0;
4507        hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4508        if (hw->tx_int_mask > 8)
4509                hw->tx_int_mask = 8;
4510        while (hw->tx_int_mask) {
4511                hw->tx_int_cnt++;
4512                hw->tx_int_mask >>= 1;
4513        }
4514        if (hw->tx_int_cnt) {
4515                hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4516                hw->tx_int_cnt = 0;
4517        }
4518
4519        /* Determine the descriptor size. */
4520        hw->rx_desc_info.size =
4521                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523        hw->tx_desc_info.size =
4524                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4525                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4526        if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4527                pr_alert("Hardware descriptor size not right!\n");
4528        ksz_check_desc_num(&hw->rx_desc_info);
4529        ksz_check_desc_num(&hw->tx_desc_info);
4530
4531        /* Allocate descriptors. */
4532        if (ksz_alloc_desc(adapter))
4533                return 1;
4534
4535        return 0;
4536}
4537
4538/**
4539 * ksz_free_desc - free software and hardware descriptors
4540 * @adapter:    Adapter information structure.
4541 *
4542 * This local routine frees the software and hardware descriptors allocated by
4543 * ksz_alloc_desc().
4544 */
4545static void ksz_free_desc(struct dev_info *adapter)
4546{
4547        struct ksz_hw *hw = &adapter->hw;
4548
4549        /* Reset descriptor. */
4550        hw->rx_desc_info.ring_virt = NULL;
4551        hw->tx_desc_info.ring_virt = NULL;
4552        hw->rx_desc_info.ring_phys = 0;
4553        hw->tx_desc_info.ring_phys = 0;
4554
4555        /* Free memory. */
4556        if (adapter->desc_pool.alloc_virt)
4557                pci_free_consistent(
4558                        adapter->pdev,
4559                        adapter->desc_pool.alloc_size,
4560                        adapter->desc_pool.alloc_virt,
4561                        adapter->desc_pool.dma_addr);
4562
4563        /* Reset resource pool. */
4564        adapter->desc_pool.alloc_size = 0;
4565        adapter->desc_pool.alloc_virt = NULL;
4566
4567        kfree(hw->rx_desc_info.ring);
4568        hw->rx_desc_info.ring = NULL;
4569        kfree(hw->tx_desc_info.ring);
4570        hw->tx_desc_info.ring = NULL;
4571}
4572
4573/**
4574 * ksz_free_buffers - free buffers used in the descriptors
4575 * @adapter:    Adapter information structure.
4576 * @desc_info:  Descriptor information structure.
4577 *
4578 * This local routine frees buffers used in the DMA buffers.
4579 */
4580static void ksz_free_buffers(struct dev_info *adapter,
4581        struct ksz_desc_info *desc_info, int direction)
4582{
4583        int i;
4584        struct ksz_dma_buf *dma_buf;
4585        struct ksz_desc *desc = desc_info->ring;
4586
4587        for (i = 0; i < desc_info->alloc; i++) {
4588                dma_buf = DMA_BUFFER(desc);
4589                if (dma_buf->skb)
4590                        free_dma_buf(adapter, dma_buf, direction);
4591                desc++;
4592        }
4593}
4594
4595/**
4596 * ksz_free_mem - free all resources used by descriptors
4597 * @adapter:    Adapter information structure.
4598 *
4599 * This local routine frees all the resources allocated by ksz_alloc_mem().
4600 */
4601static void ksz_free_mem(struct dev_info *adapter)
4602{
4603        /* Free transmit buffers. */
4604        ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4605                PCI_DMA_TODEVICE);
4606
4607        /* Free receive buffers. */
4608        ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4609                PCI_DMA_FROMDEVICE);
4610
4611        /* Free descriptors. */
4612        ksz_free_desc(adapter);
4613}
4614
4615static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4616        u64 *counter)
4617{
4618        int i;
4619        int mib;
4620        int port;
4621        struct ksz_port_mib *port_mib;
4622
4623        memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4624        for (i = 0, port = first; i < cnt; i++, port++) {
4625                port_mib = &hw->port_mib[port];
4626                for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4627                        counter[mib] += port_mib->counter[mib];
4628        }
4629}
4630
4631/**
4632 * send_packet - send packet
4633 * @skb:        Socket buffer.
4634 * @dev:        Network device.
4635 *
4636 * This routine is used to send a packet out to the network.
4637 */
4638static void send_packet(struct sk_buff *skb, struct net_device *dev)
4639{
4640        struct ksz_desc *desc;
4641        struct ksz_desc *first;
4642        struct dev_priv *priv = netdev_priv(dev);
4643        struct dev_info *hw_priv = priv->adapter;
4644        struct ksz_hw *hw = &hw_priv->hw;
4645        struct ksz_desc_info *info = &hw->tx_desc_info;
4646        struct ksz_dma_buf *dma_buf;
4647        int len;
4648        int last_frag = skb_shinfo(skb)->nr_frags;
4649
4650        /*
4651         * KSZ8842 with multiple device interfaces needs to be told which port
4652         * to send.
4653         */
4654        if (hw->dev_count > 1)
4655                hw->dst_ports = 1 << priv->port.first_port;
4656
4657        /* Hardware will pad the length to 60. */
4658        len = skb->len;
4659
4660        /* Remember the very first descriptor. */
4661        first = info->cur;
4662        desc = first;
4663
4664        dma_buf = DMA_BUFFER(desc);
4665        if (last_frag) {
4666                int frag;
4667                skb_frag_t *this_frag;
4668
4669                dma_buf->len = skb_headlen(skb);
4670
4671                dma_buf->dma = pci_map_single(
4672                        hw_priv->pdev, skb->data, dma_buf->len,
4673                        PCI_DMA_TODEVICE);
4674                set_tx_buf(desc, dma_buf->dma);
4675                set_tx_len(desc, dma_buf->len);
4676
4677                frag = 0;
4678                do {
4679                        this_frag = &skb_shinfo(skb)->frags[frag];
4680
4681                        /* Get a new descriptor. */
4682                        get_tx_pkt(info, &desc);
4683
4684                        /* Keep track of descriptors used so far. */
4685                        ++hw->tx_int_cnt;
4686
4687                        dma_buf = DMA_BUFFER(desc);
4688                        dma_buf->len = skb_frag_size(this_frag);
4689
4690                        dma_buf->dma = pci_map_single(
4691                                hw_priv->pdev,
4692                                skb_frag_address(this_frag),
4693                                dma_buf->len,
4694                                PCI_DMA_TODEVICE);
4695                        set_tx_buf(desc, dma_buf->dma);
4696                        set_tx_len(desc, dma_buf->len);
4697
4698                        frag++;
4699                        if (frag == last_frag)
4700                                break;
4701
4702                        /* Do not release the last descriptor here. */
4703                        release_desc(desc);
4704                } while (1);
4705
4706                /* current points to the last descriptor. */
4707                info->cur = desc;
4708
4709                /* Release the first descriptor. */
4710                release_desc(first);
4711        } else {
4712                dma_buf->len = len;
4713
4714                dma_buf->dma = pci_map_single(
4715                        hw_priv->pdev, skb->data, dma_buf->len,
4716                        PCI_DMA_TODEVICE);
4717                set_tx_buf(desc, dma_buf->dma);
4718                set_tx_len(desc, dma_buf->len);
4719        }
4720
4721        if (skb->ip_summed == CHECKSUM_PARTIAL) {
4722                (desc)->sw.buf.tx.csum_gen_tcp = 1;
4723                (desc)->sw.buf.tx.csum_gen_udp = 1;
4724        }
4725
4726        /*
4727         * The last descriptor holds the packet so that it can be returned to
4728         * network subsystem after all descriptors are transmitted.
4729         */
4730        dma_buf->skb = skb;
4731
4732        hw_send_pkt(hw);
4733
4734        /* Update transmit statistics. */
4735        dev->stats.tx_packets++;
4736        dev->stats.tx_bytes += len;
4737}
4738
4739/**
4740 * transmit_cleanup - clean up transmit descriptors
4741 * @dev:        Network device.
4742 *
4743 * This routine is called to clean up the transmitted buffers.
4744 */
4745static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4746{
4747        int last;
4748        union desc_stat status;
4749        struct ksz_hw *hw = &hw_priv->hw;
4750        struct ksz_desc_info *info = &hw->tx_desc_info;
4751        struct ksz_desc *desc;
4752        struct ksz_dma_buf *dma_buf;
4753        struct net_device *dev = NULL;
4754
4755        spin_lock_irq(&hw_priv->hwlock);
4756        last = info->last;
4757
4758        while (info->avail < info->alloc) {
4759                /* Get next descriptor which is not hardware owned. */
4760                desc = &info->ring[last];
4761                status.data = le32_to_cpu(desc->phw->ctrl.data);
4762                if (status.tx.hw_owned) {
4763                        if (normal)
4764                                break;
4765                        else
4766                                reset_desc(desc, status);
4767                }
4768
4769                dma_buf = DMA_BUFFER(desc);
4770                pci_unmap_single(
4771                        hw_priv->pdev, dma_buf->dma, dma_buf->len,
4772                        PCI_DMA_TODEVICE);
4773
4774                /* This descriptor contains the last buffer in the packet. */
4775                if (dma_buf->skb) {
4776                        dev = dma_buf->skb->dev;
4777
4778                        /* Release the packet back to network subsystem. */
4779                        dev_kfree_skb_irq(dma_buf->skb);
4780                        dma_buf->skb = NULL;
4781                }
4782
4783                /* Free the transmitted descriptor. */
4784                last++;
4785                last &= info->mask;
4786                info->avail++;
4787        }
4788        info->last = last;
4789        spin_unlock_irq(&hw_priv->hwlock);
4790
4791        /* Notify the network subsystem that the packet has been sent. */
4792        if (dev)
4793                dev->trans_start = jiffies;
4794}
4795
4796/**
4797 * transmit_done - transmit done processing
4798 * @dev:        Network device.
4799 *
4800 * This routine is called when the transmit interrupt is triggered, indicating
4801 * either a packet is sent successfully or there are transmit errors.
4802 */
4803static void tx_done(struct dev_info *hw_priv)
4804{
4805        struct ksz_hw *hw = &hw_priv->hw;
4806        int port;
4807
4808        transmit_cleanup(hw_priv, 1);
4809
4810        for (port = 0; port < hw->dev_count; port++) {
4811                struct net_device *dev = hw->port_info[port].pdev;
4812
4813                if (netif_running(dev) && netif_queue_stopped(dev))
4814                        netif_wake_queue(dev);
4815        }
4816}
4817
4818static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4819{
4820        skb->dev = old->dev;
4821        skb->protocol = old->protocol;
4822        skb->ip_summed = old->ip_summed;
4823        skb->csum = old->csum;
4824        skb_set_network_header(skb, ETH_HLEN);
4825
4826        dev_consume_skb_any(old);
4827}
4828
4829/**
4830 * netdev_tx - send out packet
4831 * @skb:        Socket buffer.
4832 * @dev:        Network device.
4833 *
4834 * This function is used by the upper network layer to send out a packet.
4835 *
4836 * Return 0 if successful; otherwise an error code indicating failure.
