linux/drivers/net/ethernet/sfc/farch.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "sriov.h"
  24#include "siena_sriov.h"
  25#include "io.h"
  26#include "workarounds.h"
  27
  28/* Falcon-architecture (SFC4000 and SFC9000-family) support */
  29
  30/**************************************************************************
  31 *
  32 * Configurable values
  33 *
  34 **************************************************************************
  35 */
  36
  37/* This is set to 16 for a good reason.  In summary, if larger than
  38 * 16, the descriptor cache holds more than a default socket
  39 * buffer's worth of packets (for UDP we can only have at most one
  40 * socket buffer's worth outstanding).  This combined with the fact
  41 * that we only get 1 TX event per descriptor cache means the NIC
  42 * goes idle.
  43 */
  44#define TX_DC_ENTRIES 16
  45#define TX_DC_ENTRIES_ORDER 1
  46
  47#define RX_DC_ENTRIES 64
  48#define RX_DC_ENTRIES_ORDER 3
  49
  50/* If EFX_MAX_INT_ERRORS internal errors occur within
  51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  52 * disable it.
  53 */
  54#define EFX_INT_ERROR_EXPIRE 3600
  55#define EFX_MAX_INT_ERRORS 5
  56
  57/* Depth of RX flush request fifo */
  58#define EFX_RX_FLUSH_COUNT 4
  59
  60/* Driver generated events */
  61#define _EFX_CHANNEL_MAGIC_TEST         0x000101
  62#define _EFX_CHANNEL_MAGIC_FILL         0x000102
  63#define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
  64#define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
  65
  66#define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  67#define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  68
  69#define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
  70        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  71#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  72        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
  73                           efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  75        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
  76                           efx_rx_queue_index(_rx_queue))
  77#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  78        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
  79                           (_tx_queue)->queue)
  80
  81static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  82
  83/**************************************************************************
  84 *
  85 * Hardware access
  86 *
  87 **************************************************************************/
  88
  89static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  90                                     unsigned int index)
  91{
  92        efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  93                        value, index);
  94}
  95
  96static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  97                                     const efx_oword_t *mask)
  98{
  99        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 100                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 101}
 102
 103int efx_farch_test_registers(struct efx_nic *efx,
 104                             const struct efx_farch_register_test *regs,
 105                             size_t n_regs)
 106{
 107        unsigned address = 0, i, j;
 108        efx_oword_t mask, imask, original, reg, buf;
 109
 110        for (i = 0; i < n_regs; ++i) {
 111                address = regs[i].address;
 112                mask = imask = regs[i].mask;
 113                EFX_INVERT_OWORD(imask);
 114
 115                efx_reado(efx, &original, address);
 116
 117                /* bit sweep on and off */
 118                for (j = 0; j < 128; j++) {
 119                        if (!EFX_EXTRACT_OWORD32(mask, j, j))
 120                                continue;
 121
 122                        /* Test this testable bit can be set in isolation */
 123                        EFX_AND_OWORD(reg, original, mask);
 124                        EFX_SET_OWORD32(reg, j, j, 1);
 125
 126                        efx_writeo(efx, &reg, address);
 127                        efx_reado(efx, &buf, address);
 128
 129                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 130                                goto fail;
 131
 132                        /* Test this testable bit can be cleared in isolation */
 133                        EFX_OR_OWORD(reg, original, mask);
 134                        EFX_SET_OWORD32(reg, j, j, 0);
 135
 136                        efx_writeo(efx, &reg, address);
 137                        efx_reado(efx, &buf, address);
 138
 139                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 140                                goto fail;
 141                }
 142
 143                efx_writeo(efx, &original, address);
 144        }
 145
 146        return 0;
 147
 148fail:
 149        netif_err(efx, hw, efx->net_dev,
 150                  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 151                  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 152                  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 153        return -EIO;
 154}
 155
 156/**************************************************************************
 157 *
 158 * Special buffer handling
 159 * Special buffers are used for event queues and the TX and RX
 160 * descriptor rings.
 161 *
 162 *************************************************************************/
 163
 164/*
 165 * Initialise a special buffer
 166 *
 167 * This will define a buffer (previously allocated via
 168 * efx_alloc_special_buffer()) in the buffer table, allowing
 169 * it to be used for event queues, descriptor rings etc.
 170 */
 171static void
 172efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 173{
 174        efx_qword_t buf_desc;
 175        unsigned int index;
 176        dma_addr_t dma_addr;
 177        int i;
 178
 179        EFX_BUG_ON_PARANOID(!buffer->buf.addr);
 180
 181        /* Write buffer descriptors to NIC */
 182        for (i = 0; i < buffer->entries; i++) {
 183                index = buffer->index + i;
 184                dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 185                netif_dbg(efx, probe, efx->net_dev,
 186                          "mapping special buffer %d at %llx\n",
 187                          index, (unsigned long long)dma_addr);
 188                EFX_POPULATE_QWORD_3(buf_desc,
 189                                     FRF_AZ_BUF_ADR_REGION, 0,
 190                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 191                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 192                efx_write_buf_tbl(efx, &buf_desc, index);
 193        }
 194}
 195
 196/* Unmaps a buffer and clears the buffer table entries */
 197static void
 198efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 199{
 200        efx_oword_t buf_tbl_upd;
 201        unsigned int start = buffer->index;
 202        unsigned int end = (buffer->index + buffer->entries - 1);
 203
 204        if (!buffer->entries)
 205                return;
 206
 207        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 208                  buffer->index, buffer->index + buffer->entries - 1);
 209
 210        EFX_POPULATE_OWORD_4(buf_tbl_upd,
 211                             FRF_AZ_BUF_UPD_CMD, 0,
 212                             FRF_AZ_BUF_CLR_CMD, 1,
 213                             FRF_AZ_BUF_CLR_END_ID, end,
 214                             FRF_AZ_BUF_CLR_START_ID, start);
 215        efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 216}
 217
 218/*
 219 * Allocate a new special buffer
 220 *
 221 * This allocates memory for a new buffer, clears it and allocates a
 222 * new buffer ID range.  It does not write into the buffer table.
 223 *
 224 * This call will allocate 4KB buffers, since 8KB buffers can't be
 225 * used for event queues and descriptor rings.
 226 */
 227static int efx_alloc_special_buffer(struct efx_nic *efx,
 228                                    struct efx_special_buffer *buffer,
 229                                    unsigned int len)
 230{
 231#ifdef CONFIG_SFC_SRIOV
 232        struct siena_nic_data *nic_data = efx->nic_data;
 233#endif
 234        len = ALIGN(len, EFX_BUF_SIZE);
 235
 236        if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 237                return -ENOMEM;
 238        buffer->entries = len / EFX_BUF_SIZE;
 239        BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 240
 241        /* Select new buffer ID */
 242        buffer->index = efx->next_buffer_table;
 243        efx->next_buffer_table += buffer->entries;
 244#ifdef CONFIG_SFC_SRIOV
 245        BUG_ON(efx_siena_sriov_enabled(efx) &&
 246               nic_data->vf_buftbl_base < efx->next_buffer_table);
 247#endif
 248
 249        netif_dbg(efx, probe, efx->net_dev,
 250                  "allocating special buffers %d-%d at %llx+%x "
 251                  "(virt %p phys %llx)\n", buffer->index,
 252                  buffer->index + buffer->entries - 1,
 253                  (u64)buffer->buf.dma_addr, len,
 254                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 255
 256        return 0;
 257}
 258
 259static void
 260efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 261{
 262        if (!buffer->buf.addr)
 263                return;
 264
 265        netif_dbg(efx, hw, efx->net_dev,
 266                  "deallocating special buffers %d-%d at %llx+%x "
 267                  "(virt %p phys %llx)\n", buffer->index,
 268                  buffer->index + buffer->entries - 1,
 269                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 270                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 271
 272        efx_nic_free_buffer(efx, &buffer->buf);
 273        buffer->entries = 0;
 274}
 275
 276/**************************************************************************
 277 *
 278 * TX path
 279 *
 280 **************************************************************************/
 281
 282/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 283static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 284{
 285        unsigned write_ptr;
 286        efx_dword_t reg;
 287
 288        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 289        EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 290        efx_writed_page(tx_queue->efx, &reg,
 291                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 292}
 293
 294/* Write pointer and first descriptor for TX descriptor ring */
 295static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 296                                          const efx_qword_t *txd)
 297{
 298        unsigned write_ptr;
 299        efx_oword_t reg;
 300
 301        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 302        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 303
 304        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 305        EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 306                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 307        reg.qword[0] = *txd;
 308        efx_writeo_page(tx_queue->efx, &reg,
 309                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 310}
 311
 312
 313/* For each entry inserted into the software descriptor ring, create a
 314 * descriptor in the hardware TX descriptor ring (in host memory), and
 315 * write a doorbell.
 316 */
 317void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 318{
 319        struct efx_tx_buffer *buffer;
 320        efx_qword_t *txd;
 321        unsigned write_ptr;
 322        unsigned old_write_count = tx_queue->write_count;
 323
 324        BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 325
 326        do {
 327                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 328                buffer = &tx_queue->buffer[write_ptr];
 329                txd = efx_tx_desc(tx_queue, write_ptr);
 330                ++tx_queue->write_count;
 331
 332                EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 333
 334                /* Create TX descriptor ring entry */
 335                BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 336                EFX_POPULATE_QWORD_4(*txd,
 337                                     FSF_AZ_TX_KER_CONT,
 338                                     buffer->flags & EFX_TX_BUF_CONT,
 339                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 340                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 341                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 342        } while (tx_queue->write_count != tx_queue->insert_count);
 343
 344        wmb(); /* Ensure descriptors are written before they are fetched */
 345
 346        if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 347                txd = efx_tx_desc(tx_queue,
 348                                  old_write_count & tx_queue->ptr_mask);
 349                efx_farch_push_tx_desc(tx_queue, txd);
 350                ++tx_queue->pushes;
 351        } else {
 352                efx_farch_notify_tx_desc(tx_queue);
 353        }
 354}
 355
 356/* Allocate hardware resources for a TX queue */
 357int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 358{
 359        struct efx_nic *efx = tx_queue->efx;
 360        unsigned entries;
 361
 362        entries = tx_queue->ptr_mask + 1;
 363        return efx_alloc_special_buffer(efx, &tx_queue->txd,
 364                                        entries * sizeof(efx_qword_t));
 365}
 366
 367void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 368{
 369        struct efx_nic *efx = tx_queue->efx;
 370        efx_oword_t reg;
 371
 372        /* Pin TX descriptor ring */
 373        efx_init_special_buffer(efx, &tx_queue->txd);
 374
 375        /* Push TX descriptor ring to card */
 376        EFX_POPULATE_OWORD_10(reg,
 377                              FRF_AZ_TX_DESCQ_EN, 1,
 378                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 379                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 380                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 381                              FRF_AZ_TX_DESCQ_EVQ_ID,
 382                              tx_queue->channel->channel,
 383                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 384                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 385                              FRF_AZ_TX_DESCQ_SIZE,
 386                              __ffs(tx_queue->txd.entries),
 387                              FRF_AZ_TX_DESCQ_TYPE, 0,
 388                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 389
 390        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 391                int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 392                EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 393                EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 394                                    !csum);
 395        }
 396
 397        efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 398                         tx_queue->queue);
 399
 400        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 401                /* Only 128 bits in this register */
 402                BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 403
 404                efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 405                if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 406                        __clear_bit_le(tx_queue->queue, &reg);
 407                else
 408                        __set_bit_le(tx_queue->queue, &reg);
 409                efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 410        }
 411
 412        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 413                EFX_POPULATE_OWORD_1(reg,
 414                                     FRF_BZ_TX_PACE,
 415                                     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 416                                     FFE_BZ_TX_PACE_OFF :
 417                                     FFE_BZ_TX_PACE_RESERVED);
 418                efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 419                                 tx_queue->queue);
 420        }
 421}
 422
 423static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 424{
 425        struct efx_nic *efx = tx_queue->efx;
 426        efx_oword_t tx_flush_descq;
 427
 428        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 429        atomic_set(&tx_queue->flush_outstanding, 1);
 430
 431        EFX_POPULATE_OWORD_2(tx_flush_descq,
 432                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 433                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 434        efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 435}
 436
 437void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 438{
 439        struct efx_nic *efx = tx_queue->efx;
 440        efx_oword_t tx_desc_ptr;
 441
 442        /* Remove TX descriptor ring from card */
 443        EFX_ZERO_OWORD(tx_desc_ptr);
 444        efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 445                         tx_queue->queue);
 446
 447        /* Unpin TX descriptor ring */
 448        efx_fini_special_buffer(efx, &tx_queue->txd);
 449}
 450
 451/* Free buffers backing TX queue */
 452void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 453{
 454        efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 455}
 456
 457/**************************************************************************
 458 *
 459 * RX path
 460 *
 461 **************************************************************************/
 462
 463/* This creates an entry in the RX descriptor queue */
 464static inline void
 465efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 466{
 467        struct efx_rx_buffer *rx_buf;
 468        efx_qword_t *rxd;
 469
 470        rxd = efx_rx_desc(rx_queue, index);
 471        rx_buf = efx_rx_buffer(rx_queue, index);
 472        EFX_POPULATE_QWORD_3(*rxd,
 473                             FSF_AZ_RX_KER_BUF_SIZE,
 474                             rx_buf->len -
 475                             rx_queue->efx->type->rx_buffer_padding,
 476                             FSF_AZ_RX_KER_BUF_REGION, 0,
 477                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 478}
 479
 480/* This writes to the RX_DESC_WPTR register for the specified receive
 481 * descriptor ring.
