linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
   3  ST Ethernet IPs are built around a Synopsys IP Core.
   4
   5        Copyright(C) 2007-2011 STMicroelectronics Ltd
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, write to the Free Software Foundation, Inc.,
  18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  19
  20  The full GNU General Public License is included in this distribution in
  21  the file called "COPYING".
  22
  23  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
  24
  25  Documentation available at:
  26        http://www.stlinux.com
  27  Support available at:
  28        https://bugzilla.stlinux.com/
  29*******************************************************************************/
  30
  31#include <linux/clk.h>
  32#include <linux/kernel.h>
  33#include <linux/interrupt.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/skbuff.h>
  37#include <linux/ethtool.h>
  38#include <linux/if_ether.h>
  39#include <linux/crc32.h>
  40#include <linux/mii.h>
  41#include <linux/if.h>
  42#include <linux/if_vlan.h>
  43#include <linux/dma-mapping.h>
  44#include <linux/slab.h>
  45#include <linux/prefetch.h>
  46#include <linux/pinctrl/consumer.h>
  47#ifdef CONFIG_DEBUG_FS
  48#include <linux/debugfs.h>
  49#include <linux/seq_file.h>
  50#endif /* CONFIG_DEBUG_FS */
  51#include <linux/net_tstamp.h>
  52#include "stmmac_ptp.h"
  53#include "stmmac.h"
  54#include <linux/reset.h>
  55#include <linux/of_mdio.h>
  56
  57#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
  58
  59/* Module parameters */
  60#define TX_TIMEO        5000
  61static int watchdog = TX_TIMEO;
  62module_param(watchdog, int, S_IRUGO | S_IWUSR);
  63MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
  64
  65static int debug = -1;
  66module_param(debug, int, S_IRUGO | S_IWUSR);
  67MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
  68
  69static int phyaddr = -1;
  70module_param(phyaddr, int, S_IRUGO);
  71MODULE_PARM_DESC(phyaddr, "Physical device address");
  72
  73#define DMA_TX_SIZE 256
  74static int dma_txsize = DMA_TX_SIZE;
  75module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
  76MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
  77
  78#define DMA_RX_SIZE 256
  79static int dma_rxsize = DMA_RX_SIZE;
  80module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
  81MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
  82
  83static int flow_ctrl = FLOW_OFF;
  84module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
  85MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
  86
  87static int pause = PAUSE_TIME;
  88module_param(pause, int, S_IRUGO | S_IWUSR);
  89MODULE_PARM_DESC(pause, "Flow Control Pause Time");
  90
  91#define TC_DEFAULT 64
  92static int tc = TC_DEFAULT;
  93module_param(tc, int, S_IRUGO | S_IWUSR);
  94MODULE_PARM_DESC(tc, "DMA threshold control value");
  95
  96#define DEFAULT_BUFSIZE 1536
  97static int buf_sz = DEFAULT_BUFSIZE;
  98module_param(buf_sz, int, S_IRUGO | S_IWUSR);
  99MODULE_PARM_DESC(buf_sz, "DMA buffer size");
 100
 101static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 102                                      NETIF_MSG_LINK | NETIF_MSG_IFUP |
 103                                      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
 104
 105#define STMMAC_DEFAULT_LPI_TIMER        1000
 106static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
 107module_param(eee_timer, int, S_IRUGO | S_IWUSR);
 108MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
 109#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
 110
 111/* By default the driver will use the ring mode to manage tx and rx descriptors
 112 * but passing this value so user can force to use the chain instead of the ring
 113 */
 114static unsigned int chain_mode;
 115module_param(chain_mode, int, S_IRUGO);
 116MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
 117
 118static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
 119
 120#ifdef CONFIG_DEBUG_FS
 121static int stmmac_init_fs(struct net_device *dev);
 122static void stmmac_exit_fs(struct net_device *dev);
 123#endif
 124
 125#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
 126
 127/**
 128 * stmmac_verify_args - verify the driver parameters.
 129 * Description: it checks the driver parameters and set a default in case of
 130 * errors.
 131 */
 132static void stmmac_verify_args(void)
 133{
 134        if (unlikely(watchdog < 0))
 135                watchdog = TX_TIMEO;
 136        if (unlikely(dma_rxsize < 0))
 137                dma_rxsize = DMA_RX_SIZE;
 138        if (unlikely(dma_txsize < 0))
 139                dma_txsize = DMA_TX_SIZE;
 140        if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
 141                buf_sz = DEFAULT_BUFSIZE;
 142        if (unlikely(flow_ctrl > 1))
 143                flow_ctrl = FLOW_AUTO;
 144        else if (likely(flow_ctrl < 0))
 145                flow_ctrl = FLOW_OFF;
 146        if (unlikely((pause < 0) || (pause > 0xffff)))
 147                pause = PAUSE_TIME;
 148        if (eee_timer < 0)
 149                eee_timer = STMMAC_DEFAULT_LPI_TIMER;
 150}
 151
 152/**
 153 * stmmac_clk_csr_set - dynamically set the MDC clock
 154 * @priv: driver private structure
 155 * Description: this is to dynamically set the MDC clock according to the csr
 156 * clock input.
 157 * Note:
 158 *      If a specific clk_csr value is passed from the platform
 159 *      this means that the CSR Clock Range selection cannot be
 160 *      changed at run-time and it is fixed (as reported in the driver
 161 *      documentation). Viceversa the driver will try to set the MDC
 162 *      clock dynamically according to the actual clock input.
 163 */
 164static void stmmac_clk_csr_set(struct stmmac_priv *priv)
 165{
 166        u32 clk_rate;
 167
 168        clk_rate = clk_get_rate(priv->stmmac_clk);
 169
 170        /* Platform provided default clk_csr would be assumed valid
 171         * for all other cases except for the below mentioned ones.
 172         * For values higher than the IEEE 802.3 specified frequency
 173         * we can not estimate the proper divider as it is not known
 174         * the frequency of clk_csr_i. So we do not change the default
 175         * divider.
 176         */
 177        if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
 178                if (clk_rate < CSR_F_35M)
 179                        priv->clk_csr = STMMAC_CSR_20_35M;
 180                else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
 181                        priv->clk_csr = STMMAC_CSR_35_60M;
 182                else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
 183                        priv->clk_csr = STMMAC_CSR_60_100M;
 184                else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
 185                        priv->clk_csr = STMMAC_CSR_100_150M;
 186                else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
 187                        priv->clk_csr = STMMAC_CSR_150_250M;
 188                else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
 189                        priv->clk_csr = STMMAC_CSR_250_300M;
 190        }
 191}
 192
 193static void print_pkt(unsigned char *buf, int len)
 194{
 195        pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
 196        print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
 197}
 198
 199/* minimum number of free TX descriptors required to wake up TX process */
 200#define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
 201
 202static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
 203{
 204        return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
 205}
 206
 207/**
 208 * stmmac_hw_fix_mac_speed - callback for speed selection
 209 * @priv: driver private structure
 210 * Description: on some platforms (e.g. ST), some HW system configuraton
 211 * registers have to be set according to the link speed negotiated.
 212 */
 213static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
 214{
 215        struct phy_device *phydev = priv->phydev;
 216
 217        if (likely(priv->plat->fix_mac_speed))
 218                priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
 219}
 220
 221/**
 222 * stmmac_enable_eee_mode - check and enter in LPI mode
 223 * @priv: driver private structure
 224 * Description: this function is to verify and enter in LPI mode in case of
 225 * EEE.
 226 */
 227static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
 228{
 229        /* Check and enter in LPI mode */
 230        if ((priv->dirty_tx == priv->cur_tx) &&
 231            (priv->tx_path_in_lpi_mode == false))
 232                priv->hw->mac->set_eee_mode(priv->hw);
 233}
 234
 235/**
 236 * stmmac_disable_eee_mode - disable and exit from LPI mode
 237 * @priv: driver private structure
 238 * Description: this function is to exit and disable EEE in case of
 239 * LPI state is true. This is called by the xmit.
 240 */
 241void stmmac_disable_eee_mode(struct stmmac_priv *priv)
 242{
 243        priv->hw->mac->reset_eee_mode(priv->hw);
 244        del_timer_sync(&priv->eee_ctrl_timer);
 245        priv->tx_path_in_lpi_mode = false;
 246}
 247
 248/**
 249 * stmmac_eee_ctrl_timer - EEE TX SW timer.
 250 * @arg : data hook
 251 * Description:
 252 *  if there is no data transfer and if we are not in LPI state,
 253 *  then MAC Transmitter can be moved to LPI state.
 254 */
 255static void stmmac_eee_ctrl_timer(unsigned long arg)
 256{
 257        struct stmmac_priv *priv = (struct stmmac_priv *)arg;
 258
 259        stmmac_enable_eee_mode(priv);
 260        mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
 261}
 262
 263/**
 264 * stmmac_eee_init - init EEE
 265 * @priv: driver private structure
 266 * Description:
 267 *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
 268 *  can also manage EEE, this function enable the LPI state and start related
 269 *  timer.
 270 */
 271bool stmmac_eee_init(struct stmmac_priv *priv)
 272{
 273        char *phy_bus_name = priv->plat->phy_bus_name;
 274        unsigned long flags;
 275        bool ret = false;
 276
 277        /* Using PCS we cannot dial with the phy registers at this stage
 278         * so we do not support extra feature like EEE.
 279         */
 280        if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
 281            (priv->pcs == STMMAC_PCS_RTBI))
 282                goto out;
 283
 284        /* Never init EEE in case of a switch is attached */
 285        if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
 286                goto out;
 287
 288        /* MAC core supports the EEE feature. */
 289        if (priv->dma_cap.eee) {
 290                int tx_lpi_timer = priv->tx_lpi_timer;
 291
 292                /* Check if the PHY supports EEE */
 293                if (phy_init_eee(priv->phydev, 1)) {
 294                        /* To manage at run-time if the EEE cannot be supported
 295                         * anymore (for example because the lp caps have been
 296                         * changed).
 297                         * In that case the driver disable own timers.
 298                         */
 299                        spin_lock_irqsave(&priv->lock, flags);
 300                        if (priv->eee_active) {
 301                                pr_debug("stmmac: disable EEE\n");
 302                                del_timer_sync(&priv->eee_ctrl_timer);
 303                                priv->hw->mac->set_eee_timer(priv->hw, 0,
 304                                                             tx_lpi_timer);
 305                        }
 306                        priv->eee_active = 0;
 307                        spin_unlock_irqrestore(&priv->lock, flags);
 308                        goto out;
 309                }
 310                /* Activate the EEE and start timers */
 311                spin_lock_irqsave(&priv->lock, flags);
 312                if (!priv->eee_active) {
 313                        priv->eee_active = 1;
 314                        setup_timer(&priv->eee_ctrl_timer,
 315                                    stmmac_eee_ctrl_timer,
 316                                    (unsigned long)priv);
 317                        mod_timer(&priv->eee_ctrl_timer,
 318                                  STMMAC_LPI_T(eee_timer));
 319
 320                        priv->hw->mac->set_eee_timer(priv->hw,
 321                                                     STMMAC_DEFAULT_LIT_LS,
 322                                                     tx_lpi_timer);
 323                }
 324                /* Set HW EEE according to the speed */
 325                priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
 326
 327                ret = true;
 328                spin_unlock_irqrestore(&priv->lock, flags);
 329
 330                pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
 331        }
 332out:
 333        return ret;
 334}
 335
 336/* stmmac_get_tx_hwtstamp - get HW TX timestamps
 337 * @priv: driver private structure
 338 * @entry : descriptor index to be used.
 339 * @skb : the socket buffer
 340 * Description :
 341 * This function will read timestamp from the descriptor & pass it to stack.
 342 * and also perform some sanity checks.
 343 */
 344static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
 345                                   unsigned int entry, struct sk_buff *skb)
 346{
 347        struct skb_shared_hwtstamps shhwtstamp;
 348        u64 ns;
 349        void *desc = NULL;
 350
 351        if (!priv->hwts_tx_en)
 352                return;
 353
 354        /* exit if skb doesn't support hw tstamp */
 355        if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
 356                return;
 357
 358        if (priv->adv_ts)
 359                desc = (priv->dma_etx + entry);
 360        else
 361                desc = (priv->dma_tx + entry);
 362
 363        /* check tx tstamp status */
 364        if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
 365                return;
 366
 367        /* get the valid tstamp */
 368        ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
 369
 370        memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
 371        shhwtstamp.hwtstamp = ns_to_ktime(ns);
 372        /* pass tstamp to stack */
 373        skb_tstamp_tx(skb, &shhwtstamp);
 374
 375        return;
 376}
 377
 378/* stmmac_get_rx_hwtstamp - get HW RX timestamps
 379 * @priv: driver private structure
 380 * @entry : descriptor index to be used.
 381 * @skb : the socket buffer
 382 * Description :
 383 * This function will read received packet's timestamp from the descriptor
 384 * and pass it to stack. It also perform some sanity checks.
 385 */
 386static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
 387                                   unsigned int entry, struct sk_buff *skb)
 388{
 389        struct skb_shared_hwtstamps *shhwtstamp = NULL;
 390        u64 ns;
 391        void *desc = NULL;
 392
 393        if (!priv->hwts_rx_en)
 394                return;
 395
 396        if (priv->adv_ts)
 397                desc = (priv->dma_erx + entry);
 398        else
 399                desc = (priv->dma_rx + entry);
 400
 401        /* exit if rx tstamp is not valid */
 402        if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
 403                return;
 404
 405        /* get valid tstamp */
 406        ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
 407        shhwtstamp = skb_hwtstamps(skb);
 408        memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
 409        shhwtstamp->hwtstamp = ns_to_ktime(ns);
 410}
 411
 412/**
 413 *  stmmac_hwtstamp_ioctl - control hardware timestamping.