4837 */
4838static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4839{
4840        struct dev_priv *priv = netdev_priv(dev);
4841        struct dev_info *hw_priv = priv->adapter;
4842        struct ksz_hw *hw = &hw_priv->hw;
4843        int left;
4844        int num = 1;
4845        int rc = 0;
4846
4847        if (hw->features & SMALL_PACKET_TX_BUG) {
4848                struct sk_buff *org_skb = skb;
4849
4850                if (skb->len <= 48) {
4851                        if (skb_end_pointer(skb) - skb->data >= 50) {
4852                                memset(&skb->data[skb->len], 0, 50 - skb->len);
4853                                skb->len = 50;
4854                        } else {
4855                                skb = netdev_alloc_skb(dev, 50);
4856                                if (!skb)
4857                                        return NETDEV_TX_BUSY;
4858                                memcpy(skb->data, org_skb->data, org_skb->len);
4859                                memset(&skb->data[org_skb->len], 0,
4860                                        50 - org_skb->len);
4861                                skb->len = 50;
4862                                copy_old_skb(org_skb, skb);
4863                        }
4864                }
4865        }
4866
4867        spin_lock_irq(&hw_priv->hwlock);
4868
4869        num = skb_shinfo(skb)->nr_frags + 1;
4870        left = hw_alloc_pkt(hw, skb->len, num);
4871        if (left) {
4872                if (left < num ||
4873                    (CHECKSUM_PARTIAL == skb->ip_summed &&
4874                     skb->protocol == htons(ETH_P_IPV6))) {
4875                        struct sk_buff *org_skb = skb;
4876
4877                        skb = netdev_alloc_skb(dev, org_skb->len);
4878                        if (!skb) {
4879                                rc = NETDEV_TX_BUSY;
4880                                goto unlock;
4881                        }
4882                        skb_copy_and_csum_dev(org_skb, skb->data);
4883                        org_skb->ip_summed = CHECKSUM_NONE;
4884                        skb->len = org_skb->len;
4885                        copy_old_skb(org_skb, skb);
4886                }
4887                send_packet(skb, dev);
4888                if (left <= num)
4889                        netif_stop_queue(dev);
4890        } else {
4891                /* Stop the transmit queue until packet is allocated. */
4892                netif_stop_queue(dev);
4893                rc = NETDEV_TX_BUSY;
4894        }
4895unlock:
4896        spin_unlock_irq(&hw_priv->hwlock);
4897
4898        return rc;
4899}
4900
4901/**
4902 * netdev_tx_timeout - transmit timeout processing
4903 * @dev:        Network device.
4904 *
4905 * This routine is called when the transmit timer expires.  That indicates the
4906 * hardware is not running correctly because transmit interrupts are not
4907 * triggered to free up resources so that the transmit routine can continue
4908 * sending out packets.  The hardware is reset to correct the problem.
4909 */
4910static void netdev_tx_timeout(struct net_device *dev)
4911{
4912        static unsigned long last_reset;
4913
4914        struct dev_priv *priv = netdev_priv(dev);
4915        struct dev_info *hw_priv = priv->adapter;
4916        struct ksz_hw *hw = &hw_priv->hw;
4917        int port;
4918
4919        if (hw->dev_count > 1) {
4920                /*
4921                 * Only reset the hardware if time between calls is long
4922                 * enough.
4923                 */
4924                if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4925                        hw_priv = NULL;
4926        }
4927
4928        last_reset = jiffies;
4929        if (hw_priv) {
4930                hw_dis_intr(hw);
4931                hw_disable(hw);
4932
4933                transmit_cleanup(hw_priv, 0);
4934                hw_reset_pkts(&hw->rx_desc_info);
4935                hw_reset_pkts(&hw->tx_desc_info);
4936                ksz_init_rx_buffers(hw_priv);
4937
4938                hw_reset(hw);
4939
4940                hw_set_desc_base(hw,
4941                        hw->tx_desc_info.ring_phys,
4942                        hw->rx_desc_info.ring_phys);
4943                hw_set_addr(hw);
4944                if (hw->all_multi)
4945                        hw_set_multicast(hw, hw->all_multi);
4946                else if (hw->multi_list_size)
4947                        hw_set_grp_addr(hw);
4948
4949                if (hw->dev_count > 1) {
4950                        hw_set_add_addr(hw);
4951                        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4952                                struct net_device *port_dev;
4953
4954                                port_set_stp_state(hw, port,
4955                                        STP_STATE_DISABLED);
4956
4957                                port_dev = hw->port_info[port].pdev;
4958                                if (netif_running(port_dev))
4959                                        port_set_stp_state(hw, port,
4960                                                STP_STATE_SIMPLE);
4961                        }
4962                }
4963
4964                hw_enable(hw);
4965                hw_ena_intr(hw);
4966        }
4967
4968        dev->trans_start = jiffies;
4969        netif_wake_queue(dev);
4970}
4971
4972static inline void csum_verified(struct sk_buff *skb)
4973{
4974        unsigned short protocol;
4975        struct iphdr *iph;
4976
4977        protocol = skb->protocol;
4978        skb_reset_network_header(skb);
4979        iph = (struct iphdr *) skb_network_header(skb);
4980        if (protocol == htons(ETH_P_8021Q)) {
4981                protocol = iph->tot_len;
4982                skb_set_network_header(skb, VLAN_HLEN);
4983                iph = (struct iphdr *) skb_network_header(skb);
4984        }
4985        if (protocol == htons(ETH_P_IP)) {
4986                if (iph->protocol == IPPROTO_TCP)
4987                        skb->ip_summed = CHECKSUM_UNNECESSARY;
4988        }
4989}
4990
4991static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4992        struct ksz_desc *desc, union desc_stat status)
4993{
4994        int packet_len;
4995        struct dev_priv *priv = netdev_priv(dev);
4996        struct dev_info *hw_priv = priv->adapter;
4997        struct ksz_dma_buf *dma_buf;
4998        struct sk_buff *skb;
4999        int rx_status;
5000
5001        /* Received length includes 4-byte CRC. */
5002        packet_len = status.rx.frame_len - 4;
5003
5004        dma_buf = DMA_BUFFER(desc);
5005        pci_dma_sync_single_for_cpu(
5006                hw_priv->pdev, dma_buf->dma, packet_len + 4,
5007                PCI_DMA_FROMDEVICE);
5008
5009        do {
5010                /* skb->data != skb->head */
5011                skb = netdev_alloc_skb(dev, packet_len + 2);
5012                if (!skb) {
5013                        dev->stats.rx_dropped++;
5014                        return -ENOMEM;
5015                }
5016
5017                /*
5018                 * Align socket buffer in 4-byte boundary for better
5019                 * performance.
5020                 */
5021                skb_reserve(skb, 2);
5022
5023                memcpy(skb_put(skb, packet_len),
5024                        dma_buf->skb->data, packet_len);
5025        } while (0);
5026
5027        skb->protocol = eth_type_trans(skb, dev);
5028
5029        if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5030                csum_verified(skb);
5031
5032        /* Update receive statistics. */
5033        dev->stats.rx_packets++;
5034        dev->stats.rx_bytes += packet_len;
5035
5036        /* Notify upper layer for received packet. */
5037        rx_status = netif_rx(skb);
5038
5039        return 0;
5040}
5041
5042static int dev_rcv_packets(struct dev_info *hw_priv)
5043{
5044        int next;
5045        union desc_stat status;
5046        struct ksz_hw *hw = &hw_priv->hw;
5047        struct net_device *dev = hw->port_info[0].pdev;
5048        struct ksz_desc_info *info = &hw->rx_desc_info;
5049        int left = info->alloc;
5050        struct ksz_desc *desc;
5051        int received = 0;
5052
5053        next = info->next;
5054        while (left--) {
5055                /* Get next descriptor which is not hardware owned. */
5056                desc = &info->ring[next];
5057                status.data = le32_to_cpu(desc->phw->ctrl.data);
5058                if (status.rx.hw_owned)
5059                        break;
5060
5061                /* Status valid only when last descriptor bit is set. */
5062                if (status.rx.last_desc && status.rx.first_desc) {
5063                        if (rx_proc(dev, hw, desc, status))
5064                                goto release_packet;
5065                        received++;
5066                }
5067
5068release_packet:
5069                release_desc(desc);
5070                next++;
5071                next &= info->mask;
5072        }
5073        info->next = next;
5074
5075        return received;
5076}
5077
5078static int port_rcv_packets(struct dev_info *hw_priv)
5079{
5080        int next;
5081        union desc_stat status;
5082        struct ksz_hw *hw = &hw_priv->hw;
5083        struct net_device *dev = hw->port_info[0].pdev;
5084        struct ksz_desc_info *info = &hw->rx_desc_info;
5085        int left = info->alloc;
5086        struct ksz_desc *desc;
5087        int received = 0;
5088
5089        next = info->next;
5090        while (left--) {
5091                /* Get next descriptor which is not hardware owned. */
5092                desc = &info->ring[next];
5093                status.data = le32_to_cpu(desc->phw->ctrl.data);
5094                if (status.rx.hw_owned)
5095                        break;
5096
5097                if (hw->dev_count > 1) {
5098                        /* Get received port number. */
5099                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5100
5101                        dev = hw->port_info[p].pdev;
5102                        if (!netif_running(dev))
5103                                goto release_packet;
5104                }
5105
5106                /* Status valid only when last descriptor bit is set. */
5107                if (status.rx.last_desc && status.rx.first_desc) {
5108                        if (rx_proc(dev, hw, desc, status))
5109                                goto release_packet;
5110                        received++;
5111                }
5112
5113release_packet:
5114                release_desc(desc);
5115                next++;
5116                next &= info->mask;
5117        }
5118        info->next = next;
5119
5120        return received;
5121}
5122
5123static int dev_rcv_special(struct dev_info *hw_priv)
5124{
5125        int next;
5126        union desc_stat status;
5127        struct ksz_hw *hw = &hw_priv->hw;
5128        struct net_device *dev = hw->port_info[0].pdev;
5129        struct ksz_desc_info *info = &hw->rx_desc_info;
5130        int left = info->alloc;
5131        struct ksz_desc *desc;
5132        int received = 0;
5133
5134        next = info->next;
5135        while (left--) {
5136                /* Get next descriptor which is not hardware owned. */
5137                desc = &info->ring[next];
5138                status.data = le32_to_cpu(desc->phw->ctrl.data);
5139                if (status.rx.hw_owned)
5140                        break;
5141
5142                if (hw->dev_count > 1) {
5143                        /* Get received port number. */
5144                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5145
5146                        dev = hw->port_info[p].pdev;
5147                        if (!netif_running(dev))
5148                                goto release_packet;
5149                }
5150
5151                /* Status valid only when last descriptor bit is set. */
5152                if (status.rx.last_desc && status.rx.first_desc) {
5153                        /*
5154                         * Receive without error.  With receive errors
5155                         * disabled, packets with receive errors will be
5156                         * dropped, so no need to check the error bit.