 482 */
 483void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 484{
 485        struct efx_nic *efx = rx_queue->efx;
 486        efx_dword_t reg;
 487        unsigned write_ptr;
 488
 489        while (rx_queue->notified_count != rx_queue->added_count) {
 490                efx_farch_build_rx_desc(
 491                        rx_queue,
 492                        rx_queue->notified_count & rx_queue->ptr_mask);
 493                ++rx_queue->notified_count;
 494        }
 495
 496        wmb();
 497        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 498        EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 499        efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 500                        efx_rx_queue_index(rx_queue));
 501}
 502
 503int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 504{
 505        struct efx_nic *efx = rx_queue->efx;
 506        unsigned entries;
 507
 508        entries = rx_queue->ptr_mask + 1;
 509        return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 510                                        entries * sizeof(efx_qword_t));
 511}
 512
 513void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 514{
 515        efx_oword_t rx_desc_ptr;
 516        struct efx_nic *efx = rx_queue->efx;
 517        bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 518        bool iscsi_digest_en = is_b0;
 519        bool jumbo_en;
 520
 521        /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 522         * DMA to continue after a PCIe page boundary (and scattering
 523         * is not possible).  In Falcon B0 and Siena, it enables
 524         * scatter.
 525         */
 526        jumbo_en = !is_b0 || efx->rx_scatter;
 527
 528        netif_dbg(efx, hw, efx->net_dev,
 529                  "RX queue %d ring in special buffers %d-%d\n",
 530                  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 531                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 532
 533        rx_queue->scatter_n = 0;
 534
 535        /* Pin RX descriptor ring */
 536        efx_init_special_buffer(efx, &rx_queue->rxd);
 537
 538        /* Push RX descriptor ring to card */
 539        EFX_POPULATE_OWORD_10(rx_desc_ptr,
 540                              FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 541                              FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 542                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 543                              FRF_AZ_RX_DESCQ_EVQ_ID,
 544                              efx_rx_queue_channel(rx_queue)->channel,
 545                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 546                              FRF_AZ_RX_DESCQ_LABEL,
 547                              efx_rx_queue_index(rx_queue),
 548                              FRF_AZ_RX_DESCQ_SIZE,
 549                              __ffs(rx_queue->rxd.entries),
 550                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 551                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 552                              FRF_AZ_RX_DESCQ_EN, 1);
 553        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 554                         efx_rx_queue_index(rx_queue));
 555}
 556
 557static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 558{
 559        struct efx_nic *efx = rx_queue->efx;
 560        efx_oword_t rx_flush_descq;
 561
 562        EFX_POPULATE_OWORD_2(rx_flush_descq,
 563                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 564                             FRF_AZ_RX_FLUSH_DESCQ,
 565                             efx_rx_queue_index(rx_queue));
 566        efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 567}
 568
 569void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 570{
 571        efx_oword_t rx_desc_ptr;
 572        struct efx_nic *efx = rx_queue->efx;
 573
 574        /* Remove RX descriptor ring from card */
 575        EFX_ZERO_OWORD(rx_desc_ptr);
 576        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 577                         efx_rx_queue_index(rx_queue));
 578
 579        /* Unpin RX descriptor ring */
 580        efx_fini_special_buffer(efx, &rx_queue->rxd);
 581}
 582
 583/* Free buffers backing RX queue */
 584void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 585{
 586        efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 587}
 588
 589/**************************************************************************
 590 *
 591 * Flush handling
 592 *
 593 **************************************************************************/
 594
 595/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 596 * or more RX flushes can be kicked off.
 597 */
 598static bool efx_farch_flush_wake(struct efx_nic *efx)
 599{
 600        /* Ensure that all updates are visible to efx_farch_flush_queues() */
 601        smp_mb();
 602
 603        return (atomic_read(&efx->active_queues) == 0 ||
 604                (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 605                 && atomic_read(&efx->rxq_flush_pending) > 0));
 606}
 607
 608static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 609{
 610        bool i = true;
 611        efx_oword_t txd_ptr_tbl;
 612        struct efx_channel *channel;
 613        struct efx_tx_queue *tx_queue;
 614
 615        efx_for_each_channel(channel, efx) {
 616                efx_for_each_channel_tx_queue(tx_queue, channel) {
 617                        efx_reado_table(efx, &txd_ptr_tbl,
 618                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 619                        if (EFX_OWORD_FIELD(txd_ptr_tbl,
 620                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 621                            EFX_OWORD_FIELD(txd_ptr_tbl,
 622                                            FRF_AZ_TX_DESCQ_EN)) {
 623                                netif_dbg(efx, hw, efx->net_dev,
 624                                          "flush did not complete on TXQ %d\n",
 625                                          tx_queue->queue);
 626                                i = false;
 627                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 628                                                  1, 0)) {
 629                                /* The flush is complete, but we didn't
 630                                 * receive a flush completion event
 631                                 */
 632                                netif_dbg(efx, hw, efx->net_dev,
 633                                          "flush complete on TXQ %d, so drain "
 634                                          "the queue\n", tx_queue->queue);
 635                                /* Don't need to increment active_queues as it
 636                                 * has already been incremented for the queues
 637                                 * which did not drain
 638                                 */
 639                                efx_farch_magic_event(channel,
 640                                                      EFX_CHANNEL_MAGIC_TX_DRAIN(
 641                                                              tx_queue));
 642                        }
 643                }
 644        }
 645
 646        return i;
 647}
 648
 649/* Flush all the transmit queues, and continue flushing receive queues until
 650 * they're all flushed. Wait for the DRAIN events to be received so that there
 651 * are no more RX and TX events left on any channel. */
 652static int efx_farch_do_flush(struct efx_nic *efx)
 653{
 654        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 655        struct efx_channel *channel;
 656        struct efx_rx_queue *rx_queue;
 657        struct efx_tx_queue *tx_queue;
 658        int rc = 0;
 659
 660        efx_for_each_channel(channel, efx) {
 661                efx_for_each_channel_tx_queue(tx_queue, channel) {
 662                        efx_farch_flush_tx_queue(tx_queue);
 663                }
 664                efx_for_each_channel_rx_queue(rx_queue, channel) {
 665                        rx_queue->flush_pending = true;
 666                        atomic_inc(&efx->rxq_flush_pending);
 667                }
 668        }
 669
 670        while (timeout && atomic_read(&efx->active_queues) > 0) {
 671                /* If SRIOV is enabled, then offload receive queue flushing to
 672                 * the firmware (though we will still have to poll for
 673                 * completion). If that fails, fall back to the old scheme.
 674                 */
 675                if (efx_siena_sriov_enabled(efx)) {
 676                        rc = efx_mcdi_flush_rxqs(efx);
 677                        if (!rc)
 678                                goto wait;
 679                }
 680
 681                /* The hardware supports four concurrent rx flushes, each of
 682                 * which may need to be retried if there is an outstanding
 683                 * descriptor fetch
 684                 */
 685                efx_for_each_channel(channel, efx) {
 686                        efx_for_each_channel_rx_queue(rx_queue, channel) {
 687                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 688                                    EFX_RX_FLUSH_COUNT)
 689                                        break;
 690
 691                                if (rx_queue->flush_pending) {
 692                                        rx_queue->flush_pending = false;
 693                                        atomic_dec(&efx->rxq_flush_pending);
 694                                        atomic_inc(&efx->rxq_flush_outstanding);
 695                                        efx_farch_flush_rx_queue(rx_queue);
 696                                }
 697                        }
 698                }
 699
 700        wait:
 701                timeout = wait_event_timeout(efx->flush_wq,
 702                                             efx_farch_flush_wake(efx),
 703                                             timeout);
 704        }
 705
 706        if (atomic_read(&efx->active_queues) &&
 707            !efx_check_tx_flush_complete(efx)) {
 708                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 709                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 710                          atomic_read(&efx->rxq_flush_outstanding),
 711                          atomic_read(&efx->rxq_flush_pending));
 712                rc = -ETIMEDOUT;
 713
 714                atomic_set(&efx->active_queues, 0);
 715                atomic_set(&efx->rxq_flush_pending, 0);
 716                atomic_set(&efx->rxq_flush_outstanding, 0);
 717        }
 718
 719        return rc;
 720}
 721
 722int efx_farch_fini_dmaq(struct efx_nic *efx)
 723{
 724        struct efx_channel *channel;
 725        struct efx_tx_queue *tx_queue;
 726        struct efx_rx_queue *rx_queue;
 727        int rc = 0;
 728
 729        /* Do not attempt to write to the NIC during EEH recovery */
 730        if (efx->state != STATE_RECOVERY) {
 731                /* Only perform flush if DMA is enabled */
 732                if (efx->pci_dev->is_busmaster) {
 733                        efx->type->prepare_flush(efx);
 734                        rc = efx_farch_do_flush(efx);
 735                        efx->type->finish_flush(efx);
 736                }
 737
 738                efx_for_each_channel(channel, efx) {
 739                        efx_for_each_channel_rx_queue(rx_queue, channel)
 740                                efx_farch_rx_fini(rx_queue);
 741                        efx_for_each_channel_tx_queue(tx_queue, channel)
 742                                efx_farch_tx_fini(tx_queue);
 743                }
 744        }
 745
 746        return rc;
 747}
 748
 749/* Reset queue and flush accounting after FLR
 750 *
 751 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 752 * mastering was disabled), in which case we don't receive (RXQ) flush
 753 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 754 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 755 * events were received, and we didn't go through efx_check_tx_flush_complete())
 756 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 757 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 758 * for batched flush requests; and the efx->active_queues gets messed up because
 759 * we keep incrementing for the newly initialised queues, but it never went to
 760 * zero previously.  Then we get a timeout every time we try to restart the
 761 * queues, as it doesn't go back to zero when we should be flushing the queues.
