linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40                                        unsigned int cycle_state, gfp_t flags)
  41{
  42        struct xhci_segment *seg;
  43        dma_addr_t      dma;
  44        int             i;
  45
  46        seg = kzalloc(sizeof *seg, flags);
  47        if (!seg)
  48                return NULL;
  49
  50        seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  51        if (!seg->trbs) {
  52                kfree(seg);
  53                return NULL;
  54        }
  55
  56        memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
  57        /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58        if (cycle_state == 0) {
  59                for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60                        seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61        }
  62        seg->dma = dma;
  63        seg->next = NULL;
  64
  65        return seg;
  66}
  67
  68static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69{
  70        if (seg->trbs) {
  71                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72                seg->trbs = NULL;
  73        }
  74        kfree(seg);
  75}
  76
  77static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  78                                struct xhci_segment *first)
  79{
  80        struct xhci_segment *seg;
  81
  82        seg = first->next;
  83        while (seg != first) {
  84                struct xhci_segment *next = seg->next;
  85                xhci_segment_free(xhci, seg);
  86                seg = next;
  87        }
  88        xhci_segment_free(xhci, first);
  89}
  90
  91/*
  92 * Make the prev segment point to the next segment.
  93 *
  94 * Change the last TRB in the prev segment to be a Link TRB which points to the
  95 * DMA address of the next segment.  The caller needs to set any Link TRB
  96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  97 */
  98static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  99                struct xhci_segment *next, enum xhci_ring_type type)
 100{
 101        u32 val;
 102
 103        if (!prev || !next)
 104                return;
 105        prev->next = next;
 106        if (type != TYPE_EVENT) {
 107                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 108                        cpu_to_le64(next->dma);
 109
 110                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 111                val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 112                val &= ~TRB_TYPE_BITMASK;
 113                val |= TRB_TYPE(TRB_LINK);
 114                /* Always set the chain bit with 0.95 hardware */
 115                /* Set chain bit for isoc rings on AMD 0.96 host */
 116                if (xhci_link_trb_quirk(xhci) ||
 117                                (type == TYPE_ISOC &&
 118                                 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 119                        val |= TRB_CHAIN;
 120                prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 121        }
 122}
 123
 124/*
 125 * Link the ring to the new segments.
 126 * Set Toggle Cycle for the new ring if needed.
 127 */
 128static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 129                struct xhci_segment *first, struct xhci_segment *last,
 130                unsigned int num_segs)
 131{
 132        struct xhci_segment *next;
 133
 134        if (!ring || !first || !last)
 135                return;
 136
 137        next = ring->enq_seg->next;
 138        xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 139        xhci_link_segments(xhci, last, next, ring->type);
 140        ring->num_segs += num_segs;
 141        ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 142
 143        if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 144                ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 145                        &= ~cpu_to_le32(LINK_TOGGLE);
 146                last->trbs[TRBS_PER_SEGMENT-1].link.control
 147                        |= cpu_to_le32(LINK_TOGGLE);
 148                ring->last_seg = last;
 149        }
 150}
 151
 152/*
 153 * We need a radix tree for mapping physical addresses of TRBs to which stream
 154 * ID they belong to.  We need to do this because the host controller won't tell
 155 * us which stream ring the TRB came from.  We could store the stream ID in an
 156 * event data TRB, but that doesn't help us for the cancellation case, since the
 157 * endpoint may stop before it reaches that event data TRB.
 158 *
 159 * The radix tree maps the upper portion of the TRB DMA address to a ring
 160 * segment that has the same upper portion of DMA addresses.  For example, say I
 161 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 162 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 163 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 164 * pass the radix tree a key to get the right stream ID:
 165 *
 166 *      0x10c90fff >> 10 = 0x43243
 167 *      0x10c912c0 >> 10 = 0x43244
 168 *      0x10c91400 >> 10 = 0x43245
 169 *
 170 * Obviously, only those TRBs with DMA addresses that are within the segment
 171 * will make the radix tree return the stream ID for that ring.
 172 *
 173 * Caveats for the radix tree:
 174 *
 175 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 177 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 179 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 180 * extended systems (where the DMA address can be bigger than 32-bits),
 181 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 182 */
 183static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 184                struct xhci_ring *ring,
 185                struct xhci_segment *seg,
 186                gfp_t mem_flags)
 187{
 188        unsigned long key;
 189        int ret;
 190
 191        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 192        /* Skip any segments that were already added. */
 193        if (radix_tree_lookup(trb_address_map, key))
 194                return 0;
 195
 196        ret = radix_tree_maybe_preload(mem_flags);
 197        if (ret)
 198                return ret;
 199        ret = radix_tree_insert(trb_address_map,
 200                        key, ring);
 201        radix_tree_preload_end();
 202        return ret;
 203}
 204
 205static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 206                struct xhci_segment *seg)
 207{
 208        unsigned long key;
 209
 210        key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 211        if (radix_tree_lookup(trb_address_map, key))
 212                radix_tree_delete(trb_address_map, key);
 213}
 214
 215static int xhci_update_stream_segment_mapping(
 216                struct radix_tree_root *trb_address_map,
 217                struct xhci_ring *ring,
 218                struct xhci_segment *first_seg,
 219                struct xhci_segment *last_seg,
 220                gfp_t mem_flags)
 221{
 222        struct xhci_segment *seg;
 223        struct xhci_segment *failed_seg;
 224        int ret;
 225
 226        if (WARN_ON_ONCE(trb_address_map == NULL))
 227                return 0;
 228
 229        seg = first_seg;
 230        do {
 231                ret = xhci_insert_segment_mapping(trb_address_map,
 232                                ring, seg, mem_flags);
 233                if (ret)
 234                        goto remove_streams;
 235                if (seg == last_seg)
 236                        return 0;
 237                seg = seg->next;
 238        } while (seg != first_seg);
 239
 240        return 0;
 241
 242remove_streams:
 243        failed_seg = seg;
 244        seg = first_seg;
 245        do {
 246                xhci_remove_segment_mapping(trb_address_map, seg);
 247                if (seg == failed_seg)
 248                        return ret;
 249                seg = seg->next;
 250        } while (seg != first_seg);
 251
 252        return ret;
 253}
 254
 255static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 256{
 257        struct xhci_segment *seg;
 258
 259        if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 260                return;
 261
 262        seg = ring->first_seg;
 263        do {
 264                xhci_remove_segment_mapping(ring->trb_address_map, seg);
 265                seg = seg->next;
 266        } while (seg != ring->first_seg);
 267}
 268
 269static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 270{
 271        return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 272                        ring->first_seg, ring->last_seg, mem_flags);
 273}
 274
 275/* XXX: Do we need the hcd structure in all these functions? */
 276void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 277{
 278        if (!ring)
 279                return;
 280
 281        if (ring->first_seg) {
 282                if (ring->type == TYPE_STREAM)
 283                        xhci_remove_stream_mapping(ring);
 284                xhci_free_segments_for_ring(xhci, ring->first_seg);
 285        }
 286
 287        kfree(ring);
 288}
 289
 290static void xhci_initialize_ring_info(struct xhci_ring *ring,
 291                                        unsigned int cycle_state)
 292{
 293        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 294        ring->enqueue = ring->first_seg->trbs;
 295        ring->enq_seg = ring->first_seg;
 296        ring->dequeue = ring->enqueue;
 297        ring->deq_seg = ring->first_seg;
 298        /* The ring is initialized to 0. The producer must write 1 to the cycle
 299         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 300         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 301         *
 302         * New rings are initialized with cycle state equal to 1; if we are
 303         * handling ring expansion, set the cycle state equal to the old ring.
 304         */
 305        ring->cycle_state = cycle_state;
 306        /* Not necessary for new rings, but needed for re-initialized rings */
 307        ring->enq_updates = 0;
 308        ring->deq_updates = 0;
 309
 310        /*
 311         * Each segment has a link TRB, and leave an extra TRB for SW
 312         * accounting purpose
 313         */
 314        ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315}
 316
 317/* Allocate segments and link them for a ring */
 318static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319                struct xhci_segment **first, struct xhci_segment **last,
 320                unsigned int num_segs, unsigned int cycle_state,
 321                enum xhci_ring_type type, gfp_t flags)
 322{
 323        struct xhci_segment *prev;
 324
 325        prev = xhci_segment_alloc(xhci, cycle_state, flags);
 326        if (!prev)
 327                return -ENOMEM;
 328        num_segs--;
 329
 330        *first = prev;
 331        while (num_segs > 0) {
 332                struct xhci_segment     *next;
 333
 334                next = xhci_segment_alloc(xhci, cycle_state, flags);
 335                if (!next) {
 336                        prev = *first;
 337                        while (prev) {
 338                                next = prev->next;
 339                                xhci_segment_free(xhci, prev);
 340                                prev = next;
 341                        }
 342                        return -ENOMEM;
 343                }
 344                xhci_link_segments(xhci, prev, next, type);
 345
 346                prev = next;
 347                num_segs--;
 348        }
 349        xhci_link_segments(xhci, prev, *first, type);
 350        *last = prev;
 351
 352        return 0;
 353}
 354
 355/**
 356 * Create a new ring with zero or more segments.
 357 *
 358 * Link each segment together into a ring.
 359 * Set the end flag and the cycle toggle bit on the last segment.
 360 * See section 4.9.1 and figures 15 and 16.