 414 *  @dev: device pointer.
 415 *  @ifr: An IOCTL specefic structure, that can contain a pointer to
 416 *  a proprietary structure used to pass information to the driver.
 417 *  Description:
 418 *  This function configures the MAC to enable/disable both outgoing(TX)
 419 *  and incoming(RX) packets time stamping based on user input.
 420 *  Return Value:
 421 *  0 on success and an appropriate -ve integer on failure.
 422 */
 423static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
 424{
 425        struct stmmac_priv *priv = netdev_priv(dev);
 426        struct hwtstamp_config config;
 427        struct timespec now;
 428        u64 temp = 0;
 429        u32 ptp_v2 = 0;
 430        u32 tstamp_all = 0;
 431        u32 ptp_over_ipv4_udp = 0;
 432        u32 ptp_over_ipv6_udp = 0;
 433        u32 ptp_over_ethernet = 0;
 434        u32 snap_type_sel = 0;
 435        u32 ts_master_en = 0;
 436        u32 ts_event_en = 0;
 437        u32 value = 0;
 438
 439        if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
 440                netdev_alert(priv->dev, "No support for HW time stamping\n");
 441                priv->hwts_tx_en = 0;
 442                priv->hwts_rx_en = 0;
 443
 444                return -EOPNOTSUPP;
 445        }
 446
 447        if (copy_from_user(&config, ifr->ifr_data,
 448                           sizeof(struct hwtstamp_config)))
 449                return -EFAULT;
 450
 451        pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
 452                 __func__, config.flags, config.tx_type, config.rx_filter);
 453
 454        /* reserved for future extensions */
 455        if (config.flags)
 456                return -EINVAL;
 457
 458        if (config.tx_type != HWTSTAMP_TX_OFF &&
 459            config.tx_type != HWTSTAMP_TX_ON)
 460                return -ERANGE;
 461
 462        if (priv->adv_ts) {
 463                switch (config.rx_filter) {
 464                case HWTSTAMP_FILTER_NONE:
 465                        /* time stamp no incoming packet at all */
 466                        config.rx_filter = HWTSTAMP_FILTER_NONE;
 467                        break;
 468
 469                case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 470                        /* PTP v1, UDP, any kind of event packet */
 471                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 472                        /* take time stamp for all event messages */
 473                        snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 474
 475                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 476                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 477                        break;
 478
 479                case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 480                        /* PTP v1, UDP, Sync packet */
 481                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
 482                        /* take time stamp for SYNC messages only */
 483                        ts_event_en = PTP_TCR_TSEVNTENA;
 484
 485                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 486                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 487                        break;
 488
 489                case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 490                        /* PTP v1, UDP, Delay_req packet */
 491                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
 492                        /* take time stamp for Delay_Req messages only */
 493                        ts_master_en = PTP_TCR_TSMSTRENA;
 494                        ts_event_en = PTP_TCR_TSEVNTENA;
 495
 496                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 497                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 498                        break;
 499
 500                case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 501                        /* PTP v2, UDP, any kind of event packet */
 502                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
 503                        ptp_v2 = PTP_TCR_TSVER2ENA;
 504                        /* take time stamp for all event messages */
 505                        snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 506
 507                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 508                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 509                        break;
 510
 511                case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 512                        /* PTP v2, UDP, Sync packet */
 513                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
 514                        ptp_v2 = PTP_TCR_TSVER2ENA;
 515                        /* take time stamp for SYNC messages only */
 516                        ts_event_en = PTP_TCR_TSEVNTENA;
 517
 518                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 519                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 520                        break;
 521
 522                case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 523                        /* PTP v2, UDP, Delay_req packet */
 524                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
 525                        ptp_v2 = PTP_TCR_TSVER2ENA;
 526                        /* take time stamp for Delay_Req messages only */
 527                        ts_master_en = PTP_TCR_TSMSTRENA;
 528                        ts_event_en = PTP_TCR_TSEVNTENA;
 529
 530                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 531                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 532                        break;
 533
 534                case HWTSTAMP_FILTER_PTP_V2_EVENT:
 535                        /* PTP v2/802.AS1 any layer, any kind of event packet */
 536                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 537                        ptp_v2 = PTP_TCR_TSVER2ENA;
 538                        /* take time stamp for all event messages */
 539                        snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 540
 541                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 542                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 543                        ptp_over_ethernet = PTP_TCR_TSIPENA;
 544                        break;
 545
 546                case HWTSTAMP_FILTER_PTP_V2_SYNC:
 547                        /* PTP v2/802.AS1, any layer, Sync packet */
 548                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
 549                        ptp_v2 = PTP_TCR_TSVER2ENA;
 550                        /* take time stamp for SYNC messages only */
 551                        ts_event_en = PTP_TCR_TSEVNTENA;
 552
 553                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 554                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 555                        ptp_over_ethernet = PTP_TCR_TSIPENA;
 556                        break;
 557
 558                case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 559                        /* PTP v2/802.AS1, any layer, Delay_req packet */
 560                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
 561                        ptp_v2 = PTP_TCR_TSVER2ENA;
 562                        /* take time stamp for Delay_Req messages only */
 563                        ts_master_en = PTP_TCR_TSMSTRENA;
 564                        ts_event_en = PTP_TCR_TSEVNTENA;
 565
 566                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 567                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 568                        ptp_over_ethernet = PTP_TCR_TSIPENA;
 569                        break;
 570
 571                case HWTSTAMP_FILTER_ALL:
 572                        /* time stamp any incoming packet */
 573                        config.rx_filter = HWTSTAMP_FILTER_ALL;
 574                        tstamp_all = PTP_TCR_TSENALL;
 575                        break;
 576
 577                default:
 578                        return -ERANGE;
 579                }
 580        } else {
 581                switch (config.rx_filter) {
 582                case HWTSTAMP_FILTER_NONE:
 583                        config.rx_filter = HWTSTAMP_FILTER_NONE;
 584                        break;
 585                default:
 586                        /* PTP v1, UDP, any kind of event packet */
 587                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 588                        break;
 589                }
 590        }
 591        priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
 592        priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
 593
 594        if (!priv->hwts_tx_en && !priv->hwts_rx_en)
 595                priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
 596        else {
 597                value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
 598                         tstamp_all | ptp_v2 | ptp_over_ethernet |
 599                         ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
 600                         ts_master_en | snap_type_sel);
 601
 602                priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
 603
 604                /* program Sub Second Increment reg */
 605                priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
 606
 607                /* calculate default added value:
 608                 * formula is :
 609                 * addend = (2^32)/freq_div_ratio;
 610                 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
 611                 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
 612                 * NOTE: clk_ptp_ref_i should be >= 50MHz to
 613                 *       achieve 20ns accuracy.
 614                 *
 615                 * 2^x * y == (y << x), hence
 616                 * 2^32 * 50000000 ==> (50000000 << 32)
 617                 */
 618                temp = (u64) (50000000ULL << 32);
 619                priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
 620                priv->hw->ptp->config_addend(priv->ioaddr,
 621                                             priv->default_addend);
 622
 623                /* initialize system time */
 624                getnstimeofday(&now);
 625                priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
 626                                            now.tv_nsec);
 627        }
 628
 629        return copy_to_user(ifr->ifr_data, &config,
 630                            sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
 631}
 632
 633/**
 634 * stmmac_init_ptp - init PTP
 635 * @priv: driver private structure
 636 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
 637 * This is done by looking at the HW cap. register.
 638 * This function also registers the ptp driver.
 639 */
 640static int stmmac_init_ptp(struct stmmac_priv *priv)
 641{
 642        if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
 643                return -EOPNOTSUPP;
 644
 645        /* Fall-back to main clock in case of no PTP ref is passed */
 646        priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
 647        if (IS_ERR(priv->clk_ptp_ref)) {
 648                priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
 649                priv->clk_ptp_ref = NULL;
 650        } else {
 651                clk_prepare_enable(priv->clk_ptp_ref);
 652                priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
 653        }
 654
 655        priv->adv_ts = 0;
 656        if (priv->dma_cap.atime_stamp && priv->extend_desc)
 657                priv->adv_ts = 1;
 658
 659        if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
 660                pr_debug("IEEE 1588-2002 Time Stamp supported\n");
 661
 662        if (netif_msg_hw(priv) && priv->adv_ts)
 663                pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
 664
 665        priv->hw->ptp = &stmmac_ptp;
 666        priv->hwts_tx_en = 0;
 667        priv->hwts_rx_en = 0;
 668
 669        return stmmac_ptp_register(priv);
 670}
 671
 672static void stmmac_release_ptp(struct stmmac_priv *priv)
 673{
 674        if (priv->clk_ptp_ref)
 675                clk_disable_unprepare(priv->clk_ptp_ref);
 676        stmmac_ptp_unregister(priv);
 677}
 678
 679/**
 680 * stmmac_adjust_link - adjusts the link parameters
 681 * @dev: net device structure
 682 * Description: this is the helper called by the physical abstraction layer
 683 * drivers to communicate the phy link status. According the speed and duplex
 684 * this driver can invoke registered glue-logic as well.
 685 * It also invoke the eee initialization because it could happen when switch
 686 * on different networks (that are eee capable).
 687 */
 688static void stmmac_adjust_link(struct net_device *dev)
 689{
 690        struct stmmac_priv *priv = netdev_priv(dev);
 691        struct phy_device *phydev = priv->phydev;
 692        unsigned long flags;
 693        int new_state = 0;
 694        unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
 695
 696        if (phydev == NULL)
 697                return;
 698
 699        spin_lock_irqsave(&priv->lock, flags);
 700
 701        if (phydev->link) {
 702                u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
 703
 704                /* Now we make sure that we can be in full duplex mode.
 705                 * If not, we operate in half-duplex mode. */
 706                if (phydev->duplex != priv->oldduplex) {
 707                        new_state = 1;
 708                        if (!(phydev->duplex))
 709                                ctrl &= ~priv->hw->link.duplex;
 710                        else
 711                                ctrl |= priv->hw->link.duplex;
 712                        priv->oldduplex = phydev->duplex;
 713                }
 714                /* Flow Control operation */
 715                if (phydev->pause)
 716                        priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
 717                                                 fc, pause_time);
 718
 719                if (phydev->speed != priv->speed) {
 720                        new_state = 1;
 721                        switch (phydev->speed) {
 722                        case 1000:
 723                                if (likely(priv->plat->has_gmac))
 724                                        ctrl &= ~priv->hw->link.port;
 725                                stmmac_hw_fix_mac_speed(priv);
 726                                break;
 727                        case 100:
 728                        case 10:
 729                                if (priv->plat->has_gmac) {
 730                                        ctrl |= priv->hw->link.port;
 731                                        if (phydev->speed == SPEED_100) {
 732                                                ctrl |= priv->hw->link.speed;
 733                                        } else {
 734                                                ctrl &= ~(priv->hw->link.speed);
 735                                        }
 736                                } else {
 737                                        ctrl &= ~priv->hw->link.port;
 738                                }
 739                                stmmac_hw_fix_mac_speed(priv);
 740                                break;
 741                        default:
 742                                if (netif_msg_link(priv))
 743                                        pr_warn("%s: Speed (%d) not 10/100\n",
 744                                                dev->name, phydev->speed);
 745                                break;
 746                        }
 747
 748                        priv->speed = phydev->speed;
 749                }
 750
 751                writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
 752
 753                if (!priv->oldlink) {
 754                        new_state = 1;
 755                        priv->oldlink = 1;
 756                }
 757        } else if (priv->oldlink) {
 758                new_state = 1;
 759                priv->oldlink = 0;
 760                priv->speed = 0;
 761                priv->oldduplex = -1;
 762        }
 763
 764        if (new_state && netif_msg_link(priv))
 765                phy_print_status(phydev);
 766
 767        spin_unlock_irqrestore(&priv->lock, flags);
 768
 769        /* At this stage, it could be needed to setup the EEE or adjust some
 770         * MAC related HW registers.
 771         */
 772        priv->eee_enabled = stmmac_eee_init(priv);
 773}
 774
 775/**
 776 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
 777 * @priv: driver private structure
 778 * Description: this is to verify if the HW supports the PCS.
 779 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
 780 * configured for the TBI, RTBI, or SGMII PHY interface.
 781 */
 782static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
 783{
 784        int interface = priv->plat->interface;
 785
 786        if (priv->dma_cap.pcs) {
 787                if ((interface == PHY_INTERFACE_MODE_RGMII) ||
 788                    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
 789                    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
 790                    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
 791                        pr_debug("STMMAC: PCS RGMII support enable\n");
 792                        priv->pcs = STMMAC_PCS_RGMII;
 793                } else if (interface == PHY_INTERFACE_MODE_SGMII) {
 794                        pr_debug("STMMAC: PCS SGMII support enable\n");
 795                        priv->pcs = STMMAC_PCS_SGMII;
 796                }
 797        }
 798}
 799
 800/**
 801 * stmmac_init_phy - PHY initialization
 802 * @dev: net device structure
 803 * Description: it initializes the driver's PHY state, and attaches the PHY
 804 * to the mac driver.