 762 */
 763void efx_farch_finish_flr(struct efx_nic *efx)
 764{
 765        atomic_set(&efx->rxq_flush_pending, 0);
 766        atomic_set(&efx->rxq_flush_outstanding, 0);
 767        atomic_set(&efx->active_queues, 0);
 768}
 769
 770
 771/**************************************************************************
 772 *
 773 * Event queue processing
 774 * Event queues are processed by per-channel tasklets.
 775 *
 776 **************************************************************************/
 777
 778/* Update a channel's event queue's read pointer (RPTR) register
 779 *
 780 * This writes the EVQ_RPTR_REG register for the specified channel's
 781 * event queue.
 782 */
 783void efx_farch_ev_read_ack(struct efx_channel *channel)
 784{
 785        efx_dword_t reg;
 786        struct efx_nic *efx = channel->efx;
 787
 788        EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 789                             channel->eventq_read_ptr & channel->eventq_mask);
 790
 791        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 792         * of 4 bytes, but it is really 16 bytes just like later revisions.
 793         */
 794        efx_writed(efx, &reg,
 795                   efx->type->evq_rptr_tbl_base +
 796                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 797}
 798
 799/* Use HW to insert a SW defined event */
 800void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 801                              efx_qword_t *event)
 802{
 803        efx_oword_t drv_ev_reg;
 804
 805        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 806                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 807        drv_ev_reg.u32[0] = event->u32[0];
 808        drv_ev_reg.u32[1] = event->u32[1];
 809        drv_ev_reg.u32[2] = 0;
 810        drv_ev_reg.u32[3] = 0;
 811        EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 812        efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 813}
 814
 815static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 816{
 817        efx_qword_t event;
 818
 819        EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 820                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 821                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 822        efx_farch_generate_event(channel->efx, channel->channel, &event);
 823}
 824
 825/* Handle a transmit completion event
 826 *
 827 * The NIC batches TX completion events; the message we receive is of
 828 * the form "complete all TX events up to this index".
 829 */
 830static int
 831efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 832{
 833        unsigned int tx_ev_desc_ptr;
 834        unsigned int tx_ev_q_label;
 835        struct efx_tx_queue *tx_queue;
 836        struct efx_nic *efx = channel->efx;
 837        int tx_packets = 0;
 838
 839        if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 840                return 0;
 841
 842        if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 843                /* Transmit completion */
 844                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 845                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 846                tx_queue = efx_channel_get_tx_queue(
 847                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 848                tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 849                              tx_queue->ptr_mask);
 850                efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 851        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 852                /* Rewrite the FIFO write pointer */
 853                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 854                tx_queue = efx_channel_get_tx_queue(
 855                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 856
 857                netif_tx_lock(efx->net_dev);
 858                efx_farch_notify_tx_desc(tx_queue);
 859                netif_tx_unlock(efx->net_dev);
 860        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 861                efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 862        } else {
 863                netif_err(efx, tx_err, efx->net_dev,
 864                          "channel %d unexpected TX event "
 865                          EFX_QWORD_FMT"\n", channel->channel,
 866                          EFX_QWORD_VAL(*event));
 867        }
 868
 869        return tx_packets;
 870}
 871
 872/* Detect errors included in the rx_evt_pkt_ok bit. */
 873static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 874                                      const efx_qword_t *event)
 875{
 876        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 877        struct efx_nic *efx = rx_queue->efx;
 878        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 879        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 880        bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 881        bool rx_ev_other_err, rx_ev_pause_frm;
 882        bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 883        unsigned rx_ev_pkt_type;
 884
 885        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 886        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 887        rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 888        rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 889        rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 890                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 891        rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 892                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 893        rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 894                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 895        rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 896        rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 897        rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 898                          0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 899        rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 900
 901        /* Every error apart from tobe_disc and pause_frm */
 902        rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 903                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 904                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 905
 906        /* Count errors that are not in MAC stats.  Ignore expected
 907         * checksum errors during self-test. */
 908        if (rx_ev_frm_trunc)
 909                ++channel->n_rx_frm_trunc;
 910        else if (rx_ev_tobe_disc)
 911                ++channel->n_rx_tobe_disc;
 912        else if (!efx->loopback_selftest) {
 913                if (rx_ev_ip_hdr_chksum_err)
 914                        ++channel->n_rx_ip_hdr_chksum_err;
 915                else if (rx_ev_tcp_udp_chksum_err)
 916                        ++channel->n_rx_tcp_udp_chksum_err;
 917        }
 918
 919        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 920         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 921         * to a FIFO overflow.
 922         */
 923#ifdef DEBUG
 924        if (rx_ev_other_err && net_ratelimit()) {
 925                netif_dbg(efx, rx_err, efx->net_dev,
 926                          " RX queue %d unexpected RX event "
 927                          EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 928                          efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 929                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 930                          rx_ev_ip_hdr_chksum_err ?
 931                          " [IP_HDR_CHKSUM_ERR]" : "",
 932                          rx_ev_tcp_udp_chksum_err ?
 933                          " [TCP_UDP_CHKSUM_ERR]" : "",
 934                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 935                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 936                          rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 937                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 938                          rx_ev_pause_frm ? " [PAUSE]" : "");
 939        }
 940#endif
 941
 942        /* The frame must be discarded if any of these are true. */
 943        return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 944                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 945                EFX_RX_PKT_DISCARD : 0;
 946}
 947
 948/* Handle receive events that are not in-order. Return true if this
 949 * can be handled as a partial packet discard, false if it's more
 950 * serious.
 951 */
 952static bool
 953efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 954{
 955        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 956        struct efx_nic *efx = rx_queue->efx;
 957        unsigned expected, dropped;
 958
 959        if (rx_queue->scatter_n &&
 960            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 961                      rx_queue->ptr_mask)) {
 962                ++channel->n_rx_nodesc_trunc;
 963                return true;
 964        }
 965
 966        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 967        dropped = (index - expected) & rx_queue->ptr_mask;
 968        netif_info(efx, rx_err, efx->net_dev,
 969                   "dropped %d events (index=%d expected=%d)\n",
 970                   dropped, index, expected);
 971
 972        efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 973                           RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 974        return false;
 975}
 976
 977/* Handle a packet received event
 978 *
 979 * The NIC gives a "discard" flag if it's a unicast packet with the
 980 * wrong destination address
 981 * Also "is multicast" and "matches multicast filter" flags can be used to
 982 * discard non-matching multicast packets.
 983 */
 984static void
 985efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 986{
 987        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 988        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 989        unsigned expected_ptr;
 990        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 991        u16 flags;
 992        struct efx_rx_queue *rx_queue;
 993        struct efx_nic *efx = channel->efx;
 994
 995        if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 996                return;
 997
 998        rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
 999        rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1000        WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1001                channel->channel);
1002
1003        rx_queue = efx_channel_get_rx_queue(channel);
1004
1005        rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1006        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1007                        rx_queue->ptr_mask);
1008
1009        /* Check for partial drops and other errors */
1010        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1011            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1012                if (rx_ev_desc_ptr != expected_ptr &&
1013                    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1014                        return;
1015
1016                /* Discard all pending fragments */
1017                if (rx_queue->scatter_n) {
1018                        efx_rx_packet(
1019                                rx_queue,
1020                                rx_queue->removed_count & rx_queue->ptr_mask,
1021                                rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1022                        rx_queue->removed_count += rx_queue->scatter_n;
1023                        rx_queue->scatter_n = 0;
1024                }
1025
1026                /* Return if there is no new fragment */
1027                if (rx_ev_desc_ptr != expected_ptr)
1028                        return;
1029
1030                /* Discard new fragment if not SOP */
1031                if (!rx_ev_sop) {
1032                        efx_rx_packet(
1033                                rx_queue,
1034                                rx_queue->removed_count & rx_queue->ptr_mask,
1035                                1, 0, EFX_RX_PKT_DISCARD);
1036                        ++rx_queue->removed_count;
1037                        return;
1038                }
1039        }
1040
1041        ++rx_queue->scatter_n;
1042        if (rx_ev_cont)
1043                return;
1044
1045        rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1046        rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1047        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1048
1049        if (likely(rx_ev_pkt_ok)) {
1050                /* If packet is marked as OK then we can rely on the
1051                 * hardware checksum and classification.
1052                 */
1053                flags = 0;
1054                switch (rx_ev_hdr_type) {
1055                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1056                        flags |= EFX_RX_PKT_TCP;
1057                        /* fall through */
1058                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1059                        flags |= EFX_RX_PKT_CSUMMED;
1060                        /* fall through */
1061                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1062                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1063                        break;
1064                }
1065        } else {
1066                flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1067        }
1068
1069        /* Detect multicast packets that didn't match the filter */
1070        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1071        if (rx_ev_mcast_pkt) {
1072                unsigned int rx_ev_mcast_hash_match =
1073                        EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1074
1075                if (unlikely(!rx_ev_mcast_hash_match)) {
1076                        ++channel->n_rx_mcast_mismatch;
1077                        flags |= EFX_RX_PKT_DISCARD;
1078                }
1079        }
1080
1081        channel->irq_mod_score += 2;
1082
1083        /* Handle received packet */
1084        efx_rx_packet(rx_queue,
1085                      rx_queue->removed_count & rx_queue->ptr_mask,
1086                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1087        rx_queue->removed_count += rx_queue->scatter_n;
1088        rx_queue->scatter_n = 0;
1089}
1090
1091/* If this flush done event corresponds to a &struct efx_tx_queue, then
1092 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1093 * of all transmit completions.
1094 */
1095static void
1096efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1097{
1098        struct efx_tx_queue *tx_queue;
1099        int qid;
1100
1101        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1102        if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1103                tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1104                                            qid % EFX_TXQ_TYPES);
1105                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1106                        efx_farch_magic_event(tx_queue->channel,
1107                                              EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1108                }
1109        }
1110}
1111
1112/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1113 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1114 * the RX queue back to the mask of RX queues in need of flushing.
