linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28static inline bool extent_state_in_tree(const struct extent_state *state)
  29{
  30        return !RB_EMPTY_NODE(&state->rb_node);
  31}
  32
  33#ifdef CONFIG_BTRFS_DEBUG
  34static LIST_HEAD(buffers);
  35static LIST_HEAD(states);
  36
  37static DEFINE_SPINLOCK(leak_lock);
  38
  39static inline
  40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  41{
  42        unsigned long flags;
  43
  44        spin_lock_irqsave(&leak_lock, flags);
  45        list_add(new, head);
  46        spin_unlock_irqrestore(&leak_lock, flags);
  47}
  48
  49static inline
  50void btrfs_leak_debug_del(struct list_head *entry)
  51{
  52        unsigned long flags;
  53
  54        spin_lock_irqsave(&leak_lock, flags);
  55        list_del(entry);
  56        spin_unlock_irqrestore(&leak_lock, flags);
  57}
  58
  59static inline
  60void btrfs_leak_debug_check(void)
  61{
  62        struct extent_state *state;
  63        struct extent_buffer *eb;
  64
  65        while (!list_empty(&states)) {
  66                state = list_entry(states.next, struct extent_state, leak_list);
  67                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  68                       state->start, state->end, state->state,
  69                       extent_state_in_tree(state),
  70                       atomic_read(&state->refs));
  71                list_del(&state->leak_list);
  72                kmem_cache_free(extent_state_cache, state);
  73        }
  74
  75        while (!list_empty(&buffers)) {
  76                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  77                printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  78                       "refs %d\n",
  79                       eb->start, eb->len, atomic_read(&eb->refs));
  80                list_del(&eb->leak_list);
  81                kmem_cache_free(extent_buffer_cache, eb);
  82        }
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)             \
  86        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88                struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90        struct inode *inode;
  91        u64 isize;
  92
  93        if (!tree->mapping)
  94                return;
  95
  96        inode = tree->mapping->host;
  97        isize = i_size_read(inode);
  98        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99                printk_ratelimited(KERN_DEBUG
 100                    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
 101                                caller, btrfs_ino(inode), isize, start, end);
 102        }
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head) do {} while (0)
 106#define btrfs_leak_debug_del(entry)     do {} while (0)
 107#define btrfs_leak_debug_check()        do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114        u64 start;
 115        u64 end;
 116        struct rb_node rb_node;
 117};
 118
 119struct extent_page_data {
 120        struct bio *bio;
 121        struct extent_io_tree *tree;
 122        get_extent_t *get_extent;
 123        unsigned long bio_flags;
 124
 125        /* tells writepage not to lock the state bits for this range
 126         * it still does the unlocking
 127         */
 128        unsigned int extent_locked:1;
 129
 130        /* tells the submit_bio code to use a WRITE_SYNC */
 131        unsigned int sync_io:1;
 132};
 133
 134static noinline void flush_write_bio(void *data);
 135static inline struct btrfs_fs_info *
 136tree_fs_info(struct extent_io_tree *tree)
 137{
 138        if (!tree->mapping)
 139                return NULL;
 140        return btrfs_sb(tree->mapping->host->i_sb);
 141}
 142
 143int __init extent_io_init(void)
 144{
 145        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 146                        sizeof(struct extent_state), 0,
 147                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 148        if (!extent_state_cache)
 149                return -ENOMEM;
 150
 151        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 152                        sizeof(struct extent_buffer), 0,
 153                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 154        if (!extent_buffer_cache)
 155                goto free_state_cache;
 156
 157        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 158                                     offsetof(struct btrfs_io_bio, bio));
 159        if (!btrfs_bioset)
 160                goto free_buffer_cache;
 161
 162        if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 163                goto free_bioset;
 164
 165        return 0;
 166
 167free_bioset:
 168        bioset_free(btrfs_bioset);
 169        btrfs_bioset = NULL;
 170
 171free_buffer_cache:
 172        kmem_cache_destroy(extent_buffer_cache);
 173        extent_buffer_cache = NULL;
 174
 175free_state_cache:
 176        kmem_cache_destroy(extent_state_cache);
 177        extent_state_cache = NULL;
 178        return -ENOMEM;
 179}
 180
 181void extent_io_exit(void)
 182{
 183        btrfs_leak_debug_check();
 184
 185        /*
 186         * Make sure all delayed rcu free are flushed before we
 187         * destroy caches.
 188         */
 189        rcu_barrier();
 190        if (extent_state_cache)
 191                kmem_cache_destroy(extent_state_cache);
 192        if (extent_buffer_cache)
 193                kmem_cache_destroy(extent_buffer_cache);
 194        if (btrfs_bioset)
 195                bioset_free(btrfs_bioset);
 196}
 197
 198void extent_io_tree_init(struct extent_io_tree *tree,
 199                         struct address_space *mapping)
 200{
 201        tree->state = RB_ROOT;
 202        tree->ops = NULL;
 203        tree->dirty_bytes = 0;
 204        spin_lock_init(&tree->lock);
 205        tree->mapping = mapping;
 206}
 207
 208static struct extent_state *alloc_extent_state(gfp_t mask)
 209{
 210        struct extent_state *state;
 211
 212        state = kmem_cache_alloc(extent_state_cache, mask);
 213        if (!state)
 214                return state;
 215        state->state = 0;
 216        state->private = 0;
 217        RB_CLEAR_NODE(&state->rb_node);
 218        btrfs_leak_debug_add(&state->leak_list, &states);
 219        atomic_set(&state->refs, 1);
 220        init_waitqueue_head(&state->wq);
 221        trace_alloc_extent_state(state, mask, _RET_IP_);
 222        return state;
 223}
 224
 225void free_extent_state(struct extent_state *state)
 226{
 227        if (!state)
 228                return;
 229        if (atomic_dec_and_test(&state->refs)) {
 230                WARN_ON(extent_state_in_tree(state));
 231                btrfs_leak_debug_del(&state->leak_list);
 232                trace_free_extent_state(state, _RET_IP_);
 233                kmem_cache_free(extent_state_cache, state);
 234        }
 235}
 236
 237static struct rb_node *tree_insert(struct rb_root *root,
 238                                   struct rb_node *search_start,
 239                                   u64 offset,
 240                                   struct rb_node *node,
 241                                   struct rb_node ***p_in,
 242                                   struct rb_node **parent_in)
 243{
 244        struct rb_node **p;
 245        struct rb_node *parent = NULL;
 246        struct tree_entry *entry;
 247
 248        if (p_in && parent_in) {
 249                p = *p_in;
 250                parent = *parent_in;
 251                goto do_insert;
 252        }
 253
 254        p = search_start ? &search_start : &root->rb_node;
 255        while (*p) {
 256                parent = *p;
 257                entry = rb_entry(parent, struct tree_entry, rb_node);
 258
 259                if (offset < entry->start)
 260                        p = &(*p)->rb_left;
 261                else if (offset > entry->end)
 262                        p = &(*p)->rb_right;
 263                else
 264                        return parent;
 265        }
 266
 267do_insert:
 268        rb_link_node(node, parent, p);
 269        rb_insert_color(node, root);
 270        return NULL;
 271}
 272
 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 274                                      struct rb_node **prev_ret,
 275                                      struct rb_node **next_ret,
 276                                      struct rb_node ***p_ret,
 277                                      struct rb_node **parent_ret)
 278{
 279        struct rb_root *root = &tree->state;
 280        struct rb_node **n = &root->rb_node;
 281        struct rb_node *prev = NULL;
 282        struct rb_node *orig_prev = NULL;
 283        struct tree_entry *entry;
 284        struct tree_entry *prev_entry = NULL;
 285
 286        while (*n) {
 287                prev = *n;
 288                entry = rb_entry(prev, struct tree_entry, rb_node);
 289                prev_entry = entry;
 290
 291                if (offset < entry->start)
 292                        n = &(*n)->rb_left;
 293                else if (offset > entry->end)
 294                        n = &(*n)->rb_right;
 295                else
 296                        return *n;
 297        }
 298
 299        if (p_ret)
 300                *p_ret = n;
 301        if (parent_ret)
 302                *parent_ret = prev;
 303
 304        if (prev_ret) {
 305                orig_prev = prev;
 306                while (prev && offset > prev_entry->end) {
 307                        prev = rb_next(prev);
 308                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 309                }
 310                *prev_ret = prev;
 311                prev = orig_prev;
 312        }
 313
 314        if (next_ret) {
 315                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 316                while (prev && offset < prev_entry->start) {
 317                        prev = rb_prev(prev);
 318                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 319                }
 320                *next_ret = prev;
 321        }
 322        return NULL;
 323}
 324
 325static inline struct rb_node *
 326tree_search_for_insert(struct extent_io_tree *tree,
 327                       u64 offset,
 328                       struct rb_node ***p_ret,
 329                       struct rb_node **parent_ret)
 330{
 331        struct rb_node *prev = NULL;
 332        struct rb_node *ret;
 333
 334        ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 335        if (!ret)
 336                return prev;
 337        return ret;
 338}
 339
 340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 341                                          u64 offset)
 342{
 343        return tree_search_for_insert(tree, offset, NULL, NULL);
 344}
 345
 346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 347                     struct extent_state *other)
 348{
 349        if (tree->ops && tree->ops->merge_extent_hook)
 350                tree->ops->merge_extent_hook(tree->mapping->host, new,
 351                                             other);
 352}
 353
 354/*
 355 * utility function to look for merge candidates inside a given range.
 356 * Any extents with matching state are merged together into a single
 357 * extent in the tree.  Extents with EXTENT_IO in their state field
 358 * are not merged because the end_io handlers need to be able to do
 359 * operations on them without sleeping (or doing allocations/splits).
 360 *
 361 * This should be called with the tree lock held.
 362 */
 363static void merge_state(struct extent_io_tree *tree,
 364                        struct extent_state *state)
 365{
 366        struct extent_state *other;
 367        struct rb_node *other_node;
 368
 369        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 370                return;
 371
 372        other_node = rb_prev(&state->rb_node);
 373        if (other_node) {
 374                other = rb_entry(other_node, struct extent_state, rb_node);
 375                if (other->end == state->start - 1 &&
 376                    other->state == state->state) {
 377                        merge_cb(tree, state, other);
 378                        state->start = other->start;
 379                        rb_erase(&other->rb_node, &tree->state);
 380                        RB_CLEAR_NODE(&other->rb_node);
 381                        free_extent_state(other);
 382                }
 383        }
 384        other_node = rb_next(&state->rb_node);
 385        if (other_node) {
 386                other = rb_entry(other_node, struct extent_state, rb_node);
 387                if (other->start == state->end + 1 &&
 388                    other->state == state->state) {
 389                        merge_cb(tree, state, other);
 390                        state->end = other->end;
 391                        rb_erase(&other->rb_node, &tree->state);
 392                        RB_CLEAR_NODE(&other->rb_node);
 393                        free_extent_state(other);
 394                }
 395        }
 396}
 397
 398static void set_state_cb(struct extent_io_tree *tree,
 399                         struct extent_state *state, unsigned *bits)
 400{
 401        if (tree->ops && tree->ops->set_bit_hook)
 402                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 403}
 404
 405static void clear_state_cb(struct extent_io_tree *tree,
 406                           struct extent_state *state, unsigned *bits)
 407{
 408        if (tree->ops && tree->ops->clear_bit_hook)
 409                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 410}
 411
 412static void set_state_bits(struct extent_io_tree *tree,
 413                           struct extent_state *state, unsigned *bits);
 414
 415/*
 416 * insert an extent_state struct into the tree.  'bits' are set on the
 417 * struct before it is inserted.
 418 *
 419 * This may return -EEXIST if the extent is already there, in which case the
 420 * state struct is freed.
 421 *
 422 * The tree lock is not taken internally.  This is a utility function and
 423 * probably isn't what you want to call (see set/clear_extent_bit).
 424 */
 425static int insert_state(struct extent_io_tree *tree,
 426                        struct extent_state *state, u64 start, u64 end,
 427                        struct rb_node ***p,
 428                        struct rb_node **parent,
 429                        unsigned *bits)
 430{
 431        struct rb_node *node;
 432
 433        if (end < start)
 434                WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 435                       end, start);
 436        state->start = start;
 437        state->end = end;
 438
 439        set_state_bits(tree, state, bits);
 440
 441        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 442        if (node) {
 443                struct extent_state *found;
 444                found = rb_entry(node, struct extent_state, rb_node);
 445                printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 446                       "%llu %llu\n",
 447                       found->start, found->end, start, end);
 448                return -EEXIST;
 449        }
 450        merge_state(tree, state);
 451        return 0;
 452}
 453
 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 455                     u64 split)
 456{
 457        if (tree->ops && tree->ops->split_extent_hook)
 458                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 459}
 460
 461/*
 462 * split a given extent state struct in two, inserting the preallocated
 463 * struct 'prealloc' as the newly created second half.  'split' indicates an
 464 * offset inside 'orig' where it should be split.
 465 *
 466 * Before calling,
 467 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 468 * are two extent state structs in the tree:
 469 * prealloc: [orig->start, split - 1]
 470 * orig: [ split, orig->end ]
 471 *
 472 * The tree locks are not taken by this function. They need to be held
 473 * by the caller.
