linux/drivers/net/ethernet/sfc/falcon.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/pci.h>
  14#include <linux/module.h>
  15#include <linux/seq_file.h>
  16#include <linux/i2c.h>
  17#include <linux/mii.h>
  18#include <linux/slab.h>
  19#include "net_driver.h"
  20#include "bitfield.h"
  21#include "efx.h"
  22#include "nic.h"
  23#include "farch_regs.h"
  24#include "io.h"
  25#include "phy.h"
  26#include "workarounds.h"
  27#include "selftest.h"
  28#include "mdio_10g.h"
  29
  30/* Hardware control for SFC4000 (aka Falcon). */
  31
  32/**************************************************************************
  33 *
  34 * NIC stats
  35 *
  36 **************************************************************************
  37 */
  38
  39#define FALCON_MAC_STATS_SIZE 0x100
  40
  41#define XgRxOctets_offset 0x0
  42#define XgRxOctets_WIDTH 48
  43#define XgRxOctetsOK_offset 0x8
  44#define XgRxOctetsOK_WIDTH 48
  45#define XgRxPkts_offset 0x10
  46#define XgRxPkts_WIDTH 32
  47#define XgRxPktsOK_offset 0x14
  48#define XgRxPktsOK_WIDTH 32
  49#define XgRxBroadcastPkts_offset 0x18
  50#define XgRxBroadcastPkts_WIDTH 32
  51#define XgRxMulticastPkts_offset 0x1C
  52#define XgRxMulticastPkts_WIDTH 32
  53#define XgRxUnicastPkts_offset 0x20
  54#define XgRxUnicastPkts_WIDTH 32
  55#define XgRxUndersizePkts_offset 0x24
  56#define XgRxUndersizePkts_WIDTH 32
  57#define XgRxOversizePkts_offset 0x28
  58#define XgRxOversizePkts_WIDTH 32
  59#define XgRxJabberPkts_offset 0x2C
  60#define XgRxJabberPkts_WIDTH 32
  61#define XgRxUndersizeFCSerrorPkts_offset 0x30
  62#define XgRxUndersizeFCSerrorPkts_WIDTH 32
  63#define XgRxDropEvents_offset 0x34
  64#define XgRxDropEvents_WIDTH 32
  65#define XgRxFCSerrorPkts_offset 0x38
  66#define XgRxFCSerrorPkts_WIDTH 32
  67#define XgRxAlignError_offset 0x3C
  68#define XgRxAlignError_WIDTH 32
  69#define XgRxSymbolError_offset 0x40
  70#define XgRxSymbolError_WIDTH 32
  71#define XgRxInternalMACError_offset 0x44
  72#define XgRxInternalMACError_WIDTH 32
  73#define XgRxControlPkts_offset 0x48
  74#define XgRxControlPkts_WIDTH 32
  75#define XgRxPausePkts_offset 0x4C
  76#define XgRxPausePkts_WIDTH 32
  77#define XgRxPkts64Octets_offset 0x50
  78#define XgRxPkts64Octets_WIDTH 32
  79#define XgRxPkts65to127Octets_offset 0x54
  80#define XgRxPkts65to127Octets_WIDTH 32
  81#define XgRxPkts128to255Octets_offset 0x58
  82#define XgRxPkts128to255Octets_WIDTH 32
  83#define XgRxPkts256to511Octets_offset 0x5C
  84#define XgRxPkts256to511Octets_WIDTH 32
  85#define XgRxPkts512to1023Octets_offset 0x60
  86#define XgRxPkts512to1023Octets_WIDTH 32
  87#define XgRxPkts1024to15xxOctets_offset 0x64
  88#define XgRxPkts1024to15xxOctets_WIDTH 32
  89#define XgRxPkts15xxtoMaxOctets_offset 0x68
  90#define XgRxPkts15xxtoMaxOctets_WIDTH 32
  91#define XgRxLengthError_offset 0x6C
  92#define XgRxLengthError_WIDTH 32
  93#define XgTxPkts_offset 0x80
  94#define XgTxPkts_WIDTH 32
  95#define XgTxOctets_offset 0x88
  96#define XgTxOctets_WIDTH 48
  97#define XgTxMulticastPkts_offset 0x90
  98#define XgTxMulticastPkts_WIDTH 32
  99#define XgTxBroadcastPkts_offset 0x94
 100#define XgTxBroadcastPkts_WIDTH 32
 101#define XgTxUnicastPkts_offset 0x98
 102#define XgTxUnicastPkts_WIDTH 32
 103#define XgTxControlPkts_offset 0x9C
 104#define XgTxControlPkts_WIDTH 32
 105#define XgTxPausePkts_offset 0xA0
 106#define XgTxPausePkts_WIDTH 32
 107#define XgTxPkts64Octets_offset 0xA4
 108#define XgTxPkts64Octets_WIDTH 32
 109#define XgTxPkts65to127Octets_offset 0xA8
 110#define XgTxPkts65to127Octets_WIDTH 32
 111#define XgTxPkts128to255Octets_offset 0xAC
 112#define XgTxPkts128to255Octets_WIDTH 32
 113#define XgTxPkts256to511Octets_offset 0xB0
 114#define XgTxPkts256to511Octets_WIDTH 32
 115#define XgTxPkts512to1023Octets_offset 0xB4
 116#define XgTxPkts512to1023Octets_WIDTH 32
 117#define XgTxPkts1024to15xxOctets_offset 0xB8
 118#define XgTxPkts1024to15xxOctets_WIDTH 32
 119#define XgTxPkts1519toMaxOctets_offset 0xBC
 120#define XgTxPkts1519toMaxOctets_WIDTH 32
 121#define XgTxUndersizePkts_offset 0xC0
 122#define XgTxUndersizePkts_WIDTH 32
 123#define XgTxOversizePkts_offset 0xC4
 124#define XgTxOversizePkts_WIDTH 32
 125#define XgTxNonTcpUdpPkt_offset 0xC8
 126#define XgTxNonTcpUdpPkt_WIDTH 16
 127#define XgTxMacSrcErrPkt_offset 0xCC
 128#define XgTxMacSrcErrPkt_WIDTH 16
 129#define XgTxIpSrcErrPkt_offset 0xD0
 130#define XgTxIpSrcErrPkt_WIDTH 16
 131#define XgDmaDone_offset 0xD4
 132#define XgDmaDone_WIDTH 32
 133
 134#define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
 135        (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
 136
 137#define FALCON_DMA_STAT(ext_name, hw_name)                              \
 138        [FALCON_STAT_ ## ext_name] =                                    \
 139        { #ext_name,                                                    \
 140          /* 48-bit stats are zero-padded to 64 on DMA */               \
 141          hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
 142          hw_name ## _ ## offset }
 143#define FALCON_OTHER_STAT(ext_name)                                     \
 144        [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 145#define GENERIC_SW_STAT(ext_name)                               \
 146        [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 147
 148static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
 149        FALCON_DMA_STAT(tx_bytes, XgTxOctets),
 150        FALCON_DMA_STAT(tx_packets, XgTxPkts),
 151        FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
 152        FALCON_DMA_STAT(tx_control, XgTxControlPkts),
 153        FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
 154        FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
 155        FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
 156        FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
 157        FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
 158        FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
 159        FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
 160        FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
 161        FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
 162        FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
 163        FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
 164        FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
 165        FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
 166        FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
 167        FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
 168        FALCON_DMA_STAT(rx_bytes, XgRxOctets),
 169        FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
 170        FALCON_OTHER_STAT(rx_bad_bytes),
 171        FALCON_DMA_STAT(rx_packets, XgRxPkts),
 172        FALCON_DMA_STAT(rx_good, XgRxPktsOK),
 173        FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
 174        FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
 175        FALCON_DMA_STAT(rx_control, XgRxControlPkts),
 176        FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
 177        FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
 178        FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
 179        FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
 180        FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
 181        FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
 182        FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
 183        FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
 184        FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
 185        FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
 186        FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
 187        FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
 188        FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
 189        FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
 190        FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
 191        FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
 192        FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
 193        FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
 194        FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
 195        FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
 196        GENERIC_SW_STAT(rx_nodesc_trunc),
 197        GENERIC_SW_STAT(rx_noskb_drops),
 198};
 199static const unsigned long falcon_stat_mask[] = {
 200        [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
 201};
 202
 203/**************************************************************************
 204 *
 205 * Basic SPI command set and bit definitions
 206 *
 207 *************************************************************************/
 208
 209#define SPI_WRSR 0x01           /* Write status register */
 210#define SPI_WRITE 0x02          /* Write data to memory array */
 211#define SPI_READ 0x03           /* Read data from memory array */
 212#define SPI_WRDI 0x04           /* Reset write enable latch */
 213#define SPI_RDSR 0x05           /* Read status register */
 214#define SPI_WREN 0x06           /* Set write enable latch */
 215#define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
 216
 217#define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
 218#define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
 219#define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
 220#define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
 221#define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
 222#define SPI_STATUS_NRDY 0x01    /* Device busy flag */
 223
 224/**************************************************************************
 225 *
 226 * Non-volatile memory layout
 227 *
 228 **************************************************************************
 229 */
 230
 231/* SFC4000 flash is partitioned into:
 232 *     0-0x400       chip and board config (see struct falcon_nvconfig)
 233 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
 234 *     0x8000-end    boot code (mapped to PCI expansion ROM)
 235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
 236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
 237 *     0-0x400       chip and board config
 238 *     configurable  VPD
 239 *     0x800-0x1800  boot config
 240 * Aside from the chip and board config, all of these are optional and may
 241 * be absent or truncated depending on the devices used.