1115 */
1116static void
1117efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1118{
1119        struct efx_channel *channel;
1120        struct efx_rx_queue *rx_queue;
1121        int qid;
1122        bool failed;
1123
1124        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1125        failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1126        if (qid >= efx->n_channels)
1127                return;
1128        channel = efx_get_channel(efx, qid);
1129        if (!efx_channel_has_rx_queue(channel))
1130                return;
1131        rx_queue = efx_channel_get_rx_queue(channel);
1132
1133        if (failed) {
1134                netif_info(efx, hw, efx->net_dev,
1135                           "RXQ %d flush retry\n", qid);
1136                rx_queue->flush_pending = true;
1137                atomic_inc(&efx->rxq_flush_pending);
1138        } else {
1139                efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1140                                      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1141        }
1142        atomic_dec(&efx->rxq_flush_outstanding);
1143        if (efx_farch_flush_wake(efx))
1144                wake_up(&efx->flush_wq);
1145}
1146
1147static void
1148efx_farch_handle_drain_event(struct efx_channel *channel)
1149{
1150        struct efx_nic *efx = channel->efx;
1151
1152        WARN_ON(atomic_read(&efx->active_queues) == 0);
1153        atomic_dec(&efx->active_queues);
1154        if (efx_farch_flush_wake(efx))
1155                wake_up(&efx->flush_wq);
1156}
1157
1158static void efx_farch_handle_generated_event(struct efx_channel *channel,
1159                                             efx_qword_t *event)
1160{
1161        struct efx_nic *efx = channel->efx;
1162        struct efx_rx_queue *rx_queue =
1163                efx_channel_has_rx_queue(channel) ?
1164                efx_channel_get_rx_queue(channel) : NULL;
1165        unsigned magic, code;
1166
1167        magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1168        code = _EFX_CHANNEL_MAGIC_CODE(magic);
1169
1170        if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1171                channel->event_test_cpu = raw_smp_processor_id();
1172        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1173                /* The queue must be empty, so we won't receive any rx
1174                 * events, so efx_process_channel() won't refill the
1175                 * queue. Refill it here */
1176                efx_fast_push_rx_descriptors(rx_queue, true);
1177        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1178                efx_farch_handle_drain_event(channel);
1179        } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1180                efx_farch_handle_drain_event(channel);
1181        } else {
1182                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1183                          "generated event "EFX_QWORD_FMT"\n",
1184                          channel->channel, EFX_QWORD_VAL(*event));
1185        }
1186}
1187
1188static void
1189efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1190{
1191        struct efx_nic *efx = channel->efx;
1192        unsigned int ev_sub_code;
1193        unsigned int ev_sub_data;
1194
1195        ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1196        ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1197
1198        switch (ev_sub_code) {
1199        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1200                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1201                           channel->channel, ev_sub_data);
1202                efx_farch_handle_tx_flush_done(efx, event);
1203#ifdef CONFIG_SFC_SRIOV
1204                efx_siena_sriov_tx_flush_done(efx, event);
1205#endif
1206                break;
1207        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1208                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1209                           channel->channel, ev_sub_data);
1210                efx_farch_handle_rx_flush_done(efx, event);
1211#ifdef CONFIG_SFC_SRIOV
1212                efx_siena_sriov_rx_flush_done(efx, event);
1213#endif
1214                break;
1215        case FSE_AZ_EVQ_INIT_DONE_EV:
1216                netif_dbg(efx, hw, efx->net_dev,
1217                          "channel %d EVQ %d initialised\n",
1218                          channel->channel, ev_sub_data);
1219                break;
1220        case FSE_AZ_SRM_UPD_DONE_EV:
1221                netif_vdbg(efx, hw, efx->net_dev,
1222                           "channel %d SRAM update done\n", channel->channel);
1223                break;
1224        case FSE_AZ_WAKE_UP_EV:
1225                netif_vdbg(efx, hw, efx->net_dev,
1226                           "channel %d RXQ %d wakeup event\n",
1227                           channel->channel, ev_sub_data);
1228                break;
1229        case FSE_AZ_TIMER_EV:
1230                netif_vdbg(efx, hw, efx->net_dev,
1231                           "channel %d RX queue %d timer expired\n",
1232                           channel->channel, ev_sub_data);
1233                break;
1234        case FSE_AA_RX_RECOVER_EV:
1235                netif_err(efx, rx_err, efx->net_dev,
1236                          "channel %d seen DRIVER RX_RESET event. "
1237                        "Resetting.\n", channel->channel);
1238                atomic_inc(&efx->rx_reset);
1239                efx_schedule_reset(efx,
1240                                   EFX_WORKAROUND_6555(efx) ?
1241                                   RESET_TYPE_RX_RECOVERY :
1242                                   RESET_TYPE_DISABLE);
1243                break;
1244        case FSE_BZ_RX_DSC_ERROR_EV:
1245                if (ev_sub_data < EFX_VI_BASE) {
1246                        netif_err(efx, rx_err, efx->net_dev,
1247                                  "RX DMA Q %d reports descriptor fetch error."
1248                                  " RX Q %d is disabled.\n", ev_sub_data,
1249                                  ev_sub_data);
1250                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1251                }
1252#ifdef CONFIG_SFC_SRIOV
1253                else
1254                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1255#endif
1256                break;
1257        case FSE_BZ_TX_DSC_ERROR_EV:
1258                if (ev_sub_data < EFX_VI_BASE) {
1259                        netif_err(efx, tx_err, efx->net_dev,
1260                                  "TX DMA Q %d reports descriptor fetch error."
1261                                  " TX Q %d is disabled.\n", ev_sub_data,
1262                                  ev_sub_data);
1263                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1264                }
1265#ifdef CONFIG_SFC_SRIOV
1266                else
1267                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1268#endif
1269                break;
1270        default:
1271                netif_vdbg(efx, hw, efx->net_dev,
1272                           "channel %d unknown driver event code %d "
1273                           "data %04x\n", channel->channel, ev_sub_code,
1274                           ev_sub_data);
1275                break;
1276        }
1277}
1278
1279int efx_farch_ev_process(struct efx_channel *channel, int budget)
1280{
1281        struct efx_nic *efx = channel->efx;
1282        unsigned int read_ptr;
1283        efx_qword_t event, *p_event;
1284        int ev_code;
1285        int tx_packets = 0;
1286        int spent = 0;
1287
1288        if (budget <= 0)
1289                return spent;
1290
1291        read_ptr = channel->eventq_read_ptr;
1292
1293        for (;;) {
1294                p_event = efx_event(channel, read_ptr);
1295                event = *p_event;
1296
1297                if (!efx_event_present(&event))
1298                        /* End of events */
1299                        break;
1300
1301                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1302                           "channel %d event is "EFX_QWORD_FMT"\n",
1303                           channel->channel, EFX_QWORD_VAL(event));
1304
1305                /* Clear this event by marking it all ones */
1306                EFX_SET_QWORD(*p_event);
1307
1308                ++read_ptr;
1309
1310                ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1311
1312                switch (ev_code) {
1313                case FSE_AZ_EV_CODE_RX_EV:
1314                        efx_farch_handle_rx_event(channel, &event);
1315                        if (++spent == budget)
1316                                goto out;
1317                        break;
1318                case FSE_AZ_EV_CODE_TX_EV:
1319                        tx_packets += efx_farch_handle_tx_event(channel,
1320                                                                &event);
1321                        if (tx_packets > efx->txq_entries) {
1322                                spent = budget;
1323                                goto out;
1324                        }
1325                        break;
1326                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1327                        efx_farch_handle_generated_event(channel, &event);
1328                        break;
1329                case FSE_AZ_EV_CODE_DRIVER_EV:
1330                        efx_farch_handle_driver_event(channel, &event);
1331                        break;
1332#ifdef CONFIG_SFC_SRIOV
1333                case FSE_CZ_EV_CODE_USER_EV:
1334                        efx_siena_sriov_event(channel, &event);
1335                        break;
1336#endif
1337                case FSE_CZ_EV_CODE_MCDI_EV:
1338                        efx_mcdi_process_event(channel, &event);
1339                        break;
1340                case FSE_AZ_EV_CODE_GLOBAL_EV:
1341                        if (efx->type->handle_global_event &&
1342                            efx->type->handle_global_event(channel, &event))
1343                                break;
1344                        /* else fall through */
1345                default:
1346                        netif_err(channel->efx, hw, channel->efx->net_dev,
1347                                  "channel %d unknown event type %d (data "
1348                                  EFX_QWORD_FMT ")\n", channel->channel,
1349                                  ev_code, EFX_QWORD_VAL(event));
1350                }
1351        }
1352
1353out:
1354        channel->eventq_read_ptr = read_ptr;
1355        return spent;
1356}
1357
1358/* Allocate buffer table entries for event queue */
1359int efx_farch_ev_probe(struct efx_channel *channel)
1360{
1361        struct efx_nic *efx = channel->efx;
1362        unsigned entries;
1363
1364        entries = channel->eventq_mask + 1;
1365        return efx_alloc_special_buffer(efx, &channel->eventq,
1366                                        entries * sizeof(efx_qword_t));
1367}
1368
1369int efx_farch_ev_init(struct efx_channel *channel)
1370{
1371        efx_oword_t reg;
1372        struct efx_nic *efx = channel->efx;
1373
1374        netif_dbg(efx, hw, efx->net_dev,
1375                  "channel %d event queue in special buffers %d-%d\n",
1376                  channel->channel, channel->eventq.index,
1377                  channel->eventq.index + channel->eventq.entries - 1);
1378
1379        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1380                EFX_POPULATE_OWORD_3(reg,
1381                                     FRF_CZ_TIMER_Q_EN, 1,
1382                                     FRF_CZ_HOST_NOTIFY_MODE, 0,
1383                                     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1384                efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1385        }
1386
1387        /* Pin event queue buffer */
1388        efx_init_special_buffer(efx, &channel->eventq);
1389
1390        /* Fill event queue with all ones (i.e. empty events) */
1391        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1392
1393        /* Push event queue to card */
1394        EFX_POPULATE_OWORD_3(reg,
1395                             FRF_AZ_EVQ_EN, 1,
1396                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1397                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1398        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1399                         channel->channel);
1400
1401        return 0;
1402}
1403
1404void efx_farch_ev_fini(struct efx_channel *channel)
1405{
1406        efx_oword_t reg;
1407        struct efx_nic *efx = channel->efx;
1408
1409        /* Remove event queue from card */
1410        EFX_ZERO_OWORD(reg);
1411        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1412                         channel->channel);
1413        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1414                efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1415
1416        /* Unpin event queue */
1417        efx_fini_special_buffer(efx, &channel->eventq);
1418}
1419
1420/* Free buffers backing event queue */
1421void efx_farch_ev_remove(struct efx_channel *channel)
1422{
1423        efx_free_special_buffer(channel->efx, &channel->eventq);
1424}
1425
1426
1427void efx_farch_ev_test_generate(struct efx_channel *channel)
1428{
1429        efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1430}
1431
1432void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1433{
1434        efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1435                              EFX_CHANNEL_MAGIC_FILL(rx_queue));
1436}
1437
1438/**************************************************************************
1439 *
1440 * Hardware interrupts
1441 * The hardware interrupt handler does very little work; all the event
1442 * queue processing is carried out by per-channel tasklets.