 361 */
 362static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363                unsigned int num_segs, unsigned int cycle_state,
 364                enum xhci_ring_type type, gfp_t flags)
 365{
 366        struct xhci_ring        *ring;
 367        int ret;
 368
 369        ring = kzalloc(sizeof *(ring), flags);
 370        if (!ring)
 371                return NULL;
 372
 373        ring->num_segs = num_segs;
 374        INIT_LIST_HEAD(&ring->td_list);
 375        ring->type = type;
 376        if (num_segs == 0)
 377                return ring;
 378
 379        ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 380                        &ring->last_seg, num_segs, cycle_state, type, flags);
 381        if (ret)
 382                goto fail;
 383
 384        /* Only event ring does not use link TRB */
 385        if (type != TYPE_EVENT) {
 386                /* See section 4.9.2.1 and 6.4.4.1 */
 387                ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 388                        cpu_to_le32(LINK_TOGGLE);
 389        }
 390        xhci_initialize_ring_info(ring, cycle_state);
 391        return ring;
 392
 393fail:
 394        kfree(ring);
 395        return NULL;
 396}
 397
 398void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 399                struct xhci_virt_device *virt_dev,
 400                unsigned int ep_index)
 401{
 402        int rings_cached;
 403
 404        rings_cached = virt_dev->num_rings_cached;
 405        if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 406                virt_dev->ring_cache[rings_cached] =
 407                        virt_dev->eps[ep_index].ring;
 408                virt_dev->num_rings_cached++;
 409                xhci_dbg(xhci, "Cached old ring, "
 410                                "%d ring%s cached\n",
 411                                virt_dev->num_rings_cached,
 412                                (virt_dev->num_rings_cached > 1) ? "s" : "");
 413        } else {
 414                xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 415                xhci_dbg(xhci, "Ring cache full (%d rings), "
 416                                "freeing ring\n",
 417                                virt_dev->num_rings_cached);
 418        }
 419        virt_dev->eps[ep_index].ring = NULL;
 420}
 421
 422/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 423 * pointers to the beginning of the ring.
 424 */
 425static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 426                        struct xhci_ring *ring, unsigned int cycle_state,
 427                        enum xhci_ring_type type)
 428{
 429        struct xhci_segment     *seg = ring->first_seg;
 430        int i;
 431
 432        do {
 433                memset(seg->trbs, 0,
 434                                sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 435                if (cycle_state == 0) {
 436                        for (i = 0; i < TRBS_PER_SEGMENT; i++)
 437                                seg->trbs[i].link.control |=
 438                                        cpu_to_le32(TRB_CYCLE);
 439                }
 440                /* All endpoint rings have link TRBs */
 441                xhci_link_segments(xhci, seg, seg->next, type);
 442                seg = seg->next;
 443        } while (seg != ring->first_seg);
 444        ring->type = type;
 445        xhci_initialize_ring_info(ring, cycle_state);
 446        /* td list should be empty since all URBs have been cancelled,
 447         * but just in case...
 448         */
 449        INIT_LIST_HEAD(&ring->td_list);
 450}
 451
 452/*
 453 * Expand an existing ring.
 454 * Look for a cached ring or allocate a new ring which has same segment numbers
 455 * and link the two rings.
 456 */
 457int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 458                                unsigned int num_trbs, gfp_t flags)
 459{
 460        struct xhci_segment     *first;
 461        struct xhci_segment     *last;
 462        unsigned int            num_segs;
 463        unsigned int            num_segs_needed;
 464        int                     ret;
 465
 466        num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 467                                (TRBS_PER_SEGMENT - 1);
 468
 469        /* Allocate number of segments we needed, or double the ring size */
 470        num_segs = ring->num_segs > num_segs_needed ?
 471                        ring->num_segs : num_segs_needed;
 472
 473        ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 474                        num_segs, ring->cycle_state, ring->type, flags);
 475        if (ret)
 476                return -ENOMEM;
 477
 478        if (ring->type == TYPE_STREAM)
 479                ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 480                                                ring, first, last, flags);
 481        if (ret) {
 482                struct xhci_segment *next;
 483                do {
 484                        next = first->next;
 485                        xhci_segment_free(xhci, first);
 486                        if (first == last)
 487                                break;
 488                        first = next;
 489                } while (true);
 490                return ret;
 491        }
 492
 493        xhci_link_rings(xhci, ring, first, last, num_segs);
 494        xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 495                        "ring expansion succeed, now has %d segments",
 496                        ring->num_segs);
 497
 498        return 0;
 499}
 500
 501#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 502
 503static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 504                                                    int type, gfp_t flags)
 505{
 506        struct xhci_container_ctx *ctx;
 507
 508        if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 509                return NULL;
 510
 511        ctx = kzalloc(sizeof(*ctx), flags);
 512        if (!ctx)
 513                return NULL;
 514
 515        ctx->type = type;
 516        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 517        if (type == XHCI_CTX_TYPE_INPUT)
 518                ctx->size += CTX_SIZE(xhci->hcc_params);
 519
 520        ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 521        if (!ctx->bytes) {
 522                kfree(ctx);
 523                return NULL;
 524        }
 525        memset(ctx->bytes, 0, ctx->size);
 526        return ctx;
 527}
 528
 529static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 530                             struct xhci_container_ctx *ctx)
 531{
 532        if (!ctx)
 533                return;
 534        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 535        kfree(ctx);
 536}
 537
 538struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 539                                              struct xhci_container_ctx *ctx)
 540{
 541        if (ctx->type != XHCI_CTX_TYPE_INPUT)
 542                return NULL;
 543
 544        return (struct xhci_input_control_ctx *)ctx->bytes;
 545}
 546
 547struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 548                                        struct xhci_container_ctx *ctx)
 549{
 550        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 551                return (struct xhci_slot_ctx *)ctx->bytes;
 552
 553        return (struct xhci_slot_ctx *)
 554                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 555}
 556
 557struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 558                                    struct xhci_container_ctx *ctx,
 559                                    unsigned int ep_index)
 560{
 561        /* increment ep index by offset of start of ep ctx array */
 562        ep_index++;
 563        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 564                ep_index++;
 565
 566        return (struct xhci_ep_ctx *)
 567                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 568}
 569
 570
 571/***************** Streams structures manipulation *************************/
 572
 573static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 574                unsigned int num_stream_ctxs,
 575                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 576{
 577        struct device *dev = xhci_to_hcd(xhci)->self.controller;
 578        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 579
 580        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 581                dma_free_coherent(dev, size,
 582                                stream_ctx, dma);
 583        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 584                return dma_pool_free(xhci->small_streams_pool,
 585                                stream_ctx, dma);
 586        else
 587                return dma_pool_free(xhci->medium_streams_pool,
 588                                stream_ctx, dma);
 589}
 590
 591/*
 592 * The stream context array for each endpoint with bulk streams enabled can
 593 * vary in size, based on:
 594 *  - how many streams the endpoint supports,
 595 *  - the maximum primary stream array size the host controller supports,
 596 *  - and how many streams the device driver asks for.
 597 *
 598 * The stream context array must be a power of 2, and can be as small as
 599 * 64 bytes or as large as 1MB.
 600 */
 601static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 602                unsigned int num_stream_ctxs, dma_addr_t *dma,
 603                gfp_t mem_flags)
 604{
 605        struct device *dev = xhci_to_hcd(xhci)->self.controller;
 606        size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 607
 608        if (size > MEDIUM_STREAM_ARRAY_SIZE)
 609                return dma_alloc_coherent(dev, size,
 610                                dma, mem_flags);
 611        else if (size <= SMALL_STREAM_ARRAY_SIZE)
 612                return dma_pool_alloc(xhci->small_streams_pool,
 613                                mem_flags, dma);
 614        else
 615                return dma_pool_alloc(xhci->medium_streams_pool,
 616                                mem_flags, dma);
 617}
 618
 619struct xhci_ring *xhci_dma_to_transfer_ring(
 620                struct xhci_virt_ep *ep,
 621                u64 address)
 622{
 623        if (ep->ep_state & EP_HAS_STREAMS)
 624                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 625                                address >> TRB_SEGMENT_SHIFT);
 626        return ep->ring;
 627}
 628
 629struct xhci_ring *xhci_stream_id_to_ring(
 630                struct xhci_virt_device *dev,
 631                unsigned int ep_index,
 632                unsigned int stream_id)
 633{
 634        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 635
 636        if (stream_id == 0)
 637                return ep->ring;
 638        if (!ep->stream_info)
 639                return NULL;
 640
 641        if (stream_id > ep->stream_info->num_streams)
 642                return NULL;
 643        return ep->stream_info->stream_rings[stream_id];
 644}
 645
 646/*
 647 * Change an endpoint's internal structure so it supports stream IDs.  The
 648 * number of requested streams includes stream 0, which cannot be used by device
 649 * drivers.
 650 *
 651 * The number of stream contexts in the stream context array may be bigger than
 652 * the number of streams the driver wants to use.  This is because the number of
 653 * stream context array entries must be a power of two.
 654 */
 655struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 656                unsigned int num_stream_ctxs,
 657                unsigned int num_streams, gfp_t mem_flags)
 658{
 659        struct xhci_stream_info *stream_info;
 660        u32 cur_stream;
 661        struct xhci_ring *cur_ring;
 662        u64 addr;
 663        int ret;
 664
 665        xhci_dbg(xhci, "Allocating %u streams and %u "
 666                        "stream context array entries.\n",
 667                        num_streams, num_stream_ctxs);
 668        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 669                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 670                return NULL;
 671        }
 672        xhci->cmd_ring_reserved_trbs++;
 673
 674        stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 675        if (!stream_info)
 676                goto cleanup_trbs;
 677
 678        stream_info->num_streams = num_streams;
 679        stream_info->num_stream_ctxs = num_stream_ctxs;
 680
 681        /* Initialize the array of virtual pointers to stream rings. */
 682        stream_info->stream_rings = kzalloc(
 683                        sizeof(struct xhci_ring *)*num_streams,
 684                        mem_flags);
 685        if (!stream_info->stream_rings)
 686                goto cleanup_info;
 687
 688        /* Initialize the array of DMA addresses for stream rings for the HW. */
 689        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 690                        num_stream_ctxs, &stream_info->ctx_array_dma,
 691                        mem_flags);
 692        if (!stream_info->stream_ctx_array)
 693                goto cleanup_ctx;
 694        memset(stream_info->stream_ctx_array, 0,
 695                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 696
 697        /* Allocate everything needed to free the stream rings later */
 698        stream_info->free_streams_command =
 699                xhci_alloc_command(xhci, true, true, mem_flags);
 700        if (!stream_info->free_streams_command)
 701                goto cleanup_ctx;
 702
 703        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 704
 705        /* Allocate rings for all the streams that the driver will use,
 706         * and add their segment DMA addresses to the radix tree.