 474 */
 475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 476                       struct extent_state *prealloc, u64 split)
 477{
 478        struct rb_node *node;
 479
 480        split_cb(tree, orig, split);
 481
 482        prealloc->start = orig->start;
 483        prealloc->end = split - 1;
 484        prealloc->state = orig->state;
 485        orig->start = split;
 486
 487        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 488                           &prealloc->rb_node, NULL, NULL);
 489        if (node) {
 490                free_extent_state(prealloc);
 491                return -EEXIST;
 492        }
 493        return 0;
 494}
 495
 496static struct extent_state *next_state(struct extent_state *state)
 497{
 498        struct rb_node *next = rb_next(&state->rb_node);
 499        if (next)
 500                return rb_entry(next, struct extent_state, rb_node);
 501        else
 502                return NULL;
 503}
 504
 505/*
 506 * utility function to clear some bits in an extent state struct.
 507 * it will optionally wake up any one waiting on this state (wake == 1).
 508 *
 509 * If no bits are set on the state struct after clearing things, the
 510 * struct is freed and removed from the tree
 511 */
 512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 513                                            struct extent_state *state,
 514                                            unsigned *bits, int wake)
 515{
 516        struct extent_state *next;
 517        unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 518
 519        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 520                u64 range = state->end - state->start + 1;
 521                WARN_ON(range > tree->dirty_bytes);
 522                tree->dirty_bytes -= range;
 523        }
 524        clear_state_cb(tree, state, bits);
 525        state->state &= ~bits_to_clear;
 526        if (wake)
 527                wake_up(&state->wq);
 528        if (state->state == 0) {
 529                next = next_state(state);
 530                if (extent_state_in_tree(state)) {
 531                        rb_erase(&state->rb_node, &tree->state);
 532                        RB_CLEAR_NODE(&state->rb_node);
 533                        free_extent_state(state);
 534                } else {
 535                        WARN_ON(1);
 536                }
 537        } else {
 538                merge_state(tree, state);
 539                next = next_state(state);
 540        }
 541        return next;
 542}
 543
 544static struct extent_state *
 545alloc_extent_state_atomic(struct extent_state *prealloc)
 546{
 547        if (!prealloc)
 548                prealloc = alloc_extent_state(GFP_ATOMIC);
 549
 550        return prealloc;
 551}
 552
 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 554{
 555        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 556                    "Extent tree was modified by another "
 557                    "thread while locked.");
 558}
 559
 560/*
 561 * clear some bits on a range in the tree.  This may require splitting
 562 * or inserting elements in the tree, so the gfp mask is used to
 563 * indicate which allocations or sleeping are allowed.
 564 *
 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 566 * the given range from the tree regardless of state (ie for truncate).
 567 *
 568 * the range [start, end] is inclusive.
 569 *
 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
 571 */
 572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 573                     unsigned bits, int wake, int delete,
 574                     struct extent_state **cached_state,
 575                     gfp_t mask)
 576{
 577        struct extent_state *state;
 578        struct extent_state *cached;
 579        struct extent_state *prealloc = NULL;
 580        struct rb_node *node;
 581        u64 last_end;
 582        int err;
 583        int clear = 0;
 584
 585        btrfs_debug_check_extent_io_range(tree, start, end);
 586
 587        if (bits & EXTENT_DELALLOC)
 588                bits |= EXTENT_NORESERVE;
 589
 590        if (delete)
 591                bits |= ~EXTENT_CTLBITS;
 592        bits |= EXTENT_FIRST_DELALLOC;
 593
 594        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 595                clear = 1;
 596again:
 597        if (!prealloc && (mask & __GFP_WAIT)) {
 598                /*
 599                 * Don't care for allocation failure here because we might end
 600                 * up not needing the pre-allocated extent state at all, which
 601                 * is the case if we only have in the tree extent states that
 602                 * cover our input range and don't cover too any other range.
 603                 * If we end up needing a new extent state we allocate it later.
 604                 */
 605                prealloc = alloc_extent_state(mask);
 606        }
 607
 608        spin_lock(&tree->lock);
 609        if (cached_state) {
 610                cached = *cached_state;
 611
 612                if (clear) {
 613                        *cached_state = NULL;
 614                        cached_state = NULL;
 615                }
 616
 617                if (cached && extent_state_in_tree(cached) &&
 618                    cached->start <= start && cached->end > start) {
 619                        if (clear)
 620                                atomic_dec(&cached->refs);
 621                        state = cached;
 622                        goto hit_next;
 623                }
 624                if (clear)
 625                        free_extent_state(cached);
 626        }
 627        /*
 628         * this search will find the extents that end after
 629         * our range starts
 630         */
 631        node = tree_search(tree, start);
 632        if (!node)
 633                goto out;
 634        state = rb_entry(node, struct extent_state, rb_node);
 635hit_next:
 636        if (state->start > end)
 637                goto out;
 638        WARN_ON(state->end < start);
 639        last_end = state->end;
 640
 641        /* the state doesn't have the wanted bits, go ahead */
 642        if (!(state->state & bits)) {
 643                state = next_state(state);
 644                goto next;
 645        }
 646
 647        /*
 648         *     | ---- desired range ---- |
 649         *  | state | or
 650         *  | ------------- state -------------- |
 651         *
 652         * We need to split the extent we found, and may flip
 653         * bits on second half.
 654         *
 655         * If the extent we found extends past our range, we
 656         * just split and search again.  It'll get split again
 657         * the next time though.
 658         *
 659         * If the extent we found is inside our range, we clear
 660         * the desired bit on it.
 661         */
 662
 663        if (state->start < start) {
 664                prealloc = alloc_extent_state_atomic(prealloc);
 665                BUG_ON(!prealloc);
 666                err = split_state(tree, state, prealloc, start);
 667                if (err)
 668                        extent_io_tree_panic(tree, err);
 669
 670                prealloc = NULL;
 671                if (err)
 672                        goto out;
 673                if (state->end <= end) {
 674                        state = clear_state_bit(tree, state, &bits, wake);
 675                        goto next;
 676                }
 677                goto search_again;
 678        }
 679        /*
 680         * | ---- desired range ---- |
 681         *                        | state |
 682         * We need to split the extent, and clear the bit
 683         * on the first half
 684         */
 685        if (state->start <= end && state->end > end) {
 686                prealloc = alloc_extent_state_atomic(prealloc);
 687                BUG_ON(!prealloc);
 688                err = split_state(tree, state, prealloc, end + 1);
 689                if (err)
 690                        extent_io_tree_panic(tree, err);
 691
 692                if (wake)
 693                        wake_up(&state->wq);
 694
 695                clear_state_bit(tree, prealloc, &bits, wake);
 696
 697                prealloc = NULL;
 698                goto out;
 699        }
 700
 701        state = clear_state_bit(tree, state, &bits, wake);
 702next:
 703        if (last_end == (u64)-1)
 704                goto out;
 705        start = last_end + 1;
 706        if (start <= end && state && !need_resched())
 707                goto hit_next;
 708        goto search_again;
 709
 710out:
 711        spin_unlock(&tree->lock);
 712        if (prealloc)
 713                free_extent_state(prealloc);
 714
 715        return 0;
 716
 717search_again:
 718        if (start > end)
 719                goto out;
 720        spin_unlock(&tree->lock);
 721        if (mask & __GFP_WAIT)
 722                cond_resched();
 723        goto again;
 724}
 725
 726static void wait_on_state(struct extent_io_tree *tree,
 727                          struct extent_state *state)
 728                __releases(tree->lock)
 729                __acquires(tree->lock)
 730{
 731        DEFINE_WAIT(wait);
 732        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 733        spin_unlock(&tree->lock);
 734        schedule();
 735        spin_lock(&tree->lock);
 736        finish_wait(&state->wq, &wait);
 737}
 738
 739/*
 740 * waits for one or more bits to clear on a range in the state tree.
 741 * The range [start, end] is inclusive.
 742 * The tree lock is taken by this function
 743 */
 744static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 745                            unsigned long bits)
 746{
 747        struct extent_state *state;
 748        struct rb_node *node;
 749
 750        btrfs_debug_check_extent_io_range(tree, start, end);
 751
 752        spin_lock(&tree->lock);
 753again:
 754        while (1) {
 755                /*
 756                 * this search will find all the extents that end after
 757                 * our range starts
 758                 */
 759                node = tree_search(tree, start);
 760process_node:
 761                if (!node)
 762                        break;
 763
 764                state = rb_entry(node, struct extent_state, rb_node);
 765
 766                if (state->start > end)
 767                        goto out;
 768
 769                if (state->state & bits) {
 770                        start = state->start;
 771                        atomic_inc(&state->refs);
 772                        wait_on_state(tree, state);
 773                        free_extent_state(state);
 774                        goto again;
 775                }
 776                start = state->end + 1;
 777
 778                if (start > end)
 779                        break;
 780
 781                if (!cond_resched_lock(&tree->lock)) {
 782                        node = rb_next(node);
 783                        goto process_node;
 784                }
 785        }
 786out:
 787        spin_unlock(&tree->lock);
 788}
 789
 790static void set_state_bits(struct extent_io_tree *tree,
 791                           struct extent_state *state,
 792                           unsigned *bits)
 793{
 794        unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 795
 796        set_state_cb(tree, state, bits);
 797        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 798                u64 range = state->end - state->start + 1;
 799                tree->dirty_bytes += range;
 800        }
 801        state->state |= bits_to_set;
 802}
 803
 804static void cache_state_if_flags(struct extent_state *state,
 805                                 struct extent_state **cached_ptr,
 806                                 unsigned flags)
 807{
 808        if (cached_ptr && !(*cached_ptr)) {
 809                if (!flags || (state->state & flags)) {
 810                        *cached_ptr = state;
 811                        atomic_inc(&state->refs);
 812                }
 813        }
 814}
 815
 816static void cache_state(struct extent_state *state,
 817                        struct extent_state **cached_ptr)
 818{
 819        return cache_state_if_flags(state, cached_ptr,
 820                                    EXTENT_IOBITS | EXTENT_BOUNDARY);
 821}
 822
 823/*
 824 * set some bits on a range in the tree.  This may require allocations or
 825 * sleeping, so the gfp mask is used to indicate what is allowed.
 826 *
 827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 828 * part of the range already has the desired bits set.  The start of the
 829 * existing range is returned in failed_start in this case.
 830 *
 831 * [start, end] is inclusive This takes the tree lock.
 832 */
 833
 834static int __must_check
 835__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 836                 unsigned bits, unsigned exclusive_bits,
 837                 u64 *failed_start, struct extent_state **cached_state,
 838                 gfp_t mask)
 839{
 840        struct extent_state *state;
 841        struct extent_state *prealloc = NULL;
 842        struct rb_node *node;
 843        struct rb_node **p;
 844        struct rb_node *parent;
 845        int err = 0;
 846        u64 last_start;
 847        u64 last_end;
 848
 849        btrfs_debug_check_extent_io_range(tree, start, end);
 850
 851        bits |= EXTENT_FIRST_DELALLOC;
 852again:
 853        if (!prealloc && (mask & __GFP_WAIT)) {
 854                prealloc = alloc_extent_state(mask);
 855                BUG_ON(!prealloc);
 856        }
 857
 858        spin_lock(&tree->lock);
 859        if (cached_state && *cached_state) {
 860                state = *cached_state;
 861                if (state->start <= start && state->end > start &&
 862                    extent_state_in_tree(state)) {
 863                        node = &state->rb_node;
 864                        goto hit_next;
 865                }
 866        }
 867        /*
 868         * this search will find all the extents that end after
 869         * our range starts.
 870         */
 871        node = tree_search_for_insert(tree, start, &p, &parent);
 872        if (!node) {
 873                prealloc = alloc_extent_state_atomic(prealloc);
 874                BUG_ON(!prealloc);
 875                err = insert_state(tree, prealloc, start, end,
 876                                   &p, &parent, &bits);
 877                if (err)
 878                        extent_io_tree_panic(tree, err);
 879
 880                cache_state(prealloc, cached_state);
 881                prealloc = NULL;
 882                goto out;
 883        }
 884        state = rb_entry(node, struct extent_state, rb_node);
 885hit_next:
 886        last_start = state->start;
 887        last_end = state->end;
 888
 889        /*
 890         * | ---- desired range ---- |
 891         * | state |
 892         *
 893         * Just lock what we found and keep going
 894         */
 895        if (state->start == start && state->end <= end) {
 896                if (state->state & exclusive_bits) {
 897                        *failed_start = state->start;
 898                        err = -EEXIST;
 899                        goto out;
 900                }
 901
 902                set_state_bits(tree, state, &bits);
 903                cache_state(state, cached_state);
 904                merge_state(tree, state);
 905                if (last_end == (u64)-1)
 906                        goto out;
 907                start = last_end + 1;
 908                state = next_state(state);
 909                if (start < end && state && state->start == start &&
 910                    !need_resched())
 911                        goto hit_next;
 912                goto search_again;
 913        }
 914
 915        /*
 916         *     | ---- desired range ---- |
 917         * | state |
 918         *   or
 919         * | ------------- state -------------- |
 920         *
 921         * We need to split the extent we found, and may flip bits on
 922         * second half.
 923         *
 924         * If the extent we found extends past our
 925         * range, we just split and search again.  It'll get split
 926         * again the next time though.
 927         *
 928         * If the extent we found is inside our range, we set the
 929         * desired bit on it.