1443 *
1444 **************************************************************************/
1445
1446/* Enable/disable/generate interrupts */
1447static inline void efx_farch_interrupts(struct efx_nic *efx,
1448                                      bool enabled, bool force)
1449{
1450        efx_oword_t int_en_reg_ker;
1451
1452        EFX_POPULATE_OWORD_3(int_en_reg_ker,
1453                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1454                             FRF_AZ_KER_INT_KER, force,
1455                             FRF_AZ_DRV_INT_EN_KER, enabled);
1456        efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1457}
1458
1459void efx_farch_irq_enable_master(struct efx_nic *efx)
1460{
1461        EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1462        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1463
1464        efx_farch_interrupts(efx, true, false);
1465}
1466
1467void efx_farch_irq_disable_master(struct efx_nic *efx)
1468{
1469        /* Disable interrupts */
1470        efx_farch_interrupts(efx, false, false);
1471}
1472
1473/* Generate a test interrupt
1474 * Interrupt must already have been enabled, otherwise nasty things
1475 * may happen.
1476 */
1477void efx_farch_irq_test_generate(struct efx_nic *efx)
1478{
1479        efx_farch_interrupts(efx, true, true);
1480}
1481
1482/* Process a fatal interrupt
1483 * Disable bus mastering ASAP and schedule a reset
1484 */
1485irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1486{
1487        struct falcon_nic_data *nic_data = efx->nic_data;
1488        efx_oword_t *int_ker = efx->irq_status.addr;
1489        efx_oword_t fatal_intr;
1490        int error, mem_perr;
1491
1492        efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1493        error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1494
1495        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1496                  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1497                  EFX_OWORD_VAL(fatal_intr),
1498                  error ? "disabling bus mastering" : "no recognised error");
1499
1500        /* If this is a memory parity error dump which blocks are offending */
1501        mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1502                    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1503        if (mem_perr) {
1504                efx_oword_t reg;
1505                efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1506                netif_err(efx, hw, efx->net_dev,
1507                          "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1508                          EFX_OWORD_VAL(reg));
1509        }
1510
1511        /* Disable both devices */
1512        pci_clear_master(efx->pci_dev);
1513        if (efx_nic_is_dual_func(efx))
1514                pci_clear_master(nic_data->pci_dev2);
1515        efx_farch_irq_disable_master(efx);
1516
1517        /* Count errors and reset or disable the NIC accordingly */
1518        if (efx->int_error_count == 0 ||
1519            time_after(jiffies, efx->int_error_expire)) {
1520                efx->int_error_count = 0;
1521                efx->int_error_expire =
1522                        jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1523        }
1524        if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1525                netif_err(efx, hw, efx->net_dev,
1526                          "SYSTEM ERROR - reset scheduled\n");
1527                efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1528        } else {
1529                netif_err(efx, hw, efx->net_dev,
1530                          "SYSTEM ERROR - max number of errors seen."
1531                          "NIC will be disabled\n");
1532                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1533        }
1534
1535        return IRQ_HANDLED;
1536}
1537
1538/* Handle a legacy interrupt
1539 * Acknowledges the interrupt and schedule event queue processing.
1540 */
1541irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1542{
1543        struct efx_nic *efx = dev_id;
1544        bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1545        efx_oword_t *int_ker = efx->irq_status.addr;
1546        irqreturn_t result = IRQ_NONE;
1547        struct efx_channel *channel;
1548        efx_dword_t reg;
1549        u32 queues;
1550        int syserr;
1551
1552        /* Read the ISR which also ACKs the interrupts */
1553        efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1554        queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1555
1556        /* Legacy interrupts are disabled too late by the EEH kernel
1557         * code. Disable them earlier.
1558         * If an EEH error occurred, the read will have returned all ones.
1559         */
1560        if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1561            !efx->eeh_disabled_legacy_irq) {
1562                disable_irq_nosync(efx->legacy_irq);
1563                efx->eeh_disabled_legacy_irq = true;
1564        }
1565
1566        /* Handle non-event-queue sources */
1567        if (queues & (1U << efx->irq_level) && soft_enabled) {
1568                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1569                if (unlikely(syserr))
1570                        return efx_farch_fatal_interrupt(efx);
1571                efx->last_irq_cpu = raw_smp_processor_id();
1572        }
1573
1574        if (queues != 0) {
1575                efx->irq_zero_count = 0;
1576
1577                /* Schedule processing of any interrupting queues */
1578                if (likely(soft_enabled)) {
1579                        efx_for_each_channel(channel, efx) {
1580                                if (queues & 1)
1581                                        efx_schedule_channel_irq(channel);
1582                                queues >>= 1;
1583                        }
1584                }
1585                result = IRQ_HANDLED;
1586
1587        } else {
1588                efx_qword_t *event;
1589
1590                /* Legacy ISR read can return zero once (SF bug 15783) */
1591
1592                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1593                 * because this might be a shared interrupt. */
1594                if (efx->irq_zero_count++ == 0)
1595                        result = IRQ_HANDLED;
1596
1597                /* Ensure we schedule or rearm all event queues */
1598                if (likely(soft_enabled)) {
1599                        efx_for_each_channel(channel, efx) {
1600                                event = efx_event(channel,
1601                                                  channel->eventq_read_ptr);
1602                                if (efx_event_present(event))
1603                                        efx_schedule_channel_irq(channel);
1604                                else
1605                                        efx_farch_ev_read_ack(channel);
1606                        }
1607                }
1608        }
1609
1610        if (result == IRQ_HANDLED)
1611                netif_vdbg(efx, intr, efx->net_dev,
1612                           "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1613                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1614
1615        return result;
1616}
1617
1618/* Handle an MSI interrupt
1619 *
1620 * Handle an MSI hardware interrupt.  This routine schedules event
1621 * queue processing.  No interrupt acknowledgement cycle is necessary.
1622 * Also, we never need to check that the interrupt is for us, since
1623 * MSI interrupts cannot be shared.
1624 */
1625irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1626{
1627        struct efx_msi_context *context = dev_id;
1628        struct efx_nic *efx = context->efx;
1629        efx_oword_t *int_ker = efx->irq_status.addr;
1630        int syserr;
1631
1632        netif_vdbg(efx, intr, efx->net_dev,
1633                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1634                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1635
1636        if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1637                return IRQ_HANDLED;
1638
1639        /* Handle non-event-queue sources */
1640        if (context->index == efx->irq_level) {
1641                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1642                if (unlikely(syserr))
1643                        return efx_farch_fatal_interrupt(efx);
1644                efx->last_irq_cpu = raw_smp_processor_id();
1645        }
1646
1647        /* Schedule processing of the channel */
1648        efx_schedule_channel_irq(efx->channel[context->index]);
1649
1650        return IRQ_HANDLED;
1651}
1652
1653/* Setup RSS indirection table.
1654 * This maps from the hash value of the packet to RXQ
1655 */
1656void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1657{
1658        size_t i = 0;
1659        efx_dword_t dword;
1660
1661        BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1662
1663        BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1664                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1665
1666        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1667                EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1668                                     efx->rx_indir_table[i]);
1669                efx_writed(efx, &dword,
1670                           FR_BZ_RX_INDIRECTION_TBL +
1671                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1672        }
1673}
1674
1675/* Looks at available SRAM resources and works out how many queues we
1676 * can support, and where things like descriptor caches should live.
1677 *
1678 * SRAM is split up as follows:
1679 * 0                          buftbl entries for channels
1680 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1681 * efx->rx_dc_base            RX descriptor caches
1682 * efx->tx_dc_base            TX descriptor caches
1683 */
1684void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1685{
1686        unsigned vi_count, buftbl_min;
1687
1688#ifdef CONFIG_SFC_SRIOV
1689        struct siena_nic_data *nic_data = efx->nic_data;
1690#endif
1691
1692        /* Account for the buffer table entries backing the datapath channels
1693         * and the descriptor caches for those channels.
1694         */
1695        buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1696                       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1697                       efx->n_channels * EFX_MAX_EVQ_SIZE)
1698                      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1699        vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1700
1701#ifdef CONFIG_SFC_SRIOV
1702        if (efx->type->sriov_wanted) {
1703                if (efx->type->sriov_wanted(efx)) {
1704                        unsigned vi_dc_entries, buftbl_free;
1705                        unsigned entries_per_vf, vf_limit;
1706
1707                        nic_data->vf_buftbl_base = buftbl_min;
1708
1709                        vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1710                        vi_count = max(vi_count, EFX_VI_BASE);
1711                        buftbl_free = (sram_lim_qw - buftbl_min -
1712                                       vi_count * vi_dc_entries);
1713
1714                        entries_per_vf = ((vi_dc_entries +
1715                                           EFX_VF_BUFTBL_PER_VI) *
1716                                          efx_vf_size(efx));
1717                        vf_limit = min(buftbl_free / entries_per_vf,
1718                                       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1719
1720                        if (efx->vf_count > vf_limit) {
1721                                netif_err(efx, probe, efx->net_dev,
1722                                          "Reducing VF count from from %d to %d\n",
1723                                          efx->vf_count, vf_limit);
1724                                efx->vf_count = vf_limit;
1725                        }
1726                        vi_count += efx->vf_count * efx_vf_size(efx);
1727                }
1728        }
1729#endif
1730
1731        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1732        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1733}
1734
1735u32 efx_farch_fpga_ver(struct efx_nic *efx)
1736{
1737        efx_oword_t altera_build;
1738        efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1739        return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1740}
1741
1742void efx_farch_init_common(struct efx_nic *efx)
1743{
1744        efx_oword_t temp;
1745
1746        /* Set positions of descriptor caches in SRAM. */
1747        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1748        efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1749        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1750        efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1751
1752        /* Set TX descriptor cache size. */
1753        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1754        EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1755        efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1756
1757        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1758         * this allows most efficient prefetching.
1759         */
1760        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1761        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1762        efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1763        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1764        efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1765
1766        /* Program INT_KER address */
1767        EFX_POPULATE_OWORD_2(temp,
1768                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1769                             EFX_INT_MODE_USE_MSI(efx),
1770                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1771        efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1772
1773        if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1774                /* Use an interrupt level unused by event queues */
1775                efx->irq_level = 0x1f;
1776        else
1777                /* Use a valid MSI-X vector */
1778                efx->irq_level = 0;
1779
1780        /* Enable all the genuinely fatal interrupts.  (They are still
1781         * masked by the overall interrupt mask, controlled by
1782         * falcon_interrupts()).
1783         *
1784         * Note: All other fatal interrupts are enabled
1785         */
1786        EFX_POPULATE_OWORD_3(temp,
1787                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1788                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1789                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1790        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1791                EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1792        EFX_INVERT_OWORD(temp);
1793        efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1794
1795        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1796         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1797         */
1798        efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1799        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1800        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1801        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1802        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1803        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1804        /* Enable SW_EV to inherit in char driver - assume harmless here */
1805        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1806        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1807        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1808        /* Disable hardware watchdog which can misfire */
1809        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1810        /* Squash TX of packets of 16 bytes or less */
1811        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1812                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1813        efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1814
1815        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1816                EFX_POPULATE_OWORD_4(temp,
1817                                     /* Default values */
1818                                     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1819                                     FRF_BZ_TX_PACE_SB_AF, 0xb,
1820                                     FRF_BZ_TX_PACE_FB_BASE, 0,
1821                                     /* Allow large pace values in the
1822                                      * fast bin. */
1823                                     FRF_BZ_TX_PACE_BIN_TH,
1824                                     FFE_BZ_TX_PACE_RESERVED);
1825                efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1826        }
1827}
1828
1829/**************************************************************************
1830 *
1831 * Filter tables
1832 *
1833 **************************************************************************
1834 */
1835
1836/* "Fudge factors" - difference between programmed value and actual depth.