 805 *  Return value:
 806 *  0 on success
 807 */
 808static int stmmac_init_phy(struct net_device *dev)
 809{
 810        struct stmmac_priv *priv = netdev_priv(dev);
 811        struct phy_device *phydev;
 812        char phy_id_fmt[MII_BUS_ID_SIZE + 3];
 813        char bus_id[MII_BUS_ID_SIZE];
 814        int interface = priv->plat->interface;
 815        int max_speed = priv->plat->max_speed;
 816        priv->oldlink = 0;
 817        priv->speed = 0;
 818        priv->oldduplex = -1;
 819
 820        if (priv->plat->phy_node) {
 821                phydev = of_phy_connect(dev, priv->plat->phy_node,
 822                                        &stmmac_adjust_link, 0, interface);
 823        } else {
 824                if (priv->plat->phy_bus_name)
 825                        snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
 826                                 priv->plat->phy_bus_name, priv->plat->bus_id);
 827                else
 828                        snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
 829                                 priv->plat->bus_id);
 830
 831                snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
 832                         priv->plat->phy_addr);
 833                pr_debug("stmmac_init_phy:  trying to attach to %s\n",
 834                         phy_id_fmt);
 835
 836                phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
 837                                     interface);
 838        }
 839
 840        if (IS_ERR_OR_NULL(phydev)) {
 841                pr_err("%s: Could not attach to PHY\n", dev->name);
 842                if (!phydev)
 843                        return -ENODEV;
 844
 845                return PTR_ERR(phydev);
 846        }
 847
 848        /* Stop Advertising 1000BASE Capability if interface is not GMII */
 849        if ((interface == PHY_INTERFACE_MODE_MII) ||
 850            (interface == PHY_INTERFACE_MODE_RMII) ||
 851                (max_speed < 1000 && max_speed > 0))
 852                phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
 853                                         SUPPORTED_1000baseT_Full);
 854
 855        /*
 856         * Broken HW is sometimes missing the pull-up resistor on the
 857         * MDIO line, which results in reads to non-existent devices returning
 858         * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
 859         * device as well.
 860         * Note: phydev->phy_id is the result of reading the UID PHY registers.
 861         */
 862        if (!priv->plat->phy_node && phydev->phy_id == 0) {
 863                phy_disconnect(phydev);
 864                return -ENODEV;
 865        }
 866        pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
 867                 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
 868
 869        priv->phydev = phydev;
 870
 871        return 0;
 872}
 873
 874/**
 875 * stmmac_display_ring - display ring
 876 * @head: pointer to the head of the ring passed.
 877 * @size: size of the ring.
 878 * @extend_desc: to verify if extended descriptors are used.
 879 * Description: display the control/status and buffer descriptors.
 880 */
 881static void stmmac_display_ring(void *head, int size, int extend_desc)
 882{
 883        int i;
 884        struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
 885        struct dma_desc *p = (struct dma_desc *)head;
 886
 887        for (i = 0; i < size; i++) {
 888                u64 x;
 889                if (extend_desc) {
 890                        x = *(u64 *) ep;
 891                        pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
 892                                i, (unsigned int)virt_to_phys(ep),
 893                                (unsigned int)x, (unsigned int)(x >> 32),
 894                                ep->basic.des2, ep->basic.des3);
 895                        ep++;
 896                } else {
 897                        x = *(u64 *) p;
 898                        pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
 899                                i, (unsigned int)virt_to_phys(p),
 900                                (unsigned int)x, (unsigned int)(x >> 32),
 901                                p->des2, p->des3);
 902                        p++;
 903                }
 904                pr_info("\n");
 905        }
 906}
 907
 908static void stmmac_display_rings(struct stmmac_priv *priv)
 909{
 910        unsigned int txsize = priv->dma_tx_size;
 911        unsigned int rxsize = priv->dma_rx_size;
 912
 913        if (priv->extend_desc) {
 914                pr_info("Extended RX descriptor ring:\n");
 915                stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
 916                pr_info("Extended TX descriptor ring:\n");
 917                stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
 918        } else {
 919                pr_info("RX descriptor ring:\n");
 920                stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
 921                pr_info("TX descriptor ring:\n");
 922                stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
 923        }
 924}
 925
 926static int stmmac_set_bfsize(int mtu, int bufsize)
 927{
 928        int ret = bufsize;
 929
 930        if (mtu >= BUF_SIZE_4KiB)
 931                ret = BUF_SIZE_8KiB;
 932        else if (mtu >= BUF_SIZE_2KiB)
 933                ret = BUF_SIZE_4KiB;
 934        else if (mtu > DEFAULT_BUFSIZE)
 935                ret = BUF_SIZE_2KiB;
 936        else
 937                ret = DEFAULT_BUFSIZE;
 938
 939        return ret;
 940}
 941
 942/**
 943 * stmmac_clear_descriptors - clear descriptors
 944 * @priv: driver private structure
 945 * Description: this function is called to clear the tx and rx descriptors
 946 * in case of both basic and extended descriptors are used.
 947 */
 948static void stmmac_clear_descriptors(struct stmmac_priv *priv)
 949{
 950        int i;
 951        unsigned int txsize = priv->dma_tx_size;
 952        unsigned int rxsize = priv->dma_rx_size;
 953
 954        /* Clear the Rx/Tx descriptors */
 955        for (i = 0; i < rxsize; i++)
 956                if (priv->extend_desc)
 957                        priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
 958                                                     priv->use_riwt, priv->mode,
 959                                                     (i == rxsize - 1));
 960                else
 961                        priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
 962                                                     priv->use_riwt, priv->mode,
 963                                                     (i == rxsize - 1));
 964        for (i = 0; i < txsize; i++)
 965                if (priv->extend_desc)
 966                        priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
 967                                                     priv->mode,
 968                                                     (i == txsize - 1));
 969                else
 970                        priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
 971                                                     priv->mode,
 972                                                     (i == txsize - 1));
 973}
 974
 975/**
 976 * stmmac_init_rx_buffers - init the RX descriptor buffer.
 977 * @priv: driver private structure
 978 * @p: descriptor pointer
 979 * @i: descriptor index
 980 * @flags: gfp flag.
 981 * Description: this function is called to allocate a receive buffer, perform
 982 * the DMA mapping and init the descriptor.
 983 */
 984static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
 985                                  int i, gfp_t flags)
 986{
 987        struct sk_buff *skb;
 988
 989        skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
 990        if (!skb) {
 991                pr_err("%s: Rx init fails; skb is NULL\n", __func__);
 992                return -ENOMEM;
 993        }
 994        priv->rx_skbuff[i] = skb;
 995        priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
 996                                                priv->dma_buf_sz,
 997                                                DMA_FROM_DEVICE);
 998        if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
 999                pr_err("%s: DMA mapping error\n", __func__);
1000                dev_kfree_skb_any(skb);
1001                return -EINVAL;
1002        }
1003
1004        p->des2 = priv->rx_skbuff_dma[i];
1005
1006        if ((priv->hw->mode->init_desc3) &&
1007            (priv->dma_buf_sz == BUF_SIZE_16KiB))
1008                priv->hw->mode->init_desc3(p);
1009
1010        return 0;
1011}
1012
1013static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1014{
1015        if (priv->rx_skbuff[i]) {
1016                dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1017                                 priv->dma_buf_sz, DMA_FROM_DEVICE);
1018                dev_kfree_skb_any(priv->rx_skbuff[i]);
1019        }
1020        priv->rx_skbuff[i] = NULL;
1021}
1022
1023/**
1024 * init_dma_desc_rings - init the RX/TX descriptor rings
1025 * @dev: net device structure
1026 * @flags: gfp flag.
1027 * Description: this function initializes the DMA RX/TX descriptors
1028 * and allocates the socket buffers. It suppors the chained and ring
1029 * modes.
1030 */
1031static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1032{
1033        int i;
1034        struct stmmac_priv *priv = netdev_priv(dev);
1035        unsigned int txsize = priv->dma_tx_size;
1036        unsigned int rxsize = priv->dma_rx_size;
1037        unsigned int bfsize = 0;
1038        int ret = -ENOMEM;
1039
1040        if (priv->hw->mode->set_16kib_bfsize)
1041                bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1042
1043        if (bfsize < BUF_SIZE_16KiB)
1044                bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1045
1046        priv->dma_buf_sz = bfsize;
1047
1048        if (netif_msg_probe(priv))
1049                pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1050                         txsize, rxsize, bfsize);
1051
1052        if (netif_msg_probe(priv)) {
1053                pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1054                         (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1055
1056                /* RX INITIALIZATION */
1057                pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1058        }
1059        for (i = 0; i < rxsize; i++) {
1060                struct dma_desc *p;
1061                if (priv->extend_desc)
1062                        p = &((priv->dma_erx + i)->basic);
1063                else
1064                        p = priv->dma_rx + i;
1065
1066                ret = stmmac_init_rx_buffers(priv, p, i, flags);
1067                if (ret)
1068                        goto err_init_rx_buffers;
1069
1070                if (netif_msg_probe(priv))
1071                        pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1072                                 priv->rx_skbuff[i]->data,
1073                                 (unsigned int)priv->rx_skbuff_dma[i]);
1074        }
1075        priv->cur_rx = 0;
1076        priv->dirty_rx = (unsigned int)(i - rxsize);
1077        buf_sz = bfsize;
1078
1079        /* Setup the chained descriptor addresses */
1080        if (priv->mode == STMMAC_CHAIN_MODE) {
1081                if (priv->extend_desc) {
1082                        priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1083                                             rxsize, 1);
1084                        priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1085                                             txsize, 1);
1086                } else {
1087                        priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1088                                             rxsize, 0);
1089                        priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1090                                             txsize, 0);
1091                }
1092        }
1093
1094        /* TX INITIALIZATION */
1095        for (i = 0; i < txsize; i++) {
1096                struct dma_desc *p;
1097                if (priv->extend_desc)
1098                        p = &((priv->dma_etx + i)->basic);
1099                else
1100                        p = priv->dma_tx + i;
1101                p->des2 = 0;
1102                priv->tx_skbuff_dma[i].buf = 0;
1103                priv->tx_skbuff_dma[i].map_as_page = false;
1104                priv->tx_skbuff[i] = NULL;
1105        }
1106
1107        priv->dirty_tx = 0;
1108        priv->cur_tx = 0;
1109        netdev_reset_queue(priv->dev);
1110
1111        stmmac_clear_descriptors(priv);
1112
1113        if (netif_msg_hw(priv))
1114                stmmac_display_rings(priv);
1115
1116        return 0;
1117err_init_rx_buffers:
1118        while (--i >= 0)
1119                stmmac_free_rx_buffers(priv, i);
1120        return ret;
1121}
1122
1123static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1124{
1125        int i;
1126
1127        for (i = 0; i < priv->dma_rx_size; i++)
1128                stmmac_free_rx_buffers(priv, i);
1129}
1130
1131static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1132{
1133        int i;
1134
1135        for (i = 0; i < priv->dma_tx_size; i++) {
1136                struct dma_desc *p;
1137
1138                if (priv->extend_desc)
1139                        p = &((priv->dma_etx + i)->basic);
1140                else
1141                        p = priv->dma_tx + i;
1142
1143                if (priv->tx_skbuff_dma[i].buf) {
1144                        if (priv->tx_skbuff_dma[i].map_as_page)
1145                                dma_unmap_page(priv->device,
1146                                               priv->tx_skbuff_dma[i].buf,
1147                                               priv->hw->desc->get_tx_len(p),
1148                                               DMA_TO_DEVICE);
1149                        else
1150                                dma_unmap_single(priv->device,
1151                                                 priv->tx_skbuff_dma[i].buf,
1152                                                 priv->hw->desc->get_tx_len(p),
1153                                                 DMA_TO_DEVICE);
1154                }
1155
1156                if (priv->tx_skbuff[i] != NULL) {
1157                        dev_kfree_skb_any(priv->tx_skbuff[i]);
1158                        priv->tx_skbuff[i] = NULL;
1159                        priv->tx_skbuff_dma[i].buf = 0;
1160                        priv->tx_skbuff_dma[i].map_as_page = false;
1161                }
1162        }
1163}
1164
1165/**
1166 * alloc_dma_desc_resources - alloc TX/RX resources.
1167 * @priv: private structure
1168 * Description: according to which descriptor can be used (extend or basic)
1169 * this function allocates the resources for TX and RX paths. In case of
1170 * reception, for example, it pre-allocated the RX socket buffer in order to
1171 * allow zero-copy mechanism.