 242 */
 243#define FALCON_NVCONFIG_END 0x400U
 244#define FALCON_FLASH_BOOTCODE_START 0x8000U
 245#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
 246#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
 247
 248/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
 249struct falcon_nvconfig_board_v2 {
 250        __le16 nports;
 251        u8 port0_phy_addr;
 252        u8 port0_phy_type;
 253        u8 port1_phy_addr;
 254        u8 port1_phy_type;
 255        __le16 asic_sub_revision;
 256        __le16 board_revision;
 257} __packed;
 258
 259/* Board configuration v3 extra information */
 260struct falcon_nvconfig_board_v3 {
 261        __le32 spi_device_type[2];
 262} __packed;
 263
 264/* Bit numbers for spi_device_type */
 265#define SPI_DEV_TYPE_SIZE_LBN 0
 266#define SPI_DEV_TYPE_SIZE_WIDTH 5
 267#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
 268#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
 269#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
 270#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
 271#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
 272#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
 273#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
 274#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
 275#define SPI_DEV_TYPE_FIELD(type, field)                                 \
 276        (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
 277
 278#define FALCON_NVCONFIG_OFFSET 0x300
 279
 280#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
 281struct falcon_nvconfig {
 282        efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
 283        u8 mac_address[2][8];                   /* 0x310 */
 284        efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
 285        efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
 286        efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
 287        efx_oword_t hw_init_reg;                        /* 0x350 */
 288        efx_oword_t nic_stat_reg;                       /* 0x360 */
 289        efx_oword_t glb_ctl_reg;                        /* 0x370 */
 290        efx_oword_t srm_cfg_reg;                        /* 0x380 */
 291        efx_oword_t spare_reg;                          /* 0x390 */
 292        __le16 board_magic_num;                 /* 0x3A0 */
 293        __le16 board_struct_ver;
 294        __le16 board_checksum;
 295        struct falcon_nvconfig_board_v2 board_v2;
 296        efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
 297        struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
 298} __packed;
 299
 300/*************************************************************************/
 301
 302static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
 303static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
 304
 305static const unsigned int
 306/* "Large" EEPROM device: Atmel AT25640 or similar
 307 * 8 KB, 16-bit address, 32 B write block */
 308large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
 309                     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 310                     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
 311/* Default flash device: Atmel AT25F1024
 312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
 313default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
 314                      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
 315                      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
 316                      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
 317                      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
 318
 319/**************************************************************************
 320 *
 321 * I2C bus - this is a bit-bashing interface using GPIO pins
 322 * Note that it uses the output enables to tristate the outputs
 323 * SDA is the data pin and SCL is the clock
 324 *
 325 **************************************************************************
 326 */
 327static void falcon_setsda(void *data, int state)
 328{
 329        struct efx_nic *efx = (struct efx_nic *)data;
 330        efx_oword_t reg;
 331
 332        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 333        EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
 334        efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 335}
 336
 337static void falcon_setscl(void *data, int state)
 338{
 339        struct efx_nic *efx = (struct efx_nic *)data;
 340        efx_oword_t reg;
 341
 342        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 343        EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
 344        efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
 345}
 346
 347static int falcon_getsda(void *data)
 348{
 349        struct efx_nic *efx = (struct efx_nic *)data;
 350        efx_oword_t reg;
 351
 352        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 353        return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
 354}
 355
 356static int falcon_getscl(void *data)
 357{
 358        struct efx_nic *efx = (struct efx_nic *)data;
 359        efx_oword_t reg;
 360
 361        efx_reado(efx, &reg, FR_AB_GPIO_CTL);
 362        return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
 363}
 364
 365static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
 366        .setsda         = falcon_setsda,
 367        .setscl         = falcon_setscl,
 368        .getsda         = falcon_getsda,
 369        .getscl         = falcon_getscl,
 370        .udelay         = 5,
 371        /* Wait up to 50 ms for slave to let us pull SCL high */
 372        .timeout        = DIV_ROUND_UP(HZ, 20),
 373};
 374
 375static void falcon_push_irq_moderation(struct efx_channel *channel)
 376{
 377        efx_dword_t timer_cmd;
 378        struct efx_nic *efx = channel->efx;
 379
 380        /* Set timer register */
 381        if (channel->irq_moderation) {
 382                EFX_POPULATE_DWORD_2(timer_cmd,
 383                                     FRF_AB_TC_TIMER_MODE,
 384                                     FFE_BB_TIMER_MODE_INT_HLDOFF,
 385                                     FRF_AB_TC_TIMER_VAL,
 386                                     channel->irq_moderation - 1);
 387        } else {
 388                EFX_POPULATE_DWORD_2(timer_cmd,
 389                                     FRF_AB_TC_TIMER_MODE,
 390                                     FFE_BB_TIMER_MODE_DIS,
 391                                     FRF_AB_TC_TIMER_VAL, 0);
 392        }
 393        BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
 394        efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
 395                               channel->channel);
 396}
 397
 398static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
 399
 400static void falcon_prepare_flush(struct efx_nic *efx)
 401{
 402        falcon_deconfigure_mac_wrapper(efx);
 403
 404        /* Wait for the tx and rx fifo's to get to the next packet boundary
 405         * (~1ms without back-pressure), then to drain the remainder of the
 406         * fifo's at data path speeds (negligible), with a healthy margin. */
 407        msleep(10);
 408}
 409
 410/* Acknowledge a legacy interrupt from Falcon
 411 *
 412 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
 413 *
 414 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
 415 * BIU. Interrupt acknowledge is read sensitive so must write instead
 416 * (then read to ensure the BIU collector is flushed)
 417 *
 418 * NB most hardware supports MSI interrupts
 419 */
 420static inline void falcon_irq_ack_a1(struct efx_nic *efx)
 421{
 422        efx_dword_t reg;
 423
 424        EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
 425        efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
 426        efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
 427}
 428
 429static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
 430{
 431        struct efx_nic *efx = dev_id;
 432        efx_oword_t *int_ker = efx->irq_status.addr;
 433        int syserr;
 434        int queues;
 435
 436        /* Check to see if this is our interrupt.  If it isn't, we
 437         * exit without having touched the hardware.
 438         */
 439        if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
 440                netif_vdbg(efx, intr, efx->net_dev,
 441                           "IRQ %d on CPU %d not for me\n", irq,
 442                           raw_smp_processor_id());
 443                return IRQ_NONE;
 444        }
 445        efx->last_irq_cpu = raw_smp_processor_id();
 446        netif_vdbg(efx, intr, efx->net_dev,
 447                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
 448                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
 449
 450        if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
 451                return IRQ_HANDLED;
 452
 453        /* Check to see if we have a serious error condition */
 454        syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
 455        if (unlikely(syserr))
 456                return efx_farch_fatal_interrupt(efx);
 457
 458        /* Determine interrupting queues, clear interrupt status
 459         * register and acknowledge the device interrupt.
 460         */
 461        BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
 462        queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
 463        EFX_ZERO_OWORD(*int_ker);
 464        wmb(); /* Ensure the vector is cleared before interrupt ack */
 465        falcon_irq_ack_a1(efx);
 466
 467        if (queues & 1)
 468                efx_schedule_channel_irq(efx_get_channel(efx, 0));
 469        if (queues & 2)
 470                efx_schedule_channel_irq(efx_get_channel(efx, 1));
 471        return IRQ_HANDLED;
 472}
 473
 474/**************************************************************************
 475 *
 476 * RSS
 477 *
 478 **************************************************************************
 479 */
 480static int dummy_rx_push_rss_config(struct efx_nic *efx, bool user,
 481                                    const u32 *rx_indir_table)
 482{
 483        (void) efx;
 484        (void) user;
 485        (void) rx_indir_table;
 486        return -ENOSYS;
 487}
 488
 489static int falcon_b0_rx_push_rss_config(struct efx_nic *efx, bool user,
 490                                        const u32 *rx_indir_table)
 491{
 492        efx_oword_t temp;
 493
 494        (void) user;
 495        /* Set hash key for IPv4 */
 496        memcpy(&temp, efx->rx_hash_key, sizeof(temp));
 497        efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
 498
 499        memcpy(efx->rx_indir_table, rx_indir_table,
 500               sizeof(efx->rx_indir_table));
 501        efx_farch_rx_push_indir_table(efx);
 502        return 0;
 503}
 504
 505/**************************************************************************
 506 *
 507 * EEPROM/flash
 508 *
 509 **************************************************************************
 510 */
 511
 512#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
 513
 514static int falcon_spi_poll(struct efx_nic *efx)
 515{
 516        efx_oword_t reg;
 517        efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
 518        return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
 519}
 520
 521/* Wait for SPI command completion */
 522static int falcon_spi_wait(struct efx_nic *efx)
 523{
 524        /* Most commands will finish quickly, so we start polling at
 525         * very short intervals.  Sometimes the command may have to
 526         * wait for VPD or expansion ROM access outside of our
 527         * control, so we allow up to 100 ms. */
 528        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
 529        int i;
 530
 531        for (i = 0; i < 10; i++) {
 532                if (!falcon_spi_poll(efx))
 533                        return 0;
 534                udelay(10);
 535        }
 536
 537        for (;;) {
 538                if (!falcon_spi_poll(efx))
 539                        return 0;
 540                if (time_after_eq(jiffies, timeout)) {
 541                        netif_err(efx, hw, efx->net_dev,
 542                                  "timed out waiting for SPI\n");
 543                        return -ETIMEDOUT;
 544                }
 545                schedule_timeout_uninterruptible(1);
 546        }
 547}
 548
 549static int
 550falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
 551               unsigned int command, int address,
 552               const void *in, void *out, size_t len)
 553{
 554        bool addressed = (address >= 0);
 555        bool reading = (out != NULL);
 556        efx_oword_t reg;
 557        int rc;
 558
 559        /* Input validation */
 560        if (len > FALCON_SPI_MAX_LEN)
 561                return -EINVAL;
 562
 563        /* Check that previous command is not still running */
 564        rc = falcon_spi_poll(efx);
 565        if (rc)
 566                return rc;
 567
 568        /* Program address register, if we have an address */
 569        if (addressed) {
 570                EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
 571                efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
 572        }
 573
 574        /* Program data register, if we have data */
 575        if (in != NULL) {
 576                memcpy(&reg, in, len);
 577                efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
 578        }
 579
 580        /* Issue read/write command */
 581        EFX_POPULATE_OWORD_7(reg,
 582                             FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
 583                             FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
 584                             FRF_AB_EE_SPI_HCMD_DABCNT, len,
 585                             FRF_AB_EE_SPI_HCMD_READ, reading,
 586                             FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
 587                             FRF_AB_EE_SPI_HCMD_ADBCNT,
 588                             (addressed ? spi->addr_len : 0),
 589                             FRF_AB_EE_SPI_HCMD_ENC, command);
 590        efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
 591
 592        /* Wait for read/write to complete */
 593        rc = falcon_spi_wait(efx);
 594        if (rc)
 595                return rc;
 596
 597        /* Read data */
 598        if (out != NULL) {
 599                efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
 600                memcpy(out, &reg, len);
 601        }
 602
 603        return 0;
 604}
 605
 606static inline u8
 607falcon_spi_munge_command(const struct falcon_spi_device *spi,
 608                         const u8 command, const unsigned int address)
 609{
 610        return command | (((address >> 8) & spi->munge_address) << 3);
 611}
 612
 613static int
 614falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
 615                loff_t start, size_t len, size_t *retlen, u8 *buffer)
 616{
 617        size_t block_len, pos = 0;
 618        unsigned int command;
 619        int rc = 0;
 620
 621        while (pos < len) {
 622                block_len = min(len - pos, FALCON_SPI_MAX_LEN);
 623
 624                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 625                rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
 626                                    buffer + pos, block_len);
 627                if (rc)
 628                        break;
 629                pos += block_len;
 630
 631                /* Avoid locking up the system */
 632                cond_resched();
 633                if (signal_pending(current)) {
 634                        rc = -EINTR;
 635                        break;
 636                }
 637        }
 638
 639        if (retlen)
 640                *retlen = pos;
 641        return rc;
 642}
 643
 644#ifdef CONFIG_SFC_MTD
 645
 646struct falcon_mtd_partition {
 647        struct efx_mtd_partition common;
 648        const struct falcon_spi_device *spi;
 649        size_t offset;
 650};
 651
 652#define to_falcon_mtd_partition(mtd)                            \
 653        container_of(mtd, struct falcon_mtd_partition, common.mtd)
 654
 655static size_t
 656falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
 657{
 658        return min(FALCON_SPI_MAX_LEN,
 659                   (spi->block_size - (start & (spi->block_size - 1))));
 660}
 661
 662/* Wait up to 10 ms for buffered write completion */
 663static int
 664falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
 665{
 666        unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
 667        u8 status;
 668        int rc;
 669
 670        for (;;) {
 671                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 672                                    &status, sizeof(status));
 673                if (rc)
 674                        return rc;
 675                if (!(status & SPI_STATUS_NRDY))
 676                        return 0;
 677                if (time_after_eq(jiffies, timeout)) {
 678                        netif_err(efx, hw, efx->net_dev,
 679                                  "SPI write timeout on device %d"
 680                                  " last status=0x%02x\n",
 681                                  spi->device_id, status);
 682                        return -ETIMEDOUT;
 683                }
 684                schedule_timeout_uninterruptible(1);
 685        }
 686}
 687
 688static int
 689falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
 690                 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
 691{
 692        u8 verify_buffer[FALCON_SPI_MAX_LEN];
 693        size_t block_len, pos = 0;
 694        unsigned int command;
 695        int rc = 0;
 696
 697        while (pos < len) {
 698                rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 699                if (rc)
 700                        break;
 701
 702                block_len = min(len - pos,
 703                                falcon_spi_write_limit(spi, start + pos));
 704                command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
 705                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 706                                    buffer + pos, NULL, block_len);
 707                if (rc)
 708                        break;
 709
 710                rc = falcon_spi_wait_write(efx, spi);
 711                if (rc)
 712                        break;
 713
 714                command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
 715                rc = falcon_spi_cmd(efx, spi, command, start + pos,
 716                                    NULL, verify_buffer, block_len);
 717                if (memcmp(verify_buffer, buffer + pos, block_len)) {
 718                        rc = -EIO;
 719                        break;
 720                }
 721
 722                pos += block_len;
 723
 724                /* Avoid locking up the system */
 725                cond_resched();
 726                if (signal_pending(current)) {
 727                        rc = -EINTR;
 728                        break;
 729                }
 730        }
 731
 732        if (retlen)
 733                *retlen = pos;
 734        return rc;
 735}
 736
 737static int
 738falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
 739{
 740        const struct falcon_spi_device *spi = part->spi;
 741        struct efx_nic *efx = part->common.mtd.priv;
 742        u8 status;
 743        int rc, i;
 744
 745        /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
 746        for (i = 0; i < 40; i++) {
 747                __set_current_state(uninterruptible ?