1837 * Due to pipelined implementation we need to program H/W with a value that
1838 * is larger than the hop limit we want.
1839 */
1840#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1841#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1842
1843/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1844 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1845 * table is full.
1846 */
1847#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1848
1849/* Don't try very hard to find space for performance hints, as this is
1850 * counter-productive. */
1851#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1852
1853enum efx_farch_filter_type {
1854        EFX_FARCH_FILTER_TCP_FULL = 0,
1855        EFX_FARCH_FILTER_TCP_WILD,
1856        EFX_FARCH_FILTER_UDP_FULL,
1857        EFX_FARCH_FILTER_UDP_WILD,
1858        EFX_FARCH_FILTER_MAC_FULL = 4,
1859        EFX_FARCH_FILTER_MAC_WILD,
1860        EFX_FARCH_FILTER_UC_DEF = 8,
1861        EFX_FARCH_FILTER_MC_DEF,
1862        EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1863};
1864
1865enum efx_farch_filter_table_id {
1866        EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1867        EFX_FARCH_FILTER_TABLE_RX_MAC,
1868        EFX_FARCH_FILTER_TABLE_RX_DEF,
1869        EFX_FARCH_FILTER_TABLE_TX_MAC,
1870        EFX_FARCH_FILTER_TABLE_COUNT,
1871};
1872
1873enum efx_farch_filter_index {
1874        EFX_FARCH_FILTER_INDEX_UC_DEF,
1875        EFX_FARCH_FILTER_INDEX_MC_DEF,
1876        EFX_FARCH_FILTER_SIZE_RX_DEF,
1877};
1878
1879struct efx_farch_filter_spec {
1880        u8      type:4;
1881        u8      priority:4;
1882        u8      flags;
1883        u16     dmaq_id;
1884        u32     data[3];
1885};
1886
1887struct efx_farch_filter_table {
1888        enum efx_farch_filter_table_id id;
1889        u32             offset;         /* address of table relative to BAR */
1890        unsigned        size;           /* number of entries */
1891        unsigned        step;           /* step between entries */
1892        unsigned        used;           /* number currently used */
1893        unsigned long   *used_bitmap;
1894        struct efx_farch_filter_spec *spec;
1895        unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1896};
1897
1898struct efx_farch_filter_state {
1899        struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1900};
1901
1902static void
1903efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1904                                   struct efx_farch_filter_table *table,
1905                                   unsigned int filter_idx);
1906
1907/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1908 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1909static u16 efx_farch_filter_hash(u32 key)
1910{
1911        u16 tmp;
1912
1913        /* First 16 rounds */
1914        tmp = 0x1fff ^ key >> 16;
1915        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1916        tmp = tmp ^ tmp >> 9;
1917        /* Last 16 rounds */
1918        tmp = tmp ^ tmp << 13 ^ key;
1919        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1920        return tmp ^ tmp >> 9;
1921}
1922
1923/* To allow for hash collisions, filter search continues at these
1924 * increments from the first possible entry selected by the hash. */
1925static u16 efx_farch_filter_increment(u32 key)
1926{
1927        return key * 2 - 1;
1928}
1929
1930static enum efx_farch_filter_table_id
1931efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1932{
1933        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1934                     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1935        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1936                     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1937        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1938                     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1939        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1940                     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1941        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1942                     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1943        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1944                     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1945        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1946                     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1947        return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1948}
1949
1950static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1951{
1952        struct efx_farch_filter_state *state = efx->filter_state;
1953        struct efx_farch_filter_table *table;
1954        efx_oword_t filter_ctl;
1955
1956        efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1957
1958        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1959        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1960                            table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1961                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1962        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1963                            table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1964                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1966                            table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1967                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1968        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1969                            table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1970                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1971
1972        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1973        if (table->size) {
1974                EFX_SET_OWORD_FIELD(
1975                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1976                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1977                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1978                EFX_SET_OWORD_FIELD(
1979                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1980                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1981                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1982        }
1983
1984        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1985        if (table->size) {
1986                EFX_SET_OWORD_FIELD(
1987                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1988                        table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1989                EFX_SET_OWORD_FIELD(
1990                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1991                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1992                           EFX_FILTER_FLAG_RX_RSS));
1993                EFX_SET_OWORD_FIELD(
1994                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1995                        table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1996                EFX_SET_OWORD_FIELD(
1997                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1998                        !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1999                           EFX_FILTER_FLAG_RX_RSS));
2000
2001                /* There is a single bit to enable RX scatter for all
2002                 * unmatched packets.  Only set it if scatter is
2003                 * enabled in both filter specs.
2004                 */
2005                EFX_SET_OWORD_FIELD(
2006                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2007                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2008                           table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2009                           EFX_FILTER_FLAG_RX_SCATTER));
2010        } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2011                /* We don't expose 'default' filters because unmatched
2012                 * packets always go to the queue number found in the
2013                 * RSS table.  But we still need to set the RX scatter
2014                 * bit here.
2015                 */
2016                EFX_SET_OWORD_FIELD(
2017                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2018                        efx->rx_scatter);
2019        }
2020
2021        efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2022}
2023
2024static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2025{
2026        struct efx_farch_filter_state *state = efx->filter_state;
2027        struct efx_farch_filter_table *table;
2028        efx_oword_t tx_cfg;
2029
2030        efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2031
2032        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2033        if (table->size) {
2034                EFX_SET_OWORD_FIELD(
2035                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2036                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2037                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2038                EFX_SET_OWORD_FIELD(
2039                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2040                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2041                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2042        }
2043
2044        efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2045}
2046
2047static int
2048efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2049                               const struct efx_filter_spec *gen_spec)
2050{
2051        bool is_full = false;
2052
2053        if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2054            gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2055                return -EINVAL;
2056
2057        spec->priority = gen_spec->priority;
2058        spec->flags = gen_spec->flags;
2059        spec->dmaq_id = gen_spec->dmaq_id;
2060
2061        switch (gen_spec->match_flags) {
2062        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2063              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2064              EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2065                is_full = true;
2066                /* fall through */
2067        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2068              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2069                __be32 rhost, host1, host2;
2070                __be16 rport, port1, port2;
2071
2072                EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2073
2074                if (gen_spec->ether_type != htons(ETH_P_IP))
2075                        return -EPROTONOSUPPORT;
2076                if (gen_spec->loc_port == 0 ||
2077                    (is_full && gen_spec->rem_port == 0))
2078                        return -EADDRNOTAVAIL;
2079                switch (gen_spec->ip_proto) {
2080                case IPPROTO_TCP:
2081                        spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2082                                      EFX_FARCH_FILTER_TCP_WILD);
2083                        break;
2084                case IPPROTO_UDP:
2085                        spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2086                                      EFX_FARCH_FILTER_UDP_WILD);
2087                        break;
2088                default:
2089                        return -EPROTONOSUPPORT;
2090                }
2091
2092                /* Filter is constructed in terms of source and destination,
2093                 * with the odd wrinkle that the ports are swapped in a UDP
2094                 * wildcard filter.  We need to convert from local and remote
2095                 * (= zero for wildcard) addresses.
2096                 */
2097                rhost = is_full ? gen_spec->rem_host[0] : 0;
2098                rport = is_full ? gen_spec->rem_port : 0;
2099                host1 = rhost;
2100                host2 = gen_spec->loc_host[0];
2101                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2102                        port1 = gen_spec->loc_port;
2103                        port2 = rport;
2104                } else {
2105                        port1 = rport;
2106                        port2 = gen_spec->loc_port;
2107                }
2108                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2109                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2110                spec->data[2] = ntohl(host2);
2111
2112                break;
2113        }
2114
2115        case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2116                is_full = true;
2117                /* fall through */
2118        case EFX_FILTER_MATCH_LOC_MAC:
2119                spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2120                              EFX_FARCH_FILTER_MAC_WILD);
2121                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2122                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2123                                 gen_spec->loc_mac[3] << 16 |
2124                                 gen_spec->loc_mac[4] << 8 |
2125                                 gen_spec->loc_mac[5]);
2126                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2127                                 gen_spec->loc_mac[1]);
2128                break;
2129
2130        case EFX_FILTER_MATCH_LOC_MAC_IG:
2131                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2132                              EFX_FARCH_FILTER_MC_DEF :
2133                              EFX_FARCH_FILTER_UC_DEF);
2134                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2135                break;
2136
2137        default:
2138                return -EPROTONOSUPPORT;
2139        }
2140
2141        return 0;
2142}
2143
2144static void
2145efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2146                             const struct efx_farch_filter_spec *spec)
2147{
2148        bool is_full = false;
2149
2150        /* *gen_spec should be completely initialised, to be consistent
2151         * with efx_filter_init_{rx,tx}() and in case we want to copy
2152         * it back to userland.
2153         */
2154        memset(gen_spec, 0, sizeof(*gen_spec));
2155
2156        gen_spec->priority = spec->priority;
2157        gen_spec->flags = spec->flags;
2158        gen_spec->dmaq_id = spec->dmaq_id;
2159
2160        switch (spec->type) {
2161        case EFX_FARCH_FILTER_TCP_FULL:
2162        case EFX_FARCH_FILTER_UDP_FULL:
2163                is_full = true;
2164                /* fall through */
2165        case EFX_FARCH_FILTER_TCP_WILD:
2166        case EFX_FARCH_FILTER_UDP_WILD: {
2167                __be32 host1, host2;
2168                __be16 port1, port2;
2169
2170                gen_spec->match_flags =
2171                        EFX_FILTER_MATCH_ETHER_TYPE |
2172                        EFX_FILTER_MATCH_IP_PROTO |
2173                        EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2174                if (is_full)
2175                        gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2176                                                  EFX_FILTER_MATCH_REM_PORT);
2177                gen_spec->ether_type = htons(ETH_P_IP);
2178                gen_spec->ip_proto =
2179                        (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2180                         spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2181                        IPPROTO_TCP : IPPROTO_UDP;
2182
2183                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2184                port1 = htons(spec->data[0]);
2185                host2 = htonl(spec->data[2]);
2186                port2 = htons(spec->data[1] >> 16);
2187                if (spec->flags & EFX_FILTER_FLAG_TX) {
2188                        gen_spec->loc_host[0] = host1;
2189                        gen_spec->rem_host[0] = host2;
2190                } else {
2191                        gen_spec->loc_host[0] = host2;
2192                        gen_spec->rem_host[0] = host1;
2193                }
2194                if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2195                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2196                        gen_spec->loc_port = port1;
2197                        gen_spec->rem_port = port2;
2198                } else {
2199                        gen_spec->loc_port = port2;
2200                        gen_spec->rem_port = port1;
2201                }
2202
2203                break;
2204        }
2205
2206        case EFX_FARCH_FILTER_MAC_FULL:
2207                is_full = true;
2208                /* fall through */
2209        case EFX_FARCH_FILTER_MAC_WILD:
2210                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2211                if (is_full)
2212                        gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2213                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2214                gen_spec->loc_mac[1] = spec->data[2];
2215                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2216                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2217                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2218                gen_spec->loc_mac[5] = spec->data[1];
2219                gen_spec->outer_vid = htons(spec->data[0]);
2220                break;
2221
2222        case EFX_FARCH_FILTER_UC_DEF:
2223        case EFX_FARCH_FILTER_MC_DEF:
2224                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2225                gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2226                break;
2227
2228        default:
2229                WARN_ON(1);
2230                break;
2231        }
2232}
2233
2234static void
2235efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2236                              struct efx_farch_filter_spec *spec)
2237{
2238        /* If there's only one channel then disable RSS for non VF
2239         * traffic, thereby allowing VFs to use RSS when the PF can't.