 707         * Stream 0 is reserved.
 708         */
 709        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 710                stream_info->stream_rings[cur_stream] =
 711                        xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 712                cur_ring = stream_info->stream_rings[cur_stream];
 713                if (!cur_ring)
 714                        goto cleanup_rings;
 715                cur_ring->stream_id = cur_stream;
 716                cur_ring->trb_address_map = &stream_info->trb_address_map;
 717                /* Set deq ptr, cycle bit, and stream context type */
 718                addr = cur_ring->first_seg->dma |
 719                        SCT_FOR_CTX(SCT_PRI_TR) |
 720                        cur_ring->cycle_state;
 721                stream_info->stream_ctx_array[cur_stream].stream_ring =
 722                        cpu_to_le64(addr);
 723                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 724                                cur_stream, (unsigned long long) addr);
 725
 726                ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 727                if (ret) {
 728                        xhci_ring_free(xhci, cur_ring);
 729                        stream_info->stream_rings[cur_stream] = NULL;
 730                        goto cleanup_rings;
 731                }
 732        }
 733        /* Leave the other unused stream ring pointers in the stream context
 734         * array initialized to zero.  This will cause the xHC to give us an
 735         * error if the device asks for a stream ID we don't have setup (if it
 736         * was any other way, the host controller would assume the ring is
 737         * "empty" and wait forever for data to be queued to that stream ID).
 738         */
 739
 740        return stream_info;
 741
 742cleanup_rings:
 743        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 744                cur_ring = stream_info->stream_rings[cur_stream];
 745                if (cur_ring) {
 746                        xhci_ring_free(xhci, cur_ring);
 747                        stream_info->stream_rings[cur_stream] = NULL;
 748                }
 749        }
 750        xhci_free_command(xhci, stream_info->free_streams_command);
 751cleanup_ctx:
 752        kfree(stream_info->stream_rings);
 753cleanup_info:
 754        kfree(stream_info);
 755cleanup_trbs:
 756        xhci->cmd_ring_reserved_trbs--;
 757        return NULL;
 758}
 759/*
 760 * Sets the MaxPStreams field and the Linear Stream Array field.
 761 * Sets the dequeue pointer to the stream context array.
 762 */
 763void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 764                struct xhci_ep_ctx *ep_ctx,
 765                struct xhci_stream_info *stream_info)
 766{
 767        u32 max_primary_streams;
 768        /* MaxPStreams is the number of stream context array entries, not the
 769         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 770         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 771         */
 772        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 773        xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 774                        "Setting number of stream ctx array entries to %u",
 775                        1 << (max_primary_streams + 1));
 776        ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 777        ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 778                                       | EP_HAS_LSA);
 779        ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 780}
 781
 782/*
 783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 785 * not at the beginning of the ring).
 786 */
 787void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 788                struct xhci_virt_ep *ep)
 789{
 790        dma_addr_t addr;
 791        ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 792        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 793        ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 794}
 795
 796/* Frees all stream contexts associated with the endpoint,
 797 *
 798 * Caller should fix the endpoint context streams fields.
 799 */
 800void xhci_free_stream_info(struct xhci_hcd *xhci,
 801                struct xhci_stream_info *stream_info)
 802{
 803        int cur_stream;
 804        struct xhci_ring *cur_ring;
 805
 806        if (!stream_info)
 807                return;
 808
 809        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 810                        cur_stream++) {
 811                cur_ring = stream_info->stream_rings[cur_stream];
 812                if (cur_ring) {
 813                        xhci_ring_free(xhci, cur_ring);
 814                        stream_info->stream_rings[cur_stream] = NULL;
 815                }
 816        }
 817        xhci_free_command(xhci, stream_info->free_streams_command);
 818        xhci->cmd_ring_reserved_trbs--;
 819        if (stream_info->stream_ctx_array)
 820                xhci_free_stream_ctx(xhci,
 821                                stream_info->num_stream_ctxs,
 822                                stream_info->stream_ctx_array,
 823                                stream_info->ctx_array_dma);
 824
 825        kfree(stream_info->stream_rings);
 826        kfree(stream_info);
 827}
 828
 829
 830/***************** Device context manipulation *************************/
 831
 832static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 833                struct xhci_virt_ep *ep)
 834{
 835        setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 836                    (unsigned long)ep);
 837        ep->xhci = xhci;
 838}
 839
 840static void xhci_free_tt_info(struct xhci_hcd *xhci,
 841                struct xhci_virt_device *virt_dev,
 842                int slot_id)
 843{
 844        struct list_head *tt_list_head;
 845        struct xhci_tt_bw_info *tt_info, *next;
 846        bool slot_found = false;
 847
 848        /* If the device never made it past the Set Address stage,
 849         * it may not have the real_port set correctly.
 850         */
 851        if (virt_dev->real_port == 0 ||
 852                        virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 853                xhci_dbg(xhci, "Bad real port.\n");
 854                return;
 855        }
 856
 857        tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 858        list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 859                /* Multi-TT hubs will have more than one entry */
 860                if (tt_info->slot_id == slot_id) {
 861                        slot_found = true;
 862                        list_del(&tt_info->tt_list);
 863                        kfree(tt_info);
 864                } else if (slot_found) {
 865                        break;
 866                }
 867        }
 868}
 869
 870int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 871                struct xhci_virt_device *virt_dev,
 872                struct usb_device *hdev,
 873                struct usb_tt *tt, gfp_t mem_flags)
 874{
 875        struct xhci_tt_bw_info          *tt_info;
 876        unsigned int                    num_ports;
 877        int                             i, j;
 878
 879        if (!tt->multi)
 880                num_ports = 1;
 881        else
 882                num_ports = hdev->maxchild;
 883
 884        for (i = 0; i < num_ports; i++, tt_info++) {
 885                struct xhci_interval_bw_table *bw_table;
 886
 887                tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 888                if (!tt_info)
 889                        goto free_tts;
 890                INIT_LIST_HEAD(&tt_info->tt_list);
 891                list_add(&tt_info->tt_list,
 892                                &xhci->rh_bw[virt_dev->real_port - 1].tts);
 893                tt_info->slot_id = virt_dev->udev->slot_id;
 894                if (tt->multi)
 895                        tt_info->ttport = i+1;
 896                bw_table = &tt_info->bw_table;
 897                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 898                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 899        }
 900        return 0;
 901
 902free_tts:
 903        xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 904        return -ENOMEM;
 905}
 906
 907
 908/* All the xhci_tds in the ring's TD list should be freed at this point.
 909 * Should be called with xhci->lock held if there is any chance the TT lists
 910 * will be manipulated by the configure endpoint, allocate device, or update
 911 * hub functions while this function is removing the TT entries from the list.
 912 */
 913void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 914{
 915        struct xhci_virt_device *dev;
 916        int i;
 917        int old_active_eps = 0;
 918
 919        /* Slot ID 0 is reserved */
 920        if (slot_id == 0 || !xhci->devs[slot_id])
 921                return;
 922
 923        dev = xhci->devs[slot_id];
 924        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 925        if (!dev)
 926                return;
 927
 928        if (dev->tt_info)
 929                old_active_eps = dev->tt_info->active_eps;
 930
 931        for (i = 0; i < 31; ++i) {
 932                if (dev->eps[i].ring)
 933                        xhci_ring_free(xhci, dev->eps[i].ring);
 934                if (dev->eps[i].stream_info)
 935                        xhci_free_stream_info(xhci,
 936                                        dev->eps[i].stream_info);
 937                /* Endpoints on the TT/root port lists should have been removed
 938                 * when usb_disable_device() was called for the device.
 939                 * We can't drop them anyway, because the udev might have gone
 940                 * away by this point, and we can't tell what speed it was.
 941                 */
 942                if (!list_empty(&dev->eps[i].bw_endpoint_list))
 943                        xhci_warn(xhci, "Slot %u endpoint %u "
 944                                        "not removed from BW list!\n",
 945                                        slot_id, i);
 946        }
 947        /* If this is a hub, free the TT(s) from the TT list */
 948        xhci_free_tt_info(xhci, dev, slot_id);
 949        /* If necessary, update the number of active TTs on this root port */
 950        xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 951
 952        if (dev->ring_cache) {
 953                for (i = 0; i < dev->num_rings_cached; i++)
 954                        xhci_ring_free(xhci, dev->ring_cache[i]);
 955                kfree(dev->ring_cache);
 956        }
 957
 958        if (dev->in_ctx)
 959                xhci_free_container_ctx(xhci, dev->in_ctx);
 960        if (dev->out_ctx)
 961                xhci_free_container_ctx(xhci, dev->out_ctx);
 962
 963        kfree(xhci->devs[slot_id]);
 964        xhci->devs[slot_id] = NULL;
 965}
 966
 967int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 968                struct usb_device *udev, gfp_t flags)
 969{
 970        struct xhci_virt_device *dev;
 971        int i;
 972
 973        /* Slot ID 0 is reserved */
 974        if (slot_id == 0 || xhci->devs[slot_id]) {
 975                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 976                return 0;
 977        }
 978
 979        xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 980        if (!xhci->devs[slot_id])
 981                return 0;
 982        dev = xhci->devs[slot_id];
 983
 984        /* Allocate the (output) device context that will be used in the HC. */
 985        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 986        if (!dev->out_ctx)
 987                goto fail;
 988
 989        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 990                        (unsigned long long)dev->out_ctx->dma);
 991
 992        /* Allocate the (input) device context for address device command */
 993        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 994        if (!dev->in_ctx)
 995                goto fail;
 996
 997        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 998                        (unsigned long long)dev->in_ctx->dma);
 999
1000        /* Initialize the cancellation list and watchdog timers for each ep */
1001        for (i = 0; i < 31; i++) {
1002                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004                INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005        }
1006
1007        /* Allocate endpoint 0 ring */
1008        dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1009        if (!dev->eps[0].ring)
1010                goto fail;
1011
1012        /* Allocate pointers to the ring cache */
1013        dev->ring_cache = kzalloc(
1014                        sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1015                        flags);
1016        if (!dev->ring_cache)
1017                goto fail;
1018        dev->num_rings_cached = 0;
1019
1020        init_completion(&dev->cmd_completion);
1021        dev->udev = udev;
1022
1023        /* Point to output device context in dcbaa. */
1024        xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1025        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1026                 slot_id,
1027                 &xhci->dcbaa->dev_context_ptrs[slot_id],
1028                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1029
1030        return 1;
1031fail:
1032        xhci_free_virt_device(xhci, slot_id);
1033        return 0;
1034}
1035
1036void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1037                struct usb_device *udev)
1038{
1039        struct xhci_virt_device *virt_dev;
1040        struct xhci_ep_ctx      *ep0_ctx;
1041        struct xhci_ring        *ep_ring;
1042
1043        virt_dev = xhci->devs[udev->slot_id];
1044        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1045        ep_ring = virt_dev->eps[0].ring;
1046        /*
1047         * FIXME we don't keep track of the dequeue pointer very well after a
1048         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1049         * host to our enqueue pointer.  This should only be called after a
1050         * configured device has reset, so all control transfers should have
1051         * been completed or cancelled before the reset.