 748                                    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
 749                schedule_timeout(HZ / 10);
 750                rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 751                                    &status, sizeof(status));
 752                if (rc)
 753                        return rc;
 754                if (!(status & SPI_STATUS_NRDY))
 755                        return 0;
 756                if (signal_pending(current))
 757                        return -EINTR;
 758        }
 759        pr_err("%s: timed out waiting for %s\n",
 760               part->common.name, part->common.dev_type_name);
 761        return -ETIMEDOUT;
 762}
 763
 764static int
 765falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
 766{
 767        const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
 768                                SPI_STATUS_BP0);
 769        u8 status;
 770        int rc;
 771
 772        rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
 773                            &status, sizeof(status));
 774        if (rc)
 775                return rc;
 776
 777        if (!(status & unlock_mask))
 778                return 0; /* already unlocked */
 779
 780        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 781        if (rc)
 782                return rc;
 783        rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
 784        if (rc)
 785                return rc;
 786
 787        status &= ~unlock_mask;
 788        rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
 789                            NULL, sizeof(status));
 790        if (rc)
 791                return rc;
 792        rc = falcon_spi_wait_write(efx, spi);
 793        if (rc)
 794                return rc;
 795
 796        return 0;
 797}
 798
 799#define FALCON_SPI_VERIFY_BUF_LEN 16
 800
 801static int
 802falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
 803{
 804        const struct falcon_spi_device *spi = part->spi;
 805        struct efx_nic *efx = part->common.mtd.priv;
 806        unsigned pos, block_len;
 807        u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
 808        u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
 809        int rc;
 810
 811        if (len != spi->erase_size)
 812                return -EINVAL;
 813
 814        if (spi->erase_command == 0)
 815                return -EOPNOTSUPP;
 816
 817        rc = falcon_spi_unlock(efx, spi);
 818        if (rc)
 819                return rc;
 820        rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
 821        if (rc)
 822                return rc;
 823        rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
 824                            NULL, 0);
 825        if (rc)
 826                return rc;
 827        rc = falcon_spi_slow_wait(part, false);
 828
 829        /* Verify the entire region has been wiped */
 830        memset(empty, 0xff, sizeof(empty));
 831        for (pos = 0; pos < len; pos += block_len) {
 832                block_len = min(len - pos, sizeof(buffer));
 833                rc = falcon_spi_read(efx, spi, start + pos, block_len,
 834                                     NULL, buffer);
 835                if (rc)
 836                        return rc;
 837                if (memcmp(empty, buffer, block_len))
 838                        return -EIO;
 839
 840                /* Avoid locking up the system */
 841                cond_resched();
 842                if (signal_pending(current))
 843                        return -EINTR;
 844        }
 845
 846        return rc;
 847}
 848
 849static void falcon_mtd_rename(struct efx_mtd_partition *part)
 850{
 851        struct efx_nic *efx = part->mtd.priv;
 852
 853        snprintf(part->name, sizeof(part->name), "%s %s",
 854                 efx->name, part->type_name);
 855}
 856
 857static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
 858                           size_t len, size_t *retlen, u8 *buffer)
 859{
 860        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 861        struct efx_nic *efx = mtd->priv;
 862        struct falcon_nic_data *nic_data = efx->nic_data;
 863        int rc;
 864
 865        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 866        if (rc)
 867                return rc;
 868        rc = falcon_spi_read(efx, part->spi, part->offset + start,
 869                             len, retlen, buffer);
 870        mutex_unlock(&nic_data->spi_lock);
 871        return rc;
 872}
 873
 874static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
 875{
 876        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 877        struct efx_nic *efx = mtd->priv;
 878        struct falcon_nic_data *nic_data = efx->nic_data;
 879        int rc;
 880
 881        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 882        if (rc)
 883                return rc;
 884        rc = falcon_spi_erase(part, part->offset + start, len);
 885        mutex_unlock(&nic_data->spi_lock);
 886        return rc;
 887}
 888
 889static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
 890                            size_t len, size_t *retlen, const u8 *buffer)
 891{
 892        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 893        struct efx_nic *efx = mtd->priv;
 894        struct falcon_nic_data *nic_data = efx->nic_data;
 895        int rc;
 896
 897        rc = mutex_lock_interruptible(&nic_data->spi_lock);
 898        if (rc)
 899                return rc;
 900        rc = falcon_spi_write(efx, part->spi, part->offset + start,
 901                              len, retlen, buffer);
 902        mutex_unlock(&nic_data->spi_lock);
 903        return rc;
 904}
 905
 906static int falcon_mtd_sync(struct mtd_info *mtd)
 907{
 908        struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
 909        struct efx_nic *efx = mtd->priv;
 910        struct falcon_nic_data *nic_data = efx->nic_data;
 911        int rc;
 912
 913        mutex_lock(&nic_data->spi_lock);
 914        rc = falcon_spi_slow_wait(part, true);
 915        mutex_unlock(&nic_data->spi_lock);
 916        return rc;
 917}
 918
 919static int falcon_mtd_probe(struct efx_nic *efx)
 920{
 921        struct falcon_nic_data *nic_data = efx->nic_data;
 922        struct falcon_mtd_partition *parts;
 923        struct falcon_spi_device *spi;
 924        size_t n_parts;
 925        int rc = -ENODEV;
 926
 927        ASSERT_RTNL();
 928
 929        /* Allocate space for maximum number of partitions */
 930        parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
 931        if (!parts)
 932                return -ENOMEM;
 933        n_parts = 0;
 934
 935        spi = &nic_data->spi_flash;
 936        if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
 937                parts[n_parts].spi = spi;
 938                parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
 939                parts[n_parts].common.dev_type_name = "flash";
 940                parts[n_parts].common.type_name = "sfc_flash_bootrom";
 941                parts[n_parts].common.mtd.type = MTD_NORFLASH;
 942                parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
 943                parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
 944                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 945                n_parts++;
 946        }
 947
 948        spi = &nic_data->spi_eeprom;
 949        if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
 950                parts[n_parts].spi = spi;
 951                parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
 952                parts[n_parts].common.dev_type_name = "EEPROM";
 953                parts[n_parts].common.type_name = "sfc_bootconfig";
 954                parts[n_parts].common.mtd.type = MTD_RAM;
 955                parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
 956                parts[n_parts].common.mtd.size =
 957                        min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
 958                        FALCON_EEPROM_BOOTCONFIG_START;
 959                parts[n_parts].common.mtd.erasesize = spi->erase_size;
 960                n_parts++;
 961        }
 962
 963        rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
 964        if (rc)
 965                kfree(parts);
 966        return rc;
 967}
 968
 969#endif /* CONFIG_SFC_MTD */
 970
 971/**************************************************************************
 972 *
 973 * XMAC operations
 974 *
 975 **************************************************************************
 976 */
 977
 978/* Configure the XAUI driver that is an output from Falcon */
 979static void falcon_setup_xaui(struct efx_nic *efx)
 980{
 981        efx_oword_t sdctl, txdrv;
 982
 983        /* Move the XAUI into low power, unless there is no PHY, in
 984         * which case the XAUI will have to drive a cable. */
 985        if (efx->phy_type == PHY_TYPE_NONE)
 986                return;
 987
 988        efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
 989        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 990        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
 991        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 992        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
 993        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 994        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
 995        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 996        EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
 997        efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
 998
 999        EFX_POPULATE_OWORD_8(txdrv,
1000                             FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
1001                             FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
1002                             FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
1003                             FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
1004                             FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
1005                             FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
1006                             FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
1007                             FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
1008        efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
1009}
1010
1011int falcon_reset_xaui(struct efx_nic *efx)
1012{
1013        struct falcon_nic_data *nic_data = efx->nic_data;
1014        efx_oword_t reg;
1015        int count;
1016
1017        /* Don't fetch MAC statistics over an XMAC reset */
1018        WARN_ON(nic_data->stats_disable_count == 0);
1019
1020        /* Start reset sequence */
1021        EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1022        efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1023
1024        /* Wait up to 10 ms for completion, then reinitialise */
1025        for (count = 0; count < 1000; count++) {
1026                efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1027                if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1028                    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1029                        falcon_setup_xaui(efx);
1030                        return 0;
1031                }
1032                udelay(10);
1033        }
1034        netif_err(efx, hw, efx->net_dev,
1035                  "timed out waiting for XAUI/XGXS reset\n");
1036        return -ETIMEDOUT;
1037}
1038
1039static void falcon_ack_status_intr(struct efx_nic *efx)
1040{
1041        struct falcon_nic_data *nic_data = efx->nic_data;
1042        efx_oword_t reg;
1043
1044        if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1045                return;
1046
1047        /* We expect xgmii faults if the wireside link is down */
1048        if (!efx->link_state.up)
1049                return;
1050
1051        /* We can only use this interrupt to signal the negative edge of
1052         * xaui_align [we have to poll the positive edge]. */
1053        if (nic_data->xmac_poll_required)
1054                return;
1055
1056        efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1057}
1058
1059static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1060{
1061        efx_oword_t reg;
1062        bool align_done, link_ok = false;
1063        int sync_status;
1064
1065        /* Read link status */
1066        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1067
1068        align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1069        sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1070        if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1071                link_ok = true;
1072
1073        /* Clear link status ready for next read */
1074        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1075        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1076        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1077        efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1078
1079        return link_ok;
1080}
1081
1082static bool falcon_xmac_link_ok(struct efx_nic *efx)
1083{
1084        /*
1085         * Check MAC's XGXS link status except when using XGMII loopback
1086         * which bypasses the XGXS block.
1087         * If possible, check PHY's XGXS link status except when using
1088         * MAC loopback.