 930         */
 931        if (state->start < start) {
 932                if (state->state & exclusive_bits) {
 933                        *failed_start = start;
 934                        err = -EEXIST;
 935                        goto out;
 936                }
 937
 938                prealloc = alloc_extent_state_atomic(prealloc);
 939                BUG_ON(!prealloc);
 940                err = split_state(tree, state, prealloc, start);
 941                if (err)
 942                        extent_io_tree_panic(tree, err);
 943
 944                prealloc = NULL;
 945                if (err)
 946                        goto out;
 947                if (state->end <= end) {
 948                        set_state_bits(tree, state, &bits);
 949                        cache_state(state, cached_state);
 950                        merge_state(tree, state);
 951                        if (last_end == (u64)-1)
 952                                goto out;
 953                        start = last_end + 1;
 954                        state = next_state(state);
 955                        if (start < end && state && state->start == start &&
 956                            !need_resched())
 957                                goto hit_next;
 958                }
 959                goto search_again;
 960        }
 961        /*
 962         * | ---- desired range ---- |
 963         *     | state | or               | state |
 964         *
 965         * There's a hole, we need to insert something in it and
 966         * ignore the extent we found.
 967         */
 968        if (state->start > start) {
 969                u64 this_end;
 970                if (end < last_start)
 971                        this_end = end;
 972                else
 973                        this_end = last_start - 1;
 974
 975                prealloc = alloc_extent_state_atomic(prealloc);
 976                BUG_ON(!prealloc);
 977
 978                /*
 979                 * Avoid to free 'prealloc' if it can be merged with
 980                 * the later extent.
 981                 */
 982                err = insert_state(tree, prealloc, start, this_end,
 983                                   NULL, NULL, &bits);
 984                if (err)
 985                        extent_io_tree_panic(tree, err);
 986
 987                cache_state(prealloc, cached_state);
 988                prealloc = NULL;
 989                start = this_end + 1;
 990                goto search_again;
 991        }
 992        /*
 993         * | ---- desired range ---- |
 994         *                        | state |
 995         * We need to split the extent, and set the bit
 996         * on the first half
 997         */
 998        if (state->start <= end && state->end > end) {
 999                if (state->state & exclusive_bits) {
1000                        *failed_start = start;
1001                        err = -EEXIST;
1002                        goto out;
1003                }
1004
1005                prealloc = alloc_extent_state_atomic(prealloc);
1006                BUG_ON(!prealloc);
1007                err = split_state(tree, state, prealloc, end + 1);
1008                if (err)
1009                        extent_io_tree_panic(tree, err);
1010
1011                set_state_bits(tree, prealloc, &bits);
1012                cache_state(prealloc, cached_state);
1013                merge_state(tree, prealloc);
1014                prealloc = NULL;
1015                goto out;
1016        }
1017
1018        goto search_again;
1019
1020out:
1021        spin_unlock(&tree->lock);
1022        if (prealloc)
1023                free_extent_state(prealloc);
1024
1025        return err;
1026
1027search_again:
1028        if (start > end)
1029                goto out;
1030        spin_unlock(&tree->lock);
1031        if (mask & __GFP_WAIT)
1032                cond_resched();
1033        goto again;
1034}
1035
1036int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037                   unsigned bits, u64 * failed_start,
1038                   struct extent_state **cached_state, gfp_t mask)
1039{
1040        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041                                cached_state, mask);
1042}
1043
1044
1045/**
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1047 *                      another
1048 * @tree:       the io tree to search
1049 * @start:      the start offset in bytes
1050 * @end:        the end offset in bytes (inclusive)
1051 * @bits:       the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
1053 * @cached_state:       state that we're going to cache
1054 * @mask:       the allocation mask
1055 *
1056 * This will go through and set bits for the given range.  If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1060 * boundary bits like LOCK.
1061 */
1062int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1063                       unsigned bits, unsigned clear_bits,
1064                       struct extent_state **cached_state, gfp_t mask)
1065{
1066        struct extent_state *state;
1067        struct extent_state *prealloc = NULL;
1068        struct rb_node *node;
1069        struct rb_node **p;
1070        struct rb_node *parent;
1071        int err = 0;
1072        u64 last_start;
1073        u64 last_end;
1074        bool first_iteration = true;
1075
1076        btrfs_debug_check_extent_io_range(tree, start, end);
1077
1078again:
1079        if (!prealloc && (mask & __GFP_WAIT)) {
1080                /*
1081                 * Best effort, don't worry if extent state allocation fails
1082                 * here for the first iteration. We might have a cached state
1083                 * that matches exactly the target range, in which case no
1084                 * extent state allocations are needed. We'll only know this
1085                 * after locking the tree.
1086                 */
1087                prealloc = alloc_extent_state(mask);
1088                if (!prealloc && !first_iteration)
1089                        return -ENOMEM;
1090        }
1091
1092        spin_lock(&tree->lock);
1093        if (cached_state && *cached_state) {
1094                state = *cached_state;
1095                if (state->start <= start && state->end > start &&
1096                    extent_state_in_tree(state)) {
1097                        node = &state->rb_node;
1098                        goto hit_next;
1099                }
1100        }
1101
1102        /*
1103         * this search will find all the extents that end after
1104         * our range starts.
1105         */
1106        node = tree_search_for_insert(tree, start, &p, &parent);
1107        if (!node) {
1108                prealloc = alloc_extent_state_atomic(prealloc);
1109                if (!prealloc) {
1110                        err = -ENOMEM;
1111                        goto out;
1112                }
1113                err = insert_state(tree, prealloc, start, end,
1114                                   &p, &parent, &bits);
1115                if (err)
1116                        extent_io_tree_panic(tree, err);
1117                cache_state(prealloc, cached_state);
1118                prealloc = NULL;
1119                goto out;
1120        }
1121        state = rb_entry(node, struct extent_state, rb_node);
1122hit_next:
1123        last_start = state->start;
1124        last_end = state->end;
1125
1126        /*
1127         * | ---- desired range ---- |
1128         * | state |
1129         *
1130         * Just lock what we found and keep going
1131         */
1132        if (state->start == start && state->end <= end) {
1133                set_state_bits(tree, state, &bits);
1134                cache_state(state, cached_state);
1135                state = clear_state_bit(tree, state, &clear_bits, 0);
1136                if (last_end == (u64)-1)
1137                        goto out;
1138                start = last_end + 1;
1139                if (start < end && state && state->start == start &&
1140                    !need_resched())
1141                        goto hit_next;
1142                goto search_again;
1143        }
1144
1145        /*
1146         *     | ---- desired range ---- |
1147         * | state |
1148         *   or
1149         * | ------------- state -------------- |
1150         *
1151         * We need to split the extent we found, and may flip bits on
1152         * second half.
1153         *
1154         * If the extent we found extends past our
1155         * range, we just split and search again.  It'll get split
1156         * again the next time though.
1157         *
1158         * If the extent we found is inside our range, we set the
1159         * desired bit on it.
1160         */
1161        if (state->start < start) {
1162                prealloc = alloc_extent_state_atomic(prealloc);
1163                if (!prealloc) {
1164                        err = -ENOMEM;
1165                        goto out;
1166                }
1167                err = split_state(tree, state, prealloc, start);
1168                if (err)
1169                        extent_io_tree_panic(tree, err);
1170                prealloc = NULL;
1171                if (err)
1172                        goto out;
1173                if (state->end <= end) {
1174                        set_state_bits(tree, state, &bits);
1175                        cache_state(state, cached_state);
1176                        state = clear_state_bit(tree, state, &clear_bits, 0);
1177                        if (last_end == (u64)-1)
1178                                goto out;
1179                        start = last_end + 1;
1180                        if (start < end && state && state->start == start &&
1181                            !need_resched())
1182                                goto hit_next;
1183                }
1184                goto search_again;
1185        }
1186        /*
1187         * | ---- desired range ---- |
1188         *     | state | or               | state |
1189         *
1190         * There's a hole, we need to insert something in it and
1191         * ignore the extent we found.
1192         */
1193        if (state->start > start) {
1194                u64 this_end;
1195                if (end < last_start)
1196                        this_end = end;
1197                else
1198                        this_end = last_start - 1;
1199
1200                prealloc = alloc_extent_state_atomic(prealloc);
1201                if (!prealloc) {
1202                        err = -ENOMEM;
1203                        goto out;
1204                }
1205
1206                /*
1207                 * Avoid to free 'prealloc' if it can be merged with
1208                 * the later extent.
1209                 */
1210                err = insert_state(tree, prealloc, start, this_end,
1211                                   NULL, NULL, &bits);
1212                if (err)
1213                        extent_io_tree_panic(tree, err);
1214                cache_state(prealloc, cached_state);
1215                prealloc = NULL;
1216                start = this_end + 1;
1217                goto search_again;
1218        }
1219        /*
1220         * | ---- desired range ---- |
1221         *                        | state |
1222         * We need to split the extent, and set the bit
1223         * on the first half
1224         */
1225        if (state->start <= end && state->end > end) {
1226                prealloc = alloc_extent_state_atomic(prealloc);
1227                if (!prealloc) {
1228                        err = -ENOMEM;
1229                        goto out;
1230                }
1231
1232                err = split_state(tree, state, prealloc, end + 1);
1233                if (err)
1234                        extent_io_tree_panic(tree, err);
1235
1236                set_state_bits(tree, prealloc, &bits);
1237                cache_state(prealloc, cached_state);
1238                clear_state_bit(tree, prealloc, &clear_bits, 0);
1239                prealloc = NULL;
1240                goto out;
1241        }
1242
1243        goto search_again;
1244
1245out:
1246        spin_unlock(&tree->lock);
1247        if (prealloc)
1248                free_extent_state(prealloc);
1249
1250        return err;
1251
1252search_again:
1253        if (start > end)
1254                goto out;
1255        spin_unlock(&tree->lock);
1256        if (mask & __GFP_WAIT)
1257                cond_resched();
1258        first_iteration = false;
1259        goto again;
1260}
1261
1262/* wrappers around set/clear extent bit */
1263int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264                     gfp_t mask)
1265{
1266        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1267                              NULL, mask);
1268}
1269
1270int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1271                    unsigned bits, gfp_t mask)
1272{
1273        return set_extent_bit(tree, start, end, bits, NULL,
1274                              NULL, mask);
1275}
1276
1277int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1278                      unsigned bits, gfp_t mask)
1279{
1280        int wake = 0;
1281
1282        if (bits & EXTENT_LOCKED)
1283                wake = 1;
1284
1285        return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1286}
1287
1288int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1289                        struct extent_state **cached_state, gfp_t mask)
1290{
1291        return set_extent_bit(tree, start, end,
1292                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1293                              NULL, cached_state, mask);
1294}
1295
1296int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297                      struct extent_state **cached_state, gfp_t mask)
1298{
1299        return set_extent_bit(tree, start, end,
1300                              EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301                              NULL, cached_state, mask);
1302}
1303
1304int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1305                       gfp_t mask)
1306{
1307        return clear_extent_bit(tree, start, end,
1308                                EXTENT_DIRTY | EXTENT_DELALLOC |
1309                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1310}
1311
1312int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1313                     gfp_t mask)
1314{
1315        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1316                              NULL, mask);
1317}
1318
1319int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1320                        struct extent_state **cached_state, gfp_t mask)
1321{
1322        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1323                              cached_state, mask);
1324}
1325
1326int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327                          struct extent_state **cached_state, gfp_t mask)
1328{
1329        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1330                                cached_state, mask);
1331}
1332
1333/*
1334 * either insert or lock state struct between start and end use mask to tell
1335 * us if waiting is desired.
1336 */
1337int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338                     unsigned bits, struct extent_state **cached_state)
1339{
1340        int err;
1341        u64 failed_start;
1342
1343        while (1) {
1344                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345                                       EXTENT_LOCKED, &failed_start,
1346                                       cached_state, GFP_NOFS);
1347                if (err == -EEXIST) {
1348                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349                        start = failed_start;
1350                } else
1351                        break;
1352                WARN_ON(start > end);
1353        }
1354        return err;
1355}
1356
1357int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358{
1359        return lock_extent_bits(tree, start, end, 0, NULL);
1360}
1361
1362int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1363{
1364        int err;
1365        u64 failed_start;
1366
1367        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368                               &failed_start, NULL, GFP_NOFS);
1369        if (err == -EEXIST) {
1370                if (failed_start > start)
1371                        clear_extent_bit(tree, start, failed_start - 1,
1372                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1373                return 0;
1374        }
1375        return 1;
1376}
1377
1378int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379                         struct extent_state **cached, gfp_t mask)
1380{
1381        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1382                                mask);
1383}
1384
1385int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1386{
1387        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1388                                GFP_NOFS);
1389}
1390
1391int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1392{
1393        unsigned long index = start >> PAGE_CACHE_SHIFT;
1394        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395        struct page *page;
1396
1397        while (index <= end_index) {
1398                page = find_get_page(inode->i_mapping, index);
1399                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400                clear_page_dirty_for_io(page);
1401                page_cache_release(page);
1402                index++;
1403        }
1404        return 0;
1405}
1406
1407int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1408{
1409        unsigned long index = start >> PAGE_CACHE_SHIFT;
1410        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411        struct page *page;
1412
1413        while (index <= end_index) {
1414                page = find_get_page(inode->i_mapping, index);
1415                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1416                __set_page_dirty_nobuffers(page);
1417                account_page_redirty(page);
1418                page_cache_release(page);
1419                index++;
1420        }
1421        return 0;
1422}
1423
1424/*
1425 * helper function to set both pages and extents in the tree writeback
1426 */
1427static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1428{
1429        unsigned long index = start >> PAGE_CACHE_SHIFT;
1430        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1431        struct page *page;
1432
1433        while (index <= end_index) {
1434                page = find_get_page(tree->mapping, index);
1435                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1436                set_page_writeback(page);
1437                page_cache_release(page);
1438                index++;
1439        }
1440        return 0;
1441}
1442
1443/* find the first state struct with 'bits' set after 'start', and
1444 * return it.  tree->lock must be held.  NULL will returned if
1445 * nothing was found after 'start'
1446 */
1447static struct extent_state *
1448find_first_extent_bit_state(struct extent_io_tree *tree,
1449                            u64 start, unsigned bits)
1450{
1451        struct rb_node *node;
1452        struct extent_state *state;
1453
1454        /*
1455         * this search will find all the extents that end after
1456         * our range starts.