1052         */
1053        ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1054                                                        ep_ring->enqueue)
1055                                   | ep_ring->cycle_state);
1056}
1057
1058/*
1059 * The xHCI roothub may have ports of differing speeds in any order in the port
1060 * status registers.  xhci->port_array provides an array of the port speed for
1061 * each offset into the port status registers.
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1068 */
1069static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070                struct usb_device *udev)
1071{
1072        struct usb_device *top_dev;
1073        struct usb_hcd *hcd;
1074
1075        if (udev->speed == USB_SPEED_SUPER)
1076                hcd = xhci->shared_hcd;
1077        else
1078                hcd = xhci->main_hcd;
1079
1080        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081                        top_dev = top_dev->parent)
1082                /* Found device below root hub */;
1083
1084        return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1085}
1086
1087/* Setup an xHCI virtual device for a Set Address command */
1088int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089{
1090        struct xhci_virt_device *dev;
1091        struct xhci_ep_ctx      *ep0_ctx;
1092        struct xhci_slot_ctx    *slot_ctx;
1093        u32                     port_num;
1094        u32                     max_packets;
1095        struct usb_device *top_dev;
1096
1097        dev = xhci->devs[udev->slot_id];
1098        /* Slot ID 0 is reserved */
1099        if (udev->slot_id == 0 || !dev) {
1100                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101                                udev->slot_id);
1102                return -EINVAL;
1103        }
1104        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107        /* 3) Only the control endpoint is valid - one endpoint context */
1108        slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109        switch (udev->speed) {
1110        case USB_SPEED_SUPER:
1111                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1112                max_packets = MAX_PACKET(512);
1113                break;
1114        case USB_SPEED_HIGH:
1115                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1116                max_packets = MAX_PACKET(64);
1117                break;
1118        /* USB core guesses at a 64-byte max packet first for FS devices */
1119        case USB_SPEED_FULL:
1120                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1121                max_packets = MAX_PACKET(64);
1122                break;
1123        case USB_SPEED_LOW:
1124                slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1125                max_packets = MAX_PACKET(8);
1126                break;
1127        case USB_SPEED_WIRELESS:
1128                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1129                return -EINVAL;
1130                break;
1131        default:
1132                /* Speed was set earlier, this shouldn't happen. */
1133                return -EINVAL;
1134        }
1135        /* Find the root hub port this device is under */
1136        port_num = xhci_find_real_port_number(xhci, udev);
1137        if (!port_num)
1138                return -EINVAL;
1139        slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1140        /* Set the port number in the virtual_device to the faked port number */
1141        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1142                        top_dev = top_dev->parent)
1143                /* Found device below root hub */;
1144        dev->fake_port = top_dev->portnum;
1145        dev->real_port = port_num;
1146        xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1147        xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1148
1149        /* Find the right bandwidth table that this device will be a part of.
1150         * If this is a full speed device attached directly to a root port (or a
1151         * decendent of one), it counts as a primary bandwidth domain, not a
1152         * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1153         * will never be created for the HS root hub.
1154         */
1155        if (!udev->tt || !udev->tt->hub->parent) {
1156                dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1157        } else {
1158                struct xhci_root_port_bw_info *rh_bw;
1159                struct xhci_tt_bw_info *tt_bw;
1160
1161                rh_bw = &xhci->rh_bw[port_num - 1];
1162                /* Find the right TT. */
1163                list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1164                        if (tt_bw->slot_id != udev->tt->hub->slot_id)
1165                                continue;
1166
1167                        if (!dev->udev->tt->multi ||
1168                                        (udev->tt->multi &&
1169                                         tt_bw->ttport == dev->udev->ttport)) {
1170                                dev->bw_table = &tt_bw->bw_table;
1171                                dev->tt_info = tt_bw;
1172                                break;
1173                        }
1174                }
1175                if (!dev->tt_info)
1176                        xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1177        }
1178
1179        /* Is this a LS/FS device under an external HS hub? */
1180        if (udev->tt && udev->tt->hub->parent) {
1181                slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1182                                                (udev->ttport << 8));
1183                if (udev->tt->multi)
1184                        slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1185        }
1186        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1187        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1188
1189        /* Step 4 - ring already allocated */
1190        /* Step 5 */
1191        ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1192
1193        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1194        ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1195                                         max_packets);
1196
1197        ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1198                                   dev->eps[0].ring->cycle_state);
1199
1200        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1201
1202        return 0;
1203}
1204
1205/*
1206 * Convert interval expressed as 2^(bInterval - 1) == interval into
1207 * straight exponent value 2^n == interval.
1208 *
1209 */
1210static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1211                struct usb_host_endpoint *ep)
1212{
1213        unsigned int interval;
1214
1215        interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1216        if (interval != ep->desc.bInterval - 1)
1217                dev_warn(&udev->dev,
1218                         "ep %#x - rounding interval to %d %sframes\n",
1219                         ep->desc.bEndpointAddress,
1220                         1 << interval,
1221                         udev->speed == USB_SPEED_FULL ? "" : "micro");
1222
1223        if (udev->speed == USB_SPEED_FULL) {
1224                /*
1225                 * Full speed isoc endpoints specify interval in frames,
1226                 * not microframes. We are using microframes everywhere,
1227                 * so adjust accordingly.
1228                 */
1229                interval += 3;  /* 1 frame = 2^3 uframes */
1230        }
1231
1232        return interval;
1233}
1234
1235/*
1236 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1237 * microframes, rounded down to nearest power of 2.
1238 */
1239static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1240                struct usb_host_endpoint *ep, unsigned int desc_interval,
1241                unsigned int min_exponent, unsigned int max_exponent)
1242{
1243        unsigned int interval;
1244
1245        interval = fls(desc_interval) - 1;
1246        interval = clamp_val(interval, min_exponent, max_exponent);
1247        if ((1 << interval) != desc_interval)
1248                dev_warn(&udev->dev,
1249                         "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1250                         ep->desc.bEndpointAddress,
1251                         1 << interval,
1252                         desc_interval);
1253
1254        return interval;
1255}
1256
1257static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1258                struct usb_host_endpoint *ep)
1259{
1260        if (ep->desc.bInterval == 0)
1261                return 0;
1262        return xhci_microframes_to_exponent(udev, ep,
1263                        ep->desc.bInterval, 0, 15);
1264}
1265
1266
1267static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1268                struct usb_host_endpoint *ep)
1269{
1270        return xhci_microframes_to_exponent(udev, ep,
1271                        ep->desc.bInterval * 8, 3, 10);
1272}
1273
1274/* Return the polling or NAK interval.
1275 *
1276 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1277 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278 *
1279 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1280 * is set to 0.
1281 */
1282static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1283                struct usb_host_endpoint *ep)
1284{
1285        unsigned int interval = 0;
1286
1287        switch (udev->speed) {
1288        case USB_SPEED_HIGH:
1289                /* Max NAK rate */
1290                if (usb_endpoint_xfer_control(&ep->desc) ||
1291                    usb_endpoint_xfer_bulk(&ep->desc)) {
1292                        interval = xhci_parse_microframe_interval(udev, ep);
1293                        break;
1294                }
1295                /* Fall through - SS and HS isoc/int have same decoding */
1296
1297        case USB_SPEED_SUPER:
1298                if (usb_endpoint_xfer_int(&ep->desc) ||
1299                    usb_endpoint_xfer_isoc(&ep->desc)) {
1300                        interval = xhci_parse_exponent_interval(udev, ep);
1301                }
1302                break;
1303
1304        case USB_SPEED_FULL:
1305                if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306                        interval = xhci_parse_exponent_interval(udev, ep);
1307                        break;
1308                }
1309                /*
1310                 * Fall through for interrupt endpoint interval decoding
1311                 * since it uses the same rules as low speed interrupt
1312                 * endpoints.
1313                 */
1314
1315        case USB_SPEED_LOW:
1316                if (usb_endpoint_xfer_int(&ep->desc) ||
1317                    usb_endpoint_xfer_isoc(&ep->desc)) {
1318
1319                        interval = xhci_parse_frame_interval(udev, ep);
1320                }
1321                break;
1322
1323        default:
1324                BUG();
1325        }
1326        return EP_INTERVAL(interval);
1327}
1328
1329/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330 * High speed endpoint descriptors can define "the number of additional
1331 * transaction opportunities per microframe", but that goes in the Max Burst
1332 * endpoint context field.