1089         */
1090        return (efx->loopback_mode == LOOPBACK_XGMII ||
1091                falcon_xgxs_link_ok(efx)) &&
1092                (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1093                 LOOPBACK_INTERNAL(efx) ||
1094                 efx_mdio_phyxgxs_lane_sync(efx));
1095}
1096
1097static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1098{
1099        unsigned int max_frame_len;
1100        efx_oword_t reg;
1101        bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1102        bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1103
1104        /* Configure MAC  - cut-thru mode is hard wired on */
1105        EFX_POPULATE_OWORD_3(reg,
1106                             FRF_AB_XM_RX_JUMBO_MODE, 1,
1107                             FRF_AB_XM_TX_STAT_EN, 1,
1108                             FRF_AB_XM_RX_STAT_EN, 1);
1109        efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1110
1111        /* Configure TX */
1112        EFX_POPULATE_OWORD_6(reg,
1113                             FRF_AB_XM_TXEN, 1,
1114                             FRF_AB_XM_TX_PRMBL, 1,
1115                             FRF_AB_XM_AUTO_PAD, 1,
1116                             FRF_AB_XM_TXCRC, 1,
1117                             FRF_AB_XM_FCNTL, tx_fc,
1118                             FRF_AB_XM_IPG, 0x3);
1119        efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1120
1121        /* Configure RX */
1122        EFX_POPULATE_OWORD_5(reg,
1123                             FRF_AB_XM_RXEN, 1,
1124                             FRF_AB_XM_AUTO_DEPAD, 0,
1125                             FRF_AB_XM_ACPT_ALL_MCAST, 1,
1126                             FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1127                             FRF_AB_XM_PASS_CRC_ERR, 1);
1128        efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1129
1130        /* Set frame length */
1131        max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1132        EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1133        efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1134        EFX_POPULATE_OWORD_2(reg,
1135                             FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1136                             FRF_AB_XM_TX_JUMBO_MODE, 1);
1137        efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1138
1139        EFX_POPULATE_OWORD_2(reg,
1140                             FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1141                             FRF_AB_XM_DIS_FCNTL, !rx_fc);
1142        efx_writeo(efx, &reg, FR_AB_XM_FC);
1143
1144        /* Set MAC address */
1145        memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1146        efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1147        memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1148        efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1149}
1150
1151static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1152{
1153        efx_oword_t reg;
1154        bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1155        bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1156        bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1157        bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1158
1159        /* XGXS block is flaky and will need to be reset if moving
1160         * into our out of XGMII, XGXS or XAUI loopbacks. */
1161        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162        old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1163        old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1164
1165        efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1166        old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1167
1168        /* The PHY driver may have turned XAUI off */
1169        if ((xgxs_loopback != old_xgxs_loopback) ||
1170            (xaui_loopback != old_xaui_loopback) ||
1171            (xgmii_loopback != old_xgmii_loopback))
1172                falcon_reset_xaui(efx);
1173
1174        efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1175        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1176                            (xgxs_loopback || xaui_loopback) ?
1177                            FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1178        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1179        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1180        efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1181
1182        efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1183        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1184        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1185        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1186        EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1187        efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1188}
1189
1190
1191/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1192static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1193{
1194        bool mac_up = falcon_xmac_link_ok(efx);
1195
1196        if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1197            efx_phy_mode_disabled(efx->phy_mode))
1198                /* XAUI link is expected to be down */
1199                return mac_up;
1200
1201        falcon_stop_nic_stats(efx);
1202
1203        while (!mac_up && tries) {
1204                netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1205                falcon_reset_xaui(efx);
1206                udelay(200);
1207
1208                mac_up = falcon_xmac_link_ok(efx);
1209                --tries;
1210        }
1211
1212        falcon_start_nic_stats(efx);
1213
1214        return mac_up;
1215}
1216
1217static bool falcon_xmac_check_fault(struct efx_nic *efx)
1218{
1219        return !falcon_xmac_link_ok_retry(efx, 5);
1220}
1221
1222static int falcon_reconfigure_xmac(struct efx_nic *efx)
1223{
1224        struct falcon_nic_data *nic_data = efx->nic_data;
1225
1226        efx_farch_filter_sync_rx_mode(efx);
1227
1228        falcon_reconfigure_xgxs_core(efx);
1229        falcon_reconfigure_xmac_core(efx);
1230
1231        falcon_reconfigure_mac_wrapper(efx);
1232
1233        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1234        falcon_ack_status_intr(efx);
1235
1236        return 0;
1237}
1238
1239static void falcon_poll_xmac(struct efx_nic *efx)
1240{
1241        struct falcon_nic_data *nic_data = efx->nic_data;
1242
1243        /* We expect xgmii faults if the wireside link is down */
1244        if (!efx->link_state.up || !nic_data->xmac_poll_required)
1245                return;
1246
1247        nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1248        falcon_ack_status_intr(efx);
1249}
1250
1251/**************************************************************************
1252 *
1253 * MAC wrapper
1254 *
1255 **************************************************************************
1256 */
1257
1258static void falcon_push_multicast_hash(struct efx_nic *efx)
1259{
1260        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1261
1262        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1263
1264        efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1265        efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1266}
1267
1268static void falcon_reset_macs(struct efx_nic *efx)
1269{
1270        struct falcon_nic_data *nic_data = efx->nic_data;
1271        efx_oword_t reg, mac_ctrl;
1272        int count;
1273
1274        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1275                /* It's not safe to use GLB_CTL_REG to reset the
1276                 * macs, so instead use the internal MAC resets
1277                 */
1278                EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1279                efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1280
1281                for (count = 0; count < 10000; count++) {
1282                        efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1283                        if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1284                            0)
1285                                return;
1286                        udelay(10);
1287                }
1288
1289                netif_err(efx, hw, efx->net_dev,
1290                          "timed out waiting for XMAC core reset\n");
1291        }
1292
1293        /* Mac stats will fail whist the TX fifo is draining */
1294        WARN_ON(nic_data->stats_disable_count == 0);
1295
1296        efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1297        EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1298        efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1299
1300        efx_reado(efx, &reg, FR_AB_GLB_CTL);
1301        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1302        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1303        EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1304        efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1305
1306        count = 0;
1307        while (1) {
1308                efx_reado(efx, &reg, FR_AB_GLB_CTL);
1309                if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1310                    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1311                    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1312                        netif_dbg(efx, hw, efx->net_dev,
1313                                  "Completed MAC reset after %d loops\n",
1314                                  count);
1315                        break;
1316                }
1317                if (count > 20) {
1318                        netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1319                        break;
1320                }
1321                count++;
1322                udelay(10);
1323        }
1324
1325        /* Ensure the correct MAC is selected before statistics
1326         * are re-enabled by the caller */
1327        efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1328
1329        falcon_setup_xaui(efx);
1330}
1331
1332static void falcon_drain_tx_fifo(struct efx_nic *efx)
1333{
1334        efx_oword_t reg;
1335
1336        if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1337            (efx->loopback_mode != LOOPBACK_NONE))
1338                return;
1339
1340        efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1341        /* There is no point in draining more than once */
1342        if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1343                return;
1344
1345        falcon_reset_macs(efx);
1346}
1347
1348static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1349{
1350        efx_oword_t reg;
1351
1352        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1353                return;
1354
1355        /* Isolate the MAC -> RX */
1356        efx_reado(efx, &reg, FR_AZ_RX_CFG);
1357        EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1358        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1359
1360        /* Isolate TX -> MAC */
1361        falcon_drain_tx_fifo(efx);
1362}
1363
1364static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1365{
1366        struct efx_link_state *link_state = &efx->link_state;
1367        efx_oword_t reg;
1368        int link_speed, isolate;
1369
1370        isolate = !!ACCESS_ONCE(efx->reset_pending);
1371
1372        switch (link_state->speed) {
1373        case 10000: link_speed = 3; break;
1374        case 1000:  link_speed = 2; break;
1375        case 100:   link_speed = 1; break;
1376        default:    link_speed = 0; break;
1377        }
1378
1379        /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1380         * as advertised.  Disable to ensure packets are not
1381         * indefinitely held and TX queue can be flushed at any point
1382         * while the link is down. */
1383        EFX_POPULATE_OWORD_5(reg,
1384                             FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1385                             FRF_AB_MAC_BCAD_ACPT, 1,
1386                             FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1387                             FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1388                             FRF_AB_MAC_SPEED, link_speed);
1389        /* On B0, MAC backpressure can be disabled and packets get
1390         * discarded. */
1391        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1392                EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1393                                    !link_state->up || isolate);
1394        }
1395
1396        efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1397
1398        /* Restore the multicast hash registers. */
1399        falcon_push_multicast_hash(efx);
1400
1401        efx_reado(efx, &reg, FR_AZ_RX_CFG);
1402        /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1403         * initialisation but it may read back as 0) */
1404        EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1405        /* Unisolate the MAC -> RX */
1406        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1407                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1408        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1409}
1410
1411static void falcon_stats_request(struct efx_nic *efx)
1412{
1413        struct falcon_nic_data *nic_data = efx->nic_data;
1414        efx_oword_t reg;
1415
1416        WARN_ON(nic_data->stats_pending);
1417        WARN_ON(nic_data->stats_disable_count);
1418
1419        FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1420        nic_data->stats_pending = true;
1421        wmb(); /* ensure done flag is clear */
1422
1423        /* Initiate DMA transfer of stats */
1424        EFX_POPULATE_OWORD_2(reg,
1425                             FRF_AB_MAC_STAT_DMA_CMD, 1,
1426                             FRF_AB_MAC_STAT_DMA_ADR,
1427                             efx->stats_buffer.dma_addr);
1428        efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1429
1430        mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1431}
1432
1433static void falcon_stats_complete(struct efx_nic *efx)
1434{
1435        struct falcon_nic_data *nic_data = efx->nic_data;
1436
1437        if (!nic_data->stats_pending)
1438                return;
1439
1440        nic_data->stats_pending = false;
1441        if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1442                rmb(); /* read the done flag before the stats */
1443                efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1444                                     falcon_stat_mask, nic_data->stats,
1445                                     efx->stats_buffer.addr, true);
1446        } else {
1447                netif_err(efx, hw, efx->net_dev,
1448                          "timed out waiting for statistics\n");
1449        }
1450}
1451
1452static void falcon_stats_timer_func(unsigned long context)
1453{
1454        struct efx_nic *efx = (struct efx_nic *)context;
1455        struct falcon_nic_data *nic_data = efx->nic_data;
1456
1457        spin_lock(&efx->stats_lock);
1458
1459        falcon_stats_complete(efx);
1460        if (nic_data->stats_disable_count == 0)
1461                falcon_stats_request(efx);
1462
1463        spin_unlock(&efx->stats_lock);
1464}
1465
1466static bool falcon_loopback_link_poll(struct efx_nic *efx)
1467{
1468        struct efx_link_state old_state = efx->link_state;
1469
1470        WARN_ON(!mutex_is_locked(&efx->mac_lock));
1471        WARN_ON(!LOOPBACK_INTERNAL(efx));
1472
1473        efx->link_state.fd = true;
1474        efx->link_state.fc = efx->wanted_fc;
1475        efx->link_state.up = true;
1476        efx->link_state.speed = 10000;
1477
1478        return !efx_link_state_equal(&efx->link_state, &old_state);
1479}
1480
1481static int falcon_reconfigure_port(struct efx_nic *efx)
1482{
1483        int rc;
1484
1485        WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1486
1487        /* Poll the PHY link state *before* reconfiguring it. This means we
1488         * will pick up the correct speed (in loopback) to select the correct
1489         * MAC.
1490         */
1491        if (LOOPBACK_INTERNAL(efx))
1492                falcon_loopback_link_poll(efx);
1493        else
1494                efx->phy_op->poll(efx);
1495
1496        falcon_stop_nic_stats(efx);
1497        falcon_deconfigure_mac_wrapper(efx);
1498
1499        falcon_reset_macs(efx);
1500
1501        efx->phy_op->reconfigure(efx);
1502        rc = falcon_reconfigure_xmac(efx);
1503        BUG_ON(rc);
1504
1505        falcon_start_nic_stats(efx);
1506
1507        /* Synchronise efx->link_state with the kernel */
1508        efx_link_status_changed(efx);
1509
1510        return 0;
1511}
1512
1513/* TX flow control may automatically turn itself off if the link
1514 * partner (intermittently) stops responding to pause frames. There
1515 * isn't any indication that this has happened, so the best we do is
1516 * leave it up to the user to spot this and fix it by cycling transmit
1517 * flow control on this end.