1457         */
1458        node = tree_search(tree, start);
1459        if (!node)
1460                goto out;
1461
1462        while (1) {
1463                state = rb_entry(node, struct extent_state, rb_node);
1464                if (state->end >= start && (state->state & bits))
1465                        return state;
1466
1467                node = rb_next(node);
1468                if (!node)
1469                        break;
1470        }
1471out:
1472        return NULL;
1473}
1474
1475/*
1476 * find the first offset in the io tree with 'bits' set. zero is
1477 * returned if we find something, and *start_ret and *end_ret are
1478 * set to reflect the state struct that was found.
1479 *
1480 * If nothing was found, 1 is returned. If found something, return 0.
1481 */
1482int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1483                          u64 *start_ret, u64 *end_ret, unsigned bits,
1484                          struct extent_state **cached_state)
1485{
1486        struct extent_state *state;
1487        struct rb_node *n;
1488        int ret = 1;
1489
1490        spin_lock(&tree->lock);
1491        if (cached_state && *cached_state) {
1492                state = *cached_state;
1493                if (state->end == start - 1 && extent_state_in_tree(state)) {
1494                        n = rb_next(&state->rb_node);
1495                        while (n) {
1496                                state = rb_entry(n, struct extent_state,
1497                                                 rb_node);
1498                                if (state->state & bits)
1499                                        goto got_it;
1500                                n = rb_next(n);
1501                        }
1502                        free_extent_state(*cached_state);
1503                        *cached_state = NULL;
1504                        goto out;
1505                }
1506                free_extent_state(*cached_state);
1507                *cached_state = NULL;
1508        }
1509
1510        state = find_first_extent_bit_state(tree, start, bits);
1511got_it:
1512        if (state) {
1513                cache_state_if_flags(state, cached_state, 0);
1514                *start_ret = state->start;
1515                *end_ret = state->end;
1516                ret = 0;
1517        }
1518out:
1519        spin_unlock(&tree->lock);
1520        return ret;
1521}
1522
1523/*
1524 * find a contiguous range of bytes in the file marked as delalloc, not
1525 * more than 'max_bytes'.  start and end are used to return the range,
1526 *
1527 * 1 is returned if we find something, 0 if nothing was in the tree
1528 */
1529static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1530                                        u64 *start, u64 *end, u64 max_bytes,
1531                                        struct extent_state **cached_state)
1532{
1533        struct rb_node *node;
1534        struct extent_state *state;
1535        u64 cur_start = *start;
1536        u64 found = 0;
1537        u64 total_bytes = 0;
1538
1539        spin_lock(&tree->lock);
1540
1541        /*
1542         * this search will find all the extents that end after
1543         * our range starts.
1544         */
1545        node = tree_search(tree, cur_start);
1546        if (!node) {
1547                if (!found)
1548                        *end = (u64)-1;
1549                goto out;
1550        }
1551
1552        while (1) {
1553                state = rb_entry(node, struct extent_state, rb_node);
1554                if (found && (state->start != cur_start ||
1555                              (state->state & EXTENT_BOUNDARY))) {
1556                        goto out;
1557                }
1558                if (!(state->state & EXTENT_DELALLOC)) {
1559                        if (!found)
1560                                *end = state->end;
1561                        goto out;
1562                }
1563                if (!found) {
1564                        *start = state->start;
1565                        *cached_state = state;
1566                        atomic_inc(&state->refs);
1567                }
1568                found++;
1569                *end = state->end;
1570                cur_start = state->end + 1;
1571                node = rb_next(node);
1572                total_bytes += state->end - state->start + 1;
1573                if (total_bytes >= max_bytes)
1574                        break;
1575                if (!node)
1576                        break;
1577        }
1578out:
1579        spin_unlock(&tree->lock);
1580        return found;
1581}
1582
1583static noinline void __unlock_for_delalloc(struct inode *inode,
1584                                           struct page *locked_page,
1585                                           u64 start, u64 end)
1586{
1587        int ret;
1588        struct page *pages[16];
1589        unsigned long index = start >> PAGE_CACHE_SHIFT;
1590        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591        unsigned long nr_pages = end_index - index + 1;
1592        int i;
1593
1594        if (index == locked_page->index && end_index == index)
1595                return;
1596
1597        while (nr_pages > 0) {
1598                ret = find_get_pages_contig(inode->i_mapping, index,
1599                                     min_t(unsigned long, nr_pages,
1600                                     ARRAY_SIZE(pages)), pages);
1601                for (i = 0; i < ret; i++) {
1602                        if (pages[i] != locked_page)
1603                                unlock_page(pages[i]);
1604                        page_cache_release(pages[i]);
1605                }
1606                nr_pages -= ret;
1607                index += ret;
1608                cond_resched();
1609        }
1610}
1611
1612static noinline int lock_delalloc_pages(struct inode *inode,
1613                                        struct page *locked_page,
1614                                        u64 delalloc_start,
1615                                        u64 delalloc_end)
1616{
1617        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618        unsigned long start_index = index;
1619        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620        unsigned long pages_locked = 0;
1621        struct page *pages[16];
1622        unsigned long nrpages;
1623        int ret;
1624        int i;
1625
1626        /* the caller is responsible for locking the start index */
1627        if (index == locked_page->index && index == end_index)
1628                return 0;
1629
1630        /* skip the page at the start index */
1631        nrpages = end_index - index + 1;
1632        while (nrpages > 0) {
1633                ret = find_get_pages_contig(inode->i_mapping, index,
1634                                     min_t(unsigned long,
1635                                     nrpages, ARRAY_SIZE(pages)), pages);
1636                if (ret == 0) {
1637                        ret = -EAGAIN;
1638                        goto done;
1639                }
1640                /* now we have an array of pages, lock them all */
1641                for (i = 0; i < ret; i++) {
1642                        /*
1643                         * the caller is taking responsibility for
1644                         * locked_page
1645                         */
1646                        if (pages[i] != locked_page) {
1647                                lock_page(pages[i]);
1648                                if (!PageDirty(pages[i]) ||
1649                                    pages[i]->mapping != inode->i_mapping) {
1650                                        ret = -EAGAIN;
1651                                        unlock_page(pages[i]);
1652                                        page_cache_release(pages[i]);
1653                                        goto done;
1654                                }
1655                        }
1656                        page_cache_release(pages[i]);
1657                        pages_locked++;
1658                }
1659                nrpages -= ret;
1660                index += ret;
1661                cond_resched();
1662        }
1663        ret = 0;
1664done:
1665        if (ret && pages_locked) {
1666                __unlock_for_delalloc(inode, locked_page,
1667                              delalloc_start,
1668                              ((u64)(start_index + pages_locked - 1)) <<
1669                              PAGE_CACHE_SHIFT);
1670        }
1671        return ret;
1672}
1673
1674/*
1675 * find a contiguous range of bytes in the file marked as delalloc, not
1676 * more than 'max_bytes'.  start and end are used to return the range,
1677 *
1678 * 1 is returned if we find something, 0 if nothing was in the tree
1679 */
1680STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681                                    struct extent_io_tree *tree,
1682                                    struct page *locked_page, u64 *start,
1683                                    u64 *end, u64 max_bytes)
1684{
1685        u64 delalloc_start;
1686        u64 delalloc_end;
1687        u64 found;
1688        struct extent_state *cached_state = NULL;
1689        int ret;
1690        int loops = 0;
1691
1692again:
1693        /* step one, find a bunch of delalloc bytes starting at start */
1694        delalloc_start = *start;
1695        delalloc_end = 0;
1696        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1697                                    max_bytes, &cached_state);
1698        if (!found || delalloc_end <= *start) {
1699                *start = delalloc_start;
1700                *end = delalloc_end;
1701                free_extent_state(cached_state);
1702                return 0;
1703        }
1704
1705        /*
1706         * start comes from the offset of locked_page.  We have to lock
1707         * pages in order, so we can't process delalloc bytes before
1708         * locked_page
1709         */
1710        if (delalloc_start < *start)
1711                delalloc_start = *start;
1712
1713        /*
1714         * make sure to limit the number of pages we try to lock down
1715         */
1716        if (delalloc_end + 1 - delalloc_start > max_bytes)
1717                delalloc_end = delalloc_start + max_bytes - 1;
1718
1719        /* step two, lock all the pages after the page that has start */
1720        ret = lock_delalloc_pages(inode, locked_page,
1721                                  delalloc_start, delalloc_end);
1722        if (ret == -EAGAIN) {
1723                /* some of the pages are gone, lets avoid looping by
1724                 * shortening the size of the delalloc range we're searching
1725                 */
1726                free_extent_state(cached_state);
1727                cached_state = NULL;
1728                if (!loops) {
1729                        max_bytes = PAGE_CACHE_SIZE;
1730                        loops = 1;
1731                        goto again;
1732                } else {
1733                        found = 0;
1734                        goto out_failed;
1735                }
1736        }
1737        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1738
1739        /* step three, lock the state bits for the whole range */
1740        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1741
1742        /* then test to make sure it is all still delalloc */
1743        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1744                             EXTENT_DELALLOC, 1, cached_state);
1745        if (!ret) {
1746                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747                                     &cached_state, GFP_NOFS);
1748                __unlock_for_delalloc(inode, locked_page,
1749                              delalloc_start, delalloc_end);
1750                cond_resched();
1751                goto again;
1752        }
1753        free_extent_state(cached_state);
1754        *start = delalloc_start;
1755        *end = delalloc_end;
1756out_failed:
1757        return found;
1758}
1759
1760int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761                                 struct page *locked_page,
1762                                 unsigned clear_bits,
1763                                 unsigned long page_ops)
1764{
1765        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1766        int ret;
1767        struct page *pages[16];
1768        unsigned long index = start >> PAGE_CACHE_SHIFT;
1769        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770        unsigned long nr_pages = end_index - index + 1;
1771        int i;
1772
1773        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1774        if (page_ops == 0)
1775                return 0;
1776
1777        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778                mapping_set_error(inode->i_mapping, -EIO);
1779
1780        while (nr_pages > 0) {
1781                ret = find_get_pages_contig(inode->i_mapping, index,
1782                                     min_t(unsigned long,
1783                                     nr_pages, ARRAY_SIZE(pages)), pages);
1784                for (i = 0; i < ret; i++) {
1785
1786                        if (page_ops & PAGE_SET_PRIVATE2)
1787                                SetPagePrivate2(pages[i]);
1788
1789                        if (pages[i] == locked_page) {
1790                                page_cache_release(pages[i]);
1791                                continue;
1792                        }
1793                        if (page_ops & PAGE_CLEAR_DIRTY)
1794                                clear_page_dirty_for_io(pages[i]);
1795                        if (page_ops & PAGE_SET_WRITEBACK)
1796                                set_page_writeback(pages[i]);
1797                        if (page_ops & PAGE_SET_ERROR)
1798                                SetPageError(pages[i]);
1799                        if (page_ops & PAGE_END_WRITEBACK)
1800                                end_page_writeback(pages[i]);
1801                        if (page_ops & PAGE_UNLOCK)
1802                                unlock_page(pages[i]);
1803                        page_cache_release(pages[i]);
1804                }
1805                nr_pages -= ret;
1806                index += ret;
1807                cond_resched();
1808        }
1809        return 0;
1810}
1811
1812/*
1813 * count the number of bytes in the tree that have a given bit(s)
1814 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1815 * cached.  The total number found is returned.
1816 */
1817u64 count_range_bits(struct extent_io_tree *tree,
1818                     u64 *start, u64 search_end, u64 max_bytes,
1819                     unsigned bits, int contig)
1820{
1821        struct rb_node *node;
1822        struct extent_state *state;
1823        u64 cur_start = *start;
1824        u64 total_bytes = 0;
1825        u64 last = 0;
1826        int found = 0;
1827
1828        if (WARN_ON(search_end <= cur_start))
1829                return 0;
1830
1831        spin_lock(&tree->lock);
1832        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833                total_bytes = tree->dirty_bytes;
1834                goto out;
1835        }
1836        /*
1837         * this search will find all the extents that end after
1838         * our range starts.
1839         */
1840        node = tree_search(tree, cur_start);
1841        if (!node)
1842                goto out;
1843
1844        while (1) {
1845                state = rb_entry(node, struct extent_state, rb_node);
1846                if (state->start > search_end)
1847                        break;
1848                if (contig && found && state->start > last + 1)
1849                        break;
1850                if (state->end >= cur_start && (state->state & bits) == bits) {
1851                        total_bytes += min(search_end, state->end) + 1 -
1852                                       max(cur_start, state->start);
1853                        if (total_bytes >= max_bytes)
1854                                break;
1855                        if (!found) {
1856                                *start = max(cur_start, state->start);
1857                                found = 1;
1858                        }
1859                        last = state->end;
1860                } else if (contig && found) {
1861                        break;
1862                }
1863                node = rb_next(node);
1864                if (!node)
1865                        break;
1866        }
1867out:
1868        spin_unlock(&tree->lock);
1869        return total_bytes;
1870}
1871
1872/*
1873 * set the private field for a given byte offset in the tree.  If there isn't
1874 * an extent_state there already, this does nothing.