5157                         */
5158                        if (!status.rx.error || (status.data &
5159                                        KS_DESC_RX_ERROR_COND) ==
5160                                        KS_DESC_RX_ERROR_TOO_LONG) {
5161                                if (rx_proc(dev, hw, desc, status))
5162                                        goto release_packet;
5163                                received++;
5164                        } else {
5165                                struct dev_priv *priv = netdev_priv(dev);
5166
5167                                /* Update receive error statistics. */
5168                                priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5169                        }
5170                }
5171
5172release_packet:
5173                release_desc(desc);
5174                next++;
5175                next &= info->mask;
5176        }
5177        info->next = next;
5178
5179        return received;
5180}
5181
5182static void rx_proc_task(unsigned long data)
5183{
5184        struct dev_info *hw_priv = (struct dev_info *) data;
5185        struct ksz_hw *hw = &hw_priv->hw;
5186
5187        if (!hw->enabled)
5188                return;
5189        if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5190
5191                /* In case receive process is suspended because of overrun. */
5192                hw_resume_rx(hw);
5193
5194                /* tasklets are interruptible. */
5195                spin_lock_irq(&hw_priv->hwlock);
5196                hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5197                spin_unlock_irq(&hw_priv->hwlock);
5198        } else {
5199                hw_ack_intr(hw, KS884X_INT_RX);
5200                tasklet_schedule(&hw_priv->rx_tasklet);
5201        }
5202}
5203
5204static void tx_proc_task(unsigned long data)
5205{
5206        struct dev_info *hw_priv = (struct dev_info *) data;
5207        struct ksz_hw *hw = &hw_priv->hw;
5208
5209        hw_ack_intr(hw, KS884X_INT_TX_MASK);
5210
5211        tx_done(hw_priv);
5212
5213        /* tasklets are interruptible. */
5214        spin_lock_irq(&hw_priv->hwlock);
5215        hw_turn_on_intr(hw, KS884X_INT_TX);
5216        spin_unlock_irq(&hw_priv->hwlock);
5217}
5218
5219static inline void handle_rx_stop(struct ksz_hw *hw)
5220{
5221        /* Receive just has been stopped. */
5222        if (0 == hw->rx_stop)
5223                hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5224        else if (hw->rx_stop > 1) {
5225                if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5226                        hw_start_rx(hw);
5227                } else {
5228                        hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5229                        hw->rx_stop = 0;
5230                }
5231        } else
5232                /* Receive just has been started. */
5233                hw->rx_stop++;
5234}
5235
5236/**
5237 * netdev_intr - interrupt handling
5238 * @irq:        Interrupt number.
5239 * @dev_id:     Network device.
5240 *
5241 * This function is called by upper network layer to signal interrupt.
5242 *
5243 * Return IRQ_HANDLED if interrupt is handled.
5244 */
5245static irqreturn_t netdev_intr(int irq, void *dev_id)
5246{
5247        uint int_enable = 0;
5248        struct net_device *dev = (struct net_device *) dev_id;
5249        struct dev_priv *priv = netdev_priv(dev);
5250        struct dev_info *hw_priv = priv->adapter;
5251        struct ksz_hw *hw = &hw_priv->hw;
5252
5253        spin_lock(&hw_priv->hwlock);
5254
5255        hw_read_intr(hw, &int_enable);
5256
5257        /* Not our interrupt! */
5258        if (!int_enable) {
5259                spin_unlock(&hw_priv->hwlock);
5260                return IRQ_NONE;
5261        }
5262
5263        do {
5264                hw_ack_intr(hw, int_enable);
5265                int_enable &= hw->intr_mask;
5266
5267                if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5268                        hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5269                        tasklet_schedule(&hw_priv->tx_tasklet);
5270                }
5271
5272                if (likely(int_enable & KS884X_INT_RX)) {
5273                        hw_dis_intr_bit(hw, KS884X_INT_RX);
5274                        tasklet_schedule(&hw_priv->rx_tasklet);
5275                }
5276
5277                if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5278                        dev->stats.rx_fifo_errors++;
5279                        hw_resume_rx(hw);
5280                }
5281
5282                if (unlikely(int_enable & KS884X_INT_PHY)) {
5283                        struct ksz_port *port = &priv->port;
5284
5285                        hw->features |= LINK_INT_WORKING;
5286                        port_get_link_speed(port);
5287                }
5288
5289                if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5290                        handle_rx_stop(hw);
5291                        break;
5292                }
5293
5294                if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5295                        u32 data;
5296
5297                        hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5298                        pr_info("Tx stopped\n");
5299                        data = readl(hw->io + KS_DMA_TX_CTRL);
5300                        if (!(data & DMA_TX_ENABLE))
5301                                pr_info("Tx disabled\n");
5302                        break;
5303                }
5304        } while (0);
5305
5306        hw_ena_intr(hw);
5307
5308        spin_unlock(&hw_priv->hwlock);
5309
5310        return IRQ_HANDLED;
5311}
5312
5313/*
5314 * Linux network device functions
5315 */
5316
5317static unsigned long next_jiffies;
5318
5319#ifdef CONFIG_NET_POLL_CONTROLLER
5320static void netdev_netpoll(struct net_device *dev)
5321{
5322        struct dev_priv *priv = netdev_priv(dev);
5323        struct dev_info *hw_priv = priv->adapter;
5324
5325        hw_dis_intr(&hw_priv->hw);
5326        netdev_intr(dev->irq, dev);
5327}
5328#endif
5329
5330static void bridge_change(struct ksz_hw *hw)
5331{
5332        int port;
5333        u8  member;
5334        struct ksz_switch *sw = hw->ksz_switch;
5335
5336        /* No ports in forwarding state. */
5337        if (!sw->member) {
5338                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5339                sw_block_addr(hw);
5340        }
5341        for (port = 0; port < SWITCH_PORT_NUM; port++) {
5342                if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5343                        member = HOST_MASK | sw->member;
5344                else
5345                        member = HOST_MASK | (1 << port);
5346                if (member != sw->port_cfg[port].member)
5347                        sw_cfg_port_base_vlan(hw, port, member);
5348        }
5349}
5350
5351/**
5352 * netdev_close - close network device
5353 * @dev:        Network device.
5354 *
5355 * This function process the close operation of network device.  This is caused
5356 * by the user command "ifconfig ethX down."
5357 *
5358 * Return 0 if successful; otherwise an error code indicating failure.
5359 */
5360static int netdev_close(struct net_device *dev)
5361{
5362        struct dev_priv *priv = netdev_priv(dev);
5363        struct dev_info *hw_priv = priv->adapter;
5364        struct ksz_port *port = &priv->port;
5365        struct ksz_hw *hw = &hw_priv->hw;
5366        int pi;
5367
5368        netif_stop_queue(dev);
5369
5370        ksz_stop_timer(&priv->monitor_timer_info);
5371
5372        /* Need to shut the port manually in multiple device interfaces mode. */
5373        if (hw->dev_count > 1) {
5374                port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5375
5376                /* Port is closed.  Need to change bridge setting. */
5377                if (hw->features & STP_SUPPORT) {
5378                        pi = 1 << port->first_port;
5379                        if (hw->ksz_switch->member & pi) {
5380                                hw->ksz_switch->member &= ~pi;
5381                                bridge_change(hw);
5382                        }
5383                }
5384        }
5385        if (port->first_port > 0)
5386                hw_del_addr(hw, dev->dev_addr);
5387        if (!hw_priv->wol_enable)
5388                port_set_power_saving(port, true);
5389
5390        if (priv->multicast)
5391                --hw->all_multi;
5392        if (priv->promiscuous)
5393                --hw->promiscuous;
5394
5395        hw_priv->opened--;
5396        if (!(hw_priv->opened)) {
5397                ksz_stop_timer(&hw_priv->mib_timer_info);
5398                flush_work(&hw_priv->mib_read);
5399
5400                hw_dis_intr(hw);
5401                hw_disable(hw);
5402                hw_clr_multicast(hw);
5403
5404                /* Delay for receive task to stop scheduling itself. */
5405                msleep(2000 / HZ);
5406
5407                tasklet_kill(&hw_priv->rx_tasklet);
5408                tasklet_kill(&hw_priv->tx_tasklet);
5409                free_irq(dev->irq, hw_priv->dev);
5410
5411                transmit_cleanup(hw_priv, 0);
5412                hw_reset_pkts(&hw->rx_desc_info);
5413                hw_reset_pkts(&hw->tx_desc_info);
5414
5415                /* Clean out static MAC table when the switch is shutdown. */
5416                if (hw->features & STP_SUPPORT)
5417                        sw_clr_sta_mac_table(hw);
5418        }
5419
5420        return 0;
5421}
5422
5423static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5424{
5425        if (hw->ksz_switch) {
5426                u32 data;
5427
5428                data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5429                if (hw->features & RX_HUGE_FRAME)
5430                        data |= SWITCH_HUGE_PACKET;
5431                else
5432                        data &= ~SWITCH_HUGE_PACKET;
5433                writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5434        }
5435        if (hw->features & RX_HUGE_FRAME) {
5436                hw->rx_cfg |= DMA_RX_ERROR;
5437                hw_priv->dev_rcv = dev_rcv_special;
5438        } else {
5439                hw->rx_cfg &= ~DMA_RX_ERROR;
5440                if (hw->dev_count > 1)
5441                        hw_priv->dev_rcv = port_rcv_packets;
5442                else
5443                        hw_priv->dev_rcv = dev_rcv_packets;
5444        }
5445}
5446
5447static int prepare_hardware(struct net_device *dev)
5448{
5449        struct dev_priv *priv = netdev_priv(dev);
5450        struct dev_info *hw_priv = priv->adapter;
5451        struct ksz_hw *hw = &hw_priv->hw;
5452        int rc = 0;
5453
5454        /* Remember the network device that requests interrupts. */
5455        hw_priv->dev = dev;
5456        rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5457        if (rc)
5458                return rc;
5459        tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5460                     (unsigned long) hw_priv);
5461        tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5462                     (unsigned long) hw_priv);
5463
5464        hw->promiscuous = 0;
5465        hw->all_multi = 0;
5466        hw->multi_list_size = 0;
5467
5468        hw_reset(hw);
5469
5470        hw_set_desc_base(hw,
5471                hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5472        hw_set_addr(hw);
5473        hw_cfg_huge_frame(hw_priv, hw);
5474        ksz_init_rx_buffers(hw_priv);
5475        return 0;
5476}
5477
5478static void set_media_state(struct net_device *dev, int media_state)
5479{
5480        struct dev_priv *priv = netdev_priv(dev);
5481
5482        if (media_state == priv->media_state)
5483                netif_carrier_on(dev);
5484        else
5485                netif_carrier_off(dev);
5486        netif_info(priv, link, dev, "link %s\n",
5487                   media_state == priv->media_state ? "on" : "off");
5488}
5489
5490/**
5491 * netdev_open - open network device
5492 * @dev:        Network device.
5493 *
5494 * This function process the open operation of network device.  This is caused
5495 * by the user command "ifconfig ethX up."
5496 *
5497 * Return 0 if successful; otherwise an error code indicating failure.
5498 */
5499static int netdev_open(struct net_device *dev)
5500{
5501        struct dev_priv *priv = netdev_priv(dev);
5502        struct dev_info *hw_priv = priv->adapter;
5503        struct ksz_hw *hw = &hw_priv->hw;
5504        struct ksz_port *port = &priv->port;
5505        int i;
5506        int p;
5507        int rc = 0;
5508
5509        priv->multicast = 0;
5510        priv->promiscuous = 0;
5511
5512        /* Reset device statistics. */
5513        memset(&dev->stats, 0, sizeof(struct net_device_stats));
5514        memset((void *) port->counter, 0,
5515                (sizeof(u64) * OID_COUNTER_LAST));
5516
5517        if (!(hw_priv->opened)) {
5518                rc = prepare_hardware(dev);
5519                if (rc)
5520                        return rc;
5521                for (i = 0; i < hw->mib_port_cnt; i++) {
5522                        if (next_jiffies < jiffies)
5523                                next_jiffies = jiffies + HZ * 2;
5524                        else
5525                                next_jiffies += HZ * 1;
5526                        hw_priv->counter[i].time = next_jiffies;
5527                        hw->port_mib[i].state = media_disconnected;
5528                        port_init_cnt(hw, i);
5529                }
5530                if (hw->ksz_switch)
5531                        hw->port_mib[HOST_PORT].state = media_connected;
5532                else {
5533                        hw_add_wol_bcast(hw);
5534                        hw_cfg_wol_pme(hw, 0);
5535                        hw_clr_wol_pme_status(&hw_priv->hw);
5536                }
5537        }
5538        port_set_power_saving(port, false);
5539
5540        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5541                /*
5542                 * Initialize to invalid value so that link detection
5543                 * is done.