1333 */
1334static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1335                struct usb_host_endpoint *ep)
1336{
1337        if (udev->speed != USB_SPEED_SUPER ||
1338                        !usb_endpoint_xfer_isoc(&ep->desc))
1339                return 0;
1340        return ep->ss_ep_comp.bmAttributes;
1341}
1342
1343static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1344{
1345        int in;
1346        u32 type;
1347
1348        in = usb_endpoint_dir_in(&ep->desc);
1349        if (usb_endpoint_xfer_control(&ep->desc)) {
1350                type = EP_TYPE(CTRL_EP);
1351        } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1352                if (in)
1353                        type = EP_TYPE(BULK_IN_EP);
1354                else
1355                        type = EP_TYPE(BULK_OUT_EP);
1356        } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1357                if (in)
1358                        type = EP_TYPE(ISOC_IN_EP);
1359                else
1360                        type = EP_TYPE(ISOC_OUT_EP);
1361        } else if (usb_endpoint_xfer_int(&ep->desc)) {
1362                if (in)
1363                        type = EP_TYPE(INT_IN_EP);
1364                else
1365                        type = EP_TYPE(INT_OUT_EP);
1366        } else {
1367                type = 0;
1368        }
1369        return type;
1370}
1371
1372/* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377                struct usb_host_endpoint *ep)
1378{
1379        int max_burst;
1380        int max_packet;
1381
1382        /* Only applies for interrupt or isochronous endpoints */
1383        if (usb_endpoint_xfer_control(&ep->desc) ||
1384                        usb_endpoint_xfer_bulk(&ep->desc))
1385                return 0;
1386
1387        if (udev->speed == USB_SPEED_SUPER)
1388                return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1389
1390        max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1391        max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1392        /* A 0 in max burst means 1 transfer per ESIT */
1393        return max_packet * (max_burst + 1);
1394}
1395
1396/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1397 * Drivers will have to call usb_alloc_streams() to do that.
1398 */
1399int xhci_endpoint_init(struct xhci_hcd *xhci,
1400                struct xhci_virt_device *virt_dev,
1401                struct usb_device *udev,
1402                struct usb_host_endpoint *ep,
1403                gfp_t mem_flags)
1404{
1405        unsigned int ep_index;
1406        struct xhci_ep_ctx *ep_ctx;
1407        struct xhci_ring *ep_ring;
1408        unsigned int max_packet;
1409        unsigned int max_burst;
1410        enum xhci_ring_type type;
1411        u32 max_esit_payload;
1412        u32 endpoint_type;
1413
1414        ep_index = xhci_get_endpoint_index(&ep->desc);
1415        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1416
1417        endpoint_type = xhci_get_endpoint_type(ep);
1418        if (!endpoint_type)
1419                return -EINVAL;
1420        ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1421
1422        type = usb_endpoint_type(&ep->desc);
1423        /* Set up the endpoint ring */
1424        virt_dev->eps[ep_index].new_ring =
1425                xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1426        if (!virt_dev->eps[ep_index].new_ring) {
1427                /* Attempt to use the ring cache */
1428                if (virt_dev->num_rings_cached == 0)
1429                        return -ENOMEM;
1430                virt_dev->num_rings_cached--;
1431                virt_dev->eps[ep_index].new_ring =
1432                        virt_dev->ring_cache[virt_dev->num_rings_cached];
1433                virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1434                xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1435                                        1, type);
1436        }
1437        virt_dev->eps[ep_index].skip = false;
1438        ep_ring = virt_dev->eps[ep_index].new_ring;
1439        ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1440
1441        ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1442                                      | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1443
1444        /* FIXME dig Mult and streams info out of ep companion desc */
1445
1446        /* Allow 3 retries for everything but isoc;
1447         * CErr shall be set to 0 for Isoch endpoints.
1448         */
1449        if (!usb_endpoint_xfer_isoc(&ep->desc))
1450                ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1451        else
1452                ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1453
1454        /* Set the max packet size and max burst */
1455        max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1456        max_burst = 0;
1457        switch (udev->speed) {
1458        case USB_SPEED_SUPER:
1459                /* dig out max burst from ep companion desc */
1460                max_burst = ep->ss_ep_comp.bMaxBurst;
1461                break;
1462        case USB_SPEED_HIGH:
1463                /* Some devices get this wrong */
1464                if (usb_endpoint_xfer_bulk(&ep->desc))
1465                        max_packet = 512;
1466                /* bits 11:12 specify the number of additional transaction
1467                 * opportunities per microframe (USB 2.0, section 9.6.6)
1468                 */
1469                if (usb_endpoint_xfer_isoc(&ep->desc) ||
1470                                usb_endpoint_xfer_int(&ep->desc)) {
1471                        max_burst = (usb_endpoint_maxp(&ep->desc)
1472                                     & 0x1800) >> 11;
1473                }
1474                break;
1475        case USB_SPEED_FULL:
1476        case USB_SPEED_LOW:
1477                break;
1478        default:
1479                BUG();
1480        }
1481        ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1482                        MAX_BURST(max_burst));
1483        max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1484        ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1485
1486        /*
1487         * XXX no idea how to calculate the average TRB buffer length for bulk
1488         * endpoints, as the driver gives us no clue how big each scatter gather
1489         * list entry (or buffer) is going to be.
1490         *
1491         * For isochronous and interrupt endpoints, we set it to the max
1492         * available, until we have new API in the USB core to allow drivers to
1493         * declare how much bandwidth they actually need.
1494         *
1495         * Normally, it would be calculated by taking the total of the buffer
1496         * lengths in the TD and then dividing by the number of TRBs in a TD,
1497         * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1498         * use Event Data TRBs, and we don't chain in a link TRB on short
1499         * transfers, we're basically dividing by 1.
1500         *
1501         * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1502         * should be set to 8 for control endpoints.
1503         */
1504        if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1505                ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1506        else
1507                ep_ctx->tx_info |=
1508                         cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1509
1510        /* FIXME Debug endpoint context */
1511        return 0;
1512}
1513
1514void xhci_endpoint_zero(struct xhci_hcd *xhci,
1515                struct xhci_virt_device *virt_dev,
1516                struct usb_host_endpoint *ep)
1517{
1518        unsigned int ep_index;
1519        struct xhci_ep_ctx *ep_ctx;
1520
1521        ep_index = xhci_get_endpoint_index(&ep->desc);
1522        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1523
1524        ep_ctx->ep_info = 0;
1525        ep_ctx->ep_info2 = 0;
1526        ep_ctx->deq = 0;
1527        ep_ctx->tx_info = 0;
1528        /* Don't free the endpoint ring until the set interface or configuration
1529         * request succeeds.
1530         */
1531}
1532
1533void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1534{
1535        bw_info->ep_interval = 0;
1536        bw_info->mult = 0;
1537        bw_info->num_packets = 0;
1538        bw_info->max_packet_size = 0;
1539        bw_info->type = 0;
1540        bw_info->max_esit_payload = 0;
1541}
1542
1543void xhci_update_bw_info(struct xhci_hcd *xhci,
1544                struct xhci_container_ctx *in_ctx,
1545                struct xhci_input_control_ctx *ctrl_ctx,
1546                struct xhci_virt_device *virt_dev)
1547{
1548        struct xhci_bw_info *bw_info;
1549        struct xhci_ep_ctx *ep_ctx;
1550        unsigned int ep_type;
1551        int i;
1552
1553        for (i = 1; i < 31; ++i) {
1554                bw_info = &virt_dev->eps[i].bw_info;
1555
1556                /* We can't tell what endpoint type is being dropped, but
1557                 * unconditionally clearing the bandwidth info for non-periodic
1558                 * endpoints should be harmless because the info will never be
1559                 * set in the first place.
1560                 */
1561                if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1562                        /* Dropped endpoint */
1563                        xhci_clear_endpoint_bw_info(bw_info);
1564                        continue;
1565                }
1566
1567                if (EP_IS_ADDED(ctrl_ctx, i)) {
1568                        ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1569                        ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1570
1571                        /* Ignore non-periodic endpoints */
1572                        if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1573                                        ep_type != ISOC_IN_EP &&
1574                                        ep_type != INT_IN_EP)
1575                                continue;
1576
1577                        /* Added or changed endpoint */
1578                        bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1579                                        le32_to_cpu(ep_ctx->ep_info));
1580                        /* Number of packets and mult are zero-based in the
1581                         * input context, but we want one-based for the
1582                         * interval table.
1583                         */
1584                        bw_info->mult = CTX_TO_EP_MULT(
1585                                        le32_to_cpu(ep_ctx->ep_info)) + 1;
1586                        bw_info->num_packets = CTX_TO_MAX_BURST(
1587                                        le32_to_cpu(ep_ctx->ep_info2)) + 1;
1588                        bw_info->max_packet_size = MAX_PACKET_DECODED(
1589                                        le32_to_cpu(ep_ctx->ep_info2));
1590                        bw_info->type = ep_type;
1591                        bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1592                                        le32_to_cpu(ep_ctx->tx_info));
1593                }
1594        }
1595}
1596
1597/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1598 * Useful when you want to change one particular aspect of the endpoint and then
1599 * issue a configure endpoint command.
1600 */
1601void xhci_endpoint_copy(struct xhci_hcd *xhci,
1602                struct xhci_container_ctx *in_ctx,
1603                struct xhci_container_ctx *out_ctx,
1604                unsigned int ep_index)
1605{
1606        struct xhci_ep_ctx *out_ep_ctx;
1607        struct xhci_ep_ctx *in_ep_ctx;
1608
1609        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1611
1612        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1613        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1614        in_ep_ctx->deq = out_ep_ctx->deq;
1615        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1616}
1617
1618/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1619 * Useful when you want to change one particular aspect of the endpoint and then
1620 * issue a configure endpoint command.  Only the context entries field matters,
1621 * but we'll copy the whole thing anyway.