1518 */
1519
1520static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1521{
1522        /* Schedule a reset to recover */
1523        efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1524}
1525
1526static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1527{
1528        /* Recover by resetting the EM block */
1529        falcon_stop_nic_stats(efx);
1530        falcon_drain_tx_fifo(efx);
1531        falcon_reconfigure_xmac(efx);
1532        falcon_start_nic_stats(efx);
1533}
1534
1535/**************************************************************************
1536 *
1537 * PHY access via GMII
1538 *
1539 **************************************************************************
1540 */
1541
1542/* Wait for GMII access to complete */
1543static int falcon_gmii_wait(struct efx_nic *efx)
1544{
1545        efx_oword_t md_stat;
1546        int count;
1547
1548        /* wait up to 50ms - taken max from datasheet */
1549        for (count = 0; count < 5000; count++) {
1550                efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1551                if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1552                        if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1553                            EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1554                                netif_err(efx, hw, efx->net_dev,
1555                                          "error from GMII access "
1556                                          EFX_OWORD_FMT"\n",
1557                                          EFX_OWORD_VAL(md_stat));
1558                                return -EIO;
1559                        }
1560                        return 0;
1561                }
1562                udelay(10);
1563        }
1564        netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1565        return -ETIMEDOUT;
1566}
1567
1568/* Write an MDIO register of a PHY connected to Falcon. */
1569static int falcon_mdio_write(struct net_device *net_dev,
1570                             int prtad, int devad, u16 addr, u16 value)
1571{
1572        struct efx_nic *efx = netdev_priv(net_dev);
1573        struct falcon_nic_data *nic_data = efx->nic_data;
1574        efx_oword_t reg;
1575        int rc;
1576
1577        netif_vdbg(efx, hw, efx->net_dev,
1578                   "writing MDIO %d register %d.%d with 0x%04x\n",
1579                    prtad, devad, addr, value);
1580
1581        mutex_lock(&nic_data->mdio_lock);
1582
1583        /* Check MDIO not currently being accessed */
1584        rc = falcon_gmii_wait(efx);
1585        if (rc)
1586                goto out;
1587
1588        /* Write the address/ID register */
1589        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1590        efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1591
1592        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1593                             FRF_AB_MD_DEV_ADR, devad);
1594        efx_writeo(efx, &reg, FR_AB_MD_ID);
1595
1596        /* Write data */
1597        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1598        efx_writeo(efx, &reg, FR_AB_MD_TXD);
1599
1600        EFX_POPULATE_OWORD_2(reg,
1601                             FRF_AB_MD_WRC, 1,
1602                             FRF_AB_MD_GC, 0);
1603        efx_writeo(efx, &reg, FR_AB_MD_CS);
1604
1605        /* Wait for data to be written */
1606        rc = falcon_gmii_wait(efx);
1607        if (rc) {
1608                /* Abort the write operation */
1609                EFX_POPULATE_OWORD_2(reg,
1610                                     FRF_AB_MD_WRC, 0,
1611                                     FRF_AB_MD_GC, 1);
1612                efx_writeo(efx, &reg, FR_AB_MD_CS);
1613                udelay(10);
1614        }
1615
1616out:
1617        mutex_unlock(&nic_data->mdio_lock);
1618        return rc;
1619}
1620
1621/* Read an MDIO register of a PHY connected to Falcon. */
1622static int falcon_mdio_read(struct net_device *net_dev,
1623                            int prtad, int devad, u16 addr)
1624{
1625        struct efx_nic *efx = netdev_priv(net_dev);
1626        struct falcon_nic_data *nic_data = efx->nic_data;
1627        efx_oword_t reg;
1628        int rc;
1629
1630        mutex_lock(&nic_data->mdio_lock);
1631
1632        /* Check MDIO not currently being accessed */
1633        rc = falcon_gmii_wait(efx);
1634        if (rc)
1635                goto out;
1636
1637        EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1638        efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1639
1640        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1641                             FRF_AB_MD_DEV_ADR, devad);
1642        efx_writeo(efx, &reg, FR_AB_MD_ID);
1643
1644        /* Request data to be read */
1645        EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1646        efx_writeo(efx, &reg, FR_AB_MD_CS);
1647
1648        /* Wait for data to become available */
1649        rc = falcon_gmii_wait(efx);
1650        if (rc == 0) {
1651                efx_reado(efx, &reg, FR_AB_MD_RXD);
1652                rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1653                netif_vdbg(efx, hw, efx->net_dev,
1654                           "read from MDIO %d register %d.%d, got %04x\n",
1655                           prtad, devad, addr, rc);
1656        } else {
1657                /* Abort the read operation */
1658                EFX_POPULATE_OWORD_2(reg,
1659                                     FRF_AB_MD_RIC, 0,
1660                                     FRF_AB_MD_GC, 1);
1661                efx_writeo(efx, &reg, FR_AB_MD_CS);
1662
1663                netif_dbg(efx, hw, efx->net_dev,
1664                          "read from MDIO %d register %d.%d, got error %d\n",
1665                          prtad, devad, addr, rc);
1666        }
1667
1668out:
1669        mutex_unlock(&nic_data->mdio_lock);
1670        return rc;
1671}
1672
1673/* This call is responsible for hooking in the MAC and PHY operations */
1674static int falcon_probe_port(struct efx_nic *efx)
1675{
1676        struct falcon_nic_data *nic_data = efx->nic_data;
1677        int rc;
1678
1679        switch (efx->phy_type) {
1680        case PHY_TYPE_SFX7101:
1681                efx->phy_op = &falcon_sfx7101_phy_ops;
1682                break;
1683        case PHY_TYPE_QT2022C2:
1684        case PHY_TYPE_QT2025C:
1685                efx->phy_op = &falcon_qt202x_phy_ops;
1686                break;
1687        case PHY_TYPE_TXC43128:
1688                efx->phy_op = &falcon_txc_phy_ops;
1689                break;
1690        default:
1691                netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1692                          efx->phy_type);
1693                return -ENODEV;
1694        }
1695
1696        /* Fill out MDIO structure and loopback modes */
1697        mutex_init(&nic_data->mdio_lock);
1698        efx->mdio.mdio_read = falcon_mdio_read;
1699        efx->mdio.mdio_write = falcon_mdio_write;
1700        rc = efx->phy_op->probe(efx);
1701        if (rc != 0)
1702                return rc;
1703
1704        /* Initial assumption */
1705        efx->link_state.speed = 10000;
1706        efx->link_state.fd = true;
1707
1708        /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1709        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1710                efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1711        else
1712                efx->wanted_fc = EFX_FC_RX;
1713        if (efx->mdio.mmds & MDIO_DEVS_AN)
1714                efx->wanted_fc |= EFX_FC_AUTO;
1715
1716        /* Allocate buffer for stats */
1717        rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1718                                  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1719        if (rc)
1720                return rc;
1721        netif_dbg(efx, probe, efx->net_dev,
1722                  "stats buffer at %llx (virt %p phys %llx)\n",
1723                  (u64)efx->stats_buffer.dma_addr,
1724                  efx->stats_buffer.addr,
1725                  (u64)virt_to_phys(efx->stats_buffer.addr));
1726
1727        return 0;
1728}
1729
1730static void falcon_remove_port(struct efx_nic *efx)
1731{
1732        efx->phy_op->remove(efx);
1733        efx_nic_free_buffer(efx, &efx->stats_buffer);
1734}
1735
1736/* Global events are basically PHY events */
1737static bool
1738falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1739{
1740        struct efx_nic *efx = channel->efx;
1741        struct falcon_nic_data *nic_data = efx->nic_data;
1742
1743        if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1744            EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1745            EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1746                /* Ignored */
1747                return true;
1748
1749        if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1750            EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1751                nic_data->xmac_poll_required = true;
1752                return true;
1753        }
1754
1755        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1756            EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1757            EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1758                netif_err(efx, rx_err, efx->net_dev,
1759                          "channel %d seen global RX_RESET event. Resetting.\n",
1760                          channel->channel);
1761
1762                atomic_inc(&efx->rx_reset);
1763                efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1764                                   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1765                return true;
1766        }
1767
1768        return false;
1769}
1770
1771/**************************************************************************
1772 *
1773 * Falcon test code
1774 *
1775 **************************************************************************/
1776
1777static int
1778falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1779{
1780        struct falcon_nic_data *nic_data = efx->nic_data;
1781        struct falcon_nvconfig *nvconfig;
1782        struct falcon_spi_device *spi;
1783        void *region;
1784        int rc, magic_num, struct_ver;
1785        __le16 *word, *limit;
1786        u32 csum;
1787
1788        if (falcon_spi_present(&nic_data->spi_flash))
1789                spi = &nic_data->spi_flash;
1790        else if (falcon_spi_present(&nic_data->spi_eeprom))
1791                spi = &nic_data->spi_eeprom;
1792        else
1793                return -EINVAL;
1794
1795        region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1796        if (!region)
1797                return -ENOMEM;
1798        nvconfig = region + FALCON_NVCONFIG_OFFSET;
1799
1800        mutex_lock(&nic_data->spi_lock);
1801        rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1802        mutex_unlock(&nic_data->spi_lock);
1803        if (rc) {
1804                netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1805                          falcon_spi_present(&nic_data->spi_flash) ?
1806                          "flash" : "EEPROM");
1807                rc = -EIO;
1808                goto out;
1809        }
1810
1811        magic_num = le16_to_cpu(nvconfig->board_magic_num);
1812        struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1813
1814        rc = -EINVAL;
1815        if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1816                netif_err(efx, hw, efx->net_dev,
1817                          "NVRAM bad magic 0x%x\n", magic_num);
1818                goto out;
1819        }
1820        if (struct_ver < 2) {
1821                netif_err(efx, hw, efx->net_dev,
1822                          "NVRAM has ancient version 0x%x\n", struct_ver);
1823                goto out;
1824        } else if (struct_ver < 4) {
1825                word = &nvconfig->board_magic_num;
1826                limit = (__le16 *) (nvconfig + 1);
1827        } else {
1828                word = region;
1829                limit = region + FALCON_NVCONFIG_END;
1830        }
1831        for (csum = 0; word < limit; ++word)
1832                csum += le16_to_cpu(*word);
1833
1834        if (~csum & 0xffff) {
1835                netif_err(efx, hw, efx->net_dev,
1836                          "NVRAM has incorrect checksum\n");
1837                goto out;
1838        }
1839
1840        rc = 0;
1841        if (nvconfig_out)
1842                memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1843
1844 out:
1845        kfree(region);
1846        return rc;
1847}
1848
1849static int falcon_test_nvram(struct efx_nic *efx)
1850{
1851        return falcon_read_nvram(efx, NULL);
1852}
1853
1854static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1855        { FR_AZ_ADR_REGION,
1856          EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1857        { FR_AZ_RX_CFG,
1858          EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1859        { FR_AZ_TX_CFG,
1860          EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1861        { FR_AZ_TX_RESERVED,
1862          EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1863        { FR_AB_MAC_CTRL,
1864          EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1865        { FR_AZ_SRM_TX_DC_CFG,
1866          EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1867        { FR_AZ_RX_DC_CFG,
1868          EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1869        { FR_AZ_RX_DC_PF_WM,
1870          EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1871        { FR_BZ_DP_CTRL,
1872          EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1873        { FR_AB_GM_CFG2,
1874          EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1875        { FR_AB_GMF_CFG0,
1876          EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1877        { FR_AB_XM_GLB_CFG,
1878          EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1879        { FR_AB_XM_TX_CFG,
1880          EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1881        { FR_AB_XM_RX_CFG,
1882          EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1883        { FR_AB_XM_RX_PARAM,
1884          EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1885        { FR_AB_XM_FC,
1886          EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1887        { FR_AB_XM_ADR_LO,
1888          EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1889        { FR_AB_XX_SD_CTL,
1890          EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1891};
1892
1893static int
1894falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1895{
1896        enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1897        int rc, rc2;
1898
1899        mutex_lock(&efx->mac_lock);
1900        if (efx->loopback_modes) {
1901                /* We need the 312 clock from the PHY to test the XMAC
1902                 * registers, so move into XGMII loopback if available */
1903                if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1904                        efx->loopback_mode = LOOPBACK_XGMII;
1905                else
1906                        efx->loopback_mode = __ffs(efx->loopback_modes);
1907        }
1908        __efx_reconfigure_port(efx);
1909        mutex_unlock(&efx->mac_lock);
1910
1911        efx_reset_down(efx, reset_method);
1912
1913        tests->registers =
1914                efx_farch_test_registers(efx, falcon_b0_register_tests,
1915                                         ARRAY_SIZE(falcon_b0_register_tests))
1916                ? -1 : 1;
1917
1918        rc = falcon_reset_hw(efx, reset_method);
1919        rc2 = efx_reset_up(efx, reset_method, rc == 0);
1920        return rc ? rc : rc2;
1921}
1922
1923/**************************************************************************
1924 *
1925 * Device reset
1926 *
1927 **************************************************************************
1928 */
1929
1930static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1931{
1932        switch (reason) {
1933        case RESET_TYPE_RX_RECOVERY:
1934        case RESET_TYPE_DMA_ERROR:
1935        case RESET_TYPE_TX_SKIP:
1936                /* These can occasionally occur due to hardware bugs.