5544                 */
5545                hw->port_info[p].partner = 0xFF;
5546                hw->port_info[p].state = media_disconnected;
5547        }
5548
5549        /* Need to open the port in multiple device interfaces mode. */
5550        if (hw->dev_count > 1) {
5551                port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5552                if (port->first_port > 0)
5553                        hw_add_addr(hw, dev->dev_addr);
5554        }
5555
5556        port_get_link_speed(port);
5557        if (port->force_link)
5558                port_force_link_speed(port);
5559        else
5560                port_set_link_speed(port);
5561
5562        if (!(hw_priv->opened)) {
5563                hw_setup_intr(hw);
5564                hw_enable(hw);
5565                hw_ena_intr(hw);
5566
5567                if (hw->mib_port_cnt)
5568                        ksz_start_timer(&hw_priv->mib_timer_info,
5569                                hw_priv->mib_timer_info.period);
5570        }
5571
5572        hw_priv->opened++;
5573
5574        ksz_start_timer(&priv->monitor_timer_info,
5575                priv->monitor_timer_info.period);
5576
5577        priv->media_state = port->linked->state;
5578
5579        set_media_state(dev, media_connected);
5580        netif_start_queue(dev);
5581
5582        return 0;
5583}
5584
5585/* RX errors = rx_errors */
5586/* RX dropped = rx_dropped */
5587/* RX overruns = rx_fifo_errors */
5588/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5589/* TX errors = tx_errors */
5590/* TX dropped = tx_dropped */
5591/* TX overruns = tx_fifo_errors */
5592/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5593/* collisions = collisions */
5594
5595/**
5596 * netdev_query_statistics - query network device statistics
5597 * @dev:        Network device.
5598 *
5599 * This function returns the statistics of the network device.  The device
5600 * needs not be opened.
5601 *
5602 * Return network device statistics.
5603 */
5604static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5605{
5606        struct dev_priv *priv = netdev_priv(dev);
5607        struct ksz_port *port = &priv->port;
5608        struct ksz_hw *hw = &priv->adapter->hw;
5609        struct ksz_port_mib *mib;
5610        int i;
5611        int p;
5612
5613        dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5614        dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5615
5616        /* Reset to zero to add count later. */
5617        dev->stats.multicast = 0;
5618        dev->stats.collisions = 0;
5619        dev->stats.rx_length_errors = 0;
5620        dev->stats.rx_crc_errors = 0;
5621        dev->stats.rx_frame_errors = 0;
5622        dev->stats.tx_window_errors = 0;
5623
5624        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5625                mib = &hw->port_mib[p];
5626
5627                dev->stats.multicast += (unsigned long)
5628                        mib->counter[MIB_COUNTER_RX_MULTICAST];
5629
5630                dev->stats.collisions += (unsigned long)
5631                        mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5632
5633                dev->stats.rx_length_errors += (unsigned long)(
5634                        mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5635                        mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5636                        mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5637                        mib->counter[MIB_COUNTER_RX_JABBER]);
5638                dev->stats.rx_crc_errors += (unsigned long)
5639                        mib->counter[MIB_COUNTER_RX_CRC_ERR];
5640                dev->stats.rx_frame_errors += (unsigned long)(
5641                        mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5642                        mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5643
5644                dev->stats.tx_window_errors += (unsigned long)
5645                        mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5646        }
5647
5648        return &dev->stats;
5649}
5650
5651/**
5652 * netdev_set_mac_address - set network device MAC address
5653 * @dev:        Network device.
5654 * @addr:       Buffer of MAC address.
5655 *
5656 * This function is used to set the MAC address of the network device.
5657 *
5658 * Return 0 to indicate success.
5659 */
5660static int netdev_set_mac_address(struct net_device *dev, void *addr)
5661{
5662        struct dev_priv *priv = netdev_priv(dev);
5663        struct dev_info *hw_priv = priv->adapter;
5664        struct ksz_hw *hw = &hw_priv->hw;
5665        struct sockaddr *mac = addr;
5666        uint interrupt;
5667
5668        if (priv->port.first_port > 0)
5669                hw_del_addr(hw, dev->dev_addr);
5670        else {
5671                hw->mac_override = 1;
5672                memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5673        }
5674
5675        memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5676
5677        interrupt = hw_block_intr(hw);
5678
5679        if (priv->port.first_port > 0)
5680                hw_add_addr(hw, dev->dev_addr);
5681        else
5682                hw_set_addr(hw);
5683        hw_restore_intr(hw, interrupt);
5684
5685        return 0;
5686}
5687
5688static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5689        struct ksz_hw *hw, int promiscuous)
5690{
5691        if (promiscuous != priv->promiscuous) {
5692                u8 prev_state = hw->promiscuous;
5693
5694                if (promiscuous)
5695                        ++hw->promiscuous;
5696                else
5697                        --hw->promiscuous;
5698                priv->promiscuous = promiscuous;
5699
5700                /* Turn on/off promiscuous mode. */
5701                if (hw->promiscuous <= 1 && prev_state <= 1)
5702                        hw_set_promiscuous(hw, hw->promiscuous);
5703
5704                /*
5705                 * Port is not in promiscuous mode, meaning it is released
5706                 * from the bridge.
5707                 */
5708                if ((hw->features & STP_SUPPORT) && !promiscuous &&
5709                    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5710                        struct ksz_switch *sw = hw->ksz_switch;
5711                        int port = priv->port.first_port;
5712
5713                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
5714                        port = 1 << port;
5715                        if (sw->member & port) {
5716                                sw->member &= ~port;
5717                                bridge_change(hw);
5718                        }
5719                }
5720        }
5721}
5722
5723static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5724        int multicast)
5725{
5726        if (multicast != priv->multicast) {
5727                u8 all_multi = hw->all_multi;
5728
5729                if (multicast)
5730                        ++hw->all_multi;
5731                else
5732                        --hw->all_multi;
5733                priv->multicast = multicast;
5734
5735                /* Turn on/off all multicast mode. */
5736                if (hw->all_multi <= 1 && all_multi <= 1)
5737                        hw_set_multicast(hw, hw->all_multi);
5738        }
5739}
5740
5741/**
5742 * netdev_set_rx_mode
5743 * @dev:        Network device.
5744 *
5745 * This routine is used to set multicast addresses or put the network device
5746 * into promiscuous mode.
5747 */
5748static void netdev_set_rx_mode(struct net_device *dev)
5749{
5750        struct dev_priv *priv = netdev_priv(dev);
5751        struct dev_info *hw_priv = priv->adapter;
5752        struct ksz_hw *hw = &hw_priv->hw;
5753        struct netdev_hw_addr *ha;
5754        int multicast = (dev->flags & IFF_ALLMULTI);
5755
5756        dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5757
5758        if (hw_priv->hw.dev_count > 1)
5759                multicast |= (dev->flags & IFF_MULTICAST);
5760        dev_set_multicast(priv, hw, multicast);
5761
5762        /* Cannot use different hashes in multiple device interfaces mode. */
5763        if (hw_priv->hw.dev_count > 1)
5764                return;
5765
5766        if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5767                int i = 0;
5768
5769                /* List too big to support so turn on all multicast mode. */
5770                if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5771                        if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5772                                hw->multi_list_size = MAX_MULTICAST_LIST;
5773                                ++hw->all_multi;
5774                                hw_set_multicast(hw, hw->all_multi);
5775                        }
5776                        return;
5777                }
5778
5779                netdev_for_each_mc_addr(ha, dev) {
5780                        if (i >= MAX_MULTICAST_LIST)
5781                                break;
5782                        memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5783                }
5784                hw->multi_list_size = (u8) i;
5785                hw_set_grp_addr(hw);
5786        } else {
5787                if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5788                        --hw->all_multi;
5789                        hw_set_multicast(hw, hw->all_multi);
5790                }
5791                hw->multi_list_size = 0;
5792                hw_clr_multicast(hw);
5793        }
5794}
5795
5796static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5797{
5798        struct dev_priv *priv = netdev_priv(dev);
5799        struct dev_info *hw_priv = priv->adapter;
5800        struct ksz_hw *hw = &hw_priv->hw;
5801        int hw_mtu;
5802
5803        if (netif_running(dev))
5804                return -EBUSY;
5805
5806        /* Cannot use different MTU in multiple device interfaces mode. */
5807        if (hw->dev_count > 1)
5808                if (dev != hw_priv->dev)
5809                        return 0;
5810        if (new_mtu < 60)
5811                return -EINVAL;
5812
5813        if (dev->mtu != new_mtu) {
5814                hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5815                if (hw_mtu > MAX_RX_BUF_SIZE)
5816                        return -EINVAL;
5817                if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5818                        hw->features |= RX_HUGE_FRAME;
5819                        hw_mtu = MAX_RX_BUF_SIZE;
5820                } else {
5821                        hw->features &= ~RX_HUGE_FRAME;
5822                        hw_mtu = REGULAR_RX_BUF_SIZE;
5823                }
5824                hw_mtu = (hw_mtu + 3) & ~3;
5825                hw_priv->mtu = hw_mtu;
5826                dev->mtu = new_mtu;
5827        }
5828        return 0;
5829}
5830
5831/**
5832 * netdev_ioctl - I/O control processing
5833 * @dev:        Network device.
5834 * @ifr:        Interface request structure.
5835 * @cmd:        I/O control code.
5836 *
5837 * This function is used to process I/O control calls.
5838 *
5839 * Return 0 to indicate success.
5840 */
5841static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5842{
5843        struct dev_priv *priv = netdev_priv(dev);
5844        struct dev_info *hw_priv = priv->adapter;
5845        struct ksz_hw *hw = &hw_priv->hw;
5846        struct ksz_port *port = &priv->port;
5847        int result = 0;
5848        struct mii_ioctl_data *data = if_mii(ifr);
5849
5850        if (down_interruptible(&priv->proc_sem))
5851                return -ERESTARTSYS;
5852
5853        switch (cmd) {
5854        /* Get address of MII PHY in use. */
5855        case SIOCGMIIPHY:
5856                data->phy_id = priv->id;
5857
5858                /* Fallthrough... */
5859
5860        /* Read MII PHY register. */
5861        case SIOCGMIIREG:
5862                if (data->phy_id != priv->id || data->reg_num >= 6)
5863                        result = -EIO;
5864                else
5865                        hw_r_phy(hw, port->linked->port_id, data->reg_num,
5866                                &data->val_out);
5867                break;
5868
5869        /* Write MII PHY register. */
5870        case SIOCSMIIREG:
5871                if (!capable(CAP_NET_ADMIN))
5872                        result = -EPERM;
5873                else if (data->phy_id != priv->id || data->reg_num >= 6)
5874                        result = -EIO;
5875                else
5876                        hw_w_phy(hw, port->linked->port_id, data->reg_num,
5877                                data->val_in);
5878                break;
5879
5880        default:
5881                result = -EOPNOTSUPP;
5882        }
5883
5884        up(&priv->proc_sem);
5885
5886        return result;
5887}
5888
5889/*
5890 * MII support
5891 */
5892
5893/**
5894 * mdio_read - read PHY register
5895 * @dev:        Network device.
5896 * @phy_id:     The PHY id.
5897 * @reg_num:    The register number.