1172 */
1173static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1174{
1175        unsigned int txsize = priv->dma_tx_size;
1176        unsigned int rxsize = priv->dma_rx_size;
1177        int ret = -ENOMEM;
1178
1179        priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1180                                            GFP_KERNEL);
1181        if (!priv->rx_skbuff_dma)
1182                return -ENOMEM;
1183
1184        priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1185                                        GFP_KERNEL);
1186        if (!priv->rx_skbuff)
1187                goto err_rx_skbuff;
1188
1189        priv->tx_skbuff_dma = kmalloc_array(txsize,
1190                                            sizeof(*priv->tx_skbuff_dma),
1191                                            GFP_KERNEL);
1192        if (!priv->tx_skbuff_dma)
1193                goto err_tx_skbuff_dma;
1194
1195        priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1196                                        GFP_KERNEL);
1197        if (!priv->tx_skbuff)
1198                goto err_tx_skbuff;
1199
1200        if (priv->extend_desc) {
1201                priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1202                                                    sizeof(struct
1203                                                           dma_extended_desc),
1204                                                    &priv->dma_rx_phy,
1205                                                    GFP_KERNEL);
1206                if (!priv->dma_erx)
1207                        goto err_dma;
1208
1209                priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1210                                                    sizeof(struct
1211                                                           dma_extended_desc),
1212                                                    &priv->dma_tx_phy,
1213                                                    GFP_KERNEL);
1214                if (!priv->dma_etx) {
1215                        dma_free_coherent(priv->device, priv->dma_rx_size *
1216                                          sizeof(struct dma_extended_desc),
1217                                          priv->dma_erx, priv->dma_rx_phy);
1218                        goto err_dma;
1219                }
1220        } else {
1221                priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1222                                                   sizeof(struct dma_desc),
1223                                                   &priv->dma_rx_phy,
1224                                                   GFP_KERNEL);
1225                if (!priv->dma_rx)
1226                        goto err_dma;
1227
1228                priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1229                                                   sizeof(struct dma_desc),
1230                                                   &priv->dma_tx_phy,
1231                                                   GFP_KERNEL);
1232                if (!priv->dma_tx) {
1233                        dma_free_coherent(priv->device, priv->dma_rx_size *
1234                                          sizeof(struct dma_desc),
1235                                          priv->dma_rx, priv->dma_rx_phy);
1236                        goto err_dma;
1237                }
1238        }
1239
1240        return 0;
1241
1242err_dma:
1243        kfree(priv->tx_skbuff);
1244err_tx_skbuff:
1245        kfree(priv->tx_skbuff_dma);
1246err_tx_skbuff_dma:
1247        kfree(priv->rx_skbuff);
1248err_rx_skbuff:
1249        kfree(priv->rx_skbuff_dma);
1250        return ret;
1251}
1252
1253static void free_dma_desc_resources(struct stmmac_priv *priv)
1254{
1255        /* Release the DMA TX/RX socket buffers */
1256        dma_free_rx_skbufs(priv);
1257        dma_free_tx_skbufs(priv);
1258
1259        /* Free DMA regions of consistent memory previously allocated */
1260        if (!priv->extend_desc) {
1261                dma_free_coherent(priv->device,
1262                                  priv->dma_tx_size * sizeof(struct dma_desc),
1263                                  priv->dma_tx, priv->dma_tx_phy);
1264                dma_free_coherent(priv->device,
1265                                  priv->dma_rx_size * sizeof(struct dma_desc),
1266                                  priv->dma_rx, priv->dma_rx_phy);
1267        } else {
1268                dma_free_coherent(priv->device, priv->dma_tx_size *
1269                                  sizeof(struct dma_extended_desc),
1270                                  priv->dma_etx, priv->dma_tx_phy);
1271                dma_free_coherent(priv->device, priv->dma_rx_size *
1272                                  sizeof(struct dma_extended_desc),
1273                                  priv->dma_erx, priv->dma_rx_phy);
1274        }
1275        kfree(priv->rx_skbuff_dma);
1276        kfree(priv->rx_skbuff);
1277        kfree(priv->tx_skbuff_dma);
1278        kfree(priv->tx_skbuff);
1279}
1280
1281/**
1282 *  stmmac_dma_operation_mode - HW DMA operation mode
1283 *  @priv: driver private structure
1284 *  Description: it is used for configuring the DMA operation mode register in
1285 *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1286 */
1287static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1288{
1289        int rxfifosz = priv->plat->rx_fifo_size;
1290
1291        if (priv->plat->force_thresh_dma_mode)
1292                priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1293        else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1294                /*
1295                 * In case of GMAC, SF mode can be enabled
1296                 * to perform the TX COE in HW. This depends on:
1297                 * 1) TX COE if actually supported
1298                 * 2) There is no bugged Jumbo frame support
1299                 *    that needs to not insert csum in the TDES.
1300                 */
1301                priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1302                                        rxfifosz);
1303                priv->xstats.threshold = SF_DMA_MODE;
1304        } else
1305                priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1306                                        rxfifosz);
1307}
1308
1309/**
1310 * stmmac_tx_clean - to manage the transmission completion
1311 * @priv: driver private structure
1312 * Description: it reclaims the transmit resources after transmission completes.
1313 */
1314static void stmmac_tx_clean(struct stmmac_priv *priv)
1315{
1316        unsigned int txsize = priv->dma_tx_size;
1317        unsigned int bytes_compl = 0, pkts_compl = 0;
1318
1319        spin_lock(&priv->tx_lock);
1320
1321        priv->xstats.tx_clean++;
1322
1323        while (priv->dirty_tx != priv->cur_tx) {
1324                int last;
1325                unsigned int entry = priv->dirty_tx % txsize;
1326                struct sk_buff *skb = priv->tx_skbuff[entry];
1327                struct dma_desc *p;
1328
1329                if (priv->extend_desc)
1330                        p = (struct dma_desc *)(priv->dma_etx + entry);
1331                else
1332                        p = priv->dma_tx + entry;
1333
1334                /* Check if the descriptor is owned by the DMA. */
1335                if (priv->hw->desc->get_tx_owner(p))
1336                        break;
1337
1338                /* Verify tx error by looking at the last segment. */
1339                last = priv->hw->desc->get_tx_ls(p);
1340                if (likely(last)) {
1341                        int tx_error =
1342                            priv->hw->desc->tx_status(&priv->dev->stats,
1343                                                      &priv->xstats, p,
1344                                                      priv->ioaddr);
1345                        if (likely(tx_error == 0)) {
1346                                priv->dev->stats.tx_packets++;
1347                                priv->xstats.tx_pkt_n++;
1348                        } else
1349                                priv->dev->stats.tx_errors++;
1350
1351                        stmmac_get_tx_hwtstamp(priv, entry, skb);
1352                }
1353                if (netif_msg_tx_done(priv))
1354                        pr_debug("%s: curr %d, dirty %d\n", __func__,
1355                                 priv->cur_tx, priv->dirty_tx);
1356
1357                if (likely(priv->tx_skbuff_dma[entry].buf)) {
1358                        if (priv->tx_skbuff_dma[entry].map_as_page)
1359                                dma_unmap_page(priv->device,
1360                                               priv->tx_skbuff_dma[entry].buf,
1361                                               priv->hw->desc->get_tx_len(p),
1362                                               DMA_TO_DEVICE);
1363                        else
1364                                dma_unmap_single(priv->device,
1365                                                 priv->tx_skbuff_dma[entry].buf,
1366                                                 priv->hw->desc->get_tx_len(p),
1367                                                 DMA_TO_DEVICE);
1368                        priv->tx_skbuff_dma[entry].buf = 0;
1369                        priv->tx_skbuff_dma[entry].map_as_page = false;
1370                }
1371                priv->hw->mode->clean_desc3(priv, p);
1372
1373                if (likely(skb != NULL)) {
1374                        pkts_compl++;
1375                        bytes_compl += skb->len;
1376                        dev_consume_skb_any(skb);
1377                        priv->tx_skbuff[entry] = NULL;
1378                }
1379
1380                priv->hw->desc->release_tx_desc(p, priv->mode);
1381
1382                priv->dirty_tx++;
1383        }
1384
1385        netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1386
1387        if (unlikely(netif_queue_stopped(priv->dev) &&
1388                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1389                netif_tx_lock(priv->dev);
1390                if (netif_queue_stopped(priv->dev) &&
1391                    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1392                        if (netif_msg_tx_done(priv))
1393                                pr_debug("%s: restart transmit\n", __func__);
1394                        netif_wake_queue(priv->dev);
1395                }
1396                netif_tx_unlock(priv->dev);
1397        }
1398
1399        if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1400                stmmac_enable_eee_mode(priv);
1401                mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1402        }
1403        spin_unlock(&priv->tx_lock);
1404}
1405
1406static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1407{
1408        priv->hw->dma->enable_dma_irq(priv->ioaddr);
1409}
1410
1411static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1412{
1413        priv->hw->dma->disable_dma_irq(priv->ioaddr);
1414}
1415
1416/**
1417 * stmmac_tx_err - to manage the tx error
1418 * @priv: driver private structure
1419 * Description: it cleans the descriptors and restarts the transmission
1420 * in case of transmission errors.
1421 */
1422static void stmmac_tx_err(struct stmmac_priv *priv)
1423{
1424        int i;
1425        int txsize = priv->dma_tx_size;
1426        netif_stop_queue(priv->dev);
1427
1428        priv->hw->dma->stop_tx(priv->ioaddr);
1429        dma_free_tx_skbufs(priv);
1430        for (i = 0; i < txsize; i++)
1431                if (priv->extend_desc)
1432                        priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1433                                                     priv->mode,
1434                                                     (i == txsize - 1));
1435                else
1436                        priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1437                                                     priv->mode,
1438                                                     (i == txsize - 1));
1439        priv->dirty_tx = 0;
1440        priv->cur_tx = 0;
1441        netdev_reset_queue(priv->dev);
1442        priv->hw->dma->start_tx(priv->ioaddr);
1443
1444        priv->dev->stats.tx_errors++;
1445        netif_wake_queue(priv->dev);
1446}
1447
1448/**
1449 * stmmac_dma_interrupt - DMA ISR
1450 * @priv: driver private structure
1451 * Description: this is the DMA ISR. It is called by the main ISR.
1452 * It calls the dwmac dma routine and schedule poll method in case of some
1453 * work can be done.
1454 */
1455static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1456{
1457        int status;
1458        int rxfifosz = priv->plat->rx_fifo_size;
1459
1460        status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1461        if (likely((status & handle_rx)) || (status & handle_tx)) {
1462                if (likely(napi_schedule_prep(&priv->napi))) {
1463                        stmmac_disable_dma_irq(priv);
1464                        __napi_schedule(&priv->napi);
1465                }
1466        }
1467        if (unlikely(status & tx_hard_error_bump_tc)) {
1468                /* Try to bump up the dma threshold on this failure */
1469                if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1470                    (tc <= 256)) {
1471                        tc += 64;
1472                        if (priv->plat->force_thresh_dma_mode)
1473                                priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1474                                                        rxfifosz);
1475                        else
1476                                priv->hw->dma->dma_mode(priv->ioaddr, tc,
1477                                                        SF_DMA_MODE, rxfifosz);
1478                        priv->xstats.threshold = tc;
1479                }
1480        } else if (unlikely(status == tx_hard_error))
1481                stmmac_tx_err(priv);
1482}
1483
1484/**
1485 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1486 * @priv: driver private structure
1487 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1488 */
1489static void stmmac_mmc_setup(struct stmmac_priv *priv)
1490{
1491        unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1492            MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1493
1494        dwmac_mmc_intr_all_mask(priv->ioaddr);
1495
1496        if (priv->dma_cap.rmon) {
1497                dwmac_mmc_ctrl(priv->ioaddr, mode);
1498                memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1499        } else
1500                pr_info(" No MAC Management Counters available\n");
1501}
1502
1503/**
1504 * stmmac_get_synopsys_id - return the SYINID.
1505 * @priv: driver private structure
1506 * Description: this simple function is to decode and return the SYINID
1507 * starting from the HW core register.
1508 */
1509static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1510{
1511        u32 hwid = priv->hw->synopsys_uid;
1512
1513        /* Check Synopsys Id (not available on old chips) */
1514        if (likely(hwid)) {
1515                u32 uid = ((hwid & 0x0000ff00) >> 8);
1516                u32 synid = (hwid & 0x000000ff);
1517
1518                pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1519                        uid, synid);
1520
1521                return synid;
1522        }
1523        return 0;
1524}
1525
1526/**
1527 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1528 * @priv: driver private structure
1529 * Description: select the Enhanced/Alternate or Normal descriptors.
1530 * In case of Enhanced/Alternate, it checks if the extended descriptors are
1531 * supported by the HW capability register.
1532 */
1533static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1534{
1535        if (priv->plat->enh_desc) {
1536                pr_info(" Enhanced/Alternate descriptors\n");
1537
1538                /* GMAC older than 3.50 has no extended descriptors */
1539                if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1540                        pr_info("\tEnabled extended descriptors\n");
1541                        priv->extend_desc = 1;
1542                } else
1543                        pr_warn("Extended descriptors not supported\n");
1544
1545                priv->hw->desc = &enh_desc_ops;
1546        } else {
1547                pr_info(" Normal descriptors\n");
1548                priv->hw->desc = &ndesc_ops;
1549        }
1550}
1551
1552/**
1553 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1554 * @priv: driver private structure
1555 * Description:
1556 *  new GMAC chip generations have a new register to indicate the
1557 *  presence of the optional feature/functions.
1558 *  This can be also used to override the value passed through the
1559 *  platform and necessary for old MAC10/100 and GMAC chips.
1560 */
1561static int stmmac_get_hw_features(struct stmmac_priv *priv)
1562{
1563        u32 hw_cap = 0;
1564
1565        if (priv->hw->dma->get_hw_feature) {
1566                hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1567
1568                priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1569                priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1570                priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1571                priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1572                priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1573                priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1574                priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1575                priv->dma_cap.pmt_remote_wake_up =
1576                    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1577                priv->dma_cap.pmt_magic_frame =
1578                    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1579                /* MMC */
1580                priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1581                /* IEEE 1588-2002 */
1582                priv->dma_cap.time_stamp =
1583                    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1584                /* IEEE 1588-2008 */
1585                priv->dma_cap.atime_stamp =
1586                    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1587                /* 802.3az - Energy-Efficient Ethernet (EEE) */
1588                priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1589                priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1590                /* TX and RX csum */
1591                priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1592                priv->dma_cap.rx_coe_type1 =
1593                    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1594                priv->dma_cap.rx_coe_type2 =
1595                    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1596                priv->dma_cap.rxfifo_over_2048 =
1597                    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1598                /* TX and RX number of channels */
1599                priv->dma_cap.number_rx_channel =
1600                    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1601                priv->dma_cap.number_tx_channel =
1602                    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1603                /* Alternate (enhanced) DESC mode */
1604                priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1605        }
1606
1607        return hw_cap;
1608}
1609
1610/**
1611 * stmmac_check_ether_addr - check if the MAC addr is valid
1612 * @priv: driver private structure
1613 * Description:
1614 * it is to verify if the MAC address is valid, in case of failures it
1615 * generates a random MAC address
1616 */
1617static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1618{
1619        if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1620                priv->hw->mac->get_umac_addr(priv->hw,
1621                                             priv->dev->dev_addr, 0);
1622                if (!is_valid_ether_addr(priv->dev->dev_addr))
1623                        eth_hw_addr_random(priv->dev);
1624                pr_info("%s: device MAC address %pM\n", priv->dev->name,
1625                        priv->dev->dev_addr);
1626        }
1627}
1628
1629/**
1630 * stmmac_init_dma_engine - DMA init.