1937                 * We try to reset without disrupting the link.
1938                 */
1939                return RESET_TYPE_INVISIBLE;
1940        default:
1941                return RESET_TYPE_ALL;
1942        }
1943}
1944
1945static int falcon_map_reset_flags(u32 *flags)
1946{
1947        enum {
1948                FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1949                                          ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1950                FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1951                FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1952        };
1953
1954        if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1955                *flags &= ~FALCON_RESET_WORLD;
1956                return RESET_TYPE_WORLD;
1957        }
1958
1959        if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1960                *flags &= ~FALCON_RESET_ALL;
1961                return RESET_TYPE_ALL;
1962        }
1963
1964        if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1965                *flags &= ~FALCON_RESET_INVISIBLE;
1966                return RESET_TYPE_INVISIBLE;
1967        }
1968
1969        return -EINVAL;
1970}
1971
1972/* Resets NIC to known state.  This routine must be called in process
1973 * context and is allowed to sleep. */
1974static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1975{
1976        struct falcon_nic_data *nic_data = efx->nic_data;
1977        efx_oword_t glb_ctl_reg_ker;
1978        int rc;
1979
1980        netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1981                  RESET_TYPE(method));
1982
1983        /* Initiate device reset */
1984        if (method == RESET_TYPE_WORLD) {
1985                rc = pci_save_state(efx->pci_dev);
1986                if (rc) {
1987                        netif_err(efx, drv, efx->net_dev,
1988                                  "failed to backup PCI state of primary "
1989                                  "function prior to hardware reset\n");
1990                        goto fail1;
1991                }
1992                if (efx_nic_is_dual_func(efx)) {
1993                        rc = pci_save_state(nic_data->pci_dev2);
1994                        if (rc) {
1995                                netif_err(efx, drv, efx->net_dev,
1996                                          "failed to backup PCI state of "
1997                                          "secondary function prior to "
1998                                          "hardware reset\n");
1999                                goto fail2;
2000                        }
2001                }
2002
2003                EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2004                                     FRF_AB_EXT_PHY_RST_DUR,
2005                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2006                                     FRF_AB_SWRST, 1);
2007        } else {
2008                EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2009                                     /* exclude PHY from "invisible" reset */
2010                                     FRF_AB_EXT_PHY_RST_CTL,
2011                                     method == RESET_TYPE_INVISIBLE,
2012                                     /* exclude EEPROM/flash and PCIe */
2013                                     FRF_AB_PCIE_CORE_RST_CTL, 1,
2014                                     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2015                                     FRF_AB_PCIE_SD_RST_CTL, 1,
2016                                     FRF_AB_EE_RST_CTL, 1,
2017                                     FRF_AB_EXT_PHY_RST_DUR,
2018                                     FFE_AB_EXT_PHY_RST_DUR_10240US,
2019                                     FRF_AB_SWRST, 1);
2020        }
2021        efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2022
2023        netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2024        schedule_timeout_uninterruptible(HZ / 20);
2025
2026        /* Restore PCI configuration if needed */
2027        if (method == RESET_TYPE_WORLD) {
2028                if (efx_nic_is_dual_func(efx))
2029                        pci_restore_state(nic_data->pci_dev2);
2030                pci_restore_state(efx->pci_dev);
2031                netif_dbg(efx, drv, efx->net_dev,
2032                          "successfully restored PCI config\n");
2033        }
2034
2035        /* Assert that reset complete */
2036        efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2037        if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2038                rc = -ETIMEDOUT;
2039                netif_err(efx, hw, efx->net_dev,
2040                          "timed out waiting for hardware reset\n");
2041                goto fail3;
2042        }
2043        netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2044
2045        return 0;
2046
2047        /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2048fail2:
2049        pci_restore_state(efx->pci_dev);
2050fail1:
2051fail3:
2052        return rc;
2053}
2054
2055static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2056{
2057        struct falcon_nic_data *nic_data = efx->nic_data;
2058        int rc;
2059
2060        mutex_lock(&nic_data->spi_lock);
2061        rc = __falcon_reset_hw(efx, method);
2062        mutex_unlock(&nic_data->spi_lock);
2063
2064        return rc;
2065}
2066
2067static void falcon_monitor(struct efx_nic *efx)
2068{
2069        bool link_changed;
2070        int rc;
2071
2072        BUG_ON(!mutex_is_locked(&efx->mac_lock));
2073
2074        rc = falcon_board(efx)->type->monitor(efx);
2075        if (rc) {
2076                netif_err(efx, hw, efx->net_dev,
2077                          "Board sensor %s; shutting down PHY\n",
2078                          (rc == -ERANGE) ? "reported fault" : "failed");
2079                efx->phy_mode |= PHY_MODE_LOW_POWER;
2080                rc = __efx_reconfigure_port(efx);
2081                WARN_ON(rc);
2082        }
2083
2084        if (LOOPBACK_INTERNAL(efx))
2085                link_changed = falcon_loopback_link_poll(efx);
2086        else
2087                link_changed = efx->phy_op->poll(efx);
2088
2089        if (link_changed) {
2090                falcon_stop_nic_stats(efx);
2091                falcon_deconfigure_mac_wrapper(efx);
2092
2093                falcon_reset_macs(efx);
2094                rc = falcon_reconfigure_xmac(efx);
2095                BUG_ON(rc);
2096
2097                falcon_start_nic_stats(efx);
2098
2099                efx_link_status_changed(efx);
2100        }
2101
2102        falcon_poll_xmac(efx);
2103}
2104
2105/* Zeroes out the SRAM contents.  This routine must be called in
2106 * process context and is allowed to sleep.
2107 */
2108static int falcon_reset_sram(struct efx_nic *efx)
2109{
2110        efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2111        int count;
2112
2113        /* Set the SRAM wake/sleep GPIO appropriately. */
2114        efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2115        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2116        EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2117        efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2118
2119        /* Initiate SRAM reset */
2120        EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2121                             FRF_AZ_SRM_INIT_EN, 1,
2122                             FRF_AZ_SRM_NB_SZ, 0);
2123        efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2124
2125        /* Wait for SRAM reset to complete */
2126        count = 0;
2127        do {
2128                netif_dbg(efx, hw, efx->net_dev,
2129                          "waiting for SRAM reset (attempt %d)...\n", count);
2130
2131                /* SRAM reset is slow; expect around 16ms */
2132                schedule_timeout_uninterruptible(HZ / 50);
2133
2134                /* Check for reset complete */
2135                efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2136                if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2137                        netif_dbg(efx, hw, efx->net_dev,
2138                                  "SRAM reset complete\n");
2139
2140                        return 0;
2141                }
2142        } while (++count < 20); /* wait up to 0.4 sec */
2143
2144        netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2145        return -ETIMEDOUT;
2146}
2147
2148static void falcon_spi_device_init(struct efx_nic *efx,
2149                                  struct falcon_spi_device *spi_device,
2150                                  unsigned int device_id, u32 device_type)
2151{
2152        if (device_type != 0) {
2153                spi_device->device_id = device_id;
2154                spi_device->size =
2155                        1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2156                spi_device->addr_len =
2157                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2158                spi_device->munge_address = (spi_device->size == 1 << 9 &&
2159                                             spi_device->addr_len == 1);
2160                spi_device->erase_command =
2161                        SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2162                spi_device->erase_size =
2163                        1 << SPI_DEV_TYPE_FIELD(device_type,
2164                                                SPI_DEV_TYPE_ERASE_SIZE);
2165                spi_device->block_size =
2166                        1 << SPI_DEV_TYPE_FIELD(device_type,
2167                                                SPI_DEV_TYPE_BLOCK_SIZE);
2168        } else {
2169                spi_device->size = 0;
2170        }
2171}
2172
2173/* Extract non-volatile configuration */
2174static int falcon_probe_nvconfig(struct efx_nic *efx)
2175{
2176        struct falcon_nic_data *nic_data = efx->nic_data;
2177        struct falcon_nvconfig *nvconfig;
2178        int rc;
2179
2180        nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2181        if (!nvconfig)
2182                return -ENOMEM;
2183
2184        rc = falcon_read_nvram(efx, nvconfig);
2185        if (rc)
2186                goto out;
2187
2188        efx->phy_type = nvconfig->board_v2.port0_phy_type;
2189        efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2190
2191        if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2192                falcon_spi_device_init(
2193                        efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2194                        le32_to_cpu(nvconfig->board_v3
2195                                    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2196                falcon_spi_device_init(
2197                        efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2198                        le32_to_cpu(nvconfig->board_v3
2199                                    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2200        }
2201
2202        /* Read the MAC addresses */
2203        ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2204
2205        netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2206                  efx->phy_type, efx->mdio.prtad);
2207
2208        rc = falcon_probe_board(efx,
2209                                le16_to_cpu(nvconfig->board_v2.board_revision));
2210out:
2211        kfree(nvconfig);
2212        return rc;
2213}
2214
2215static int falcon_dimension_resources(struct efx_nic *efx)
2216{
2217        efx->rx_dc_base = 0x20000;
2218        efx->tx_dc_base = 0x26000;
2219        return 0;
2220}
2221
2222/* Probe all SPI devices on the NIC */
2223static void falcon_probe_spi_devices(struct efx_nic *efx)
2224{
2225        struct falcon_nic_data *nic_data = efx->nic_data;
2226        efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2227        int boot_dev;
2228
2229        efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2230        efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2231        efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2232
2233        if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2234                boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2235                            FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2236                netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2237                          boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2238                          "flash" : "EEPROM");
2239        } else {
2240                /* Disable VPD and set clock dividers to safe
2241                 * values for initial programming. */
2242                boot_dev = -1;
2243                netif_dbg(efx, probe, efx->net_dev,
2244                          "Booted from internal ASIC settings;"
2245                          " setting SPI config\n");
2246                EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2247                                     /* 125 MHz / 7 ~= 20 MHz */
2248                                     FRF_AB_EE_SF_CLOCK_DIV, 7,
2249                                     /* 125 MHz / 63 ~= 2 MHz */
2250                                     FRF_AB_EE_EE_CLOCK_DIV, 63);
2251                efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2252        }
2253
2254        mutex_init(&nic_data->spi_lock);
2255
2256        if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2257                falcon_spi_device_init(efx, &nic_data->spi_flash,
2258                                       FFE_AB_SPI_DEVICE_FLASH,
2259                                       default_flash_type);
2260        if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2261                falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2262                                       FFE_AB_SPI_DEVICE_EEPROM,
2263                                       large_eeprom_type);
2264}
2265
2266static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2267{
2268        return 0x20000;
2269}
2270
2271static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2272{
2273        /* Map everything up to and including the RSS indirection table.