1622 */
1623void xhci_slot_copy(struct xhci_hcd *xhci,
1624                struct xhci_container_ctx *in_ctx,
1625                struct xhci_container_ctx *out_ctx)
1626{
1627        struct xhci_slot_ctx *in_slot_ctx;
1628        struct xhci_slot_ctx *out_slot_ctx;
1629
1630        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1631        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1632
1633        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1634        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1635        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1636        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1637}
1638
1639/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1640static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1641{
1642        int i;
1643        struct device *dev = xhci_to_hcd(xhci)->self.controller;
1644        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1645
1646        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1647                        "Allocating %d scratchpad buffers", num_sp);
1648
1649        if (!num_sp)
1650                return 0;
1651
1652        xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1653        if (!xhci->scratchpad)
1654                goto fail_sp;
1655
1656        xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1657                                     num_sp * sizeof(u64),
1658                                     &xhci->scratchpad->sp_dma, flags);
1659        if (!xhci->scratchpad->sp_array)
1660                goto fail_sp2;
1661
1662        xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1663        if (!xhci->scratchpad->sp_buffers)
1664                goto fail_sp3;
1665
1666        xhci->scratchpad->sp_dma_buffers =
1667                kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1668
1669        if (!xhci->scratchpad->sp_dma_buffers)
1670                goto fail_sp4;
1671
1672        xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1673        for (i = 0; i < num_sp; i++) {
1674                dma_addr_t dma;
1675                void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1676                                flags);
1677                if (!buf)
1678                        goto fail_sp5;
1679
1680                xhci->scratchpad->sp_array[i] = dma;
1681                xhci->scratchpad->sp_buffers[i] = buf;
1682                xhci->scratchpad->sp_dma_buffers[i] = dma;
1683        }
1684
1685        return 0;
1686
1687 fail_sp5:
1688        for (i = i - 1; i >= 0; i--) {
1689                dma_free_coherent(dev, xhci->page_size,
1690                                    xhci->scratchpad->sp_buffers[i],
1691                                    xhci->scratchpad->sp_dma_buffers[i]);
1692        }
1693        kfree(xhci->scratchpad->sp_dma_buffers);
1694
1695 fail_sp4:
1696        kfree(xhci->scratchpad->sp_buffers);
1697
1698 fail_sp3:
1699        dma_free_coherent(dev, num_sp * sizeof(u64),
1700                            xhci->scratchpad->sp_array,
1701                            xhci->scratchpad->sp_dma);
1702
1703 fail_sp2:
1704        kfree(xhci->scratchpad);
1705        xhci->scratchpad = NULL;
1706
1707 fail_sp:
1708        return -ENOMEM;
1709}
1710
1711static void scratchpad_free(struct xhci_hcd *xhci)
1712{
1713        int num_sp;
1714        int i;
1715        struct device *dev = xhci_to_hcd(xhci)->self.controller;
1716
1717        if (!xhci->scratchpad)
1718                return;
1719
1720        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1721
1722        for (i = 0; i < num_sp; i++) {
1723                dma_free_coherent(dev, xhci->page_size,
1724                                    xhci->scratchpad->sp_buffers[i],
1725                                    xhci->scratchpad->sp_dma_buffers[i]);
1726        }
1727        kfree(xhci->scratchpad->sp_dma_buffers);
1728        kfree(xhci->scratchpad->sp_buffers);
1729        dma_free_coherent(dev, num_sp * sizeof(u64),
1730                            xhci->scratchpad->sp_array,
1731                            xhci->scratchpad->sp_dma);
1732        kfree(xhci->scratchpad);
1733        xhci->scratchpad = NULL;
1734}
1735
1736struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1737                bool allocate_in_ctx, bool allocate_completion,
1738                gfp_t mem_flags)
1739{
1740        struct xhci_command *command;
1741
1742        command = kzalloc(sizeof(*command), mem_flags);
1743        if (!command)
1744                return NULL;
1745
1746        if (allocate_in_ctx) {
1747                command->in_ctx =
1748                        xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1749                                        mem_flags);
1750                if (!command->in_ctx) {
1751                        kfree(command);
1752                        return NULL;
1753                }
1754        }
1755
1756        if (allocate_completion) {
1757                command->completion =
1758                        kzalloc(sizeof(struct completion), mem_flags);
1759                if (!command->completion) {
1760                        xhci_free_container_ctx(xhci, command->in_ctx);
1761                        kfree(command);
1762                        return NULL;
1763                }
1764                init_completion(command->completion);
1765        }
1766
1767        command->status = 0;
1768        INIT_LIST_HEAD(&command->cmd_list);
1769        return command;
1770}
1771
1772void xhci_urb_free_priv(struct urb_priv *urb_priv)
1773{
1774        if (urb_priv) {
1775                kfree(urb_priv->td[0]);
1776                kfree(urb_priv);
1777        }
1778}
1779
1780void xhci_free_command(struct xhci_hcd *xhci,
1781                struct xhci_command *command)
1782{
1783        xhci_free_container_ctx(xhci,
1784                        command->in_ctx);
1785        kfree(command->completion);
1786        kfree(command);
1787}
1788
1789void xhci_mem_cleanup(struct xhci_hcd *xhci)
1790{
1791        struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1792        int size;
1793        int i, j, num_ports;
1794
1795        del_timer_sync(&xhci->cmd_timer);
1796
1797        /* Free the Event Ring Segment Table and the actual Event Ring */
1798        size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1799        if (xhci->erst.entries)
1800                dma_free_coherent(dev, size,
1801                                xhci->erst.entries, xhci->erst.erst_dma_addr);
1802        xhci->erst.entries = NULL;
1803        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1804        if (xhci->event_ring)
1805                xhci_ring_free(xhci, xhci->event_ring);
1806        xhci->event_ring = NULL;
1807        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1808
1809        if (xhci->lpm_command)
1810                xhci_free_command(xhci, xhci->lpm_command);
1811        xhci->lpm_command = NULL;
1812        if (xhci->cmd_ring)
1813                xhci_ring_free(xhci, xhci->cmd_ring);
1814        xhci->cmd_ring = NULL;
1815        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1816        xhci_cleanup_command_queue(xhci);
1817
1818        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1819        for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1820                struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1821                for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1822                        struct list_head *ep = &bwt->interval_bw[j].endpoints;
1823                        while (!list_empty(ep))
1824                                list_del_init(ep->next);
1825                }
1826        }
1827
1828        for (i = 1; i < MAX_HC_SLOTS; ++i)
1829                xhci_free_virt_device(xhci, i);
1830
1831        if (xhci->segment_pool)
1832                dma_pool_destroy(xhci->segment_pool);
1833        xhci->segment_pool = NULL;
1834        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1835
1836        if (xhci->device_pool)
1837                dma_pool_destroy(xhci->device_pool);
1838        xhci->device_pool = NULL;
1839        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1840
1841        if (xhci->small_streams_pool)
1842                dma_pool_destroy(xhci->small_streams_pool);
1843        xhci->small_streams_pool = NULL;
1844        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1845                        "Freed small stream array pool");
1846
1847        if (xhci->medium_streams_pool)
1848                dma_pool_destroy(xhci->medium_streams_pool);
1849        xhci->medium_streams_pool = NULL;
1850        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1851                        "Freed medium stream array pool");
1852
1853        if (xhci->dcbaa)
1854                dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1855                                xhci->dcbaa, xhci->dcbaa->dma);
1856        xhci->dcbaa = NULL;
1857
1858        scratchpad_free(xhci);
1859
1860        if (!xhci->rh_bw)
1861                goto no_bw;
1862
1863        for (i = 0; i < num_ports; i++) {
1864                struct xhci_tt_bw_info *tt, *n;
1865                list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1866                        list_del(&tt->tt_list);
1867                        kfree(tt);
1868                }
1869        }
1870
1871no_bw:
1872        xhci->cmd_ring_reserved_trbs = 0;
1873        xhci->num_usb2_ports = 0;
1874        xhci->num_usb3_ports = 0;
1875        xhci->num_active_eps = 0;
1876        kfree(xhci->usb2_ports);
1877        kfree(xhci->usb3_ports);
1878        kfree(xhci->port_array);
1879        kfree(xhci->rh_bw);
1880        kfree(xhci->ext_caps);
1881
1882        xhci->page_size = 0;
1883        xhci->page_shift = 0;
1884        xhci->bus_state[0].bus_suspended = 0;
1885        xhci->bus_state[1].bus_suspended = 0;
1886}
1887
1888static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1889                struct xhci_segment *input_seg,
1890                union xhci_trb *start_trb,
1891                union xhci_trb *end_trb,
1892                dma_addr_t input_dma,
1893                struct xhci_segment *result_seg,
1894                char *test_name, int test_number)
1895{
1896        unsigned long long start_dma;
1897        unsigned long long end_dma;
1898        struct xhci_segment *seg;
1899
1900        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1901        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1902
1903        seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1904        if (seg != result_seg) {
1905                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1906                                test_name, test_number);
1907                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1908                                "input DMA 0x%llx\n",
1909                                input_seg,
1910                                (unsigned long long) input_dma);
1911                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1912                                "ending TRB %p (0x%llx DMA)\n",
1913                                start_trb, start_dma,
1914                                end_trb, end_dma);
1915                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1916                                result_seg, seg);
1917                trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1918                          true);
1919                return -1;
1920        }
1921        return 0;
1922}
1923
1924/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1925static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1926{
1927        struct {
1928                dma_addr_t              input_dma;
1929                struct xhci_segment     *result_seg;
1930        } simple_test_vector [] = {
1931                /* A zeroed DMA field should fail */
1932                { 0, NULL },
1933                /* One TRB before the ring start should fail */
1934                { xhci->event_ring->first_seg->dma - 16, NULL },
1935                /* One byte before the ring start should fail */
1936                { xhci->event_ring->first_seg->dma - 1, NULL },
1937                /* Starting TRB should succeed */
1938                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1939                /* Ending TRB should succeed */
1940                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1941                        xhci->event_ring->first_seg },
1942                /* One byte after the ring end should fail */
1943                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1944                /* One TRB after the ring end should fail */
1945                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1946                /* An address of all ones should fail */
1947                { (dma_addr_t) (~0), NULL },
1948        };
1949        struct {
1950                struct xhci_segment     *input_seg;
1951                union xhci_trb          *start_trb;
1952                union xhci_trb          *end_trb;
1953                dma_addr_t              input_dma;
1954                struct xhci_segment     *result_seg;
1955        } complex_test_vector [] = {
1956                /* Test feeding a valid DMA address from a different ring */
1957                {       .input_seg = xhci->event_ring->first_seg,
1958                        .start_trb = xhci->event_ring->first_seg->trbs,
1959                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1960                        .input_dma = xhci->cmd_ring->first_seg->dma,
1961                        .result_seg = NULL,
1962                },
1963                /* Test feeding a valid end TRB from a different ring */
1964                {       .input_seg = xhci->event_ring->first_seg,
1965                        .start_trb = xhci->event_ring->first_seg->trbs,
1966                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1967                        .input_dma = xhci->cmd_ring->first_seg->dma,