1875 */
1876static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1877{
1878        struct rb_node *node;
1879        struct extent_state *state;
1880        int ret = 0;
1881
1882        spin_lock(&tree->lock);
1883        /*
1884         * this search will find all the extents that end after
1885         * our range starts.
1886         */
1887        node = tree_search(tree, start);
1888        if (!node) {
1889                ret = -ENOENT;
1890                goto out;
1891        }
1892        state = rb_entry(node, struct extent_state, rb_node);
1893        if (state->start != start) {
1894                ret = -ENOENT;
1895                goto out;
1896        }
1897        state->private = private;
1898out:
1899        spin_unlock(&tree->lock);
1900        return ret;
1901}
1902
1903int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1904{
1905        struct rb_node *node;
1906        struct extent_state *state;
1907        int ret = 0;
1908
1909        spin_lock(&tree->lock);
1910        /*
1911         * this search will find all the extents that end after
1912         * our range starts.
1913         */
1914        node = tree_search(tree, start);
1915        if (!node) {
1916                ret = -ENOENT;
1917                goto out;
1918        }
1919        state = rb_entry(node, struct extent_state, rb_node);
1920        if (state->start != start) {
1921                ret = -ENOENT;
1922                goto out;
1923        }
1924        *private = state->private;
1925out:
1926        spin_unlock(&tree->lock);
1927        return ret;
1928}
1929
1930/*
1931 * searches a range in the state tree for a given mask.
1932 * If 'filled' == 1, this returns 1 only if every extent in the tree
1933 * has the bits set.  Otherwise, 1 is returned if any bit in the
1934 * range is found set.
1935 */
1936int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1937                   unsigned bits, int filled, struct extent_state *cached)
1938{
1939        struct extent_state *state = NULL;
1940        struct rb_node *node;
1941        int bitset = 0;
1942
1943        spin_lock(&tree->lock);
1944        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1945            cached->end > start)
1946                node = &cached->rb_node;
1947        else
1948                node = tree_search(tree, start);
1949        while (node && start <= end) {
1950                state = rb_entry(node, struct extent_state, rb_node);
1951
1952                if (filled && state->start > start) {
1953                        bitset = 0;
1954                        break;
1955                }
1956
1957                if (state->start > end)
1958                        break;
1959
1960                if (state->state & bits) {
1961                        bitset = 1;
1962                        if (!filled)
1963                                break;
1964                } else if (filled) {
1965                        bitset = 0;
1966                        break;
1967                }
1968
1969                if (state->end == (u64)-1)
1970                        break;
1971
1972                start = state->end + 1;
1973                if (start > end)
1974                        break;
1975                node = rb_next(node);
1976                if (!node) {
1977                        if (filled)
1978                                bitset = 0;
1979                        break;
1980                }
1981        }
1982        spin_unlock(&tree->lock);
1983        return bitset;
1984}
1985
1986/*
1987 * helper function to set a given page up to date if all the
1988 * extents in the tree for that page are up to date
1989 */
1990static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1991{
1992        u64 start = page_offset(page);
1993        u64 end = start + PAGE_CACHE_SIZE - 1;
1994        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1995                SetPageUptodate(page);
1996}
1997
1998int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1999{
2000        int ret;
2001        int err = 0;
2002        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2003
2004        set_state_private(failure_tree, rec->start, 0);
2005        ret = clear_extent_bits(failure_tree, rec->start,
2006                                rec->start + rec->len - 1,
2007                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2008        if (ret)
2009                err = ret;
2010
2011        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012                                rec->start + rec->len - 1,
2013                                EXTENT_DAMAGED, GFP_NOFS);
2014        if (ret && !err)
2015                err = ret;
2016
2017        kfree(rec);
2018        return err;
2019}
2020
2021/*
2022 * this bypasses the standard btrfs submit functions deliberately, as
2023 * the standard behavior is to write all copies in a raid setup. here we only
2024 * want to write the one bad copy. so we do the mapping for ourselves and issue
2025 * submit_bio directly.
2026 * to avoid any synchronization issues, wait for the data after writing, which
2027 * actually prevents the read that triggered the error from finishing.
2028 * currently, there can be no more than two copies of every data bit. thus,
2029 * exactly one rewrite is required.
2030 */
2031int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032                      struct page *page, unsigned int pg_offset, int mirror_num)
2033{
2034        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2035        struct bio *bio;
2036        struct btrfs_device *dev;
2037        u64 map_length = 0;
2038        u64 sector;
2039        struct btrfs_bio *bbio = NULL;
2040        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2041        int ret;
2042
2043        ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2044        BUG_ON(!mirror_num);
2045
2046        /* we can't repair anything in raid56 yet */
2047        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2048                return 0;
2049
2050        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2051        if (!bio)
2052                return -EIO;
2053        bio->bi_iter.bi_size = 0;
2054        map_length = length;
2055
2056        ret = btrfs_map_block(fs_info, WRITE, logical,
2057                              &map_length, &bbio, mirror_num);
2058        if (ret) {
2059                bio_put(bio);
2060                return -EIO;
2061        }
2062        BUG_ON(mirror_num != bbio->mirror_num);
2063        sector = bbio->stripes[mirror_num-1].physical >> 9;
2064        bio->bi_iter.bi_sector = sector;
2065        dev = bbio->stripes[mirror_num-1].dev;
2066        btrfs_put_bbio(bbio);
2067        if (!dev || !dev->bdev || !dev->writeable) {
2068                bio_put(bio);
2069                return -EIO;
2070        }
2071        bio->bi_bdev = dev->bdev;
2072        bio_add_page(bio, page, length, pg_offset);
2073
2074        if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2075                /* try to remap that extent elsewhere? */
2076                bio_put(bio);
2077                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2078                return -EIO;
2079        }
2080
2081        printk_ratelimited_in_rcu(KERN_INFO
2082                                  "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083                                  btrfs_ino(inode), start,
2084                                  rcu_str_deref(dev->name), sector);
2085        bio_put(bio);
2086        return 0;
2087}
2088
2089int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2090                         int mirror_num)
2091{
2092        u64 start = eb->start;
2093        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2094        int ret = 0;
2095
2096        if (root->fs_info->sb->s_flags & MS_RDONLY)
2097                return -EROFS;
2098
2099        for (i = 0; i < num_pages; i++) {
2100                struct page *p = eb->pages[i];
2101
2102                ret = repair_io_failure(root->fs_info->btree_inode, start,
2103                                        PAGE_CACHE_SIZE, start, p,
2104                                        start - page_offset(p), mirror_num);
2105                if (ret)
2106                        break;
2107                start += PAGE_CACHE_SIZE;
2108        }
2109
2110        return ret;
2111}
2112
2113/*
2114 * each time an IO finishes, we do a fast check in the IO failure tree
2115 * to see if we need to process or clean up an io_failure_record
2116 */
2117int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118                     unsigned int pg_offset)
2119{
2120        u64 private;
2121        u64 private_failure;
2122        struct io_failure_record *failrec;
2123        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2124        struct extent_state *state;
2125        int num_copies;
2126        int ret;
2127
2128        private = 0;
2129        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130                                (u64)-1, 1, EXTENT_DIRTY, 0);
2131        if (!ret)
2132                return 0;
2133
2134        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2135                                &private_failure);
2136        if (ret)
2137                return 0;
2138
2139        failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140        BUG_ON(!failrec->this_mirror);
2141
2142        if (failrec->in_validation) {
2143                /* there was no real error, just free the record */
2144                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2145                         failrec->start);
2146                goto out;
2147        }
2148        if (fs_info->sb->s_flags & MS_RDONLY)
2149                goto out;
2150
2151        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2153                                            failrec->start,
2154                                            EXTENT_LOCKED);
2155        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2156
2157        if (state && state->start <= failrec->start &&
2158            state->end >= failrec->start + failrec->len - 1) {
2159                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2160                                              failrec->len);
2161                if (num_copies > 1)  {
2162                        repair_io_failure(inode, start, failrec->len,
2163                                          failrec->logical, page,
2164                                          pg_offset, failrec->failed_mirror);
2165                }
2166        }
2167
2168out:
2169        free_io_failure(inode, failrec);
2170
2171        return 0;
2172}
2173
2174/*
2175 * Can be called when
2176 * - hold extent lock
2177 * - under ordered extent
2178 * - the inode is freeing
2179 */
2180void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2181{
2182        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183        struct io_failure_record *failrec;
2184        struct extent_state *state, *next;
2185
2186        if (RB_EMPTY_ROOT(&failure_tree->state))
2187                return;
2188
2189        spin_lock(&failure_tree->lock);
2190        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2191        while (state) {
2192                if (state->start > end)
2193                        break;
2194
2195                ASSERT(state->end <= end);
2196
2197                next = next_state(state);
2198
2199                failrec = (struct io_failure_record *)(unsigned long)state->private;
2200                free_extent_state(state);
2201                kfree(failrec);
2202
2203                state = next;
2204        }
2205        spin_unlock(&failure_tree->lock);
2206}
2207
2208int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209                                struct io_failure_record **failrec_ret)
2210{
2211        struct io_failure_record *failrec;
2212        u64 private;
2213        struct extent_map *em;
2214        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2217        int ret;
2218        u64 logical;
2219
2220        ret = get_state_private(failure_tree, start, &private);
2221        if (ret) {
2222                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2223                if (!failrec)
2224                        return -ENOMEM;
2225
2226                failrec->start = start;
2227                failrec->len = end - start + 1;
2228                failrec->this_mirror = 0;
2229                failrec->bio_flags = 0;
2230                failrec->in_validation = 0;
2231
2232                read_lock(&em_tree->lock);
2233                em = lookup_extent_mapping(em_tree, start, failrec->len);
2234                if (!em) {
2235                        read_unlock(&em_tree->lock);
2236                        kfree(failrec);
2237                        return -EIO;
2238                }
2239
2240                if (em->start > start || em->start + em->len <= start) {
2241                        free_extent_map(em);
2242                        em = NULL;
2243                }
2244                read_unlock(&em_tree->lock);
2245                if (!em) {
2246                        kfree(failrec);
2247                        return -EIO;
2248                }
2249
2250                logical = start - em->start;
2251                logical = em->block_start + logical;
2252                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253                        logical = em->block_start;
2254                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255                        extent_set_compress_type(&failrec->bio_flags,
2256                                                 em->compress_type);
2257                }
2258
2259                pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260                         logical, start, failrec->len);
2261
2262                failrec->logical = logical;
2263                free_extent_map(em);
2264
2265                /* set the bits in the private failure tree */
2266                ret = set_extent_bits(failure_tree, start, end,
2267                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268                if (ret >= 0)
2269                        ret = set_state_private(failure_tree, start,
2270                                                (u64)(unsigned long)failrec);
2271                /* set the bits in the inode's tree */
2272                if (ret >= 0)
2273                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274                                                GFP_NOFS);
2275                if (ret < 0) {
2276                        kfree(failrec);
2277                        return ret;
2278                }
2279        } else {
2280                failrec = (struct io_failure_record *)(unsigned long)private;
2281                pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2282                         failrec->logical, failrec->start, failrec->len,
2283                         failrec->in_validation);
2284                /*
2285                 * when data can be on disk more than twice, add to failrec here
2286                 * (e.g. with a list for failed_mirror) to make
2287                 * clean_io_failure() clean all those errors at once.
2288                 */
2289        }
2290
2291        *failrec_ret = failrec;
2292
2293        return 0;
2294}
2295
2296int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297                           struct io_failure_record *failrec, int failed_mirror)
2298{
2299        int num_copies;
2300
2301        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302                                      failrec->logical, failrec->len);
2303        if (num_copies == 1) {
2304                /*
2305                 * we only have a single copy of the data, so don't bother with
2306                 * all the retry and error correction code that follows. no
2307                 * matter what the error is, it is very likely to persist.
2308                 */
2309                pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310                         num_copies, failrec->this_mirror, failed_mirror);
2311                return 0;
2312        }
2313
2314        /*
2315         * there are two premises:
2316         *      a) deliver good data to the caller
2317         *      b) correct the bad sectors on disk
2318         */
2319        if (failed_bio->bi_vcnt > 1) {
2320                /*
2321                 * to fulfill b), we need to know the exact failing sectors, as
2322                 * we don't want to rewrite any more than the failed ones. thus,
2323                 * we need separate read requests for the failed bio
2324                 *
2325                 * if the following BUG_ON triggers, our validation request got
2326                 * merged. we need separate requests for our algorithm to work.
2327                 */
2328                BUG_ON(failrec->in_validation);
2329                failrec->in_validation = 1;
2330                failrec->this_mirror = failed_mirror;
2331        } else {
2332                /*
2333                 * we're ready to fulfill a) and b) alongside. get a good copy
2334                 * of the failed sector and if we succeed, we have setup
2335                 * everything for repair_io_failure to do the rest for us.