1631 * @priv: driver private structure
1632 * Description:
1633 * It inits the DMA invoking the specific MAC/GMAC callback.
1634 * Some DMA parameters can be passed from the platform;
1635 * in case of these are not passed a default is kept for the MAC or GMAC.
1636 */
1637static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1638{
1639        int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1640        int mixed_burst = 0;
1641        int atds = 0;
1642
1643        if (priv->plat->dma_cfg) {
1644                pbl = priv->plat->dma_cfg->pbl;
1645                fixed_burst = priv->plat->dma_cfg->fixed_burst;
1646                mixed_burst = priv->plat->dma_cfg->mixed_burst;
1647                burst_len = priv->plat->dma_cfg->burst_len;
1648        }
1649
1650        if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1651                atds = 1;
1652
1653        return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1654                                   burst_len, priv->dma_tx_phy,
1655                                   priv->dma_rx_phy, atds);
1656}
1657
1658/**
1659 * stmmac_tx_timer - mitigation sw timer for tx.
1660 * @data: data pointer
1661 * Description:
1662 * This is the timer handler to directly invoke the stmmac_tx_clean.
1663 */
1664static void stmmac_tx_timer(unsigned long data)
1665{
1666        struct stmmac_priv *priv = (struct stmmac_priv *)data;
1667
1668        stmmac_tx_clean(priv);
1669}
1670
1671/**
1672 * stmmac_init_tx_coalesce - init tx mitigation options.
1673 * @priv: driver private structure
1674 * Description:
1675 * This inits the transmit coalesce parameters: i.e. timer rate,
1676 * timer handler and default threshold used for enabling the
1677 * interrupt on completion bit.
1678 */
1679static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1680{
1681        priv->tx_coal_frames = STMMAC_TX_FRAMES;
1682        priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1683        init_timer(&priv->txtimer);
1684        priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1685        priv->txtimer.data = (unsigned long)priv;
1686        priv->txtimer.function = stmmac_tx_timer;
1687        add_timer(&priv->txtimer);
1688}
1689
1690/**
1691 * stmmac_hw_setup - setup mac in a usable state.
1692 *  @dev : pointer to the device structure.
1693 *  Description:
1694 *  this is the main function to setup the HW in a usable state because the
1695 *  dma engine is reset, the core registers are configured (e.g. AXI,
1696 *  Checksum features, timers). The DMA is ready to start receiving and
1697 *  transmitting.
1698 *  Return value:
1699 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1700 *  file on failure.
1701 */
1702static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1703{
1704        struct stmmac_priv *priv = netdev_priv(dev);
1705        int ret;
1706
1707        /* DMA initialization and SW reset */
1708        ret = stmmac_init_dma_engine(priv);
1709        if (ret < 0) {
1710                pr_err("%s: DMA engine initialization failed\n", __func__);
1711                return ret;
1712        }
1713
1714        /* Copy the MAC addr into the HW  */
1715        priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1716
1717        /* If required, perform hw setup of the bus. */
1718        if (priv->plat->bus_setup)
1719                priv->plat->bus_setup(priv->ioaddr);
1720
1721        /* Initialize the MAC Core */
1722        priv->hw->mac->core_init(priv->hw, dev->mtu);
1723
1724        ret = priv->hw->mac->rx_ipc(priv->hw);
1725        if (!ret) {
1726                pr_warn(" RX IPC Checksum Offload disabled\n");
1727                priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1728                priv->hw->rx_csum = 0;
1729        }
1730
1731        /* Enable the MAC Rx/Tx */
1732        stmmac_set_mac(priv->ioaddr, true);
1733
1734        /* Set the HW DMA mode and the COE */
1735        stmmac_dma_operation_mode(priv);
1736
1737        stmmac_mmc_setup(priv);
1738
1739        if (init_ptp) {
1740                ret = stmmac_init_ptp(priv);
1741                if (ret && ret != -EOPNOTSUPP)
1742                        pr_warn("%s: failed PTP initialisation\n", __func__);
1743        }
1744
1745#ifdef CONFIG_DEBUG_FS
1746        ret = stmmac_init_fs(dev);
1747        if (ret < 0)
1748                pr_warn("%s: failed debugFS registration\n", __func__);
1749#endif
1750        /* Start the ball rolling... */
1751        pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1752        priv->hw->dma->start_tx(priv->ioaddr);
1753        priv->hw->dma->start_rx(priv->ioaddr);
1754
1755        /* Dump DMA/MAC registers */
1756        if (netif_msg_hw(priv)) {
1757                priv->hw->mac->dump_regs(priv->hw);
1758                priv->hw->dma->dump_regs(priv->ioaddr);
1759        }
1760        priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1761
1762        if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1763                priv->rx_riwt = MAX_DMA_RIWT;
1764                priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1765        }
1766
1767        if (priv->pcs && priv->hw->mac->ctrl_ane)
1768                priv->hw->mac->ctrl_ane(priv->hw, 0);
1769
1770        return 0;
1771}
1772
1773/**
1774 *  stmmac_open - open entry point of the driver
1775 *  @dev : pointer to the device structure.
1776 *  Description:
1777 *  This function is the open entry point of the driver.
1778 *  Return value:
1779 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1780 *  file on failure.
1781 */
1782static int stmmac_open(struct net_device *dev)
1783{
1784        struct stmmac_priv *priv = netdev_priv(dev);
1785        int ret;
1786
1787        stmmac_check_ether_addr(priv);
1788
1789        if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1790            priv->pcs != STMMAC_PCS_RTBI) {
1791                ret = stmmac_init_phy(dev);
1792                if (ret) {
1793                        pr_err("%s: Cannot attach to PHY (error: %d)\n",
1794                               __func__, ret);
1795                        return ret;
1796                }
1797        }
1798
1799        /* Extra statistics */
1800        memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1801        priv->xstats.threshold = tc;
1802
1803        /* Create and initialize the TX/RX descriptors chains. */
1804        priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1805        priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1806        priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1807
1808        ret = alloc_dma_desc_resources(priv);
1809        if (ret < 0) {
1810                pr_err("%s: DMA descriptors allocation failed\n", __func__);
1811                goto dma_desc_error;
1812        }
1813
1814        ret = init_dma_desc_rings(dev, GFP_KERNEL);
1815        if (ret < 0) {
1816                pr_err("%s: DMA descriptors initialization failed\n", __func__);
1817                goto init_error;
1818        }
1819
1820        ret = stmmac_hw_setup(dev, true);
1821        if (ret < 0) {
1822                pr_err("%s: Hw setup failed\n", __func__);
1823                goto init_error;
1824        }
1825
1826        stmmac_init_tx_coalesce(priv);
1827
1828        if (priv->phydev)
1829                phy_start(priv->phydev);
1830
1831        /* Request the IRQ lines */
1832        ret = request_irq(dev->irq, stmmac_interrupt,
1833                          IRQF_SHARED, dev->name, dev);
1834        if (unlikely(ret < 0)) {
1835                pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1836                       __func__, dev->irq, ret);
1837                goto init_error;
1838        }
1839
1840        /* Request the Wake IRQ in case of another line is used for WoL */
1841        if (priv->wol_irq != dev->irq) {
1842                ret = request_irq(priv->wol_irq, stmmac_interrupt,
1843                                  IRQF_SHARED, dev->name, dev);
1844                if (unlikely(ret < 0)) {
1845                        pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1846                               __func__, priv->wol_irq, ret);
1847                        goto wolirq_error;
1848                }
1849        }
1850
1851        /* Request the IRQ lines */
1852        if (priv->lpi_irq > 0) {
1853                ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1854                                  dev->name, dev);
1855                if (unlikely(ret < 0)) {
1856                        pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1857                               __func__, priv->lpi_irq, ret);
1858                        goto lpiirq_error;
1859                }
1860        }
1861
1862        napi_enable(&priv->napi);
1863        netif_start_queue(dev);
1864
1865        return 0;
1866
1867lpiirq_error:
1868        if (priv->wol_irq != dev->irq)
1869                free_irq(priv->wol_irq, dev);
1870wolirq_error:
1871        free_irq(dev->irq, dev);
1872
1873init_error:
1874        free_dma_desc_resources(priv);
1875dma_desc_error:
1876        if (priv->phydev)
1877                phy_disconnect(priv->phydev);
1878
1879        return ret;
1880}
1881
1882/**
1883 *  stmmac_release - close entry point of the driver
1884 *  @dev : device pointer.
1885 *  Description:
1886 *  This is the stop entry point of the driver.
1887 */
1888static int stmmac_release(struct net_device *dev)
1889{
1890        struct stmmac_priv *priv = netdev_priv(dev);
1891
1892        if (priv->eee_enabled)
1893                del_timer_sync(&priv->eee_ctrl_timer);
1894
1895        /* Stop and disconnect the PHY */
1896        if (priv->phydev) {
1897                phy_stop(priv->phydev);
1898                phy_disconnect(priv->phydev);
1899                priv->phydev = NULL;
1900        }
1901
1902        netif_stop_queue(dev);
1903
1904        napi_disable(&priv->napi);
1905
1906        del_timer_sync(&priv->txtimer);
1907
1908        /* Free the IRQ lines */
1909        free_irq(dev->irq, dev);
1910        if (priv->wol_irq != dev->irq)
1911                free_irq(priv->wol_irq, dev);
1912        if (priv->lpi_irq > 0)
1913                free_irq(priv->lpi_irq, dev);
1914
1915        /* Stop TX/RX DMA and clear the descriptors */
1916        priv->hw->dma->stop_tx(priv->ioaddr);
1917        priv->hw->dma->stop_rx(priv->ioaddr);
1918
1919        /* Release and free the Rx/Tx resources */
1920        free_dma_desc_resources(priv);
1921
1922        /* Disable the MAC Rx/Tx */
1923        stmmac_set_mac(priv->ioaddr, false);
1924
1925        netif_carrier_off(dev);
1926
1927#ifdef CONFIG_DEBUG_FS
1928        stmmac_exit_fs(dev);
1929#endif
1930
1931        stmmac_release_ptp(priv);
1932
1933        return 0;
1934}
1935
1936/**
1937 *  stmmac_xmit - Tx entry point of the driver
1938 *  @skb : the socket buffer
1939 *  @dev : device pointer
1940 *  Description : this is the tx entry point of the driver.
1941 *  It programs the chain or the ring and supports oversized frames
1942 *  and SG feature.
1943 */
1944static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1945{
1946        struct stmmac_priv *priv = netdev_priv(dev);
1947        unsigned int txsize = priv->dma_tx_size;
1948        unsigned int entry;
1949        int i, csum_insertion = 0, is_jumbo = 0;
1950        int nfrags = skb_shinfo(skb)->nr_frags;
1951        struct dma_desc *desc, *first;
1952        unsigned int nopaged_len = skb_headlen(skb);
1953        unsigned int enh_desc = priv->plat->enh_desc;
1954
1955        spin_lock(&priv->tx_lock);
1956
1957        if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1958                spin_unlock(&priv->tx_lock);
1959                if (!netif_queue_stopped(dev)) {
1960                        netif_stop_queue(dev);
1961                        /* This is a hard error, log it. */
1962                        pr_err("%s: Tx Ring full when queue awake\n", __func__);
1963                }
1964                return NETDEV_TX_BUSY;
1965        }
1966
1967        if (priv->tx_path_in_lpi_mode)
1968                stmmac_disable_eee_mode(priv);
1969
1970        entry = priv->cur_tx % txsize;
1971
1972        csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1973
1974        if (priv->extend_desc)
1975                desc = (struct dma_desc *)(priv->dma_etx + entry);
1976        else
1977                desc = priv->dma_tx + entry;
1978
1979        first = desc;
1980
1981        /* To program the descriptors according to the size of the frame */
1982        if (enh_desc)
1983                is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1984
1985        if (likely(!is_jumbo)) {
1986                desc->des2 = dma_map_single(priv->device, skb->data,
1987                                            nopaged_len, DMA_TO_DEVICE);
1988                if (dma_mapping_error(priv->device, desc->des2))
1989                        goto dma_map_err;
1990                priv->tx_skbuff_dma[entry].buf = desc->des2;
1991                priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1992                                                csum_insertion, priv->mode);
1993        } else {
1994                desc = first;
1995                entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1996                if (unlikely(entry < 0))
1997                        goto dma_map_err;
1998        }
1999
2000        for (i = 0; i < nfrags; i++) {
2001                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2002                int len = skb_frag_size(frag);
2003
2004                priv->tx_skbuff[entry] = NULL;
2005                entry = (++priv->cur_tx) % txsize;
2006                if (priv->extend_desc)
2007                        desc = (struct dma_desc *)(priv->dma_etx + entry);
2008                else
2009                        desc = priv->dma_tx + entry;
2010
2011                desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2012                                              DMA_TO_DEVICE);
2013                if (dma_mapping_error(priv->device, desc->des2))
2014                        goto dma_map_err; /* should reuse desc w/o issues */
2015
2016                priv->tx_skbuff_dma[entry].buf = desc->des2;
2017                priv->tx_skbuff_dma[entry].map_as_page = true;
2018                priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2019                                                priv->mode);
2020                wmb();
2021                priv->hw->desc->set_tx_owner(desc);
2022                wmb();
2023        }
2024
2025        priv->tx_skbuff[entry] = skb;
2026
2027        /* Finalize the latest segment. */
2028        priv->hw->desc->close_tx_desc(desc);
2029
2030        wmb();
2031        /* According to the coalesce parameter the IC bit for the latest
2032         * segment could be reset and the timer re-started to invoke the
2033         * stmmac_tx function. This approach takes care about the fragments.