5898 *
5899 * This function returns the PHY register value.
5900 *
5901 * Return the register value.
5902 */
5903static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5904{
5905        struct dev_priv *priv = netdev_priv(dev);
5906        struct ksz_port *port = &priv->port;
5907        struct ksz_hw *hw = port->hw;
5908        u16 val_out;
5909
5910        hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5911        return val_out;
5912}
5913
5914/**
5915 * mdio_write - set PHY register
5916 * @dev:        Network device.
5917 * @phy_id:     The PHY id.
5918 * @reg_num:    The register number.
5919 * @val:        The register value.
5920 *
5921 * This procedure sets the PHY register value.
5922 */
5923static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5924{
5925        struct dev_priv *priv = netdev_priv(dev);
5926        struct ksz_port *port = &priv->port;
5927        struct ksz_hw *hw = port->hw;
5928        int i;
5929        int pi;
5930
5931        for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5932                hw_w_phy(hw, pi, reg_num << 1, val);
5933}
5934
5935/*
5936 * ethtool support
5937 */
5938
5939#define EEPROM_SIZE                     0x40
5940
5941static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5942
5943#define ADVERTISED_ALL                  \
5944        (ADVERTISED_10baseT_Half |      \
5945        ADVERTISED_10baseT_Full |       \
5946        ADVERTISED_100baseT_Half |      \
5947        ADVERTISED_100baseT_Full)
5948
5949/* These functions use the MII functions in mii.c. */
5950
5951/**
5952 * netdev_get_settings - get network device settings
5953 * @dev:        Network device.
5954 * @cmd:        Ethtool command.
5955 *
5956 * This function queries the PHY and returns its state in the ethtool command.
5957 *
5958 * Return 0 if successful; otherwise an error code.
5959 */
5960static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5961{
5962        struct dev_priv *priv = netdev_priv(dev);
5963        struct dev_info *hw_priv = priv->adapter;
5964
5965        mutex_lock(&hw_priv->lock);
5966        mii_ethtool_gset(&priv->mii_if, cmd);
5967        cmd->advertising |= SUPPORTED_TP;
5968        mutex_unlock(&hw_priv->lock);
5969
5970        /* Save advertised settings for workaround in next function. */
5971        priv->advertising = cmd->advertising;
5972        return 0;
5973}
5974
5975/**
5976 * netdev_set_settings - set network device settings
5977 * @dev:        Network device.
5978 * @cmd:        Ethtool command.
5979 *
5980 * This function sets the PHY according to the ethtool command.
5981 *
5982 * Return 0 if successful; otherwise an error code.
5983 */
5984static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5985{
5986        struct dev_priv *priv = netdev_priv(dev);
5987        struct dev_info *hw_priv = priv->adapter;
5988        struct ksz_port *port = &priv->port;
5989        u32 speed = ethtool_cmd_speed(cmd);
5990        int rc;
5991
5992        /*
5993         * ethtool utility does not change advertised setting if auto
5994         * negotiation is not specified explicitly.
5995         */
5996        if (cmd->autoneg && priv->advertising == cmd->advertising) {
5997                cmd->advertising |= ADVERTISED_ALL;
5998                if (10 == speed)
5999                        cmd->advertising &=
6000                                ~(ADVERTISED_100baseT_Full |
6001                                ADVERTISED_100baseT_Half);
6002                else if (100 == speed)
6003                        cmd->advertising &=
6004                                ~(ADVERTISED_10baseT_Full |
6005                                ADVERTISED_10baseT_Half);
6006                if (0 == cmd->duplex)
6007                        cmd->advertising &=
6008                                ~(ADVERTISED_100baseT_Full |
6009                                ADVERTISED_10baseT_Full);
6010                else if (1 == cmd->duplex)
6011                        cmd->advertising &=
6012                                ~(ADVERTISED_100baseT_Half |
6013                                ADVERTISED_10baseT_Half);
6014        }
6015        mutex_lock(&hw_priv->lock);
6016        if (cmd->autoneg &&
6017                        (cmd->advertising & ADVERTISED_ALL) ==
6018                        ADVERTISED_ALL) {
6019                port->duplex = 0;
6020                port->speed = 0;
6021                port->force_link = 0;
6022        } else {
6023                port->duplex = cmd->duplex + 1;
6024                if (1000 != speed)
6025                        port->speed = speed;
6026                if (cmd->autoneg)
6027                        port->force_link = 0;
6028                else
6029                        port->force_link = 1;
6030        }
6031        rc = mii_ethtool_sset(&priv->mii_if, cmd);
6032        mutex_unlock(&hw_priv->lock);
6033        return rc;
6034}
6035
6036/**
6037 * netdev_nway_reset - restart auto-negotiation
6038 * @dev:        Network device.
6039 *
6040 * This function restarts the PHY for auto-negotiation.
6041 *
6042 * Return 0 if successful; otherwise an error code.
6043 */
6044static int netdev_nway_reset(struct net_device *dev)
6045{
6046        struct dev_priv *priv = netdev_priv(dev);
6047        struct dev_info *hw_priv = priv->adapter;
6048        int rc;
6049
6050        mutex_lock(&hw_priv->lock);
6051        rc = mii_nway_restart(&priv->mii_if);
6052        mutex_unlock(&hw_priv->lock);
6053        return rc;
6054}
6055
6056/**
6057 * netdev_get_link - get network device link status
6058 * @dev:        Network device.
6059 *
6060 * This function gets the link status from the PHY.
6061 *
6062 * Return true if PHY is linked and false otherwise.
6063 */
6064static u32 netdev_get_link(struct net_device *dev)
6065{
6066        struct dev_priv *priv = netdev_priv(dev);
6067        int rc;
6068
6069        rc = mii_link_ok(&priv->mii_if);
6070        return rc;
6071}
6072
6073/**
6074 * netdev_get_drvinfo - get network driver information
6075 * @dev:        Network device.
6076 * @info:       Ethtool driver info data structure.
6077 *
6078 * This procedure returns the driver information.
6079 */
6080static void netdev_get_drvinfo(struct net_device *dev,
6081        struct ethtool_drvinfo *info)
6082{
6083        struct dev_priv *priv = netdev_priv(dev);
6084        struct dev_info *hw_priv = priv->adapter;
6085
6086        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6087        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6088        strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6089                sizeof(info->bus_info));
6090}
6091
6092/**
6093 * netdev_get_regs_len - get length of register dump
6094 * @dev:        Network device.
6095 *
6096 * This function returns the length of the register dump.
6097 *
6098 * Return length of the register dump.
6099 */
6100static struct hw_regs {
6101        int start;
6102        int end;
6103} hw_regs_range[] = {
6104        { KS_DMA_TX_CTRL,       KS884X_INTERRUPTS_STATUS },
6105        { KS_ADD_ADDR_0_LO,     KS_ADD_ADDR_F_HI },
6106        { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6107        { KS884X_SIDER_P,       KS8842_SGCR7_P },
6108        { KS8842_MACAR1_P,      KS8842_TOSR8_P },
6109        { KS884X_P1MBCR_P,      KS8842_P3ERCR_P },
6110        { 0, 0 }
6111};
6112
6113static int netdev_get_regs_len(struct net_device *dev)
6114{
6115        struct hw_regs *range = hw_regs_range;
6116        int regs_len = 0x10 * sizeof(u32);
6117
6118        while (range->end > range->start) {
6119                regs_len += (range->end - range->start + 3) / 4 * 4;
6120                range++;
6121        }
6122        return regs_len;
6123}
6124
6125/**
6126 * netdev_get_regs - get register dump
6127 * @dev:        Network device.
6128 * @regs:       Ethtool registers data structure.
6129 * @ptr:        Buffer to store the register values.
6130 *
6131 * This procedure dumps the register values in the provided buffer.
6132 */
6133static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6134        void *ptr)
6135{
6136        struct dev_priv *priv = netdev_priv(dev);
6137        struct dev_info *hw_priv = priv->adapter;
6138        struct ksz_hw *hw = &hw_priv->hw;
6139        int *buf = (int *) ptr;
6140        struct hw_regs *range = hw_regs_range;
6141        int len;
6142
6143        mutex_lock(&hw_priv->lock);
6144        regs->version = 0;
6145        for (len = 0; len < 0x40; len += 4) {
6146                pci_read_config_dword(hw_priv->pdev, len, buf);
6147                buf++;
6148        }
6149        while (range->end > range->start) {
6150                for (len = range->start; len < range->end; len += 4) {
6151                        *buf = readl(hw->io + len);
6152                        buf++;
6153                }
6154                range++;
6155        }
6156        mutex_unlock(&hw_priv->lock);
6157}
6158
6159#define WOL_SUPPORT                     \
6160        (WAKE_PHY | WAKE_MAGIC |        \
6161        WAKE_UCAST | WAKE_MCAST |       \
6162        WAKE_BCAST | WAKE_ARP)
6163
6164/**
6165 * netdev_get_wol - get Wake-on-LAN support
6166 * @dev:        Network device.
6167 * @wol:        Ethtool Wake-on-LAN data structure.
6168 *
6169 * This procedure returns Wake-on-LAN support.
6170 */
6171static void netdev_get_wol(struct net_device *dev,
6172        struct ethtool_wolinfo *wol)
6173{
6174        struct dev_priv *priv = netdev_priv(dev);
6175        struct dev_info *hw_priv = priv->adapter;
6176
6177        wol->supported = hw_priv->wol_support;
6178        wol->wolopts = hw_priv->wol_enable;
6179        memset(&wol->sopass, 0, sizeof(wol->sopass));
6180}
6181
6182/**
6183 * netdev_set_wol - set Wake-on-LAN support
6184 * @dev:        Network device.
6185 * @wol:        Ethtool Wake-on-LAN data structure.
6186 *
6187 * This function sets Wake-on-LAN support.
6188 *
6189 * Return 0 if successful; otherwise an error code.
6190 */
6191static int netdev_set_wol(struct net_device *dev,
6192        struct ethtool_wolinfo *wol)
6193{
6194        struct dev_priv *priv = netdev_priv(dev);
6195        struct dev_info *hw_priv = priv->adapter;
6196
6197        /* Need to find a way to retrieve the device IP address. */
6198        static const u8 net_addr[] = { 192, 168, 1, 1 };
6199
6200        if (wol->wolopts & ~hw_priv->wol_support)
6201                return -EINVAL;
6202
6203        hw_priv->wol_enable = wol->wolopts;
6204
6205        /* Link wakeup cannot really be disabled. */
6206        if (wol->wolopts)
6207                hw_priv->wol_enable |= WAKE_PHY;
6208        hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6209        return 0;
6210}
6211
6212/**
6213 * netdev_get_msglevel - get debug message level
6214 * @dev:        Network device.
6215 *
6216 * This function returns current debug message level.
6217 *
6218 * Return current debug message flags.
6219 */
6220static u32 netdev_get_msglevel(struct net_device *dev)
6221{
6222        struct dev_priv *priv = netdev_priv(dev);
6223
6224        return priv->msg_enable;
6225}
6226
6227/**
6228 * netdev_set_msglevel - set debug message level
6229 * @dev:        Network device.
6230 * @value:      Debug message flags.
6231 *
6232 * This procedure sets debug message level.
6233 */
6234static void netdev_set_msglevel(struct net_device *dev, u32 value)
6235{
6236        struct dev_priv *priv = netdev_priv(dev);
6237
6238        priv->msg_enable = value;
6239}
6240
6241/**
6242 * netdev_get_eeprom_len - get EEPROM length
6243 * @dev:        Network device.