2336                 */
2337                if (failrec->in_validation) {
2338                        BUG_ON(failrec->this_mirror != failed_mirror);
2339                        failrec->in_validation = 0;
2340                        failrec->this_mirror = 0;
2341                }
2342                failrec->failed_mirror = failed_mirror;
2343                failrec->this_mirror++;
2344                if (failrec->this_mirror == failed_mirror)
2345                        failrec->this_mirror++;
2346        }
2347
2348        if (failrec->this_mirror > num_copies) {
2349                pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2350                         num_copies, failrec->this_mirror, failed_mirror);
2351                return 0;
2352        }
2353
2354        return 1;
2355}
2356
2357
2358struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359                                    struct io_failure_record *failrec,
2360                                    struct page *page, int pg_offset, int icsum,
2361                                    bio_end_io_t *endio_func, void *data)
2362{
2363        struct bio *bio;
2364        struct btrfs_io_bio *btrfs_failed_bio;
2365        struct btrfs_io_bio *btrfs_bio;
2366
2367        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2368        if (!bio)
2369                return NULL;
2370
2371        bio->bi_end_io = endio_func;
2372        bio->bi_iter.bi_sector = failrec->logical >> 9;
2373        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2374        bio->bi_iter.bi_size = 0;
2375        bio->bi_private = data;
2376
2377        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378        if (btrfs_failed_bio->csum) {
2379                struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2381
2382                btrfs_bio = btrfs_io_bio(bio);
2383                btrfs_bio->csum = btrfs_bio->csum_inline;
2384                icsum *= csum_size;
2385                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2386                       csum_size);
2387        }
2388
2389        bio_add_page(bio, page, failrec->len, pg_offset);
2390
2391        return bio;
2392}
2393
2394/*
2395 * this is a generic handler for readpage errors (default
2396 * readpage_io_failed_hook). if other copies exist, read those and write back
2397 * good data to the failed position. does not investigate in remapping the
2398 * failed extent elsewhere, hoping the device will be smart enough to do this as
2399 * needed
2400 */
2401
2402static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403                              struct page *page, u64 start, u64 end,
2404                              int failed_mirror)
2405{
2406        struct io_failure_record *failrec;
2407        struct inode *inode = page->mapping->host;
2408        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2409        struct bio *bio;
2410        int read_mode;
2411        int ret;
2412
2413        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2414
2415        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416        if (ret)
2417                return ret;
2418
2419        ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2420        if (!ret) {
2421                free_io_failure(inode, failrec);
2422                return -EIO;
2423        }
2424
2425        if (failed_bio->bi_vcnt > 1)
2426                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2427        else
2428                read_mode = READ_SYNC;
2429
2430        phy_offset >>= inode->i_sb->s_blocksize_bits;
2431        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432                                      start - page_offset(page),
2433                                      (int)phy_offset, failed_bio->bi_end_io,
2434                                      NULL);
2435        if (!bio) {
2436                free_io_failure(inode, failrec);
2437                return -EIO;
2438        }
2439
2440        pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441                 read_mode, failrec->this_mirror, failrec->in_validation);
2442
2443        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444                                         failrec->this_mirror,
2445                                         failrec->bio_flags, 0);
2446        if (ret) {
2447                free_io_failure(inode, failrec);
2448                bio_put(bio);
2449        }
2450
2451        return ret;
2452}
2453
2454/* lots and lots of room for performance fixes in the end_bio funcs */
2455
2456int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2457{
2458        int uptodate = (err == 0);
2459        struct extent_io_tree *tree;
2460        int ret = 0;
2461
2462        tree = &BTRFS_I(page->mapping->host)->io_tree;
2463
2464        if (tree->ops && tree->ops->writepage_end_io_hook) {
2465                ret = tree->ops->writepage_end_io_hook(page, start,
2466                                               end, NULL, uptodate);
2467                if (ret)
2468                        uptodate = 0;
2469        }
2470
2471        if (!uptodate) {
2472                ClearPageUptodate(page);
2473                SetPageError(page);
2474                ret = ret < 0 ? ret : -EIO;
2475                mapping_set_error(page->mapping, ret);
2476        }
2477        return 0;
2478}
2479
2480/*
2481 * after a writepage IO is done, we need to:
2482 * clear the uptodate bits on error
2483 * clear the writeback bits in the extent tree for this IO
2484 * end_page_writeback if the page has no more pending IO
2485 *
2486 * Scheduling is not allowed, so the extent state tree is expected
2487 * to have one and only one object corresponding to this IO.
2488 */
2489static void end_bio_extent_writepage(struct bio *bio)
2490{
2491        struct bio_vec *bvec;
2492        u64 start;
2493        u64 end;
2494        int i;
2495
2496        bio_for_each_segment_all(bvec, bio, i) {
2497                struct page *page = bvec->bv_page;
2498
2499                /* We always issue full-page reads, but if some block
2500                 * in a page fails to read, blk_update_request() will
2501                 * advance bv_offset and adjust bv_len to compensate.
2502                 * Print a warning for nonzero offsets, and an error
2503                 * if they don't add up to a full page.  */
2504                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505                        if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507                                   "partial page write in btrfs with offset %u and length %u",
2508                                        bvec->bv_offset, bvec->bv_len);
2509                        else
2510                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511                                   "incomplete page write in btrfs with offset %u and "
2512                                   "length %u",
2513                                        bvec->bv_offset, bvec->bv_len);
2514                }
2515
2516                start = page_offset(page);
2517                end = start + bvec->bv_offset + bvec->bv_len - 1;
2518
2519                if (end_extent_writepage(page, bio->bi_error, start, end))
2520                        continue;
2521
2522                end_page_writeback(page);
2523        }
2524
2525        bio_put(bio);
2526}
2527
2528static void
2529endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2530                              int uptodate)
2531{
2532        struct extent_state *cached = NULL;
2533        u64 end = start + len - 1;
2534
2535        if (uptodate && tree->track_uptodate)
2536                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537        unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2538}
2539
2540/*
2541 * after a readpage IO is done, we need to:
2542 * clear the uptodate bits on error
2543 * set the uptodate bits if things worked
2544 * set the page up to date if all extents in the tree are uptodate
2545 * clear the lock bit in the extent tree
2546 * unlock the page if there are no other extents locked for it
2547 *
2548 * Scheduling is not allowed, so the extent state tree is expected
2549 * to have one and only one object corresponding to this IO.
2550 */
2551static void end_bio_extent_readpage(struct bio *bio)
2552{
2553        struct bio_vec *bvec;
2554        int uptodate = !bio->bi_error;
2555        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2556        struct extent_io_tree *tree;
2557        u64 offset = 0;
2558        u64 start;
2559        u64 end;
2560        u64 len;
2561        u64 extent_start = 0;
2562        u64 extent_len = 0;
2563        int mirror;
2564        int ret;
2565        int i;
2566
2567        bio_for_each_segment_all(bvec, bio, i) {
2568                struct page *page = bvec->bv_page;
2569                struct inode *inode = page->mapping->host;
2570
2571                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2572                         "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2573                         bio->bi_error, io_bio->mirror_num);
2574                tree = &BTRFS_I(inode)->io_tree;
2575
2576                /* We always issue full-page reads, but if some block
2577                 * in a page fails to read, blk_update_request() will
2578                 * advance bv_offset and adjust bv_len to compensate.
2579                 * Print a warning for nonzero offsets, and an error
2580                 * if they don't add up to a full page.  */
2581                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2582                        if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2583                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2584                                   "partial page read in btrfs with offset %u and length %u",
2585                                        bvec->bv_offset, bvec->bv_len);
2586                        else
2587                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2588                                   "incomplete page read in btrfs with offset %u and "
2589                                   "length %u",
2590                                        bvec->bv_offset, bvec->bv_len);
2591                }
2592
2593                start = page_offset(page);
2594                end = start + bvec->bv_offset + bvec->bv_len - 1;
2595                len = bvec->bv_len;
2596
2597                mirror = io_bio->mirror_num;
2598                if (likely(uptodate && tree->ops &&
2599                           tree->ops->readpage_end_io_hook)) {
2600                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2601                                                              page, start, end,
2602                                                              mirror);
2603                        if (ret)
2604                                uptodate = 0;
2605                        else
2606                                clean_io_failure(inode, start, page, 0);
2607                }
2608
2609                if (likely(uptodate))
2610                        goto readpage_ok;
2611
2612                if (tree->ops && tree->ops->readpage_io_failed_hook) {
2613                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2614                        if (!ret && !bio->bi_error)
2615                                uptodate = 1;
2616                } else {
2617                        /*
2618                         * The generic bio_readpage_error handles errors the
2619                         * following way: If possible, new read requests are
2620                         * created and submitted and will end up in
2621                         * end_bio_extent_readpage as well (if we're lucky, not
2622                         * in the !uptodate case). In that case it returns 0 and
2623                         * we just go on with the next page in our bio. If it
2624                         * can't handle the error it will return -EIO and we
2625                         * remain responsible for that page.
2626                         */
2627                        ret = bio_readpage_error(bio, offset, page, start, end,
2628                                                 mirror);
2629                        if (ret == 0) {
2630                                uptodate = !bio->bi_error;
2631                                offset += len;
2632                                continue;
2633                        }
2634                }
2635readpage_ok:
2636                if (likely(uptodate)) {
2637                        loff_t i_size = i_size_read(inode);
2638                        pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2639                        unsigned off;
2640
2641                        /* Zero out the end if this page straddles i_size */
2642                        off = i_size & (PAGE_CACHE_SIZE-1);
2643                        if (page->index == end_index && off)
2644                                zero_user_segment(page, off, PAGE_CACHE_SIZE);
2645                        SetPageUptodate(page);
2646                } else {
2647                        ClearPageUptodate(page);
2648                        SetPageError(page);
2649                }
2650                unlock_page(page);
2651                offset += len;
2652
2653                if (unlikely(!uptodate)) {
2654                        if (extent_len) {
2655                                endio_readpage_release_extent(tree,
2656                                                              extent_start,
2657                                                              extent_len, 1);
2658                                extent_start = 0;
2659                                extent_len = 0;
2660                        }
2661                        endio_readpage_release_extent(tree, start,
2662                                                      end - start + 1, 0);
2663                } else if (!extent_len) {
2664                        extent_start = start;
2665                        extent_len = end + 1 - start;
2666                } else if (extent_start + extent_len == start) {
2667                        extent_len += end + 1 - start;
2668                } else {
2669                        endio_readpage_release_extent(tree, extent_start,
2670                                                      extent_len, uptodate);
2671                        extent_start = start;
2672                        extent_len = end + 1 - start;
2673                }
2674        }
2675
2676        if (extent_len)
2677                endio_readpage_release_extent(tree, extent_start, extent_len,
2678                                              uptodate);
2679        if (io_bio->end_io)
2680                io_bio->end_io(io_bio, bio->bi_error);
2681        bio_put(bio);
2682}
2683
2684/*
2685 * this allocates from the btrfs_bioset.  We're returning a bio right now
2686 * but you can call btrfs_io_bio for the appropriate container_of magic
2687 */
2688struct bio *
2689btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2690                gfp_t gfp_flags)
2691{
2692        struct btrfs_io_bio *btrfs_bio;
2693        struct bio *bio;
2694
2695        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2696
2697        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2698                while (!bio && (nr_vecs /= 2)) {
2699                        bio = bio_alloc_bioset(gfp_flags,
2700                                               nr_vecs, btrfs_bioset);
2701                }
2702        }
2703
2704        if (bio) {
2705                bio->bi_bdev = bdev;
2706                bio->bi_iter.bi_sector = first_sector;
2707                btrfs_bio = btrfs_io_bio(bio);
2708                btrfs_bio->csum = NULL;
2709                btrfs_bio->csum_allocated = NULL;
2710                btrfs_bio->end_io = NULL;
2711        }
2712        return bio;
2713}
2714
2715struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2716{
2717        struct btrfs_io_bio *btrfs_bio;
2718        struct bio *new;
2719
2720        new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2721        if (new) {
2722                btrfs_bio = btrfs_io_bio(new);
2723                btrfs_bio->csum = NULL;
2724                btrfs_bio->csum_allocated = NULL;
2725                btrfs_bio->end_io = NULL;
2726
2727#ifdef CONFIG_BLK_CGROUP
2728                /* FIXME, put this into bio_clone_bioset */
2729                if (bio->bi_css)
2730                        bio_associate_blkcg(new, bio->bi_css);
2731#endif
2732        }
2733        return new;
2734}
2735
2736/* this also allocates from the btrfs_bioset */
2737struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2738{
2739        struct btrfs_io_bio *btrfs_bio;
2740        struct bio *bio;
2741
2742        bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2743        if (bio) {
2744                btrfs_bio = btrfs_io_bio(bio);
2745                btrfs_bio->csum = NULL;
2746                btrfs_bio->csum_allocated = NULL;
2747                btrfs_bio->end_io = NULL;
2748        }
2749        return bio;
2750}
2751
2752
2753static int __must_check submit_one_bio(int rw, struct bio *bio,
2754                                       int mirror_num, unsigned long bio_flags)
2755{
2756        int ret = 0;
2757        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2758        struct page *page = bvec->bv_page;
2759        struct extent_io_tree *tree = bio->bi_private;
2760        u64 start;
2761
2762        start = page_offset(page) + bvec->bv_offset;
2763
2764        bio->bi_private = NULL;
2765
2766        bio_get(bio);
2767
2768        if (tree->ops && tree->ops->submit_bio_hook)
2769                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2770                                           mirror_num, bio_flags, start);
2771        else
2772                btrfsic_submit_bio(rw, bio);
2773
2774        bio_put(bio);
2775        return ret;
2776}
2777
2778static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2779                     unsigned long offset, size_t size, struct bio *bio,
2780                     unsigned long bio_flags)
2781{
2782        int ret = 0;
2783        if (tree->ops && tree->ops->merge_bio_hook)
2784                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2785                                                bio_flags);
2786        BUG_ON(ret < 0);
2787        return ret;
2788
2789}
2790
2791static int submit_extent_page(int rw, struct extent_io_tree *tree,
2792                              struct writeback_control *wbc,
2793                              struct page *page, sector_t sector,
2794                              size_t size, unsigned long offset,
2795                              struct block_device *bdev,
2796                              struct bio **bio_ret,
2797                              unsigned long max_pages,
2798                              bio_end_io_t end_io_func,
2799                              int mirror_num,
2800                              unsigned long prev_bio_flags,
2801                              unsigned long bio_flags,
2802                              bool force_bio_submit)
2803{
2804        int ret = 0;
2805        struct bio *bio;
2806        int contig = 0;
2807        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2808        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2809
2810        if (bio_ret && *bio_ret) {
2811                bio = *bio_ret;
2812                if (old_compressed)
2813                        contig = bio->bi_iter.bi_sector == sector;
2814                else
2815                        contig = bio_end_sector(bio) == sector;
2816
2817                if (prev_bio_flags != bio_flags || !contig ||
2818                    force_bio_submit ||
2819                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2820                    bio_add_page(bio, page, page_size, offset) < page_size) {
2821                        ret = submit_one_bio(rw, bio, mirror_num,