2034         */
2035        priv->tx_count_frames += nfrags + 1;
2036        if (priv->tx_coal_frames > priv->tx_count_frames) {
2037                priv->hw->desc->clear_tx_ic(desc);
2038                priv->xstats.tx_reset_ic_bit++;
2039                mod_timer(&priv->txtimer,
2040                          STMMAC_COAL_TIMER(priv->tx_coal_timer));
2041        } else
2042                priv->tx_count_frames = 0;
2043
2044        /* To avoid raise condition */
2045        priv->hw->desc->set_tx_owner(first);
2046        wmb();
2047
2048        priv->cur_tx++;
2049
2050        if (netif_msg_pktdata(priv)) {
2051                pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2052                        __func__, (priv->cur_tx % txsize),
2053                        (priv->dirty_tx % txsize), entry, first, nfrags);
2054
2055                if (priv->extend_desc)
2056                        stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2057                else
2058                        stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2059
2060                pr_debug(">>> frame to be transmitted: ");
2061                print_pkt(skb->data, skb->len);
2062        }
2063        if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2064                if (netif_msg_hw(priv))
2065                        pr_debug("%s: stop transmitted packets\n", __func__);
2066                netif_stop_queue(dev);
2067        }
2068
2069        dev->stats.tx_bytes += skb->len;
2070
2071        if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2072                     priv->hwts_tx_en)) {
2073                /* declare that device is doing timestamping */
2074                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2075                priv->hw->desc->enable_tx_timestamp(first);
2076        }
2077
2078        if (!priv->hwts_tx_en)
2079                skb_tx_timestamp(skb);
2080
2081        netdev_sent_queue(dev, skb->len);
2082        priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2083
2084        spin_unlock(&priv->tx_lock);
2085        return NETDEV_TX_OK;
2086
2087dma_map_err:
2088        spin_unlock(&priv->tx_lock);
2089        dev_err(priv->device, "Tx dma map failed\n");
2090        dev_kfree_skb(skb);
2091        priv->dev->stats.tx_dropped++;
2092        return NETDEV_TX_OK;
2093}
2094
2095static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2096{
2097        struct ethhdr *ehdr;
2098        u16 vlanid;
2099
2100        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2101            NETIF_F_HW_VLAN_CTAG_RX &&
2102            !__vlan_get_tag(skb, &vlanid)) {
2103                /* pop the vlan tag */
2104                ehdr = (struct ethhdr *)skb->data;
2105                memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2106                skb_pull(skb, VLAN_HLEN);
2107                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2108        }
2109}
2110
2111
2112/**
2113 * stmmac_rx_refill - refill used skb preallocated buffers
2114 * @priv: driver private structure
2115 * Description : this is to reallocate the skb for the reception process
2116 * that is based on zero-copy.
2117 */
2118static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2119{
2120        unsigned int rxsize = priv->dma_rx_size;
2121        int bfsize = priv->dma_buf_sz;
2122
2123        for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2124                unsigned int entry = priv->dirty_rx % rxsize;
2125                struct dma_desc *p;
2126
2127                if (priv->extend_desc)
2128                        p = (struct dma_desc *)(priv->dma_erx + entry);
2129                else
2130                        p = priv->dma_rx + entry;
2131
2132                if (likely(priv->rx_skbuff[entry] == NULL)) {
2133                        struct sk_buff *skb;
2134
2135                        skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2136
2137                        if (unlikely(skb == NULL))
2138                                break;
2139
2140                        priv->rx_skbuff[entry] = skb;
2141                        priv->rx_skbuff_dma[entry] =
2142                            dma_map_single(priv->device, skb->data, bfsize,
2143                                           DMA_FROM_DEVICE);
2144                        if (dma_mapping_error(priv->device,
2145                                              priv->rx_skbuff_dma[entry])) {
2146                                dev_err(priv->device, "Rx dma map failed\n");
2147                                dev_kfree_skb(skb);
2148                                break;
2149                        }
2150                        p->des2 = priv->rx_skbuff_dma[entry];
2151
2152                        priv->hw->mode->refill_desc3(priv, p);
2153
2154                        if (netif_msg_rx_status(priv))
2155                                pr_debug("\trefill entry #%d\n", entry);
2156                }
2157                wmb();
2158                priv->hw->desc->set_rx_owner(p);
2159                wmb();
2160        }
2161}
2162
2163/**
2164 * stmmac_rx - manage the receive process
2165 * @priv: driver private structure
2166 * @limit: napi bugget.
2167 * Description :  this the function called by the napi poll method.
2168 * It gets all the frames inside the ring.
2169 */
2170static int stmmac_rx(struct stmmac_priv *priv, int limit)
2171{
2172        unsigned int rxsize = priv->dma_rx_size;
2173        unsigned int entry = priv->cur_rx % rxsize;
2174        unsigned int next_entry;
2175        unsigned int count = 0;
2176        int coe = priv->hw->rx_csum;
2177
2178        if (netif_msg_rx_status(priv)) {
2179                pr_debug("%s: descriptor ring:\n", __func__);
2180                if (priv->extend_desc)
2181                        stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2182                else
2183                        stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2184        }
2185        while (count < limit) {
2186                int status;
2187                struct dma_desc *p;
2188
2189                if (priv->extend_desc)
2190                        p = (struct dma_desc *)(priv->dma_erx + entry);
2191                else
2192                        p = priv->dma_rx + entry;
2193
2194                if (priv->hw->desc->get_rx_owner(p))
2195                        break;
2196
2197                count++;
2198
2199                next_entry = (++priv->cur_rx) % rxsize;
2200                if (priv->extend_desc)
2201                        prefetch(priv->dma_erx + next_entry);
2202                else
2203                        prefetch(priv->dma_rx + next_entry);
2204
2205                /* read the status of the incoming frame */
2206                status = priv->hw->desc->rx_status(&priv->dev->stats,
2207                                                   &priv->xstats, p);
2208                if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2209                        priv->hw->desc->rx_extended_status(&priv->dev->stats,
2210                                                           &priv->xstats,
2211                                                           priv->dma_erx +
2212                                                           entry);
2213                if (unlikely(status == discard_frame)) {
2214                        priv->dev->stats.rx_errors++;
2215                        if (priv->hwts_rx_en && !priv->extend_desc) {
2216                                /* DESC2 & DESC3 will be overwitten by device
2217                                 * with timestamp value, hence reinitialize
2218                                 * them in stmmac_rx_refill() function so that
2219                                 * device can reuse it.
2220                                 */
2221                                priv->rx_skbuff[entry] = NULL;
2222                                dma_unmap_single(priv->device,
2223                                                 priv->rx_skbuff_dma[entry],
2224                                                 priv->dma_buf_sz,
2225                                                 DMA_FROM_DEVICE);
2226                        }
2227                } else {
2228                        struct sk_buff *skb;
2229                        int frame_len;
2230
2231                        frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2232
2233                        /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2234                         * Type frames (LLC/LLC-SNAP)
2235                         */
2236                        if (unlikely(status != llc_snap))
2237                                frame_len -= ETH_FCS_LEN;
2238
2239                        if (netif_msg_rx_status(priv)) {
2240                                pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2241                                         p, entry, p->des2);
2242                                if (frame_len > ETH_FRAME_LEN)
2243                                        pr_debug("\tframe size %d, COE: %d\n",
2244                                                 frame_len, status);
2245                        }
2246                        skb = priv->rx_skbuff[entry];
2247                        if (unlikely(!skb)) {
2248                                pr_err("%s: Inconsistent Rx descriptor chain\n",
2249                                       priv->dev->name);
2250                                priv->dev->stats.rx_dropped++;
2251                                break;
2252                        }
2253                        prefetch(skb->data - NET_IP_ALIGN);
2254                        priv->rx_skbuff[entry] = NULL;
2255
2256                        stmmac_get_rx_hwtstamp(priv, entry, skb);
2257
2258                        skb_put(skb, frame_len);
2259                        dma_unmap_single(priv->device,
2260                                         priv->rx_skbuff_dma[entry],
2261                                         priv->dma_buf_sz, DMA_FROM_DEVICE);
2262
2263                        if (netif_msg_pktdata(priv)) {
2264                                pr_debug("frame received (%dbytes)", frame_len);
2265                                print_pkt(skb->data, frame_len);
2266                        }
2267
2268                        stmmac_rx_vlan(priv->dev, skb);
2269
2270                        skb->protocol = eth_type_trans(skb, priv->dev);
2271
2272                        if (unlikely(!coe))
2273                                skb_checksum_none_assert(skb);
2274                        else
2275                                skb->ip_summed = CHECKSUM_UNNECESSARY;
2276
2277                        napi_gro_receive(&priv->napi, skb);
2278
2279                        priv->dev->stats.rx_packets++;
2280                        priv->dev->stats.rx_bytes += frame_len;
2281                }
2282                entry = next_entry;
2283        }
2284
2285        stmmac_rx_refill(priv);
2286
2287        priv->xstats.rx_pkt_n += count;
2288
2289        return count;
2290}
2291
2292/**
2293 *  stmmac_poll - stmmac poll method (NAPI)
2294 *  @napi : pointer to the napi structure.
2295 *  @budget : maximum number of packets that the current CPU can receive from
2296 *            all interfaces.
2297 *  Description :
2298 *  To look at the incoming frames and clear the tx resources.
2299 */
2300static int stmmac_poll(struct napi_struct *napi, int budget)
2301{
2302        struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2303        int work_done = 0;
2304
2305        priv->xstats.napi_poll++;
2306        stmmac_tx_clean(priv);
2307
2308        work_done = stmmac_rx(priv, budget);
2309        if (work_done < budget) {
2310                napi_complete(napi);
2311                stmmac_enable_dma_irq(priv);
2312        }
2313        return work_done;
2314}
2315
2316/**
2317 *  stmmac_tx_timeout
2318 *  @dev : Pointer to net device structure
2319 *  Description: this function is called when a packet transmission fails to
2320 *   complete within a reasonable time. The driver will mark the error in the
2321 *   netdev structure and arrange for the device to be reset to a sane state
2322 *   in order to transmit a new packet.
2323 */
2324static void stmmac_tx_timeout(struct net_device *dev)
2325{
2326        struct stmmac_priv *priv = netdev_priv(dev);
2327
2328        /* Clear Tx resources and restart transmitting again */
2329        stmmac_tx_err(priv);
2330}
2331
2332/**
2333 *  stmmac_set_rx_mode - entry point for multicast addressing
2334 *  @dev : pointer to the device structure
2335 *  Description:
2336 *  This function is a driver entry point which gets called by the kernel
2337 *  whenever multicast addresses must be enabled/disabled.
2338 *  Return value:
2339 *  void.
2340 */
2341static void stmmac_set_rx_mode(struct net_device *dev)
2342{
2343        struct stmmac_priv *priv = netdev_priv(dev);
2344
2345        priv->hw->mac->set_filter(priv->hw, dev);
2346}
2347
2348/**
2349 *  stmmac_change_mtu - entry point to change MTU size for the device.
2350 *  @dev : device pointer.
2351 *  @new_mtu : the new MTU size for the device.
2352 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2353 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2354 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2355 *  Return value:
2356 *  0 on success and an appropriate (-)ve integer as defined in errno.h
2357 *  file on failure.
2358 */
2359static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2360{
2361        struct stmmac_priv *priv = netdev_priv(dev);
2362        int max_mtu;
2363
2364        if (netif_running(dev)) {
2365                pr_err("%s: must be stopped to change its MTU\n", dev->name);
2366                return -EBUSY;
2367        }
2368
2369        if (priv->plat->enh_desc)
2370                max_mtu = JUMBO_LEN;
2371        else
2372                max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2373
2374        if (priv->plat->maxmtu < max_mtu)
2375                max_mtu = priv->plat->maxmtu;
2376
2377        if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2378                pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2379                return -EINVAL;
2380        }
2381
2382        dev->mtu = new_mtu;
2383        netdev_update_features(dev);
2384
2385        return 0;
2386}
2387
2388static netdev_features_t stmmac_fix_features(struct net_device *dev,
2389                                             netdev_features_t features)
2390{
2391        struct stmmac_priv *priv = netdev_priv(dev);
2392
2393        if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2394                features &= ~NETIF_F_RXCSUM;
2395
2396        if (!priv->plat->tx_coe)
2397                features &= ~NETIF_F_ALL_CSUM;
2398
2399        /* Some GMAC devices have a bugged Jumbo frame support that
2400         * needs to have the Tx COE disabled for oversized frames
2401         * (due to limited buffer sizes). In this case we disable
2402         * the TX csum insertionin the TDES and not use SF.
2403         */
2404        if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2405                features &= ~NETIF_F_ALL_CSUM;
2406
2407        return features;
2408}
2409
2410static int stmmac_set_features(struct net_device *netdev,
2411                               netdev_features_t features)
2412{
2413        struct stmmac_priv *priv = netdev_priv(netdev);
2414
2415        /* Keep the COE Type in case of csum is supporting */
2416        if (features & NETIF_F_RXCSUM)
2417                priv->hw->rx_csum = priv->plat->rx_coe;
2418        else
2419                priv->hw->rx_csum = 0;
2420        /* No check needed because rx_coe has been set before and it will be
2421         * fixed in case of issue.