6244 *
6245 * This function returns the length of the EEPROM.
6246 *
6247 * Return length of the EEPROM.
6248 */
6249static int netdev_get_eeprom_len(struct net_device *dev)
6250{
6251        return EEPROM_SIZE * 2;
6252}
6253
6254/**
6255 * netdev_get_eeprom - get EEPROM data
6256 * @dev:        Network device.
6257 * @eeprom:     Ethtool EEPROM data structure.
6258 * @data:       Buffer to store the EEPROM data.
6259 *
6260 * This function dumps the EEPROM data in the provided buffer.
6261 *
6262 * Return 0 if successful; otherwise an error code.
6263 */
6264#define EEPROM_MAGIC                    0x10A18842
6265
6266static int netdev_get_eeprom(struct net_device *dev,
6267        struct ethtool_eeprom *eeprom, u8 *data)
6268{
6269        struct dev_priv *priv = netdev_priv(dev);
6270        struct dev_info *hw_priv = priv->adapter;
6271        u8 *eeprom_byte = (u8 *) eeprom_data;
6272        int i;
6273        int len;
6274
6275        len = (eeprom->offset + eeprom->len + 1) / 2;
6276        for (i = eeprom->offset / 2; i < len; i++)
6277                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6278        eeprom->magic = EEPROM_MAGIC;
6279        memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6280
6281        return 0;
6282}
6283
6284/**
6285 * netdev_set_eeprom - write EEPROM data
6286 * @dev:        Network device.
6287 * @eeprom:     Ethtool EEPROM data structure.
6288 * @data:       Data buffer.
6289 *
6290 * This function modifies the EEPROM data one byte at a time.
6291 *
6292 * Return 0 if successful; otherwise an error code.
6293 */
6294static int netdev_set_eeprom(struct net_device *dev,
6295        struct ethtool_eeprom *eeprom, u8 *data)
6296{
6297        struct dev_priv *priv = netdev_priv(dev);
6298        struct dev_info *hw_priv = priv->adapter;
6299        u16 eeprom_word[EEPROM_SIZE];
6300        u8 *eeprom_byte = (u8 *) eeprom_word;
6301        int i;
6302        int len;
6303
6304        if (eeprom->magic != EEPROM_MAGIC)
6305                return -EINVAL;
6306
6307        len = (eeprom->offset + eeprom->len + 1) / 2;
6308        for (i = eeprom->offset / 2; i < len; i++)
6309                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6310        memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6311        memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6312        for (i = 0; i < EEPROM_SIZE; i++)
6313                if (eeprom_word[i] != eeprom_data[i]) {
6314                        eeprom_data[i] = eeprom_word[i];
6315                        eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6316        }
6317
6318        return 0;
6319}
6320
6321/**
6322 * netdev_get_pauseparam - get flow control parameters
6323 * @dev:        Network device.
6324 * @pause:      Ethtool PAUSE settings data structure.
6325 *
6326 * This procedure returns the PAUSE control flow settings.
6327 */
6328static void netdev_get_pauseparam(struct net_device *dev,
6329        struct ethtool_pauseparam *pause)
6330{
6331        struct dev_priv *priv = netdev_priv(dev);
6332        struct dev_info *hw_priv = priv->adapter;
6333        struct ksz_hw *hw = &hw_priv->hw;
6334
6335        pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6336        if (!hw->ksz_switch) {
6337                pause->rx_pause =
6338                        (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6339                pause->tx_pause =
6340                        (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6341        } else {
6342                pause->rx_pause =
6343                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6344                                SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6345                pause->tx_pause =
6346                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6347                                SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6348        }
6349}
6350
6351/**
6352 * netdev_set_pauseparam - set flow control parameters
6353 * @dev:        Network device.
6354 * @pause:      Ethtool PAUSE settings data structure.
6355 *
6356 * This function sets the PAUSE control flow settings.
6357 * Not implemented yet.
6358 *
6359 * Return 0 if successful; otherwise an error code.
6360 */
6361static int netdev_set_pauseparam(struct net_device *dev,
6362        struct ethtool_pauseparam *pause)
6363{
6364        struct dev_priv *priv = netdev_priv(dev);
6365        struct dev_info *hw_priv = priv->adapter;
6366        struct ksz_hw *hw = &hw_priv->hw;
6367        struct ksz_port *port = &priv->port;
6368
6369        mutex_lock(&hw_priv->lock);
6370        if (pause->autoneg) {
6371                if (!pause->rx_pause && !pause->tx_pause)
6372                        port->flow_ctrl = PHY_NO_FLOW_CTRL;
6373                else
6374                        port->flow_ctrl = PHY_FLOW_CTRL;
6375                hw->overrides &= ~PAUSE_FLOW_CTRL;
6376                port->force_link = 0;
6377                if (hw->ksz_switch) {
6378                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6379                                SWITCH_RX_FLOW_CTRL, 1);
6380                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6381                                SWITCH_TX_FLOW_CTRL, 1);
6382                }
6383                port_set_link_speed(port);
6384        } else {
6385                hw->overrides |= PAUSE_FLOW_CTRL;
6386                if (hw->ksz_switch) {
6387                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6388                                SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6389                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6390                                SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6391                } else
6392                        set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6393        }
6394        mutex_unlock(&hw_priv->lock);
6395
6396        return 0;
6397}
6398
6399/**
6400 * netdev_get_ringparam - get tx/rx ring parameters
6401 * @dev:        Network device.
6402 * @pause:      Ethtool RING settings data structure.
6403 *
6404 * This procedure returns the TX/RX ring settings.
6405 */
6406static void netdev_get_ringparam(struct net_device *dev,
6407        struct ethtool_ringparam *ring)
6408{
6409        struct dev_priv *priv = netdev_priv(dev);
6410        struct dev_info *hw_priv = priv->adapter;
6411        struct ksz_hw *hw = &hw_priv->hw;
6412
6413        ring->tx_max_pending = (1 << 9);
6414        ring->tx_pending = hw->tx_desc_info.alloc;
6415        ring->rx_max_pending = (1 << 9);
6416        ring->rx_pending = hw->rx_desc_info.alloc;
6417}
6418
6419#define STATS_LEN                       (TOTAL_PORT_COUNTER_NUM)
6420
6421static struct {
6422        char string[ETH_GSTRING_LEN];
6423} ethtool_stats_keys[STATS_LEN] = {
6424        { "rx_lo_priority_octets" },
6425        { "rx_hi_priority_octets" },
6426        { "rx_undersize_packets" },
6427        { "rx_fragments" },
6428        { "rx_oversize_packets" },
6429        { "rx_jabbers" },
6430        { "rx_symbol_errors" },
6431        { "rx_crc_errors" },
6432        { "rx_align_errors" },
6433        { "rx_mac_ctrl_packets" },
6434        { "rx_pause_packets" },
6435        { "rx_bcast_packets" },
6436        { "rx_mcast_packets" },
6437        { "rx_ucast_packets" },
6438        { "rx_64_or_less_octet_packets" },
6439        { "rx_65_to_127_octet_packets" },
6440        { "rx_128_to_255_octet_packets" },
6441        { "rx_256_to_511_octet_packets" },
6442        { "rx_512_to_1023_octet_packets" },
6443        { "rx_1024_to_1522_octet_packets" },
6444
6445        { "tx_lo_priority_octets" },
6446        { "tx_hi_priority_octets" },
6447        { "tx_late_collisions" },
6448        { "tx_pause_packets" },
6449        { "tx_bcast_packets" },
6450        { "tx_mcast_packets" },
6451        { "tx_ucast_packets" },
6452        { "tx_deferred" },
6453        { "tx_total_collisions" },
6454        { "tx_excessive_collisions" },
6455        { "tx_single_collisions" },
6456        { "tx_mult_collisions" },
6457
6458        { "rx_discards" },
6459        { "tx_discards" },
6460};
6461
6462/**
6463 * netdev_get_strings - get statistics identity strings
6464 * @dev:        Network device.
6465 * @stringset:  String set identifier.
6466 * @buf:        Buffer to store the strings.
6467 *
6468 * This procedure returns the strings used to identify the statistics.
6469 */
6470static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6471{
6472        struct dev_priv *priv = netdev_priv(dev);
6473        struct dev_info *hw_priv = priv->adapter;
6474        struct ksz_hw *hw = &hw_priv->hw;
6475
6476        if (ETH_SS_STATS == stringset)
6477                memcpy(buf, &ethtool_stats_keys,
6478                        ETH_GSTRING_LEN * hw->mib_cnt);
6479}
6480
6481/**
6482 * netdev_get_sset_count - get statistics size
6483 * @dev:        Network device.
6484 * @sset:       The statistics set number.
6485 *
6486 * This function returns the size of the statistics to be reported.
6487 *
6488 * Return size of the statistics to be reported.
6489 */
6490static int netdev_get_sset_count(struct net_device *dev, int sset)
6491{
6492        struct dev_priv *priv = netdev_priv(dev);
6493        struct dev_info *hw_priv = priv->adapter;
6494        struct ksz_hw *hw = &hw_priv->hw;
6495
6496        switch (sset) {
6497        case ETH_SS_STATS:
6498                return hw->mib_cnt;
6499        default:
6500                return -EOPNOTSUPP;
6501        }
6502}
6503
6504/**
6505 * netdev_get_ethtool_stats - get network device statistics
6506 * @dev:        Network device.
6507 * @stats:      Ethtool statistics data structure.
6508 * @data:       Buffer to store the statistics.
6509 *
6510 * This procedure returns the statistics.
6511 */
6512static void netdev_get_ethtool_stats(struct net_device *dev,
6513        struct ethtool_stats *stats, u64 *data)
6514{
6515        struct dev_priv *priv = netdev_priv(dev);
6516        struct dev_info *hw_priv = priv->adapter;
6517        struct ksz_hw *hw = &hw_priv->hw;
6518        struct ksz_port *port = &priv->port;
6519        int n_stats = stats->n_stats;
6520        int i;
6521        int n;
6522        int p;
6523        int rc;
6524        u64 counter[TOTAL_PORT_COUNTER_NUM];
6525
6526        mutex_lock(&hw_priv->lock);
6527        n = SWITCH_PORT_NUM;
6528        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6529                if (media_connected == hw->port_mib[p].state) {
6530                        hw_priv->counter[p].read = 1;
6531
6532                        /* Remember first port that requests read. */
6533                        if (n == SWITCH_PORT_NUM)
6534                                n = p;
6535                }
6536        }
6537        mutex_unlock(&hw_priv->lock);
6538
6539        if (n < SWITCH_PORT_NUM)
6540                schedule_work(&hw_priv->mib_read);
6541
6542        if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6543                p = n;
6544                rc = wait_event_interruptible_timeout(
6545                        hw_priv->counter[p].counter,
6546                        2 == hw_priv->counter[p].read,
6547                        HZ * 1);
6548        } else
6549                for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6550                        if (0 == i) {
6551                                rc = wait_event_interruptible_timeout(
6552                                        hw_priv->counter[p].counter,
6553                                        2 == hw_priv->counter[p].read,
6554                                        HZ * 2);
6555                        } else if (hw->port_mib[p].cnt_ptr) {
6556                                rc = wait_event_interruptible_timeout(
6557                                        hw_priv->counter[p].counter,
6558                                        2 == hw_priv->counter[p].read,
6559                                        HZ * 1);
6560                        }
6561                }
6562
6563        get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6564        n = hw->mib_cnt;
6565        if (n > n_stats)
6566                n = n_stats;
6567        n_stats -= n;
6568        for (i = 0; i < n; i++)
6569                *data++ = counter[i];
6570}
6571
6572/**
6573 * netdev_set_features - set receive checksum support
6574 * @dev:        Network device.