1968                        .result_seg = NULL,
1969                },
1970                /* Test feeding a valid start and end TRB from a different ring */
1971                {       .input_seg = xhci->event_ring->first_seg,
1972                        .start_trb = xhci->cmd_ring->first_seg->trbs,
1973                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1974                        .input_dma = xhci->cmd_ring->first_seg->dma,
1975                        .result_seg = NULL,
1976                },
1977                /* TRB in this ring, but after this TD */
1978                {       .input_seg = xhci->event_ring->first_seg,
1979                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
1980                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
1981                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1982                        .result_seg = NULL,
1983                },
1984                /* TRB in this ring, but before this TD */
1985                {       .input_seg = xhci->event_ring->first_seg,
1986                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
1987                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
1988                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1989                        .result_seg = NULL,
1990                },
1991                /* TRB in this ring, but after this wrapped TD */
1992                {       .input_seg = xhci->event_ring->first_seg,
1993                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1994                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1995                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1996                        .result_seg = NULL,
1997                },
1998                /* TRB in this ring, but before this wrapped TD */
1999                {       .input_seg = xhci->event_ring->first_seg,
2000                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2001                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2002                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2003                        .result_seg = NULL,
2004                },
2005                /* TRB not in this ring, and we have a wrapped TD */
2006                {       .input_seg = xhci->event_ring->first_seg,
2007                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2008                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
2009                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2010                        .result_seg = NULL,
2011                },
2012        };
2013
2014        unsigned int num_tests;
2015        int i, ret;
2016
2017        num_tests = ARRAY_SIZE(simple_test_vector);
2018        for (i = 0; i < num_tests; i++) {
2019                ret = xhci_test_trb_in_td(xhci,
2020                                xhci->event_ring->first_seg,
2021                                xhci->event_ring->first_seg->trbs,
2022                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2023                                simple_test_vector[i].input_dma,
2024                                simple_test_vector[i].result_seg,
2025                                "Simple", i);
2026                if (ret < 0)
2027                        return ret;
2028        }
2029
2030        num_tests = ARRAY_SIZE(complex_test_vector);
2031        for (i = 0; i < num_tests; i++) {
2032                ret = xhci_test_trb_in_td(xhci,
2033                                complex_test_vector[i].input_seg,
2034                                complex_test_vector[i].start_trb,
2035                                complex_test_vector[i].end_trb,
2036                                complex_test_vector[i].input_dma,
2037                                complex_test_vector[i].result_seg,
2038                                "Complex", i);
2039                if (ret < 0)
2040                        return ret;
2041        }
2042        xhci_dbg(xhci, "TRB math tests passed.\n");
2043        return 0;
2044}
2045
2046static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2047{
2048        u64 temp;
2049        dma_addr_t deq;
2050
2051        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2052                        xhci->event_ring->dequeue);
2053        if (deq == 0 && !in_interrupt())
2054                xhci_warn(xhci, "WARN something wrong with SW event ring "
2055                                "dequeue ptr.\n");
2056        /* Update HC event ring dequeue pointer */
2057        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2058        temp &= ERST_PTR_MASK;
2059        /* Don't clear the EHB bit (which is RW1C) because
2060         * there might be more events to service.
2061         */
2062        temp &= ~ERST_EHB;
2063        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2064                        "// Write event ring dequeue pointer, "
2065                        "preserving EHB bit");
2066        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2067                        &xhci->ir_set->erst_dequeue);
2068}
2069
2070static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2071                __le32 __iomem *addr, u8 major_revision, int max_caps)
2072{
2073        u32 temp, port_offset, port_count;
2074        int i;
2075
2076        if (major_revision > 0x03) {
2077                xhci_warn(xhci, "Ignoring unknown port speed, "
2078                                "Ext Cap %p, revision = 0x%x\n",
2079                                addr, major_revision);
2080                /* Ignoring port protocol we can't understand. FIXME */
2081                return;
2082        }
2083
2084        /* Port offset and count in the third dword, see section 7.2 */
2085        temp = readl(addr + 2);
2086        port_offset = XHCI_EXT_PORT_OFF(temp);
2087        port_count = XHCI_EXT_PORT_COUNT(temp);
2088        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2089                        "Ext Cap %p, port offset = %u, "
2090                        "count = %u, revision = 0x%x",
2091                        addr, port_offset, port_count, major_revision);
2092        /* Port count includes the current port offset */
2093        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2094                /* WTF? "Valid values are ‘1’ to MaxPorts" */
2095                return;
2096
2097        /* cache usb2 port capabilities */
2098        if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2099                xhci->ext_caps[xhci->num_ext_caps++] = temp;
2100
2101        /* Check the host's USB2 LPM capability */
2102        if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2103                        (temp & XHCI_L1C)) {
2104                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2105                                "xHCI 0.96: support USB2 software lpm");
2106                xhci->sw_lpm_support = 1;
2107        }
2108
2109        if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2110                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2111                                "xHCI 1.0: support USB2 software lpm");
2112                xhci->sw_lpm_support = 1;
2113                if (temp & XHCI_HLC) {
2114                        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2115                                        "xHCI 1.0: support USB2 hardware lpm");
2116                        xhci->hw_lpm_support = 1;
2117                }
2118        }
2119
2120        port_offset--;
2121        for (i = port_offset; i < (port_offset + port_count); i++) {
2122                /* Duplicate entry.  Ignore the port if the revisions differ. */
2123                if (xhci->port_array[i] != 0) {
2124                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2125                                        " port %u\n", addr, i);
2126                        xhci_warn(xhci, "Port was marked as USB %u, "
2127                                        "duplicated as USB %u\n",
2128                                        xhci->port_array[i], major_revision);
2129                        /* Only adjust the roothub port counts if we haven't
2130                         * found a similar duplicate.
2131                         */
2132                        if (xhci->port_array[i] != major_revision &&
2133                                xhci->port_array[i] != DUPLICATE_ENTRY) {
2134                                if (xhci->port_array[i] == 0x03)
2135                                        xhci->num_usb3_ports--;
2136                                else
2137                                        xhci->num_usb2_ports--;
2138                                xhci->port_array[i] = DUPLICATE_ENTRY;
2139                        }
2140                        /* FIXME: Should we disable the port? */
2141                        continue;
2142                }
2143                xhci->port_array[i] = major_revision;
2144                if (major_revision == 0x03)
2145                        xhci->num_usb3_ports++;
2146                else
2147                        xhci->num_usb2_ports++;
2148        }
2149        /* FIXME: Should we disable ports not in the Extended Capabilities? */
2150}
2151
2152/*
2153 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2154 * specify what speeds each port is supposed to be.  We can't count on the port
2155 * speed bits in the PORTSC register being correct until a device is connected,
2156 * but we need to set up the two fake roothubs with the correct number of USB
2157 * 3.0 and USB 2.0 ports at host controller initialization time.
2158 */
2159static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2160{
2161        __le32 __iomem *addr, *tmp_addr;
2162        u32 offset, tmp_offset;
2163        unsigned int num_ports;
2164        int i, j, port_index;
2165        int cap_count = 0;
2166
2167        addr = &xhci->cap_regs->hcc_params;
2168        offset = XHCI_HCC_EXT_CAPS(readl(addr));
2169        if (offset == 0) {
2170                xhci_err(xhci, "No Extended Capability registers, "
2171                                "unable to set up roothub.\n");
2172                return -ENODEV;
2173        }
2174
2175        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2176        xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2177        if (!xhci->port_array)
2178                return -ENOMEM;
2179
2180        xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2181        if (!xhci->rh_bw)
2182                return -ENOMEM;
2183        for (i = 0; i < num_ports; i++) {
2184                struct xhci_interval_bw_table *bw_table;
2185
2186                INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2187                bw_table = &xhci->rh_bw[i].bw_table;
2188                for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2189                        INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2190        }
2191
2192        /*
2193         * For whatever reason, the first capability offset is from the
2194         * capability register base, not from the HCCPARAMS register.
2195         * See section 5.3.6 for offset calculation.
2196         */
2197        addr = &xhci->cap_regs->hc_capbase + offset;
2198
2199        tmp_addr = addr;
2200        tmp_offset = offset;
2201
2202        /* count extended protocol capability entries for later caching */
2203        do {
2204                u32 cap_id;
2205                cap_id = readl(tmp_addr);
2206                if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2207                        cap_count++;
2208                tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2209                tmp_addr += tmp_offset;
2210        } while (tmp_offset);
2211
2212        xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2213        if (!xhci->ext_caps)
2214                return -ENOMEM;
2215
2216        while (1) {
2217                u32 cap_id;
2218
2219                cap_id = readl(addr);
2220                if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2221                        xhci_add_in_port(xhci, num_ports, addr,
2222                                        (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2223                                        cap_count);
2224                offset = XHCI_EXT_CAPS_NEXT(cap_id);
2225                if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2226                                == num_ports)
2227                        break;
2228                /*
2229                 * Once you're into the Extended Capabilities, the offset is
2230                 * always relative to the register holding the offset.
2231                 */
2232                addr += offset;
2233        }
2234
2235        if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2236                xhci_warn(xhci, "No ports on the roothubs?\n");
2237                return -ENODEV;
2238        }
2239        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2240                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2241                        xhci->num_usb2_ports, xhci->num_usb3_ports);
2242
2243        /* Place limits on the number of roothub ports so that the hub
2244         * descriptors aren't longer than the USB core will allocate.
2245         */
2246        if (xhci->num_usb3_ports > 15) {
2247                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2248                                "Limiting USB 3.0 roothub ports to 15.");
2249                xhci->num_usb3_ports = 15;
2250        }
2251        if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2252                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253                                "Limiting USB 2.0 roothub ports to %u.",
2254                                USB_MAXCHILDREN);
2255                xhci->num_usb2_ports = USB_MAXCHILDREN;
2256        }
2257
2258        /*
2259         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2260         * Not sure how the USB core will handle a hub with no ports...