2422         */
2423        priv->hw->mac->rx_ipc(priv->hw);
2424
2425        return 0;
2426}
2427
2428/**
2429 *  stmmac_interrupt - main ISR
2430 *  @irq: interrupt number.
2431 *  @dev_id: to pass the net device pointer.
2432 *  Description: this is the main driver interrupt service routine.
2433 *  It can call:
2434 *  o DMA service routine (to manage incoming frame reception and transmission
2435 *    status)
2436 *  o Core interrupts to manage: remote wake-up, management counter, LPI
2437 *    interrupts.
2438 */
2439static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2440{
2441        struct net_device *dev = (struct net_device *)dev_id;
2442        struct stmmac_priv *priv = netdev_priv(dev);
2443
2444        if (priv->irq_wake)
2445                pm_wakeup_event(priv->device, 0);
2446
2447        if (unlikely(!dev)) {
2448                pr_err("%s: invalid dev pointer\n", __func__);
2449                return IRQ_NONE;
2450        }
2451
2452        /* To handle GMAC own interrupts */
2453        if (priv->plat->has_gmac) {
2454                int status = priv->hw->mac->host_irq_status(priv->hw,
2455                                                            &priv->xstats);
2456                if (unlikely(status)) {
2457                        /* For LPI we need to save the tx status */
2458                        if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2459                                priv->tx_path_in_lpi_mode = true;
2460                        if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2461                                priv->tx_path_in_lpi_mode = false;
2462                }
2463        }
2464
2465        /* To handle DMA interrupts */
2466        stmmac_dma_interrupt(priv);
2467
2468        return IRQ_HANDLED;
2469}
2470
2471#ifdef CONFIG_NET_POLL_CONTROLLER
2472/* Polling receive - used by NETCONSOLE and other diagnostic tools
2473 * to allow network I/O with interrupts disabled.
2474 */
2475static void stmmac_poll_controller(struct net_device *dev)
2476{
2477        disable_irq(dev->irq);
2478        stmmac_interrupt(dev->irq, dev);
2479        enable_irq(dev->irq);
2480}
2481#endif
2482
2483/**
2484 *  stmmac_ioctl - Entry point for the Ioctl
2485 *  @dev: Device pointer.
2486 *  @rq: An IOCTL specefic structure, that can contain a pointer to
2487 *  a proprietary structure used to pass information to the driver.
2488 *  @cmd: IOCTL command
2489 *  Description:
2490 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2491 */
2492static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2493{
2494        struct stmmac_priv *priv = netdev_priv(dev);
2495        int ret = -EOPNOTSUPP;
2496
2497        if (!netif_running(dev))
2498                return -EINVAL;
2499
2500        switch (cmd) {
2501        case SIOCGMIIPHY:
2502        case SIOCGMIIREG:
2503        case SIOCSMIIREG:
2504                if (!priv->phydev)
2505                        return -EINVAL;
2506                ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2507                break;
2508        case SIOCSHWTSTAMP:
2509                ret = stmmac_hwtstamp_ioctl(dev, rq);
2510                break;
2511        default:
2512                break;
2513        }
2514
2515        return ret;
2516}
2517
2518#ifdef CONFIG_DEBUG_FS
2519static struct dentry *stmmac_fs_dir;
2520
2521static void sysfs_display_ring(void *head, int size, int extend_desc,
2522                               struct seq_file *seq)
2523{
2524        int i;
2525        struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2526        struct dma_desc *p = (struct dma_desc *)head;
2527
2528        for (i = 0; i < size; i++) {
2529                u64 x;
2530                if (extend_desc) {
2531                        x = *(u64 *) ep;
2532                        seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2533                                   i, (unsigned int)virt_to_phys(ep),
2534                                   (unsigned int)x, (unsigned int)(x >> 32),
2535                                   ep->basic.des2, ep->basic.des3);
2536                        ep++;
2537                } else {
2538                        x = *(u64 *) p;
2539                        seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2540                                   i, (unsigned int)virt_to_phys(ep),
2541                                   (unsigned int)x, (unsigned int)(x >> 32),
2542                                   p->des2, p->des3);
2543                        p++;
2544                }
2545                seq_printf(seq, "\n");
2546        }
2547}
2548
2549static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2550{
2551        struct net_device *dev = seq->private;
2552        struct stmmac_priv *priv = netdev_priv(dev);
2553        unsigned int txsize = priv->dma_tx_size;
2554        unsigned int rxsize = priv->dma_rx_size;
2555
2556        if (priv->extend_desc) {
2557                seq_printf(seq, "Extended RX descriptor ring:\n");
2558                sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2559                seq_printf(seq, "Extended TX descriptor ring:\n");
2560                sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2561        } else {
2562                seq_printf(seq, "RX descriptor ring:\n");
2563                sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2564                seq_printf(seq, "TX descriptor ring:\n");
2565                sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2566        }
2567
2568        return 0;
2569}
2570
2571static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2572{
2573        return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2574}
2575
2576static const struct file_operations stmmac_rings_status_fops = {
2577        .owner = THIS_MODULE,
2578        .open = stmmac_sysfs_ring_open,
2579        .read = seq_read,
2580        .llseek = seq_lseek,
2581        .release = single_release,
2582};
2583
2584static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2585{
2586        struct net_device *dev = seq->private;
2587        struct stmmac_priv *priv = netdev_priv(dev);
2588
2589        if (!priv->hw_cap_support) {
2590                seq_printf(seq, "DMA HW features not supported\n");
2591                return 0;
2592        }
2593
2594        seq_printf(seq, "==============================\n");
2595        seq_printf(seq, "\tDMA HW features\n");
2596        seq_printf(seq, "==============================\n");
2597
2598        seq_printf(seq, "\t10/100 Mbps %s\n",
2599                   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2600        seq_printf(seq, "\t1000 Mbps %s\n",
2601                   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2602        seq_printf(seq, "\tHalf duple %s\n",
2603                   (priv->dma_cap.half_duplex) ? "Y" : "N");
2604        seq_printf(seq, "\tHash Filter: %s\n",
2605                   (priv->dma_cap.hash_filter) ? "Y" : "N");
2606        seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2607                   (priv->dma_cap.multi_addr) ? "Y" : "N");
2608        seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2609                   (priv->dma_cap.pcs) ? "Y" : "N");
2610        seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2611                   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2612        seq_printf(seq, "\tPMT Remote wake up: %s\n",
2613                   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2614        seq_printf(seq, "\tPMT Magic Frame: %s\n",
2615                   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2616        seq_printf(seq, "\tRMON module: %s\n",
2617                   (priv->dma_cap.rmon) ? "Y" : "N");
2618        seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2619                   (priv->dma_cap.time_stamp) ? "Y" : "N");
2620        seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2621                   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2622        seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2623                   (priv->dma_cap.eee) ? "Y" : "N");
2624        seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2625        seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2626                   (priv->dma_cap.tx_coe) ? "Y" : "N");
2627        seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2628                   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2629        seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2630                   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2631        seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2632                   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2633        seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2634                   priv->dma_cap.number_rx_channel);
2635        seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2636                   priv->dma_cap.number_tx_channel);
2637        seq_printf(seq, "\tEnhanced descriptors: %s\n",
2638                   (priv->dma_cap.enh_desc) ? "Y" : "N");
2639
2640        return 0;
2641}
2642
2643static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2644{
2645        return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2646}
2647
2648static const struct file_operations stmmac_dma_cap_fops = {
2649        .owner = THIS_MODULE,
2650        .open = stmmac_sysfs_dma_cap_open,
2651        .read = seq_read,
2652        .llseek = seq_lseek,
2653        .release = single_release,
2654};
2655
2656static int stmmac_init_fs(struct net_device *dev)
2657{
2658        struct stmmac_priv *priv = netdev_priv(dev);
2659
2660        /* Create per netdev entries */
2661        priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2662
2663        if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2664                pr_err("ERROR %s/%s, debugfs create directory failed\n",
2665                       STMMAC_RESOURCE_NAME, dev->name);
2666
2667                return -ENOMEM;
2668        }
2669
2670        /* Entry to report DMA RX/TX rings */
2671        priv->dbgfs_rings_status =
2672                debugfs_create_file("descriptors_status", S_IRUGO,
2673                                    priv->dbgfs_dir, dev,
2674                                    &stmmac_rings_status_fops);
2675
2676        if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2677                pr_info("ERROR creating stmmac ring debugfs file\n");
2678                debugfs_remove_recursive(priv->dbgfs_dir);
2679
2680                return -ENOMEM;
2681        }
2682
2683        /* Entry to report the DMA HW features */
2684        priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2685                                            priv->dbgfs_dir,
2686                                            dev, &stmmac_dma_cap_fops);
2687
2688        if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2689                pr_info("ERROR creating stmmac MMC debugfs file\n");
2690                debugfs_remove_recursive(priv->dbgfs_dir);
2691
2692                return -ENOMEM;
2693        }
2694
2695        return 0;
2696}
2697
2698static void stmmac_exit_fs(struct net_device *dev)
2699{
2700        struct stmmac_priv *priv = netdev_priv(dev);
2701
2702        debugfs_remove_recursive(priv->dbgfs_dir);
2703}
2704#endif /* CONFIG_DEBUG_FS */
2705
2706static const struct net_device_ops stmmac_netdev_ops = {
2707        .ndo_open = stmmac_open,
2708        .ndo_start_xmit = stmmac_xmit,
2709        .ndo_stop = stmmac_release,
2710        .ndo_change_mtu = stmmac_change_mtu,
2711        .ndo_fix_features = stmmac_fix_features,
2712        .ndo_set_features = stmmac_set_features,
2713        .ndo_set_rx_mode = stmmac_set_rx_mode,
2714        .ndo_tx_timeout = stmmac_tx_timeout,
2715        .ndo_do_ioctl = stmmac_ioctl,
2716#ifdef CONFIG_NET_POLL_CONTROLLER
2717        .ndo_poll_controller = stmmac_poll_controller,
2718#endif
2719        .ndo_set_mac_address = eth_mac_addr,
2720};
2721
2722/**
2723 *  stmmac_hw_init - Init the MAC device
2724 *  @priv: driver private structure
2725 *  Description: this function is to configure the MAC device according to
2726 *  some platform parameters or the HW capability register. It prepares the
2727 *  driver to use either ring or chain modes and to setup either enhanced or
2728 *  normal descriptors.
2729 */
2730static int stmmac_hw_init(struct stmmac_priv *priv)
2731{
2732        struct mac_device_info *mac;
2733
2734        /* Identify the MAC HW device */
2735        if (priv->plat->has_gmac) {
2736                priv->dev->priv_flags |= IFF_UNICAST_FLT;
2737                mac = dwmac1000_setup(priv->ioaddr,
2738                                      priv->plat->multicast_filter_bins,
2739                                      priv->plat->unicast_filter_entries);
2740        } else {
2741                mac = dwmac100_setup(priv->ioaddr);
2742        }
2743        if (!mac)
2744                return -ENOMEM;
2745
2746        priv->hw = mac;
2747
2748        /* Get and dump the chip ID */
2749        priv->synopsys_id = stmmac_get_synopsys_id(priv);
2750
2751        /* To use the chained or ring mode */
2752        if (chain_mode) {
2753                priv->hw->mode = &chain_mode_ops;
2754                pr_info(" Chain mode enabled\n");
2755                priv->mode = STMMAC_CHAIN_MODE;
2756        } else {
2757                priv->hw->mode = &ring_mode_ops;
2758                pr_info(" Ring mode enabled\n");
2759                priv->mode = STMMAC_RING_MODE;
2760        }
2761
2762        /* Get the HW capability (new GMAC newer than 3.50a) */
2763        priv->hw_cap_support = stmmac_get_hw_features(priv);
2764        if (priv->hw_cap_support) {
2765                pr_info(" DMA HW capability register supported");
2766
2767                /* We can override some gmac/dma configuration fields: e.g.
2768                 * enh_desc, tx_coe (e.g. that are passed through the
2769                 * platform) with the values from the HW capability
2770                 * register (if supported).
2771                 */
2772                priv->plat->enh_desc = priv->dma_cap.enh_desc;
2773                priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2774
2775                /* TXCOE doesn't work in thresh DMA mode */
2776                if (priv->plat->force_thresh_dma_mode)
2777                        priv->plat->tx_coe = 0;
2778                else
2779                        priv->plat->tx_coe = priv->dma_cap.tx_coe;
2780
2781                if (priv->dma_cap.rx_coe_type2)
2782                        priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2783                else if (priv->dma_cap.rx_coe_type1)
2784                        priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2785
2786        } else
2787                pr_info(" No HW DMA feature register supported");
2788
2789        /* To use alternate (extended) or normal descriptor structures */
2790        stmmac_selec_desc_mode(priv);
2791
2792        if (priv->plat->rx_coe) {
2793                priv->hw->rx_csum = priv->plat->rx_coe;
2794                pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2795                        priv->plat->rx_coe);
2796        }
2797        if (priv->plat->tx_coe)
2798                pr_info(" TX Checksum insertion supported\n");
2799
2800        if (priv->plat->pmt) {
2801                pr_info(" Wake-Up On Lan supported\n");
2802                device_set_wakeup_capable(priv->device, 1);
2803        }
2804
2805        return 0;
2806}
2807
2808/**
2809 * stmmac_dvr_probe
2810 * @device: device pointer
2811 * @plat_dat: platform data pointer
2812 * @res: stmmac resource pointer
2813 * Description: this is the main probe function used to
2814 * call the alloc_etherdev, allocate the priv structure.