6575 * @features:   New device features (offloads).
6576 *
6577 * This function sets receive checksum support setting.
6578 *
6579 * Return 0 if successful; otherwise an error code.
6580 */
6581static int netdev_set_features(struct net_device *dev,
6582        netdev_features_t features)
6583{
6584        struct dev_priv *priv = netdev_priv(dev);
6585        struct dev_info *hw_priv = priv->adapter;
6586        struct ksz_hw *hw = &hw_priv->hw;
6587
6588        mutex_lock(&hw_priv->lock);
6589
6590        /* see note in hw_setup() */
6591        if (features & NETIF_F_RXCSUM)
6592                hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6593        else
6594                hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6595
6596        if (hw->enabled)
6597                writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6598
6599        mutex_unlock(&hw_priv->lock);
6600
6601        return 0;
6602}
6603
6604static const struct ethtool_ops netdev_ethtool_ops = {
6605        .get_settings           = netdev_get_settings,
6606        .set_settings           = netdev_set_settings,
6607        .nway_reset             = netdev_nway_reset,
6608        .get_link               = netdev_get_link,
6609        .get_drvinfo            = netdev_get_drvinfo,
6610        .get_regs_len           = netdev_get_regs_len,
6611        .get_regs               = netdev_get_regs,
6612        .get_wol                = netdev_get_wol,
6613        .set_wol                = netdev_set_wol,
6614        .get_msglevel           = netdev_get_msglevel,
6615        .set_msglevel           = netdev_set_msglevel,
6616        .get_eeprom_len         = netdev_get_eeprom_len,
6617        .get_eeprom             = netdev_get_eeprom,
6618        .set_eeprom             = netdev_set_eeprom,
6619        .get_pauseparam         = netdev_get_pauseparam,
6620        .set_pauseparam         = netdev_set_pauseparam,
6621        .get_ringparam          = netdev_get_ringparam,
6622        .get_strings            = netdev_get_strings,
6623        .get_sset_count         = netdev_get_sset_count,
6624        .get_ethtool_stats      = netdev_get_ethtool_stats,
6625};
6626
6627/*
6628 * Hardware monitoring
6629 */
6630
6631static void update_link(struct net_device *dev, struct dev_priv *priv,
6632        struct ksz_port *port)
6633{
6634        if (priv->media_state != port->linked->state) {
6635                priv->media_state = port->linked->state;
6636                if (netif_running(dev))
6637                        set_media_state(dev, media_connected);
6638        }
6639}
6640
6641static void mib_read_work(struct work_struct *work)
6642{
6643        struct dev_info *hw_priv =
6644                container_of(work, struct dev_info, mib_read);
6645        struct ksz_hw *hw = &hw_priv->hw;
6646        struct ksz_port_mib *mib;
6647        int i;
6648
6649        next_jiffies = jiffies;
6650        for (i = 0; i < hw->mib_port_cnt; i++) {
6651                mib = &hw->port_mib[i];
6652
6653                /* Reading MIB counters or requested to read. */
6654                if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6655
6656                        /* Need to process receive interrupt. */
6657                        if (port_r_cnt(hw, i))
6658                                break;
6659                        hw_priv->counter[i].read = 0;
6660
6661                        /* Finish reading counters. */
6662                        if (0 == mib->cnt_ptr) {
6663                                hw_priv->counter[i].read = 2;
6664                                wake_up_interruptible(
6665                                        &hw_priv->counter[i].counter);
6666                        }
6667                } else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6668                        /* Only read MIB counters when the port is connected. */
6669                        if (media_connected == mib->state)
6670                                hw_priv->counter[i].read = 1;
6671                        next_jiffies += HZ * 1 * hw->mib_port_cnt;
6672                        hw_priv->counter[i].time = next_jiffies;
6673
6674                /* Port is just disconnected. */
6675                } else if (mib->link_down) {
6676                        mib->link_down = 0;
6677
6678                        /* Read counters one last time after link is lost. */
6679                        hw_priv->counter[i].read = 1;
6680                }
6681        }
6682}
6683
6684static void mib_monitor(unsigned long ptr)
6685{
6686        struct dev_info *hw_priv = (struct dev_info *) ptr;
6687
6688        mib_read_work(&hw_priv->mib_read);
6689
6690        /* This is used to verify Wake-on-LAN is working. */
6691        if (hw_priv->pme_wait) {
6692                if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6693                        hw_clr_wol_pme_status(&hw_priv->hw);
6694                        hw_priv->pme_wait = 0;
6695                }
6696        } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6697
6698                /* PME is asserted.  Wait 2 seconds to clear it. */
6699                hw_priv->pme_wait = jiffies + HZ * 2;
6700        }
6701
6702        ksz_update_timer(&hw_priv->mib_timer_info);
6703}
6704
6705/**
6706 * dev_monitor - periodic monitoring
6707 * @ptr:        Network device pointer.
6708 *
6709 * This routine is run in a kernel timer to monitor the network device.
6710 */
6711static void dev_monitor(unsigned long ptr)
6712{
6713        struct net_device *dev = (struct net_device *) ptr;
6714        struct dev_priv *priv = netdev_priv(dev);
6715        struct dev_info *hw_priv = priv->adapter;
6716        struct ksz_hw *hw = &hw_priv->hw;
6717        struct ksz_port *port = &priv->port;
6718
6719        if (!(hw->features & LINK_INT_WORKING))
6720                port_get_link_speed(port);
6721        update_link(dev, priv, port);
6722
6723        ksz_update_timer(&priv->monitor_timer_info);
6724}
6725
6726/*
6727 * Linux network device interface functions
6728 */
6729
6730/* Driver exported variables */
6731
6732static int msg_enable;
6733
6734static char *macaddr = ":";
6735static char *mac1addr = ":";
6736
6737/*
6738 * This enables multiple network device mode for KSZ8842, which contains a
6739 * switch with two physical ports.  Some users like to take control of the
6740 * ports for running Spanning Tree Protocol.  The driver will create an
6741 * additional eth? device for the other port.
6742 *
6743 * Some limitations are the network devices cannot have different MTU and
6744 * multicast hash tables.
6745 */
6746static int multi_dev;
6747
6748/*
6749 * As most users select multiple network device mode to use Spanning Tree
6750 * Protocol, this enables a feature in which most unicast and multicast packets
6751 * are forwarded inside the switch and not passed to the host.  Only packets
6752 * that need the host's attention are passed to it.  This prevents the host
6753 * wasting CPU time to examine each and every incoming packets and do the
6754 * forwarding itself.
6755 *
6756 * As the hack requires the private bridge header, the driver cannot compile
6757 * with just the kernel headers.
6758 *
6759 * Enabling STP support also turns on multiple network device mode.
6760 */
6761static int stp;
6762
6763/*
6764 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6765 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6766 * STP support is enabled.
6767 */
6768static int fast_aging;
6769
6770/**
6771 * netdev_init - initialize network device.
6772 * @dev:        Network device.
6773 *
6774 * This function initializes the network device.
6775 *
6776 * Return 0 if successful; otherwise an error code indicating failure.
6777 */
6778static int __init netdev_init(struct net_device *dev)
6779{
6780        struct dev_priv *priv = netdev_priv(dev);
6781
6782        /* 500 ms timeout */
6783        ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6784                dev_monitor, dev);
6785
6786        /* 500 ms timeout */
6787        dev->watchdog_timeo = HZ / 2;
6788
6789        dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6790
6791        /*
6792         * Hardware does not really support IPv6 checksum generation, but
6793         * driver actually runs faster with this on.
6794         */
6795        dev->hw_features |= NETIF_F_IPV6_CSUM;
6796
6797        dev->features |= dev->hw_features;
6798
6799        sema_init(&priv->proc_sem, 1);
6800
6801        priv->mii_if.phy_id_mask = 0x1;
6802        priv->mii_if.reg_num_mask = 0x7;
6803        priv->mii_if.dev = dev;
6804        priv->mii_if.mdio_read = mdio_read;
6805        priv->mii_if.mdio_write = mdio_write;
6806        priv->mii_if.phy_id = priv->port.first_port + 1;
6807
6808        priv->msg_enable = netif_msg_init(msg_enable,
6809                (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6810
6811        return 0;
6812}
6813
6814static const struct net_device_ops netdev_ops = {
6815        .ndo_init               = netdev_init,
6816        .ndo_open               = netdev_open,
6817        .ndo_stop               = netdev_close,
6818        .ndo_get_stats          = netdev_query_statistics,
6819        .ndo_start_xmit         = netdev_tx,
6820        .ndo_tx_timeout         = netdev_tx_timeout,
6821        .ndo_change_mtu         = netdev_change_mtu,
6822        .ndo_set_features       = netdev_set_features,
6823        .ndo_set_mac_address    = netdev_set_mac_address,
6824        .ndo_validate_addr      = eth_validate_addr,
6825        .ndo_do_ioctl           = netdev_ioctl,
6826        .ndo_set_rx_mode        = netdev_set_rx_mode,
6827#ifdef CONFIG_NET_POLL_CONTROLLER
6828        .ndo_poll_controller    = netdev_netpoll,
6829#endif
6830};
6831
6832static void netdev_free(struct net_device *dev)
6833{
6834        if (dev->watchdog_timeo)
6835                unregister_netdev(dev);
6836
6837        free_netdev(dev);
6838}
6839
6840struct platform_info {
6841        struct dev_info dev_info;
6842        struct net_device *netdev[SWITCH_PORT_NUM];
6843};
6844
6845static int net_device_present;
6846
6847static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6848{
6849        int i;
6850        int j;
6851        int got_num;
6852        int num;
6853
6854        i = j = num = got_num = 0;
6855        while (j < ETH_ALEN) {
6856                if (macaddr[i]) {
6857                        int digit;
6858
6859                        got_num = 1;
6860                        digit = hex_to_bin(macaddr[i]);
6861                        if (digit >= 0)
6862                                num = num * 16 + digit;
6863                        else if (':' == macaddr[i])
6864                                got_num = 2;
6865                        else
6866                                break;
6867                } else if (got_num)
6868                        got_num = 2;
6869                else
6870                        break;
6871                if (2 == got_num) {
6872                        if (MAIN_PORT == port) {
6873                                hw_priv->hw.override_addr[j++] = (u8) num;
6874                                hw_priv->hw.override_addr[5] +=
6875                                        hw_priv->hw.id;
6876                        } else {
6877                                hw_priv->hw.ksz_switch->other_addr[j++] =
6878                                        (u8) num;
6879                                hw_priv->hw.ksz_switch->other_addr[5] +=
6880                                        hw_priv->hw.id;
6881                        }
6882                        num = got_num = 0;
6883                }
6884                i++;
6885        }
6886        if (ETH_ALEN == j) {
6887                if (MAIN_PORT == port)
6888                        hw_priv->hw.mac_override = 1;
6889        }
6890}
6891
6892#define KS884X_DMA_MASK                 (~0x0UL)
6893
6894static void read_other_addr(struct ksz_hw *hw)
6895{
6896        int i;
6897        u16 data[3];
6898        struct ksz_switch *sw = hw->ksz_switch;
6899
6900        for (i = 0; i < 3; i++)
6901                data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6902        if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6903                sw->other_addr[5] = (u8) data[0];
6904                sw->other_addr[4] = (u8)(data[0] >> 8);
6905                sw->other_addr[3] = (u8) data[1];
6906                sw->other_addr[2] = (u8)(data[1] >> 8);
6907                sw->other_addr[1] = (u8) data[2];