2822                                             prev_bio_flags);
2823                        if (ret < 0) {
2824                                *bio_ret = NULL;
2825                                return ret;
2826                        }
2827                        bio = NULL;
2828                } else {
2829                        if (wbc)
2830                                wbc_account_io(wbc, page, page_size);
2831                        return 0;
2832                }
2833        }
2834
2835        bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2836                        GFP_NOFS | __GFP_HIGH);
2837        if (!bio)
2838                return -ENOMEM;
2839
2840        bio_add_page(bio, page, page_size, offset);
2841        bio->bi_end_io = end_io_func;
2842        bio->bi_private = tree;
2843        if (wbc) {
2844                wbc_init_bio(wbc, bio);
2845                wbc_account_io(wbc, page, page_size);
2846        }
2847
2848        if (bio_ret)
2849                *bio_ret = bio;
2850        else
2851                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2852
2853        return ret;
2854}
2855
2856static void attach_extent_buffer_page(struct extent_buffer *eb,
2857                                      struct page *page)
2858{
2859        if (!PagePrivate(page)) {
2860                SetPagePrivate(page);
2861                page_cache_get(page);
2862                set_page_private(page, (unsigned long)eb);
2863        } else {
2864                WARN_ON(page->private != (unsigned long)eb);
2865        }
2866}
2867
2868void set_page_extent_mapped(struct page *page)
2869{
2870        if (!PagePrivate(page)) {
2871                SetPagePrivate(page);
2872                page_cache_get(page);
2873                set_page_private(page, EXTENT_PAGE_PRIVATE);
2874        }
2875}
2876
2877static struct extent_map *
2878__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2879                 u64 start, u64 len, get_extent_t *get_extent,
2880                 struct extent_map **em_cached)
2881{
2882        struct extent_map *em;
2883
2884        if (em_cached && *em_cached) {
2885                em = *em_cached;
2886                if (extent_map_in_tree(em) && start >= em->start &&
2887                    start < extent_map_end(em)) {
2888                        atomic_inc(&em->refs);
2889                        return em;
2890                }
2891
2892                free_extent_map(em);
2893                *em_cached = NULL;
2894        }
2895
2896        em = get_extent(inode, page, pg_offset, start, len, 0);
2897        if (em_cached && !IS_ERR_OR_NULL(em)) {
2898                BUG_ON(*em_cached);
2899                atomic_inc(&em->refs);
2900                *em_cached = em;
2901        }
2902        return em;
2903}
2904/*
2905 * basic readpage implementation.  Locked extent state structs are inserted
2906 * into the tree that are removed when the IO is done (by the end_io
2907 * handlers)
2908 * XXX JDM: This needs looking at to ensure proper page locking
2909 */
2910static int __do_readpage(struct extent_io_tree *tree,
2911                         struct page *page,
2912                         get_extent_t *get_extent,
2913                         struct extent_map **em_cached,
2914                         struct bio **bio, int mirror_num,
2915                         unsigned long *bio_flags, int rw,
2916                         u64 *prev_em_start)
2917{
2918        struct inode *inode = page->mapping->host;
2919        u64 start = page_offset(page);
2920        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2921        u64 end;
2922        u64 cur = start;
2923        u64 extent_offset;
2924        u64 last_byte = i_size_read(inode);
2925        u64 block_start;
2926        u64 cur_end;
2927        sector_t sector;
2928        struct extent_map *em;
2929        struct block_device *bdev;
2930        int ret;
2931        int nr = 0;
2932        int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2933        size_t pg_offset = 0;
2934        size_t iosize;
2935        size_t disk_io_size;
2936        size_t blocksize = inode->i_sb->s_blocksize;
2937        unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2938
2939        set_page_extent_mapped(page);
2940
2941        end = page_end;
2942        if (!PageUptodate(page)) {
2943                if (cleancache_get_page(page) == 0) {
2944                        BUG_ON(blocksize != PAGE_SIZE);
2945                        unlock_extent(tree, start, end);
2946                        goto out;
2947                }
2948        }
2949
2950        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2951                char *userpage;
2952                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2953
2954                if (zero_offset) {
2955                        iosize = PAGE_CACHE_SIZE - zero_offset;
2956                        userpage = kmap_atomic(page);
2957                        memset(userpage + zero_offset, 0, iosize);
2958                        flush_dcache_page(page);
2959                        kunmap_atomic(userpage);
2960                }
2961        }
2962        while (cur <= end) {
2963                unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2964                bool force_bio_submit = false;
2965
2966                if (cur >= last_byte) {
2967                        char *userpage;
2968                        struct extent_state *cached = NULL;
2969
2970                        iosize = PAGE_CACHE_SIZE - pg_offset;
2971                        userpage = kmap_atomic(page);
2972                        memset(userpage + pg_offset, 0, iosize);
2973                        flush_dcache_page(page);
2974                        kunmap_atomic(userpage);
2975                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2976                                            &cached, GFP_NOFS);
2977                        if (!parent_locked)
2978                                unlock_extent_cached(tree, cur,
2979                                                     cur + iosize - 1,
2980                                                     &cached, GFP_NOFS);
2981                        break;
2982                }
2983                em = __get_extent_map(inode, page, pg_offset, cur,
2984                                      end - cur + 1, get_extent, em_cached);
2985                if (IS_ERR_OR_NULL(em)) {
2986                        SetPageError(page);
2987                        if (!parent_locked)
2988                                unlock_extent(tree, cur, end);
2989                        break;
2990                }
2991                extent_offset = cur - em->start;
2992                BUG_ON(extent_map_end(em) <= cur);
2993                BUG_ON(end < cur);
2994
2995                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2996                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2997                        extent_set_compress_type(&this_bio_flag,
2998                                                 em->compress_type);
2999                }
3000
3001                iosize = min(extent_map_end(em) - cur, end - cur + 1);
3002                cur_end = min(extent_map_end(em) - 1, end);
3003                iosize = ALIGN(iosize, blocksize);
3004                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3005                        disk_io_size = em->block_len;
3006                        sector = em->block_start >> 9;
3007                } else {
3008                        sector = (em->block_start + extent_offset) >> 9;
3009                        disk_io_size = iosize;
3010                }
3011                bdev = em->bdev;
3012                block_start = em->block_start;
3013                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3014                        block_start = EXTENT_MAP_HOLE;
3015
3016                /*
3017                 * If we have a file range that points to a compressed extent
3018                 * and it's followed by a consecutive file range that points to
3019                 * to the same compressed extent (possibly with a different
3020                 * offset and/or length, so it either points to the whole extent
3021                 * or only part of it), we must make sure we do not submit a
3022                 * single bio to populate the pages for the 2 ranges because
3023                 * this makes the compressed extent read zero out the pages
3024                 * belonging to the 2nd range. Imagine the following scenario:
3025                 *
3026                 *  File layout
3027                 *  [0 - 8K]                     [8K - 24K]
3028                 *    |                               |
3029                 *    |                               |
3030                 * points to extent X,         points to extent X,
3031                 * offset 4K, length of 8K     offset 0, length 16K
3032                 *
3033                 * [extent X, compressed length = 4K uncompressed length = 16K]
3034                 *
3035                 * If the bio to read the compressed extent covers both ranges,
3036                 * it will decompress extent X into the pages belonging to the
3037                 * first range and then it will stop, zeroing out the remaining
3038                 * pages that belong to the other range that points to extent X.
3039                 * So here we make sure we submit 2 bios, one for the first
3040                 * range and another one for the third range. Both will target
3041                 * the same physical extent from disk, but we can't currently
3042                 * make the compressed bio endio callback populate the pages
3043                 * for both ranges because each compressed bio is tightly
3044                 * coupled with a single extent map, and each range can have
3045                 * an extent map with a different offset value relative to the
3046                 * uncompressed data of our extent and different lengths. This
3047                 * is a corner case so we prioritize correctness over
3048                 * non-optimal behavior (submitting 2 bios for the same extent).
3049                 */
3050                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3051                    prev_em_start && *prev_em_start != (u64)-1 &&
3052                    *prev_em_start != em->orig_start)
3053                        force_bio_submit = true;
3054
3055                if (prev_em_start)
3056                        *prev_em_start = em->orig_start;
3057
3058                free_extent_map(em);
3059                em = NULL;
3060
3061                /* we've found a hole, just zero and go on */
3062                if (block_start == EXTENT_MAP_HOLE) {
3063                        char *userpage;
3064                        struct extent_state *cached = NULL;
3065
3066                        userpage = kmap_atomic(page);
3067                        memset(userpage + pg_offset, 0, iosize);
3068                        flush_dcache_page(page);
3069                        kunmap_atomic(userpage);
3070
3071                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3072                                            &cached, GFP_NOFS);
3073                        unlock_extent_cached(tree, cur, cur + iosize - 1,
3074                                             &cached, GFP_NOFS);
3075                        cur = cur + iosize;
3076                        pg_offset += iosize;
3077                        continue;
3078                }
3079                /* the get_extent function already copied into the page */
3080                if (test_range_bit(tree, cur, cur_end,
3081                                   EXTENT_UPTODATE, 1, NULL)) {
3082                        check_page_uptodate(tree, page);
3083                        if (!parent_locked)
3084                                unlock_extent(tree, cur, cur + iosize - 1);
3085                        cur = cur + iosize;
3086                        pg_offset += iosize;
3087                        continue;
3088                }
3089                /* we have an inline extent but it didn't get marked up
3090                 * to date.  Error out
3091                 */
3092                if (block_start == EXTENT_MAP_INLINE) {
3093                        SetPageError(page);
3094                        if (!parent_locked)
3095                                unlock_extent(tree, cur, cur + iosize - 1);
3096                        cur = cur + iosize;
3097                        pg_offset += iosize;
3098                        continue;
3099                }
3100
3101                pnr -= page->index;
3102                ret = submit_extent_page(rw, tree, NULL, page,
3103                                         sector, disk_io_size, pg_offset,
3104                                         bdev, bio, pnr,
3105                                         end_bio_extent_readpage, mirror_num,
3106                                         *bio_flags,
3107                                         this_bio_flag,
3108                                         force_bio_submit);
3109                if (!ret) {
3110                        nr++;
3111                        *bio_flags = this_bio_flag;
3112                } else {
3113                        SetPageError(page);
3114                        if (!parent_locked)
3115                                unlock_extent(tree, cur, cur + iosize - 1);
3116                }
3117                cur = cur + iosize;
3118                pg_offset += iosize;
3119        }
3120out:
3121        if (!nr) {
3122                if (!PageError(page))
3123                        SetPageUptodate(page);
3124                unlock_page(page);
3125        }
3126        return 0;
3127}
3128
3129static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3130                                             struct page *pages[], int nr_pages,
3131                                             u64 start, u64 end,
3132                                             get_extent_t *get_extent,
3133                                             struct extent_map **em_cached,
3134                                             struct bio **bio, int mirror_num,
3135                                             unsigned long *bio_flags, int rw,
3136                                             u64 *prev_em_start)
3137{
3138        struct inode *inode;
3139        struct btrfs_ordered_extent *ordered;
3140        int index;
3141
3142        inode = pages[0]->mapping->host;
3143        while (1) {
3144                lock_extent(tree, start, end);
3145                ordered = btrfs_lookup_ordered_range(inode, start,
3146                                                     end - start + 1);
3147                if (!ordered)
3148                        break;
3149                unlock_extent(tree, start, end);
3150                btrfs_start_ordered_extent(inode, ordered, 1);
3151                btrfs_put_ordered_extent(ordered);
3152        }
3153
3154        for (index = 0; index < nr_pages; index++) {
3155                __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3156                              mirror_num, bio_flags, rw, prev_em_start);
3157                page_cache_release(pages[index]);
3158        }
3159}
3160
3161static void __extent_readpages(struct extent_io_tree *tree,
3162                               struct page *pages[],
3163                               int nr_pages, get_extent_t *get_extent,
3164                               struct extent_map **em_cached,
3165                               struct bio **bio, int mirror_num,
3166                               unsigned long *bio_flags, int rw,
3167                               u64 *prev_em_start)
3168{
3169        u64 start = 0;
3170        u64 end = 0;
3171        u64 page_start;
3172        int index;
3173        int first_index = 0;
3174
3175        for (index = 0; index < nr_pages; index++) {
3176                page_start = page_offset(pages[index]);
3177                if (!end) {
3178                        start = page_start;
3179                        end = start + PAGE_CACHE_SIZE - 1;
3180                        first_index = index;
3181                } else if (end + 1 == page_start) {
3182                        end += PAGE_CACHE_SIZE;
3183                } else {
3184                        __do_contiguous_readpages(tree, &pages[first_index],
3185                                                  index - first_index, start,
3186                                                  end, get_extent, em_cached,
3187                                                  bio, mirror_num, bio_flags,
3188                                                  rw, prev_em_start);
3189                        start = page_start;
3190                        end = start + PAGE_CACHE_SIZE - 1;
3191                        first_index = index;
3192                }
3193        }
3194
3195        if (end)
3196                __do_contiguous_readpages(tree, &pages[first_index],
3197                                          index - first_index, start,
3198                                          end, get_extent, em_cached, bio,
3199                                          mirror_num, bio_flags, rw,
3200                                          prev_em_start);
3201}
3202
3203static int __extent_read_full_page(struct extent_io_tree *tree,
3204                                   struct page *page,
3205                                   get_extent_t *get_extent,
3206                                   struct bio **bio, int mirror_num,
3207                                   unsigned long *bio_flags, int rw)
3208{
3209        struct inode *inode = page->mapping->host;
3210        struct btrfs_ordered_extent *ordered;
3211        u64 start = page_offset(page);
3212        u64 end = start + PAGE_CACHE_SIZE - 1;
3213        int ret;
3214
3215        while (1) {
3216                lock_extent(tree, start, end);
3217                ordered = btrfs_lookup_ordered_extent(inode, start);
3218                if (!ordered)
3219                        break;
3220                unlock_extent(tree, start, end);
3221                btrfs_start_ordered_extent(inode, ordered, 1);
3222                btrfs_put_ordered_extent(ordered);
3223        }
3224
3225        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3226                            bio_flags, rw, NULL);
3227        return ret;
3228}
3229
3230int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3231                            get_extent_t *get_extent, int mirror_num)
3232{
3233        struct bio *bio = NULL;
3234        unsigned long bio_flags = 0;
3235        int ret;
3236
3237        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3238                                      &bio_flags, READ);
3239        if (bio)
3240                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3241        return ret;
3242}
3243
3244int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3245                                 get_extent_t *get_extent, int mirror_num)
3246{
3247        struct bio *bio = NULL;
3248        unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3249        int ret;
3250
3251        ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3252                            &bio_flags, READ, NULL);
3253        if (bio)
3254                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3255        return ret;
3256}
3257
3258static noinline void update_nr_written(struct page *page,
3259                                      struct writeback_control *wbc,
3260                                      unsigned long nr_written)
3261{
3262        wbc->nr_to_write -= nr_written;
3263        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3264            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3265                page->mapping->writeback_index = page->index + nr_written;
3266}
3267
3268/*
3269 * helper for __extent_writepage, doing all of the delayed allocation setup.