2274         * The PCI core takes care of mapping the MSI-X tables.
2275         */
2276        return FR_BZ_RX_INDIRECTION_TBL +
2277                FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2278}
2279
2280static int falcon_probe_nic(struct efx_nic *efx)
2281{
2282        struct falcon_nic_data *nic_data;
2283        struct falcon_board *board;
2284        int rc;
2285
2286        efx->primary = efx; /* only one usable function per controller */
2287
2288        /* Allocate storage for hardware specific data */
2289        nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2290        if (!nic_data)
2291                return -ENOMEM;
2292        efx->nic_data = nic_data;
2293
2294        rc = -ENODEV;
2295
2296        if (efx_farch_fpga_ver(efx) != 0) {
2297                netif_err(efx, probe, efx->net_dev,
2298                          "Falcon FPGA not supported\n");
2299                goto fail1;
2300        }
2301
2302        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2303                efx_oword_t nic_stat;
2304                struct pci_dev *dev;
2305                u8 pci_rev = efx->pci_dev->revision;
2306
2307                if ((pci_rev == 0xff) || (pci_rev == 0)) {
2308                        netif_err(efx, probe, efx->net_dev,
2309                                  "Falcon rev A0 not supported\n");
2310                        goto fail1;
2311                }
2312                efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2313                if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2314                        netif_err(efx, probe, efx->net_dev,
2315                                  "Falcon rev A1 1G not supported\n");
2316                        goto fail1;
2317                }
2318                if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2319                        netif_err(efx, probe, efx->net_dev,
2320                                  "Falcon rev A1 PCI-X not supported\n");
2321                        goto fail1;
2322                }
2323
2324                dev = pci_dev_get(efx->pci_dev);
2325                while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2326                                             PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2327                                             dev))) {
2328                        if (dev->bus == efx->pci_dev->bus &&
2329                            dev->devfn == efx->pci_dev->devfn + 1) {
2330                                nic_data->pci_dev2 = dev;
2331                                break;
2332                        }
2333                }
2334                if (!nic_data->pci_dev2) {
2335                        netif_err(efx, probe, efx->net_dev,
2336                                  "failed to find secondary function\n");
2337                        rc = -ENODEV;
2338                        goto fail2;
2339                }
2340        }
2341
2342        /* Now we can reset the NIC */
2343        rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2344        if (rc) {
2345                netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2346                goto fail3;
2347        }
2348
2349        /* Allocate memory for INT_KER */
2350        rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2351                                  GFP_KERNEL);
2352        if (rc)
2353                goto fail4;
2354        BUG_ON(efx->irq_status.dma_addr & 0x0f);
2355
2356        netif_dbg(efx, probe, efx->net_dev,
2357                  "INT_KER at %llx (virt %p phys %llx)\n",
2358                  (u64)efx->irq_status.dma_addr,
2359                  efx->irq_status.addr,
2360                  (u64)virt_to_phys(efx->irq_status.addr));
2361
2362        falcon_probe_spi_devices(efx);
2363
2364        /* Read in the non-volatile configuration */
2365        rc = falcon_probe_nvconfig(efx);
2366        if (rc) {
2367                if (rc == -EINVAL)
2368                        netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2369                goto fail5;
2370        }
2371
2372        efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2373                             EFX_MAX_CHANNELS);
2374        efx->max_tx_channels = efx->max_channels;
2375        efx->timer_quantum_ns = 4968; /* 621 cycles */
2376
2377        /* Initialise I2C adapter */
2378        board = falcon_board(efx);
2379        board->i2c_adap.owner = THIS_MODULE;
2380        board->i2c_data = falcon_i2c_bit_operations;
2381        board->i2c_data.data = efx;
2382        board->i2c_adap.algo_data = &board->i2c_data;
2383        board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2384        strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2385                sizeof(board->i2c_adap.name));
2386        rc = i2c_bit_add_bus(&board->i2c_adap);
2387        if (rc)
2388                goto fail5;
2389
2390        rc = falcon_board(efx)->type->init(efx);
2391        if (rc) {
2392                netif_err(efx, probe, efx->net_dev,
2393                          "failed to initialise board\n");
2394                goto fail6;
2395        }
2396
2397        nic_data->stats_disable_count = 1;
2398        setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2399                    (unsigned long)efx);
2400
2401        return 0;
2402
2403 fail6:
2404        i2c_del_adapter(&board->i2c_adap);
2405        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2406 fail5:
2407        efx_nic_free_buffer(efx, &efx->irq_status);
2408 fail4:
2409 fail3:
2410        if (nic_data->pci_dev2) {
2411                pci_dev_put(nic_data->pci_dev2);
2412                nic_data->pci_dev2 = NULL;
2413        }
2414 fail2:
2415 fail1:
2416        kfree(efx->nic_data);
2417        return rc;
2418}
2419
2420static void falcon_init_rx_cfg(struct efx_nic *efx)
2421{
2422        /* RX control FIFO thresholds (32 entries) */
2423        const unsigned ctrl_xon_thr = 20;
2424        const unsigned ctrl_xoff_thr = 25;
2425        efx_oword_t reg;
2426
2427        efx_reado(efx, &reg, FR_AZ_RX_CFG);
2428        if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2429                /* Data FIFO size is 5.5K.  The RX DMA engine only
2430                 * supports scattering for user-mode queues, but will
2431                 * split DMA writes at intervals of RX_USR_BUF_SIZE
2432                 * (32-byte units) even for kernel-mode queues.  We
2433                 * set it to be so large that that never happens.
2434                 */
2435                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2436                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2437                                    (3 * 4096) >> 5);
2438                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2439                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2440                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2441                EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2442        } else {
2443                /* Data FIFO size is 80K; register fields moved */
2444                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2445                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2446                                    EFX_RX_USR_BUF_SIZE >> 5);
2447                /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2448                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2449                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2450                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2451                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2452                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2453
2454                /* Enable hash insertion. This is broken for the
2455                 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2456                 * IPv4 hashes. */
2457                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2458                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2459                EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2460        }
2461        /* Always enable XOFF signal from RX FIFO.  We enable
2462         * or disable transmission of pause frames at the MAC. */
2463        EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2464        efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2465}
2466
2467/* This call performs hardware-specific global initialisation, such as
2468 * defining the descriptor cache sizes and number of RSS channels.
2469 * It does not set up any buffers, descriptor rings or event queues.
2470 */
2471static int falcon_init_nic(struct efx_nic *efx)
2472{
2473        efx_oword_t temp;
2474        int rc;
2475
2476        /* Use on-chip SRAM */
2477        efx_reado(efx, &temp, FR_AB_NIC_STAT);
2478        EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2479        efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2480
2481        rc = falcon_reset_sram(efx);
2482        if (rc)
2483                return rc;
2484
2485        /* Clear the parity enables on the TX data fifos as
2486         * they produce false parity errors because of timing issues
2487         */
2488        if (EFX_WORKAROUND_5129(efx)) {
2489                efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2490                EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2491                efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2492        }
2493
2494        if (EFX_WORKAROUND_7244(efx)) {
2495                efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2496                EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2497                EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2498                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2499                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2500                efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2501        }
2502
2503        /* XXX This is documented only for Falcon A0/A1 */
2504        /* Setup RX.  Wait for descriptor is broken and must
2505         * be disabled.  RXDP recovery shouldn't be needed, but is.
2506         */
2507        efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2508        EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2509        EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2510        if (EFX_WORKAROUND_5583(efx))
2511                EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2512        efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2513
2514        /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2515         * descriptors (which is bad).