6908                sw->other_addr[0] = (u8)(data[2] >> 8);
6909        }
6910}
6911
6912#ifndef PCI_VENDOR_ID_MICREL_KS
6913#define PCI_VENDOR_ID_MICREL_KS         0x16c6
6914#endif
6915
6916static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6917{
6918        struct net_device *dev;
6919        struct dev_priv *priv;
6920        struct dev_info *hw_priv;
6921        struct ksz_hw *hw;
6922        struct platform_info *info;
6923        struct ksz_port *port;
6924        unsigned long reg_base;
6925        unsigned long reg_len;
6926        int cnt;
6927        int i;
6928        int mib_port_count;
6929        int pi;
6930        int port_count;
6931        int result;
6932        char banner[sizeof(version)];
6933        struct ksz_switch *sw = NULL;
6934
6935        result = pci_enable_device(pdev);
6936        if (result)
6937                return result;
6938
6939        result = -ENODEV;
6940
6941        if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6942                        pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6943                return result;
6944
6945        reg_base = pci_resource_start(pdev, 0);
6946        reg_len = pci_resource_len(pdev, 0);
6947        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6948                return result;
6949
6950        if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6951                return result;
6952        pci_set_master(pdev);
6953
6954        result = -ENOMEM;
6955
6956        info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6957        if (!info)
6958                goto pcidev_init_dev_err;
6959
6960        hw_priv = &info->dev_info;
6961        hw_priv->pdev = pdev;
6962
6963        hw = &hw_priv->hw;
6964
6965        hw->io = ioremap(reg_base, reg_len);
6966        if (!hw->io)
6967                goto pcidev_init_io_err;
6968
6969        cnt = hw_init(hw);
6970        if (!cnt) {
6971                if (msg_enable & NETIF_MSG_PROBE)
6972                        pr_alert("chip not detected\n");
6973                result = -ENODEV;
6974                goto pcidev_init_alloc_err;
6975        }
6976
6977        snprintf(banner, sizeof(banner), "%s", version);
6978        banner[13] = cnt + '0';         /* Replace x in "Micrel KSZ884x" */
6979        dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6980        dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6981
6982        /* Assume device is KSZ8841. */
6983        hw->dev_count = 1;
6984        port_count = 1;
6985        mib_port_count = 1;
6986        hw->addr_list_size = 0;
6987        hw->mib_cnt = PORT_COUNTER_NUM;
6988        hw->mib_port_cnt = 1;
6989
6990        /* KSZ8842 has a switch with multiple ports. */
6991        if (2 == cnt) {
6992                if (fast_aging)
6993                        hw->overrides |= FAST_AGING;
6994
6995                hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6996
6997                /* Multiple network device interfaces are required. */
6998                if (multi_dev) {
6999                        hw->dev_count = SWITCH_PORT_NUM;
7000                        hw->addr_list_size = SWITCH_PORT_NUM - 1;
7001                }
7002
7003                /* Single network device has multiple ports. */
7004                if (1 == hw->dev_count) {
7005                        port_count = SWITCH_PORT_NUM;
7006                        mib_port_count = SWITCH_PORT_NUM;
7007                }
7008                hw->mib_port_cnt = TOTAL_PORT_NUM;
7009                hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7010                if (!hw->ksz_switch)
7011                        goto pcidev_init_alloc_err;
7012
7013                sw = hw->ksz_switch;
7014        }
7015        for (i = 0; i < hw->mib_port_cnt; i++)
7016                hw->port_mib[i].mib_start = 0;
7017
7018        hw->parent = hw_priv;
7019
7020        /* Default MTU is 1500. */
7021        hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7022
7023        if (ksz_alloc_mem(hw_priv))
7024                goto pcidev_init_mem_err;
7025
7026        hw_priv->hw.id = net_device_present;
7027
7028        spin_lock_init(&hw_priv->hwlock);
7029        mutex_init(&hw_priv->lock);
7030
7031        for (i = 0; i < TOTAL_PORT_NUM; i++)
7032                init_waitqueue_head(&hw_priv->counter[i].counter);
7033
7034        if (macaddr[0] != ':')
7035                get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7036
7037        /* Read MAC address and initialize override address if not overrided. */
7038        hw_read_addr(hw);
7039
7040        /* Multiple device interfaces mode requires a second MAC address. */
7041        if (hw->dev_count > 1) {
7042                memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7043                read_other_addr(hw);
7044                if (mac1addr[0] != ':')
7045                        get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7046        }
7047
7048        hw_setup(hw);
7049        if (hw->ksz_switch)
7050                sw_setup(hw);
7051        else {
7052                hw_priv->wol_support = WOL_SUPPORT;
7053                hw_priv->wol_enable = 0;
7054        }
7055
7056        INIT_WORK(&hw_priv->mib_read, mib_read_work);
7057
7058        /* 500 ms timeout */
7059        ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7060                mib_monitor, hw_priv);
7061
7062        for (i = 0; i < hw->dev_count; i++) {
7063                dev = alloc_etherdev(sizeof(struct dev_priv));
7064                if (!dev)
7065                        goto pcidev_init_reg_err;
7066                SET_NETDEV_DEV(dev, &pdev->dev);
7067                info->netdev[i] = dev;
7068
7069                priv = netdev_priv(dev);
7070                priv->adapter = hw_priv;
7071                priv->id = net_device_present++;
7072
7073                port = &priv->port;
7074                port->port_cnt = port_count;
7075                port->mib_port_cnt = mib_port_count;
7076                port->first_port = i;
7077                port->flow_ctrl = PHY_FLOW_CTRL;
7078
7079                port->hw = hw;
7080                port->linked = &hw->port_info[port->first_port];
7081
7082                for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7083                        hw->port_info[pi].port_id = pi;
7084                        hw->port_info[pi].pdev = dev;
7085                        hw->port_info[pi].state = media_disconnected;
7086                }
7087
7088                dev->mem_start = (unsigned long) hw->io;
7089                dev->mem_end = dev->mem_start + reg_len - 1;
7090                dev->irq = pdev->irq;
7091                if (MAIN_PORT == i)
7092                        memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7093                               ETH_ALEN);
7094                else {
7095                        memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7096                        if (ether_addr_equal(sw->other_addr, hw->override_addr))
7097                                dev->dev_addr[5] += port->first_port;
7098                }
7099
7100                dev->netdev_ops = &netdev_ops;
7101                dev->ethtool_ops = &netdev_ethtool_ops;
7102                if (register_netdev(dev))
7103                        goto pcidev_init_reg_err;
7104                port_set_power_saving(port, true);
7105        }
7106
7107        pci_dev_get(hw_priv->pdev);
7108        pci_set_drvdata(pdev, info);
7109        return 0;
7110
7111pcidev_init_reg_err:
7112        for (i = 0; i < hw->dev_count; i++) {
7113                if (info->netdev[i]) {
7114                        netdev_free(info->netdev[i]);
7115                        info->netdev[i] = NULL;
7116                }
7117        }
7118
7119pcidev_init_mem_err:
7120        ksz_free_mem(hw_priv);
7121        kfree(hw->ksz_switch);
7122
7123pcidev_init_alloc_err:
7124        iounmap(hw->io);
7125
7126pcidev_init_io_err:
7127        kfree(info);
7128
7129pcidev_init_dev_err:
7130        release_mem_region(reg_base, reg_len);
7131
7132        return result;
7133}
7134
7135static void pcidev_exit(struct pci_dev *pdev)
7136{
7137        int i;
7138        struct platform_info *info = pci_get_drvdata(pdev);
7139        struct dev_info *hw_priv = &info->dev_info;
7140
7141        release_mem_region(pci_resource_start(pdev, 0),
7142                pci_resource_len(pdev, 0));
7143        for (i = 0; i < hw_priv->hw.dev_count; i++) {
7144                if (info->netdev[i])
7145                        netdev_free(info->netdev[i]);
7146        }
7147        if (hw_priv->hw.io)
7148                iounmap(hw_priv->hw.io);
7149        ksz_free_mem(hw_priv);
7150        kfree(hw_priv->hw.ksz_switch);
7151        pci_dev_put(hw_priv->pdev);
7152        kfree(info);
7153}
7154
7155#ifdef CONFIG_PM
7156static int pcidev_resume(struct pci_dev *pdev)
7157{
7158        int i;
7159        struct platform_info *info = pci_get_drvdata(pdev);
7160        struct dev_info *hw_priv = &info->dev_info;
7161        struct ksz_hw *hw = &hw_priv->hw;
7162
7163        pci_set_power_state(pdev, PCI_D0);
7164        pci_restore_state(pdev);
7165        pci_enable_wake(pdev, PCI_D0, 0);
7166
7167        if (hw_priv->wol_enable)
7168                hw_cfg_wol_pme(hw, 0);
7169        for (i = 0; i < hw->dev_count; i++) {
7170                if (info->netdev[i]) {
7171                        struct net_device *dev = info->netdev[i];
7172
7173                        if (netif_running(dev)) {
7174                                netdev_open(dev);
7175                                netif_device_attach(dev);
7176                        }
7177                }
7178        }
7179        return 0;
7180}
7181
7182static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7183{
7184        int i;
7185        struct platform_info *info = pci_get_drvdata(pdev);
7186        struct dev_info *hw_priv = &info->dev_info;
7187        struct ksz_hw *hw = &hw_priv->hw;
7188
7189        /* Need to find a way to retrieve the device IP address. */
7190        static const u8 net_addr[] = { 192, 168, 1, 1 };
7191
7192        for (i = 0; i < hw->dev_count; i++) {
7193                if (info->netdev[i]) {
7194                        struct net_device *dev = info->netdev[i];
7195
7196                        if (netif_running(dev)) {
7197                                netif_device_detach(dev);
7198                                netdev_close(dev);
7199                        }
7200                }
7201        }
7202        if (hw_priv->wol_enable) {
7203                hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7204                hw_cfg_wol_pme(hw, 1);
7205        }
7206
7207        pci_save_state(pdev);
7208        pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7209        pci_set_power_state(pdev, pci_choose_state(pdev, state));
7210        return 0;
7211}
7212#endif
7213
7214static char pcidev_name[] = "ksz884xp";
7215
7216static const struct pci_device_id pcidev_table[] = {
7217        { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7218                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7219        { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7220                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7221        { 0 }
7222};
7223
7224MODULE_DEVICE_TABLE(pci, pcidev_table);
7225
7226static struct pci_driver pci_device_driver = {
7227#ifdef CONFIG_PM
7228        .suspend        = pcidev_suspend,
7229        .resume         = pcidev_resume,
7230#endif
7231        .name           = pcidev_name,
7232        .id_table       = pcidev_table,
7233        .probe          = pcidev_init,
7234        .remove         = pcidev_exit
7235};
7236
7237module_pci_driver(pci_device_driver);
7238
7239MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7240MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7241MODULE_LICENSE("GPL");
7242
7243module_param_named(message, msg_enable, int, 0);
7244MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7245
7246module_param(macaddr, charp, 0);
7247module_param(mac1addr, charp, 0);
7248module_param(fast_aging, int, 0);
7249module_param(multi_dev, int, 0);
7250module_param(stp, int, 0);
7251MODULE_PARM_DESC(macaddr, "MAC address");
7252MODULE_PARM_DESC(mac1addr, "Second MAC address");
7253MODULE_PARM_DESC(fast_aging, "Fast aging");
7254MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7255MODULE_PARM_DESC(stp, "STP support");
7256