2815 * Return:
2816 * returns 0 on success, otherwise errno.
2817 */
2818int stmmac_dvr_probe(struct device *device,
2819                     struct plat_stmmacenet_data *plat_dat,
2820                     struct stmmac_resources *res)
2821{
2822        int ret = 0;
2823        struct net_device *ndev = NULL;
2824        struct stmmac_priv *priv;
2825
2826        ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2827        if (!ndev)
2828                return -ENOMEM;
2829
2830        SET_NETDEV_DEV(ndev, device);
2831
2832        priv = netdev_priv(ndev);
2833        priv->device = device;
2834        priv->dev = ndev;
2835
2836        stmmac_set_ethtool_ops(ndev);
2837        priv->pause = pause;
2838        priv->plat = plat_dat;
2839        priv->ioaddr = res->addr;
2840        priv->dev->base_addr = (unsigned long)res->addr;
2841
2842        priv->dev->irq = res->irq;
2843        priv->wol_irq = res->wol_irq;
2844        priv->lpi_irq = res->lpi_irq;
2845
2846        if (res->mac)
2847                memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2848
2849        dev_set_drvdata(device, priv->dev);
2850
2851        /* Verify driver arguments */
2852        stmmac_verify_args();
2853
2854        /* Override with kernel parameters if supplied XXX CRS XXX
2855         * this needs to have multiple instances
2856         */
2857        if ((phyaddr >= 0) && (phyaddr <= 31))
2858                priv->plat->phy_addr = phyaddr;
2859
2860        priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2861        if (IS_ERR(priv->stmmac_clk)) {
2862                dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2863                         __func__);
2864                /* If failed to obtain stmmac_clk and specific clk_csr value
2865                 * is NOT passed from the platform, probe fail.
2866                 */
2867                if (!priv->plat->clk_csr) {
2868                        ret = PTR_ERR(priv->stmmac_clk);
2869                        goto error_clk_get;
2870                } else {
2871                        priv->stmmac_clk = NULL;
2872                }
2873        }
2874        clk_prepare_enable(priv->stmmac_clk);
2875
2876        priv->pclk = devm_clk_get(priv->device, "pclk");
2877        if (IS_ERR(priv->pclk)) {
2878                if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2879                        ret = -EPROBE_DEFER;
2880                        goto error_pclk_get;
2881                }
2882                priv->pclk = NULL;
2883        }
2884        clk_prepare_enable(priv->pclk);
2885
2886        priv->stmmac_rst = devm_reset_control_get(priv->device,
2887                                                  STMMAC_RESOURCE_NAME);
2888        if (IS_ERR(priv->stmmac_rst)) {
2889                if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2890                        ret = -EPROBE_DEFER;
2891                        goto error_hw_init;
2892                }
2893                dev_info(priv->device, "no reset control found\n");
2894                priv->stmmac_rst = NULL;
2895        }
2896        if (priv->stmmac_rst)
2897                reset_control_deassert(priv->stmmac_rst);
2898
2899        /* Init MAC and get the capabilities */
2900        ret = stmmac_hw_init(priv);
2901        if (ret)
2902                goto error_hw_init;
2903
2904        ndev->netdev_ops = &stmmac_netdev_ops;
2905
2906        ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2907                            NETIF_F_RXCSUM;
2908        ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2909        ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2910#ifdef STMMAC_VLAN_TAG_USED
2911        /* Both mac100 and gmac support receive VLAN tag detection */
2912        ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2913#endif
2914        priv->msg_enable = netif_msg_init(debug, default_msg_level);
2915
2916        if (flow_ctrl)
2917                priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2918
2919        /* Rx Watchdog is available in the COREs newer than the 3.40.
2920         * In some case, for example on bugged HW this feature
2921         * has to be disable and this can be done by passing the
2922         * riwt_off field from the platform.
2923         */
2924        if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2925                priv->use_riwt = 1;
2926                pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2927        }
2928
2929        netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2930
2931        spin_lock_init(&priv->lock);
2932        spin_lock_init(&priv->tx_lock);
2933
2934        ret = register_netdev(ndev);
2935        if (ret) {
2936                pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2937                goto error_netdev_register;
2938        }
2939
2940        /* If a specific clk_csr value is passed from the platform
2941         * this means that the CSR Clock Range selection cannot be
2942         * changed at run-time and it is fixed. Viceversa the driver'll try to
2943         * set the MDC clock dynamically according to the csr actual
2944         * clock input.
2945         */
2946        if (!priv->plat->clk_csr)
2947                stmmac_clk_csr_set(priv);
2948        else
2949                priv->clk_csr = priv->plat->clk_csr;
2950
2951        stmmac_check_pcs_mode(priv);
2952
2953        if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2954            priv->pcs != STMMAC_PCS_RTBI) {
2955                /* MDIO bus Registration */
2956                ret = stmmac_mdio_register(ndev);
2957                if (ret < 0) {
2958                        pr_debug("%s: MDIO bus (id: %d) registration failed",
2959                                 __func__, priv->plat->bus_id);
2960                        goto error_mdio_register;
2961                }
2962        }
2963
2964        return 0;
2965
2966error_mdio_register:
2967        unregister_netdev(ndev);
2968error_netdev_register:
2969        netif_napi_del(&priv->napi);
2970error_hw_init:
2971        clk_disable_unprepare(priv->pclk);
2972error_pclk_get:
2973        clk_disable_unprepare(priv->stmmac_clk);
2974error_clk_get:
2975        free_netdev(ndev);
2976
2977        return ret;
2978}
2979EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2980
2981/**
2982 * stmmac_dvr_remove
2983 * @ndev: net device pointer
2984 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2985 * changes the link status, releases the DMA descriptor rings.
2986 */
2987int stmmac_dvr_remove(struct net_device *ndev)
2988{
2989        struct stmmac_priv *priv = netdev_priv(ndev);
2990
2991        pr_info("%s:\n\tremoving driver", __func__);
2992
2993        priv->hw->dma->stop_rx(priv->ioaddr);
2994        priv->hw->dma->stop_tx(priv->ioaddr);
2995
2996        stmmac_set_mac(priv->ioaddr, false);
2997        netif_carrier_off(ndev);
2998        unregister_netdev(ndev);
2999        if (priv->stmmac_rst)
3000                reset_control_assert(priv->stmmac_rst);
3001        clk_disable_unprepare(priv->pclk);
3002        clk_disable_unprepare(priv->stmmac_clk);
3003        if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3004            priv->pcs != STMMAC_PCS_RTBI)
3005                stmmac_mdio_unregister(ndev);
3006        free_netdev(ndev);
3007
3008        return 0;
3009}
3010EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3011
3012/**
3013 * stmmac_suspend - suspend callback
3014 * @ndev: net device pointer
3015 * Description: this is the function to suspend the device and it is called
3016 * by the platform driver to stop the network queue, release the resources,
3017 * program the PMT register (for WoL), clean and release driver resources.
3018 */
3019int stmmac_suspend(struct net_device *ndev)
3020{
3021        struct stmmac_priv *priv = netdev_priv(ndev);
3022        unsigned long flags;
3023
3024        if (!ndev || !netif_running(ndev))
3025                return 0;
3026
3027        if (priv->phydev)
3028                phy_stop(priv->phydev);
3029
3030        spin_lock_irqsave(&priv->lock, flags);
3031
3032        netif_device_detach(ndev);
3033        netif_stop_queue(ndev);
3034
3035        napi_disable(&priv->napi);
3036
3037        /* Stop TX/RX DMA */
3038        priv->hw->dma->stop_tx(priv->ioaddr);
3039        priv->hw->dma->stop_rx(priv->ioaddr);
3040
3041        stmmac_clear_descriptors(priv);
3042
3043        /* Enable Power down mode by programming the PMT regs */
3044        if (device_may_wakeup(priv->device)) {
3045                priv->hw->mac->pmt(priv->hw, priv->wolopts);
3046                priv->irq_wake = 1;
3047        } else {
3048                stmmac_set_mac(priv->ioaddr, false);
3049                pinctrl_pm_select_sleep_state(priv->device);
3050                /* Disable clock in case of PWM is off */
3051                clk_disable(priv->pclk);
3052                clk_disable(priv->stmmac_clk);
3053        }
3054        spin_unlock_irqrestore(&priv->lock, flags);
3055
3056        priv->oldlink = 0;
3057        priv->speed = 0;
3058        priv->oldduplex = -1;
3059        return 0;
3060}
3061EXPORT_SYMBOL_GPL(stmmac_suspend);
3062
3063/**
3064 * stmmac_resume - resume callback
3065 * @ndev: net device pointer
3066 * Description: when resume this function is invoked to setup the DMA and CORE
3067 * in a usable state.
3068 */
3069int stmmac_resume(struct net_device *ndev)
3070{
3071        struct stmmac_priv *priv = netdev_priv(ndev);
3072        unsigned long flags;
3073
3074        if (!netif_running(ndev))
3075                return 0;
3076
3077        spin_lock_irqsave(&priv->lock, flags);
3078
3079        /* Power Down bit, into the PM register, is cleared
3080         * automatically as soon as a magic packet or a Wake-up frame
3081         * is received. Anyway, it's better to manually clear
3082         * this bit because it can generate problems while resuming
3083         * from another devices (e.g. serial console).
3084         */
3085        if (device_may_wakeup(priv->device)) {
3086                priv->hw->mac->pmt(priv->hw, 0);
3087                priv->irq_wake = 0;
3088        } else {
3089                pinctrl_pm_select_default_state(priv->device);
3090                /* enable the clk prevously disabled */
3091                clk_enable(priv->stmmac_clk);
3092                clk_enable(priv->pclk);
3093                /* reset the phy so that it's ready */
3094                if (priv->mii)
3095                        stmmac_mdio_reset(priv->mii);
3096        }
3097
3098        netif_device_attach(ndev);
3099
3100        init_dma_desc_rings(ndev, GFP_ATOMIC);
3101        stmmac_hw_setup(ndev, false);
3102        stmmac_init_tx_coalesce(priv);
3103
3104        napi_enable(&priv->napi);
3105
3106        netif_start_queue(ndev);
3107
3108        spin_unlock_irqrestore(&priv->lock, flags);
3109
3110        if (priv->phydev)
3111                phy_start(priv->phydev);
3112
3113        return 0;
3114}
3115EXPORT_SYMBOL_GPL(stmmac_resume);
3116
3117#ifndef MODULE
3118static int __init stmmac_cmdline_opt(char *str)
3119{
3120        char *opt;
3121
3122        if (!str || !*str)
3123                return -EINVAL;
3124        while ((opt = strsep(&str, ",")) != NULL) {
3125                if (!strncmp(opt, "debug:", 6)) {
3126                        if (kstrtoint(opt + 6, 0, &debug))
3127                                goto err;
3128                } else if (!strncmp(opt, "phyaddr:", 8)) {
3129                        if (kstrtoint(opt + 8, 0, &phyaddr))
3130                                goto err;
3131                } else if (!strncmp(opt, "dma_txsize:", 11)) {
3132                        if (kstrtoint(opt + 11, 0, &dma_txsize))
3133                                goto err;
3134                } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3135                        if (kstrtoint(opt + 11, 0, &dma_rxsize))
3136                                goto err;
3137                } else if (!strncmp(opt, "buf_sz:", 7)) {
3138                        if (kstrtoint(opt + 7, 0, &buf_sz))
3139                                goto err;
3140                } else if (!strncmp(opt, "tc:", 3)) {
3141                        if (kstrtoint(opt + 3, 0, &tc))
3142                                goto err;
3143                } else if (!strncmp(opt, "watchdog:", 9)) {
3144                        if (kstrtoint(opt + 9, 0, &watchdog))
3145                                goto err;
3146                } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3147                        if (kstrtoint(opt + 10, 0, &flow_ctrl))
3148                                goto err;
3149                } else if (!strncmp(opt, "pause:", 6)) {
3150                        if (kstrtoint(opt + 6, 0, &pause))
3151                                goto err;
3152                } else if (!strncmp(opt, "eee_timer:", 10)) {
3153                        if (kstrtoint(opt + 10, 0, &eee_timer))
3154                                goto err;
3155                } else if (!strncmp(opt, "chain_mode:", 11)) {
3156                        if (kstrtoint(opt + 11, 0, &chain_mode))
3157                                goto err;
3158                }
3159        }
3160        return 0;
3161
3162err:
3163        pr_err("%s: ERROR broken module parameter conversion", __func__);
3164        return -EINVAL;
3165}
3166
3167__setup("stmmaceth=", stmmac_cmdline_opt);
3168#endif /* MODULE */
3169
3170static int __init stmmac_init(void)
3171{
3172#ifdef CONFIG_DEBUG_FS
3173        /* Create debugfs main directory if it doesn't exist yet */
3174        if (!stmmac_fs_dir) {
3175                stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3176
3177                if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3178                        pr_err("ERROR %s, debugfs create directory failed\n",
3179                               STMMAC_RESOURCE_NAME);
3180
3181                        return -ENOMEM;
3182                }
3183        }
3184#endif
3185
3186        return 0;
3187}
3188
3189static void __exit stmmac_exit(void)
3190{
3191#ifdef CONFIG_DEBUG_FS
3192        debugfs_remove_recursive(stmmac_fs_dir);
3193#endif
3194}
3195
3196module_init(stmmac_init)
3197module_exit(stmmac_exit)
3198
3199MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3200MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3201MODULE_LICENSE("GPL");
3202