2240         */
2241        spec->priority = EFX_FILTER_PRI_AUTO;
2242        spec->flags = (EFX_FILTER_FLAG_RX |
2243                       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2244                       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2245        spec->dmaq_id = 0;
2246}
2247
2248/* Build a filter entry and return its n-tuple key. */
2249static u32 efx_farch_filter_build(efx_oword_t *filter,
2250                                  struct efx_farch_filter_spec *spec)
2251{
2252        u32 data3;
2253
2254        switch (efx_farch_filter_spec_table_id(spec)) {
2255        case EFX_FARCH_FILTER_TABLE_RX_IP: {
2256                bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2257                               spec->type == EFX_FARCH_FILTER_UDP_WILD);
2258                EFX_POPULATE_OWORD_7(
2259                        *filter,
2260                        FRF_BZ_RSS_EN,
2261                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2262                        FRF_BZ_SCATTER_EN,
2263                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2264                        FRF_BZ_TCP_UDP, is_udp,
2265                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2266                        EFX_DWORD_2, spec->data[2],
2267                        EFX_DWORD_1, spec->data[1],
2268                        EFX_DWORD_0, spec->data[0]);
2269                data3 = is_udp;
2270                break;
2271        }
2272
2273        case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2274                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2275                EFX_POPULATE_OWORD_7(
2276                        *filter,
2277                        FRF_CZ_RMFT_RSS_EN,
2278                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2279                        FRF_CZ_RMFT_SCATTER_EN,
2280                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2281                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2282                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2283                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2284                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2285                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2286                data3 = is_wild;
2287                break;
2288        }
2289
2290        case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2291                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2292                EFX_POPULATE_OWORD_5(*filter,
2293                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2294                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2295                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2296                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2297                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2298                data3 = is_wild | spec->dmaq_id << 1;
2299                break;
2300        }
2301
2302        default:
2303                BUG();
2304        }
2305
2306        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2307}
2308
2309static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2310                                   const struct efx_farch_filter_spec *right)
2311{
2312        if (left->type != right->type ||
2313            memcmp(left->data, right->data, sizeof(left->data)))
2314                return false;
2315
2316        if (left->flags & EFX_FILTER_FLAG_TX &&
2317            left->dmaq_id != right->dmaq_id)
2318                return false;
2319
2320        return true;
2321}
2322
2323/*
2324 * Construct/deconstruct external filter IDs.  At least the RX filter
2325 * IDs must be ordered by matching priority, for RX NFC semantics.
2326 *
2327 * Deconstruction needs to be robust against invalid IDs so that
2328 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2329 * accept user-provided IDs.
2330 */
2331
2332#define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2333
2334static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2335        [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2336        [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2337        [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2338        [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2339        [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2340        [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2341        [EFX_FARCH_FILTER_UC_DEF]       = 4,
2342        [EFX_FARCH_FILTER_MC_DEF]       = 4,
2343};
2344
2345static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2346        EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2347        EFX_FARCH_FILTER_TABLE_RX_IP,
2348        EFX_FARCH_FILTER_TABLE_RX_MAC,
2349        EFX_FARCH_FILTER_TABLE_RX_MAC,
2350        EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2351        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2352        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2353};
2354
2355#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2356#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2357
2358static inline u32
2359efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2360                         unsigned int index)
2361{
2362        unsigned int range;
2363
2364        range = efx_farch_filter_type_match_pri[spec->type];
2365        if (!(spec->flags & EFX_FILTER_FLAG_RX))
2366                range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2367
2368        return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2369}
2370
2371static inline enum efx_farch_filter_table_id
2372efx_farch_filter_id_table_id(u32 id)
2373{
2374        unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2375
2376        if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2377                return efx_farch_filter_range_table[range];
2378        else
2379                return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2380}
2381
2382static inline unsigned int efx_farch_filter_id_index(u32 id)
2383{
2384        return id & EFX_FARCH_FILTER_INDEX_MASK;
2385}
2386
2387u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2388{
2389        struct efx_farch_filter_state *state = efx->filter_state;
2390        unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2391        enum efx_farch_filter_table_id table_id;
2392
2393        do {
2394                table_id = efx_farch_filter_range_table[range];
2395                if (state->table[table_id].size != 0)
2396                        return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2397                                state->table[table_id].size;
2398        } while (range--);
2399
2400        return 0;
2401}
2402
2403s32 efx_farch_filter_insert(struct efx_nic *efx,
2404                            struct efx_filter_spec *gen_spec,
2405                            bool replace_equal)
2406{
2407        struct efx_farch_filter_state *state = efx->filter_state;
2408        struct efx_farch_filter_table *table;
2409        struct efx_farch_filter_spec spec;
2410        efx_oword_t filter;
2411        int rep_index, ins_index;
2412        unsigned int depth = 0;
2413        int rc;
2414
2415        rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2416        if (rc)
2417                return rc;
2418
2419        table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2420        if (table->size == 0)
2421                return -EINVAL;
2422
2423        netif_vdbg(efx, hw, efx->net_dev,
2424                   "%s: type %d search_limit=%d", __func__, spec.type,
2425                   table->search_limit[spec.type]);
2426
2427        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2428                /* One filter spec per type */
2429                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2430                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2431                             EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2432                rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2433                ins_index = rep_index;
2434
2435                spin_lock_bh(&efx->filter_lock);
2436        } else {
2437                /* Search concurrently for
2438                 * (1) a filter to be replaced (rep_index): any filter
2439                 *     with the same match values, up to the current
2440                 *     search depth for this type, and
2441                 * (2) the insertion point (ins_index): (1) or any
2442                 *     free slot before it or up to the maximum search
2443                 *     depth for this priority
2444                 * We fail if we cannot find (2).
2445                 *
2446                 * We can stop once either
2447                 * (a) we find (1), in which case we have definitely
2448                 *     found (2) as well; or
2449                 * (b) we have searched exhaustively for (1), and have
2450                 *     either found (2) or searched exhaustively for it
2451                 */
2452                u32 key = efx_farch_filter_build(&filter, &spec);
2453                unsigned int hash = efx_farch_filter_hash(key);
2454                unsigned int incr = efx_farch_filter_increment(key);
2455                unsigned int max_rep_depth = table->search_limit[spec.type];
2456                unsigned int max_ins_depth =
2457                        spec.priority <= EFX_FILTER_PRI_HINT ?
2458                        EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2459                        EFX_FARCH_FILTER_CTL_SRCH_MAX;
2460                unsigned int i = hash & (table->size - 1);
2461
2462                ins_index = -1;
2463                depth = 1;
2464
2465                spin_lock_bh(&efx->filter_lock);
2466
2467                for (;;) {
2468                        if (!test_bit(i, table->used_bitmap)) {
2469                                if (ins_index < 0)
2470                                        ins_index = i;
2471                        } else if (efx_farch_filter_equal(&spec,
2472                                                          &table->spec[i])) {
2473                                /* Case (a) */
2474                                if (ins_index < 0)
2475                                        ins_index = i;
2476                                rep_index = i;
2477                                break;
2478                        }
2479
2480                        if (depth >= max_rep_depth &&
2481                            (ins_index >= 0 || depth >= max_ins_depth)) {
2482                                /* Case (b) */
2483                                if (ins_index < 0) {
2484                                        rc = -EBUSY;
2485                                        goto out;
2486                                }
2487                                rep_index = -1;
2488                                break;
2489                        }
2490
2491                        i = (i + incr) & (table->size - 1);
2492                        ++depth;
2493                }
2494        }
2495
2496        /* If we found a filter to be replaced, check whether we
2497         * should do so
2498         */
2499        if (rep_index >= 0) {
2500                struct efx_farch_filter_spec *saved_spec =
2501                        &table->spec[rep_index];
2502
2503                if (spec.priority == saved_spec->priority && !replace_equal) {
2504                        rc = -EEXIST;
2505                        goto out;
2506                }
2507                if (spec.priority < saved_spec->priority) {
2508                        rc = -EPERM;
2509                        goto out;
2510                }
2511                if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2512                    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2513                        spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2514        }
2515
2516        /* Insert the filter */
2517        if (ins_index != rep_index) {
2518                __set_bit(ins_index, table->used_bitmap);
2519                ++table->used;
2520        }
2521        table->spec[ins_index] = spec;
2522
2523        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2524                efx_farch_filter_push_rx_config(efx);
2525        } else {
2526                if (table->search_limit[spec.type] < depth) {
2527                        table->search_limit[spec.type] = depth;
2528                        if (spec.flags & EFX_FILTER_FLAG_TX)
2529                                efx_farch_filter_push_tx_limits(efx);
2530                        else
2531                                efx_farch_filter_push_rx_config(efx);
2532                }
2533
2534                efx_writeo(efx, &filter,
2535                           table->offset + table->step * ins_index);
2536
2537                /* If we were able to replace a filter by inserting
2538                 * at a lower depth, clear the replaced filter
2539                 */
2540                if (ins_index != rep_index && rep_index >= 0)
2541                        efx_farch_filter_table_clear_entry(efx, table,
2542                                                           rep_index);
2543        }
2544
2545        netif_vdbg(efx, hw, efx->net_dev,
2546                   "%s: filter type %d index %d rxq %u set",
2547                   __func__, spec.type, ins_index, spec.dmaq_id);
2548        rc = efx_farch_filter_make_id(&spec, ins_index);
2549
2550out:
2551        spin_unlock_bh(&efx->filter_lock);
2552        return rc;
2553}
2554
2555static void
2556efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2557                                   struct efx_farch_filter_table *table,
2558                                   unsigned int filter_idx)
2559{
2560        static efx_oword_t filter;
2561
2562        EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2563        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2564
2565        __clear_bit(filter_idx, table->used_bitmap);
2566        --table->used;
2567        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2568
2569        efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2570
2571        /* If this filter required a greater search depth than
2572         * any other, the search limit for its type can now be
2573         * decreased.  However, it is hard to determine that
2574         * unless the table has become completely empty - in
2575         * which case, all its search limits can be set to 0.