2516         */
2517        efx_reado(efx, &temp, FR_AZ_TX_CFG);
2518        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2519        efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2520
2521        falcon_init_rx_cfg(efx);
2522
2523        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2524                falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
2525
2526                /* Set destination of both TX and RX Flush events */
2527                EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2528                efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2529        }
2530
2531        efx_farch_init_common(efx);
2532
2533        return 0;
2534}
2535
2536static void falcon_remove_nic(struct efx_nic *efx)
2537{
2538        struct falcon_nic_data *nic_data = efx->nic_data;
2539        struct falcon_board *board = falcon_board(efx);
2540
2541        board->type->fini(efx);
2542
2543        /* Remove I2C adapter and clear it in preparation for a retry */
2544        i2c_del_adapter(&board->i2c_adap);
2545        memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2546
2547        efx_nic_free_buffer(efx, &efx->irq_status);
2548
2549        __falcon_reset_hw(efx, RESET_TYPE_ALL);
2550
2551        /* Release the second function after the reset */
2552        if (nic_data->pci_dev2) {
2553                pci_dev_put(nic_data->pci_dev2);
2554                nic_data->pci_dev2 = NULL;
2555        }
2556
2557        /* Tear down the private nic state */
2558        kfree(efx->nic_data);
2559        efx->nic_data = NULL;
2560}
2561
2562static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2563{
2564        return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2565                                      falcon_stat_mask, names);
2566}
2567
2568static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2569                                      struct rtnl_link_stats64 *core_stats)
2570{
2571        struct falcon_nic_data *nic_data = efx->nic_data;
2572        u64 *stats = nic_data->stats;
2573        efx_oword_t cnt;
2574
2575        if (!nic_data->stats_disable_count) {
2576                efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2577                stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2578                        EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2579
2580                if (nic_data->stats_pending &&
2581                    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2582                        nic_data->stats_pending = false;
2583                        rmb(); /* read the done flag before the stats */
2584                        efx_nic_update_stats(
2585                                falcon_stat_desc, FALCON_STAT_COUNT,
2586                                falcon_stat_mask,
2587                                stats, efx->stats_buffer.addr, true);
2588                }
2589
2590                /* Update derived statistic */
2591                efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2592                                     stats[FALCON_STAT_rx_bytes] -
2593                                     stats[FALCON_STAT_rx_good_bytes] -
2594                                     stats[FALCON_STAT_rx_control] * 64);
2595                efx_update_sw_stats(efx, stats);
2596        }
2597
2598        if (full_stats)
2599                memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2600
2601        if (core_stats) {
2602                core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2603                core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2604                core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2605                core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2606                core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2607                                         stats[GENERIC_STAT_rx_nodesc_trunc] +
2608                                         stats[GENERIC_STAT_rx_noskb_drops];
2609                core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2610                core_stats->rx_length_errors =
2611                        stats[FALCON_STAT_rx_gtjumbo] +
2612                        stats[FALCON_STAT_rx_length_error];
2613                core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2614                core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2615                core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2616
2617                core_stats->rx_errors = (core_stats->rx_length_errors +
2618                                         core_stats->rx_crc_errors +
2619                                         core_stats->rx_frame_errors +
2620                                         stats[FALCON_STAT_rx_symbol_error]);
2621        }
2622
2623        return FALCON_STAT_COUNT;
2624}
2625
2626void falcon_start_nic_stats(struct efx_nic *efx)
2627{
2628        struct falcon_nic_data *nic_data = efx->nic_data;
2629
2630        spin_lock_bh(&efx->stats_lock);
2631        if (--nic_data->stats_disable_count == 0)
2632                falcon_stats_request(efx);
2633        spin_unlock_bh(&efx->stats_lock);
2634}
2635
2636/* We don't acutally pull stats on falcon. Wait 10ms so that
2637 * they arrive when we call this just after start_stats
2638 */
2639static void falcon_pull_nic_stats(struct efx_nic *efx)
2640{
2641        msleep(10);
2642}
2643
2644void falcon_stop_nic_stats(struct efx_nic *efx)
2645{
2646        struct falcon_nic_data *nic_data = efx->nic_data;
2647        int i;
2648
2649        might_sleep();
2650
2651        spin_lock_bh(&efx->stats_lock);
2652        ++nic_data->stats_disable_count;
2653        spin_unlock_bh(&efx->stats_lock);
2654
2655        del_timer_sync(&nic_data->stats_timer);
2656
2657        /* Wait enough time for the most recent transfer to
2658         * complete. */
2659        for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2660                if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2661                        break;
2662                msleep(1);
2663        }
2664
2665        spin_lock_bh(&efx->stats_lock);
2666        falcon_stats_complete(efx);
2667        spin_unlock_bh(&efx->stats_lock);
2668}
2669
2670static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2671{
2672        falcon_board(efx)->type->set_id_led(efx, mode);
2673}
2674
2675/**************************************************************************
2676 *
2677 * Wake on LAN
2678 *
2679 **************************************************************************
2680 */
2681
2682static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2683{
2684        wol->supported = 0;
2685        wol->wolopts = 0;
2686        memset(&wol->sopass, 0, sizeof(wol->sopass));
2687}
2688
2689static int falcon_set_wol(struct efx_nic *efx, u32 type)
2690{
2691        if (type != 0)
2692                return -EINVAL;
2693        return 0;
2694}
2695
2696/**************************************************************************
2697 *
2698 * Revision-dependent attributes used by efx.c and nic.c
2699 *
2700 **************************************************************************
2701 */
2702
2703const struct efx_nic_type falcon_a1_nic_type = {
2704        .is_vf = false,
2705        .mem_bar = EFX_MEM_BAR,
2706        .mem_map_size = falcon_a1_mem_map_size,
2707        .probe = falcon_probe_nic,
2708        .remove = falcon_remove_nic,
2709        .init = falcon_init_nic,
2710        .dimension_resources = falcon_dimension_resources,
2711        .fini = falcon_irq_ack_a1,
2712        .monitor = falcon_monitor,
2713        .map_reset_reason = falcon_map_reset_reason,
2714        .map_reset_flags = falcon_map_reset_flags,
2715        .reset = falcon_reset_hw,
2716        .probe_port = falcon_probe_port,
2717        .remove_port = falcon_remove_port,
2718        .handle_global_event = falcon_handle_global_event,
2719        .fini_dmaq = efx_farch_fini_dmaq,
2720        .prepare_flush = falcon_prepare_flush,
2721        .finish_flush = efx_port_dummy_op_void,
2722        .prepare_flr = efx_port_dummy_op_void,
2723        .finish_flr = efx_farch_finish_flr,
2724        .describe_stats = falcon_describe_nic_stats,
2725        .update_stats = falcon_update_nic_stats,
2726        .start_stats = falcon_start_nic_stats,
2727        .pull_stats = falcon_pull_nic_stats,
2728        .stop_stats = falcon_stop_nic_stats,
2729        .set_id_led = falcon_set_id_led,
2730        .push_irq_moderation = falcon_push_irq_moderation,
2731        .reconfigure_port = falcon_reconfigure_port,
2732        .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2733        .reconfigure_mac = falcon_reconfigure_xmac,
2734        .check_mac_fault = falcon_xmac_check_fault,
2735        .get_wol = falcon_get_wol,
2736        .set_wol = falcon_set_wol,
2737        .resume_wol = efx_port_dummy_op_void,
2738        .test_nvram = falcon_test_nvram,
2739        .irq_enable_master = efx_farch_irq_enable_master,
2740        .irq_test_generate = efx_farch_irq_test_generate,
2741        .irq_disable_non_ev = efx_farch_irq_disable_master,
2742        .irq_handle_msi = efx_farch_msi_interrupt,
2743        .irq_handle_legacy = falcon_legacy_interrupt_a1,
2744        .tx_probe = efx_farch_tx_probe,
2745        .tx_init = efx_farch_tx_init,
2746        .tx_remove = efx_farch_tx_remove,
2747        .tx_write = efx_farch_tx_write,
2748        .rx_push_rss_config = dummy_rx_push_rss_config,
2749        .rx_probe = efx_farch_rx_probe,
2750        .rx_init = efx_farch_rx_init,
2751        .rx_remove = efx_farch_rx_remove,
2752        .rx_write = efx_farch_rx_write,
2753        .rx_defer_refill = efx_farch_rx_defer_refill,
2754        .ev_probe = efx_farch_ev_probe,
2755        .ev_init = efx_farch_ev_init,
2756        .ev_fini = efx_farch_ev_fini,
2757        .ev_remove = efx_farch_ev_remove,
2758        .ev_process = efx_farch_ev_process,
2759        .ev_read_ack = efx_farch_ev_read_ack,
2760        .ev_test_generate = efx_farch_ev_test_generate,
2761
2762        /* We don't expose the filter table on Falcon A1 as it is not
2763         * mapped into function 0, but these implementations still
2764         * work with a degenerate case of all tables set to size 0.
2765         */
2766        .filter_table_probe = efx_farch_filter_table_probe,
2767        .filter_table_restore = efx_farch_filter_table_restore,
2768        .filter_table_remove = efx_farch_filter_table_remove,
2769        .filter_insert = efx_farch_filter_insert,
2770        .filter_remove_safe = efx_farch_filter_remove_safe,
2771        .filter_get_safe = efx_farch_filter_get_safe,
2772        .filter_clear_rx = efx_farch_filter_clear_rx,
2773        .filter_count_rx_used = efx_farch_filter_count_rx_used,
2774        .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2775        .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2776
2777#ifdef CONFIG_SFC_MTD
2778        .mtd_probe = falcon_mtd_probe,
2779        .mtd_rename = falcon_mtd_rename,
2780        .mtd_read = falcon_mtd_read,
2781        .mtd_erase = falcon_mtd_erase,
2782        .mtd_write = falcon_mtd_write,
2783        .mtd_sync = falcon_mtd_sync,
2784#endif
2785
2786        .revision = EFX_REV_FALCON_A1,
2787        .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2788        .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2789        .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2790        .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2791        .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2792        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2793        .rx_buffer_padding = 0x24,
2794        .can_rx_scatter = false,
2795        .max_interrupt_mode = EFX_INT_MODE_MSI,
2796        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2797        .offload_features = NETIF_F_IP_CSUM,
2798        .mcdi_max_ver = -1,
2799};
2800
2801const struct efx_nic_type falcon_b0_nic_type = {
2802        .is_vf = false,
2803        .mem_bar = EFX_MEM_BAR,
2804        .mem_map_size = falcon_b0_mem_map_size,
2805        .probe = falcon_probe_nic,
2806        .remove = falcon_remove_nic,
2807        .init = falcon_init_nic,
2808        .dimension_resources = falcon_dimension_resources,
2809        .fini = efx_port_dummy_op_void,
2810        .monitor = falcon_monitor,
2811        .map_reset_reason = falcon_map_reset_reason,
2812        .map_reset_flags = falcon_map_reset_flags,
2813        .reset = falcon_reset_hw,
2814        .probe_port = falcon_probe_port,
2815        .remove_port = falcon_remove_port,
2816        .handle_global_event = falcon_handle_global_event,
2817        .fini_dmaq = efx_farch_fini_dmaq,
2818        .prepare_flush = falcon_prepare_flush,
2819        .finish_flush = efx_port_dummy_op_void,
2820        .prepare_flr = efx_port_dummy_op_void,
2821        .finish_flr = efx_farch_finish_flr,
2822        .describe_stats = falcon_describe_nic_stats,
2823        .update_stats = falcon_update_nic_stats,
2824        .start_stats = falcon_start_nic_stats,
2825        .pull_stats = falcon_pull_nic_stats,
2826        .stop_stats = falcon_stop_nic_stats,
2827        .set_id_led = falcon_set_id_led,
2828        .push_irq_moderation = falcon_push_irq_moderation,
2829        .reconfigure_port = falcon_reconfigure_port,
2830        .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2831        .reconfigure_mac = falcon_reconfigure_xmac,
2832        .check_mac_fault = falcon_xmac_check_fault,
2833        .get_wol = falcon_get_wol,
2834        .set_wol = falcon_set_wol,
2835        .resume_wol = efx_port_dummy_op_void,
2836        .test_chip = falcon_b0_test_chip,
2837        .test_nvram = falcon_test_nvram,
2838        .irq_enable_master = efx_farch_irq_enable_master,
2839        .irq_test_generate = efx_farch_irq_test_generate,
2840        .irq_disable_non_ev = efx_farch_irq_disable_master,
2841        .irq_handle_msi = efx_farch_msi_interrupt,
2842        .irq_handle_legacy = efx_farch_legacy_interrupt,
2843        .tx_probe = efx_farch_tx_probe,
2844        .tx_init = efx_farch_tx_init,
2845        .tx_remove = efx_farch_tx_remove,
2846        .tx_write = efx_farch_tx_write,
2847        .rx_push_rss_config = falcon_b0_rx_push_rss_config,
2848        .rx_probe = efx_farch_rx_probe,
2849        .rx_init = efx_farch_rx_init,
2850        .rx_remove = efx_farch_rx_remove,
2851        .rx_write = efx_farch_rx_write,
2852        .rx_defer_refill = efx_farch_rx_defer_refill,
2853        .ev_probe = efx_farch_ev_probe,
2854        .ev_init = efx_farch_ev_init,
2855        .ev_fini = efx_farch_ev_fini,
2856        .ev_remove = efx_farch_ev_remove,
2857        .ev_process = efx_farch_ev_process,
2858        .ev_read_ack = efx_farch_ev_read_ack,
2859        .ev_test_generate = efx_farch_ev_test_generate,
2860        .filter_table_probe = efx_farch_filter_table_probe,
2861        .filter_table_restore = efx_farch_filter_table_restore,
2862        .filter_table_remove = efx_farch_filter_table_remove,
2863        .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2864        .filter_insert = efx_farch_filter_insert,
2865        .filter_remove_safe = efx_farch_filter_remove_safe,
2866        .filter_get_safe = efx_farch_filter_get_safe,
2867        .filter_clear_rx = efx_farch_filter_clear_rx,
2868        .filter_count_rx_used = efx_farch_filter_count_rx_used,
2869        .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2870        .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2871#ifdef CONFIG_RFS_ACCEL
2872        .filter_rfs_insert = efx_farch_filter_rfs_insert,
2873        .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2874#endif
2875#ifdef CONFIG_SFC_MTD
2876        .mtd_probe = falcon_mtd_probe,
2877        .mtd_rename = falcon_mtd_rename,
2878        .mtd_read = falcon_mtd_read,
2879        .mtd_erase = falcon_mtd_erase,
2880        .mtd_write = falcon_mtd_write,
2881        .mtd_sync = falcon_mtd_sync,
2882#endif
2883
2884        .revision = EFX_REV_FALCON_B0,
2885        .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2886        .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2887        .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2888        .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2889        .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2890        .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2891        .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2892        .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2893        .rx_buffer_padding = 0,
2894        .can_rx_scatter = true,
2895        .max_interrupt_mode = EFX_INT_MODE_MSIX,
2896        .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2897        .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2898        .mcdi_max_ver = -1,
2899        .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2900};
2901