2261         */
2262        if (xhci->num_usb2_ports) {
2263                xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2264                                xhci->num_usb2_ports, flags);
2265                if (!xhci->usb2_ports)
2266                        return -ENOMEM;
2267
2268                port_index = 0;
2269                for (i = 0; i < num_ports; i++) {
2270                        if (xhci->port_array[i] == 0x03 ||
2271                                        xhci->port_array[i] == 0 ||
2272                                        xhci->port_array[i] == DUPLICATE_ENTRY)
2273                                continue;
2274
2275                        xhci->usb2_ports[port_index] =
2276                                &xhci->op_regs->port_status_base +
2277                                NUM_PORT_REGS*i;
2278                        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2279                                        "USB 2.0 port at index %u, "
2280                                        "addr = %p", i,
2281                                        xhci->usb2_ports[port_index]);
2282                        port_index++;
2283                        if (port_index == xhci->num_usb2_ports)
2284                                break;
2285                }
2286        }
2287        if (xhci->num_usb3_ports) {
2288                xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2289                                xhci->num_usb3_ports, flags);
2290                if (!xhci->usb3_ports)
2291                        return -ENOMEM;
2292
2293                port_index = 0;
2294                for (i = 0; i < num_ports; i++)
2295                        if (xhci->port_array[i] == 0x03) {
2296                                xhci->usb3_ports[port_index] =
2297                                        &xhci->op_regs->port_status_base +
2298                                        NUM_PORT_REGS*i;
2299                                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2300                                                "USB 3.0 port at index %u, "
2301                                                "addr = %p", i,
2302                                                xhci->usb3_ports[port_index]);
2303                                port_index++;
2304                                if (port_index == xhci->num_usb3_ports)
2305                                        break;
2306                        }
2307        }
2308        return 0;
2309}
2310
2311int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2312{
2313        dma_addr_t      dma;
2314        struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2315        unsigned int    val, val2;
2316        u64             val_64;
2317        struct xhci_segment     *seg;
2318        u32 page_size, temp;
2319        int i;
2320
2321        INIT_LIST_HEAD(&xhci->cmd_list);
2322
2323        /* init command timeout timer */
2324        setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2325                    (unsigned long)xhci);
2326
2327        page_size = readl(&xhci->op_regs->page_size);
2328        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2329                        "Supported page size register = 0x%x", page_size);
2330        for (i = 0; i < 16; i++) {
2331                if ((0x1 & page_size) != 0)
2332                        break;
2333                page_size = page_size >> 1;
2334        }
2335        if (i < 16)
2336                xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2337                        "Supported page size of %iK", (1 << (i+12)) / 1024);
2338        else
2339                xhci_warn(xhci, "WARN: no supported page size\n");
2340        /* Use 4K pages, since that's common and the minimum the HC supports */
2341        xhci->page_shift = 12;
2342        xhci->page_size = 1 << xhci->page_shift;
2343        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344                        "HCD page size set to %iK", xhci->page_size / 1024);
2345
2346        /*
2347         * Program the Number of Device Slots Enabled field in the CONFIG
2348         * register with the max value of slots the HC can handle.
2349         */
2350        val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2351        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352                        "// xHC can handle at most %d device slots.", val);
2353        val2 = readl(&xhci->op_regs->config_reg);
2354        val |= (val2 & ~HCS_SLOTS_MASK);
2355        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356                        "// Setting Max device slots reg = 0x%x.", val);
2357        writel(val, &xhci->op_regs->config_reg);
2358
2359        /*
2360         * Section 5.4.8 - doorbell array must be
2361         * "physically contiguous and 64-byte (cache line) aligned".
2362         */
2363        xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2364                        GFP_KERNEL);
2365        if (!xhci->dcbaa)
2366                goto fail;
2367        memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2368        xhci->dcbaa->dma = dma;
2369        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2370                        "// Device context base array address = 0x%llx (DMA), %p (virt)",
2371                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2372        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2373
2374        /*
2375         * Initialize the ring segment pool.  The ring must be a contiguous
2376         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2377         * however, the command ring segment needs 64-byte aligned segments
2378         * and our use of dma addresses in the trb_address_map radix tree needs
2379         * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2380         */
2381        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2382                        TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2383
2384        /* See Table 46 and Note on Figure 55 */
2385        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2386                        2112, 64, xhci->page_size);
2387        if (!xhci->segment_pool || !xhci->device_pool)
2388                goto fail;
2389
2390        /* Linear stream context arrays don't have any boundary restrictions,
2391         * and only need to be 16-byte aligned.
2392         */
2393        xhci->small_streams_pool =
2394                dma_pool_create("xHCI 256 byte stream ctx arrays",
2395                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2396        xhci->medium_streams_pool =
2397                dma_pool_create("xHCI 1KB stream ctx arrays",
2398                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2399        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2400         * will be allocated with dma_alloc_coherent()
2401         */
2402
2403        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2404                goto fail;
2405
2406        /* Set up the command ring to have one segments for now. */
2407        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2408        if (!xhci->cmd_ring)
2409                goto fail;
2410        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411                        "Allocated command ring at %p", xhci->cmd_ring);
2412        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2413                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
2414
2415        /* Set the address in the Command Ring Control register */
2416        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2417        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2418                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2419                xhci->cmd_ring->cycle_state;
2420        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2421                        "// Setting command ring address to 0x%x", val);
2422        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2423        xhci_dbg_cmd_ptrs(xhci);
2424
2425        xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2426        if (!xhci->lpm_command)
2427                goto fail;
2428
2429        /* Reserve one command ring TRB for disabling LPM.
2430         * Since the USB core grabs the shared usb_bus bandwidth mutex before
2431         * disabling LPM, we only need to reserve one TRB for all devices.
2432         */
2433        xhci->cmd_ring_reserved_trbs++;
2434
2435        val = readl(&xhci->cap_regs->db_off);
2436        val &= DBOFF_MASK;
2437        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2438                        "// Doorbell array is located at offset 0x%x"
2439                        " from cap regs base addr", val);
2440        xhci->dba = (void __iomem *) xhci->cap_regs + val;
2441        xhci_dbg_regs(xhci);
2442        xhci_print_run_regs(xhci);
2443        /* Set ir_set to interrupt register set 0 */
2444        xhci->ir_set = &xhci->run_regs->ir_set[0];
2445
2446        /*
2447         * Event ring setup: Allocate a normal ring, but also setup
2448         * the event ring segment table (ERST).  Section 4.9.3.
2449         */
2450        xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2451        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2452                                                flags);
2453        if (!xhci->event_ring)
2454                goto fail;
2455        if (xhci_check_trb_in_td_math(xhci) < 0)
2456                goto fail;
2457
2458        xhci->erst.entries = dma_alloc_coherent(dev,
2459                        sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2460                        GFP_KERNEL);
2461        if (!xhci->erst.entries)
2462                goto fail;
2463        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2464                        "// Allocated event ring segment table at 0x%llx",
2465                        (unsigned long long)dma);
2466
2467        memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2468        xhci->erst.num_entries = ERST_NUM_SEGS;
2469        xhci->erst.erst_dma_addr = dma;
2470        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2471                        "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2472                        xhci->erst.num_entries,
2473                        xhci->erst.entries,
2474                        (unsigned long long)xhci->erst.erst_dma_addr);
2475
2476        /* set ring base address and size for each segment table entry */
2477        for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2478                struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2479                entry->seg_addr = cpu_to_le64(seg->dma);
2480                entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2481                entry->rsvd = 0;
2482                seg = seg->next;
2483        }
2484
2485        /* set ERST count with the number of entries in the segment table */
2486        val = readl(&xhci->ir_set->erst_size);
2487        val &= ERST_SIZE_MASK;
2488        val |= ERST_NUM_SEGS;
2489        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2490                        "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2491                        val);
2492        writel(val, &xhci->ir_set->erst_size);
2493
2494        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2495                        "// Set ERST entries to point to event ring.");
2496        /* set the segment table base address */
2497        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2498                        "// Set ERST base address for ir_set 0 = 0x%llx",
2499                        (unsigned long long)xhci->erst.erst_dma_addr);
2500        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2501        val_64 &= ERST_PTR_MASK;
2502        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2503        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2504
2505        /* Set the event ring dequeue address */
2506        xhci_set_hc_event_deq(xhci);
2507        xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2508                        "Wrote ERST address to ir_set 0.");
2509        xhci_print_ir_set(xhci, 0);
2510
2511        /*
2512         * XXX: Might need to set the Interrupter Moderation Register to
2513         * something other than the default (~1ms minimum between interrupts).
2514         * See section 5.5.1.2.
2515         */
2516        init_completion(&xhci->addr_dev);
2517        for (i = 0; i < MAX_HC_SLOTS; ++i)
2518                xhci->devs[i] = NULL;
2519        for (i = 0; i < USB_MAXCHILDREN; ++i) {
2520                xhci->bus_state[0].resume_done[i] = 0;
2521                xhci->bus_state[1].resume_done[i] = 0;
2522                /* Only the USB 2.0 completions will ever be used. */
2523                init_completion(&xhci->bus_state[1].rexit_done[i]);
2524        }
2525
2526        if (scratchpad_alloc(xhci, flags))
2527                goto fail;
2528        if (xhci_setup_port_arrays(xhci, flags))
2529                goto fail;
2530
2531        /* Enable USB 3.0 device notifications for function remote wake, which
2532         * is necessary for allowing USB 3.0 devices to do remote wakeup from
2533         * U3 (device suspend).
2534         */
2535        temp = readl(&xhci->op_regs->dev_notification);
2536        temp &= ~DEV_NOTE_MASK;
2537        temp |= DEV_NOTE_FWAKE;
2538        writel(temp, &xhci->op_regs->dev_notification);
2539
2540        return 0;
2541
2542fail:
2543        xhci_warn(xhci, "Couldn't initialize memory\n");
2544        xhci_halt(xhci);
2545        xhci_reset(xhci);
2546        xhci_mem_cleanup(xhci);
2547        return -ENOMEM;
2548}
2549