2576         */
2577        if (unlikely(table->used == 0)) {
2578                memset(table->search_limit, 0, sizeof(table->search_limit));
2579                if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2580                        efx_farch_filter_push_tx_limits(efx);
2581                else
2582                        efx_farch_filter_push_rx_config(efx);
2583        }
2584}
2585
2586static int efx_farch_filter_remove(struct efx_nic *efx,
2587                                   struct efx_farch_filter_table *table,
2588                                   unsigned int filter_idx,
2589                                   enum efx_filter_priority priority)
2590{
2591        struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2592
2593        if (!test_bit(filter_idx, table->used_bitmap) ||
2594            spec->priority != priority)
2595                return -ENOENT;
2596
2597        if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2598                efx_farch_filter_init_rx_auto(efx, spec);
2599                efx_farch_filter_push_rx_config(efx);
2600        } else {
2601                efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2602        }
2603
2604        return 0;
2605}
2606
2607int efx_farch_filter_remove_safe(struct efx_nic *efx,
2608                                 enum efx_filter_priority priority,
2609                                 u32 filter_id)
2610{
2611        struct efx_farch_filter_state *state = efx->filter_state;
2612        enum efx_farch_filter_table_id table_id;
2613        struct efx_farch_filter_table *table;
2614        unsigned int filter_idx;
2615        struct efx_farch_filter_spec *spec;
2616        int rc;
2617
2618        table_id = efx_farch_filter_id_table_id(filter_id);
2619        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2620                return -ENOENT;
2621        table = &state->table[table_id];
2622
2623        filter_idx = efx_farch_filter_id_index(filter_id);
2624        if (filter_idx >= table->size)
2625                return -ENOENT;
2626        spec = &table->spec[filter_idx];
2627
2628        spin_lock_bh(&efx->filter_lock);
2629        rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2630        spin_unlock_bh(&efx->filter_lock);
2631
2632        return rc;
2633}
2634
2635int efx_farch_filter_get_safe(struct efx_nic *efx,
2636                              enum efx_filter_priority priority,
2637                              u32 filter_id, struct efx_filter_spec *spec_buf)
2638{
2639        struct efx_farch_filter_state *state = efx->filter_state;
2640        enum efx_farch_filter_table_id table_id;
2641        struct efx_farch_filter_table *table;
2642        struct efx_farch_filter_spec *spec;
2643        unsigned int filter_idx;
2644        int rc;
2645
2646        table_id = efx_farch_filter_id_table_id(filter_id);
2647        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2648                return -ENOENT;
2649        table = &state->table[table_id];
2650
2651        filter_idx = efx_farch_filter_id_index(filter_id);
2652        if (filter_idx >= table->size)
2653                return -ENOENT;
2654        spec = &table->spec[filter_idx];
2655
2656        spin_lock_bh(&efx->filter_lock);
2657
2658        if (test_bit(filter_idx, table->used_bitmap) &&
2659            spec->priority == priority) {
2660                efx_farch_filter_to_gen_spec(spec_buf, spec);
2661                rc = 0;
2662        } else {
2663                rc = -ENOENT;
2664        }
2665
2666        spin_unlock_bh(&efx->filter_lock);
2667
2668        return rc;
2669}
2670
2671static void
2672efx_farch_filter_table_clear(struct efx_nic *efx,
2673                             enum efx_farch_filter_table_id table_id,
2674                             enum efx_filter_priority priority)
2675{
2676        struct efx_farch_filter_state *state = efx->filter_state;
2677        struct efx_farch_filter_table *table = &state->table[table_id];
2678        unsigned int filter_idx;
2679
2680        spin_lock_bh(&efx->filter_lock);
2681        for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2682                if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2683                        efx_farch_filter_remove(efx, table,
2684                                                filter_idx, priority);
2685        }
2686        spin_unlock_bh(&efx->filter_lock);
2687}
2688
2689int efx_farch_filter_clear_rx(struct efx_nic *efx,
2690                               enum efx_filter_priority priority)
2691{
2692        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2693                                     priority);
2694        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2695                                     priority);
2696        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2697                                     priority);
2698        return 0;
2699}
2700
2701u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2702                                   enum efx_filter_priority priority)
2703{
2704        struct efx_farch_filter_state *state = efx->filter_state;
2705        enum efx_farch_filter_table_id table_id;
2706        struct efx_farch_filter_table *table;
2707        unsigned int filter_idx;
2708        u32 count = 0;
2709
2710        spin_lock_bh(&efx->filter_lock);
2711
2712        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2713             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2714             table_id++) {
2715                table = &state->table[table_id];
2716                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2717                        if (test_bit(filter_idx, table->used_bitmap) &&
2718                            table->spec[filter_idx].priority == priority)
2719                                ++count;
2720                }
2721        }
2722
2723        spin_unlock_bh(&efx->filter_lock);
2724
2725        return count;
2726}
2727
2728s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2729                                enum efx_filter_priority priority,
2730                                u32 *buf, u32 size)
2731{
2732        struct efx_farch_filter_state *state = efx->filter_state;
2733        enum efx_farch_filter_table_id table_id;
2734        struct efx_farch_filter_table *table;
2735        unsigned int filter_idx;
2736        s32 count = 0;
2737
2738        spin_lock_bh(&efx->filter_lock);
2739
2740        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2741             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2742             table_id++) {
2743                table = &state->table[table_id];
2744                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2745                        if (test_bit(filter_idx, table->used_bitmap) &&
2746                            table->spec[filter_idx].priority == priority) {
2747                                if (count == size) {
2748                                        count = -EMSGSIZE;
2749                                        goto out;
2750                                }
2751                                buf[count++] = efx_farch_filter_make_id(
2752                                        &table->spec[filter_idx], filter_idx);
2753                        }
2754                }
2755        }
2756out:
2757        spin_unlock_bh(&efx->filter_lock);
2758
2759        return count;
2760}
2761
2762/* Restore filter stater after reset */
2763void efx_farch_filter_table_restore(struct efx_nic *efx)
2764{
2765        struct efx_farch_filter_state *state = efx->filter_state;
2766        enum efx_farch_filter_table_id table_id;
2767        struct efx_farch_filter_table *table;
2768        efx_oword_t filter;
2769        unsigned int filter_idx;
2770
2771        spin_lock_bh(&efx->filter_lock);
2772
2773        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2774                table = &state->table[table_id];
2775
2776                /* Check whether this is a regular register table */
2777                if (table->step == 0)
2778                        continue;
2779
2780                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2781                        if (!test_bit(filter_idx, table->used_bitmap))
2782                                continue;
2783                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2784                        efx_writeo(efx, &filter,
2785                                   table->offset + table->step * filter_idx);
2786                }
2787        }
2788
2789        efx_farch_filter_push_rx_config(efx);
2790        efx_farch_filter_push_tx_limits(efx);
2791
2792        spin_unlock_bh(&efx->filter_lock);
2793}
2794
2795void efx_farch_filter_table_remove(struct efx_nic *efx)
2796{
2797        struct efx_farch_filter_state *state = efx->filter_state;
2798        enum efx_farch_filter_table_id table_id;
2799
2800        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2801                kfree(state->table[table_id].used_bitmap);
2802                vfree(state->table[table_id].spec);
2803        }
2804        kfree(state);
2805}
2806
2807int efx_farch_filter_table_probe(struct efx_nic *efx)
2808{
2809        struct efx_farch_filter_state *state;
2810        struct efx_farch_filter_table *table;
2811        unsigned table_id;
2812
2813        state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2814        if (!state)
2815                return -ENOMEM;
2816        efx->filter_state = state;
2817
2818        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2819                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2820                table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2821                table->offset = FR_BZ_RX_FILTER_TBL0;
2822                table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2823                table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2824        }
2825
2826        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2827                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2828                table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2829                table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2830                table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2831                table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2832
2833                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2834                table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2835                table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2836
2837                table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2838                table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2839                table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2840                table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2841                table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2842        }
2843
2844        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2845                table = &state->table[table_id];
2846                if (table->size == 0)
2847                        continue;
2848                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2849                                             sizeof(unsigned long),
2850                                             GFP_KERNEL);
2851                if (!table->used_bitmap)
2852                        goto fail;
2853                table->spec = vzalloc(table->size * sizeof(*table->spec));
2854                if (!table->spec)
2855                        goto fail;
2856        }
2857
2858        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2859        if (table->size) {
2860                /* RX default filters must always exist */
2861                struct efx_farch_filter_spec *spec;
2862                unsigned i;
2863
2864                for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2865                        spec = &table->spec[i];
2866                        spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2867                        efx_farch_filter_init_rx_auto(efx, spec);
2868                        __set_bit(i, table->used_bitmap);
2869                }
2870        }
2871
2872        efx_farch_filter_push_rx_config(efx);
2873
2874        return 0;
2875
2876fail:
2877        efx_farch_filter_table_remove(efx);
2878        return -ENOMEM;
2879}
2880
2881/* Update scatter enable flags for filters pointing to our own RX queues */
2882void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2883{
2884        struct efx_farch_filter_state *state = efx->filter_state;
2885        enum efx_farch_filter_table_id table_id;
2886        struct efx_farch_filter_table *table;
2887        efx_oword_t filter;
2888        unsigned int filter_idx;
2889
2890        spin_lock_bh(&efx->filter_lock);
2891
2892        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2893             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2894             table_id++) {
2895                table = &state->table[table_id];
2896
2897                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2898                        if (!test_bit(filter_idx, table->used_bitmap) ||
2899                            table->spec[filter_idx].dmaq_id >=
2900                            efx->n_rx_channels)
2901                                continue;
2902
2903                        if (efx->rx_scatter)
2904                                table->spec[filter_idx].flags |=
2905                                        EFX_FILTER_FLAG_RX_SCATTER;
2906                        else
2907                                table->spec[filter_idx].flags &=
2908                                        ~EFX_FILTER_FLAG_RX_SCATTER;
2909
2910                        if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2911                                /* Pushed by efx_farch_filter_push_rx_config() */
2912                                continue;
2913
2914                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2915                        efx_writeo(efx, &filter,
2916                                   table->offset + table->step * filter_idx);
2917                }
2918        }
2919
2920        efx_farch_filter_push_rx_config(efx);
2921
2922        spin_unlock_bh(&efx->filter_lock);
2923}
2924
2925#ifdef CONFIG_RFS_ACCEL
2926
2927s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2928                                struct efx_filter_spec *gen_spec)
2929{
2930        return efx_farch_filter_insert(efx, gen_spec, true);
2931}
2932
2933bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2934                                     unsigned int index)
2935{
2936        struct efx_farch_filter_state *state = efx->filter_state;
2937        struct efx_farch_filter_table *table =
2938                &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2939
2940        if (test_bit(index, table->used_bitmap) &&
2941            table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2942            rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2943                                flow_id, index)) {
2944                efx_farch_filter_table_clear_entry(efx, table, index);
2945                return true;
2946        }
2947
2948        return false;
2949}
2950
2951#endif /* CONFIG_RFS_ACCEL */
2952
2953void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2954{
2955        struct net_device *net_dev = efx->net_dev;
2956        struct netdev_hw_addr *ha;
2957        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2958        u32 crc;
2959        int bit;
2960
2961        if (!efx_dev_registered(efx))
2962                return;
2963
2964        netif_addr_lock_bh(net_dev);
2965
2966        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2967
2968        /* Build multicast hash table */
2969        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2970                memset(mc_hash, 0xff, sizeof(*mc_hash));
2971        } else {
2972                memset(mc_hash, 0x00, sizeof(*mc_hash));
2973                netdev_for_each_mc_addr(ha, net_dev) {
2974                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2975                        bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2976                        __set_bit_le(bit, mc_hash);
2977                }
2978
2979                /* Broadcast packets go through the multicast hash filter.
2980                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2981                 * so we always add bit 0xff to the mask.
2982                 */
2983                __set_bit_le(0xff, mc_hash);
2984        }
2985
2986        netif_addr_unlock_bh(net_dev);
2987}
2988