3270 *
3271 * This returns 1 if our fill_delalloc function did all the work required
3272 * to write the page (copy into inline extent).  In this case the IO has
3273 * been started and the page is already unlocked.
3274 *
3275 * This returns 0 if all went well (page still locked)
3276 * This returns < 0 if there were errors (page still locked)
3277 */
3278static noinline_for_stack int writepage_delalloc(struct inode *inode,
3279                              struct page *page, struct writeback_control *wbc,
3280                              struct extent_page_data *epd,
3281                              u64 delalloc_start,
3282                              unsigned long *nr_written)
3283{
3284        struct extent_io_tree *tree = epd->tree;
3285        u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3286        u64 nr_delalloc;
3287        u64 delalloc_to_write = 0;
3288        u64 delalloc_end = 0;
3289        int ret;
3290        int page_started = 0;
3291
3292        if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3293                return 0;
3294
3295        while (delalloc_end < page_end) {
3296                nr_delalloc = find_lock_delalloc_range(inode, tree,
3297                                               page,
3298                                               &delalloc_start,
3299                                               &delalloc_end,
3300                                               BTRFS_MAX_EXTENT_SIZE);
3301                if (nr_delalloc == 0) {
3302                        delalloc_start = delalloc_end + 1;
3303                        continue;
3304                }
3305                ret = tree->ops->fill_delalloc(inode, page,
3306                                               delalloc_start,
3307                                               delalloc_end,
3308                                               &page_started,
3309                                               nr_written);
3310                /* File system has been set read-only */
3311                if (ret) {
3312                        SetPageError(page);
3313                        /* fill_delalloc should be return < 0 for error
3314                         * but just in case, we use > 0 here meaning the
3315                         * IO is started, so we don't want to return > 0
3316                         * unless things are going well.
3317                         */
3318                        ret = ret < 0 ? ret : -EIO;
3319                        goto done;
3320                }
3321                /*
3322                 * delalloc_end is already one less than the total
3323                 * length, so we don't subtract one from
3324                 * PAGE_CACHE_SIZE
3325                 */
3326                delalloc_to_write += (delalloc_end - delalloc_start +
3327                                      PAGE_CACHE_SIZE) >>
3328                                      PAGE_CACHE_SHIFT;
3329                delalloc_start = delalloc_end + 1;
3330        }
3331        if (wbc->nr_to_write < delalloc_to_write) {
3332                int thresh = 8192;
3333
3334                if (delalloc_to_write < thresh * 2)
3335                        thresh = delalloc_to_write;
3336                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3337                                         thresh);
3338        }
3339
3340        /* did the fill delalloc function already unlock and start
3341         * the IO?
3342         */
3343        if (page_started) {
3344                /*
3345                 * we've unlocked the page, so we can't update
3346                 * the mapping's writeback index, just update
3347                 * nr_to_write.
3348                 */
3349                wbc->nr_to_write -= *nr_written;
3350                return 1;
3351        }
3352
3353        ret = 0;
3354
3355done:
3356        return ret;
3357}
3358
3359/*
3360 * helper for __extent_writepage.  This calls the writepage start hooks,
3361 * and does the loop to map the page into extents and bios.
3362 *
3363 * We return 1 if the IO is started and the page is unlocked,
3364 * 0 if all went well (page still locked)
3365 * < 0 if there were errors (page still locked)
3366 */
3367static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3368                                 struct page *page,
3369                                 struct writeback_control *wbc,
3370                                 struct extent_page_data *epd,
3371                                 loff_t i_size,
3372                                 unsigned long nr_written,
3373                                 int write_flags, int *nr_ret)
3374{
3375        struct extent_io_tree *tree = epd->tree;
3376        u64 start = page_offset(page);
3377        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3378        u64 end;
3379        u64 cur = start;
3380        u64 extent_offset;
3381        u64 block_start;
3382        u64 iosize;
3383        sector_t sector;
3384        struct extent_state *cached_state = NULL;
3385        struct extent_map *em;
3386        struct block_device *bdev;
3387        size_t pg_offset = 0;
3388        size_t blocksize;
3389        int ret = 0;
3390        int nr = 0;
3391        bool compressed;
3392
3393        if (tree->ops && tree->ops->writepage_start_hook) {
3394                ret = tree->ops->writepage_start_hook(page, start,
3395                                                      page_end);
3396                if (ret) {
3397                        /* Fixup worker will requeue */
3398                        if (ret == -EBUSY)
3399                                wbc->pages_skipped++;
3400                        else
3401                                redirty_page_for_writepage(wbc, page);
3402
3403                        update_nr_written(page, wbc, nr_written);
3404                        unlock_page(page);
3405                        ret = 1;
3406                        goto done_unlocked;
3407                }
3408        }
3409
3410        /*
3411         * we don't want to touch the inode after unlocking the page,
3412         * so we update the mapping writeback index now
3413         */
3414        update_nr_written(page, wbc, nr_written + 1);
3415
3416        end = page_end;
3417        if (i_size <= start) {
3418                if (tree->ops && tree->ops->writepage_end_io_hook)
3419                        tree->ops->writepage_end_io_hook(page, start,
3420                                                         page_end, NULL, 1);
3421                goto done;
3422        }
3423
3424        blocksize = inode->i_sb->s_blocksize;
3425
3426        while (cur <= end) {
3427                u64 em_end;
3428                if (cur >= i_size) {
3429                        if (tree->ops && tree->ops->writepage_end_io_hook)
3430                                tree->ops->writepage_end_io_hook(page, cur,
3431                                                         page_end, NULL, 1);
3432                        break;
3433                }
3434                em = epd->get_extent(inode, page, pg_offset, cur,
3435                                     end - cur + 1, 1);
3436                if (IS_ERR_OR_NULL(em)) {
3437                        SetPageError(page);
3438                        ret = PTR_ERR_OR_ZERO(em);
3439                        break;
3440                }
3441
3442                extent_offset = cur - em->start;
3443                em_end = extent_map_end(em);
3444                BUG_ON(em_end <= cur);
3445                BUG_ON(end < cur);
3446                iosize = min(em_end - cur, end - cur + 1);
3447                iosize = ALIGN(iosize, blocksize);
3448                sector = (em->block_start + extent_offset) >> 9;
3449                bdev = em->bdev;
3450                block_start = em->block_start;
3451                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3452                free_extent_map(em);
3453                em = NULL;
3454
3455                /*
3456                 * compressed and inline extents are written through other
3457                 * paths in the FS
3458                 */
3459                if (compressed || block_start == EXTENT_MAP_HOLE ||
3460                    block_start == EXTENT_MAP_INLINE) {
3461                        /*
3462                         * end_io notification does not happen here for
3463                         * compressed extents
3464                         */
3465                        if (!compressed && tree->ops &&
3466                            tree->ops->writepage_end_io_hook)
3467                                tree->ops->writepage_end_io_hook(page, cur,
3468                                                         cur + iosize - 1,
3469                                                         NULL, 1);
3470                        else if (compressed) {
3471                                /* we don't want to end_page_writeback on
3472                                 * a compressed extent.  this happens
3473                                 * elsewhere
3474                                 */
3475                                nr++;
3476                        }
3477
3478                        cur += iosize;
3479                        pg_offset += iosize;
3480                        continue;
3481                }
3482
3483                if (tree->ops && tree->ops->writepage_io_hook) {
3484                        ret = tree->ops->writepage_io_hook(page, cur,
3485                                                cur + iosize - 1);
3486                } else {
3487                        ret = 0;
3488                }
3489                if (ret) {
3490                        SetPageError(page);
3491                } else {
3492                        unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3493
3494                        set_range_writeback(tree, cur, cur + iosize - 1);
3495                        if (!PageWriteback(page)) {
3496                                btrfs_err(BTRFS_I(inode)->root->fs_info,
3497                                           "page %lu not writeback, cur %llu end %llu",
3498                                       page->index, cur, end);
3499                        }
3500
3501                        ret = submit_extent_page(write_flags, tree, wbc, page,
3502                                                 sector, iosize, pg_offset,
3503                                                 bdev, &epd->bio, max_nr,
3504                                                 end_bio_extent_writepage,
3505                                                 0, 0, 0, false);
3506                        if (ret)
3507                                SetPageError(page);
3508                }
3509                cur = cur + iosize;
3510                pg_offset += iosize;
3511                nr++;
3512        }
3513done:
3514        *nr_ret = nr;
3515
3516done_unlocked:
3517
3518        /* drop our reference on any cached states */
3519        free_extent_state(cached_state);
3520        return ret;
3521}
3522
3523/*
3524 * the writepage semantics are similar to regular writepage.  extent
3525 * records are inserted to lock ranges in the tree, and as dirty areas
3526 * are found, they are marked writeback.  Then the lock bits are removed
3527 * and the end_io handler clears the writeback ranges
3528 */
3529static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3530                              void *data)
3531{
3532        struct inode *inode = page->mapping->host;
3533        struct extent_page_data *epd = data;
3534        u64 start = page_offset(page);
3535        u64 page_end = start + PAGE_CACHE_SIZE - 1;
3536        int ret;
3537        int nr = 0;
3538        size_t pg_offset = 0;
3539        loff_t i_size = i_size_read(inode);
3540        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3541        int write_flags;
3542        unsigned long nr_written = 0;
3543
3544        if (wbc->sync_mode == WB_SYNC_ALL)
3545                write_flags = WRITE_SYNC;
3546        else
3547                write_flags = WRITE;
3548
3549        trace___extent_writepage(page, inode, wbc);
3550
3551        WARN_ON(!PageLocked(page));
3552
3553        ClearPageError(page);
3554
3555        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3556        if (page->index > end_index ||
3557           (page->index == end_index && !pg_offset)) {
3558                page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3559                unlock_page(page);
3560                return 0;
3561        }
3562
3563        if (page->index == end_index) {
3564                char *userpage;
3565
3566                userpage = kmap_atomic(page);
3567                memset(userpage + pg_offset, 0,
3568                       PAGE_CACHE_SIZE - pg_offset);
3569                kunmap_atomic(userpage);
3570                flush_dcache_page(page);
3571        }
3572
3573        pg_offset = 0;
3574
3575        set_page_extent_mapped(page);
3576
3577        ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3578        if (ret == 1)
3579                goto done_unlocked;
3580        if (ret)
3581                goto done;
3582
3583        ret = __extent_writepage_io(inode, page, wbc, epd,
3584                                    i_size, nr_written, write_flags, &nr);
3585        if (ret == 1)
3586                goto done_unlocked;
3587
3588done:
3589        if (nr == 0) {
3590                /* make sure the mapping tag for page dirty gets cleared */
3591                set_page_writeback(page);
3592                end_page_writeback(page);
3593        }
3594        if (PageError(page)) {
3595                ret = ret < 0 ? ret : -EIO;
3596                end_extent_writepage(page, ret, start, page_end);
3597        }
3598        unlock_page(page);
3599        return ret;
3600
3601done_unlocked:
3602        return 0;
3603}
3604
3605void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3606{
3607        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3608                       TASK_UNINTERRUPTIBLE);
3609}
3610
3611static noinline_for_stack int
3612lock_extent_buffer_for_io(struct extent_buffer *eb,
3613                          struct btrfs_fs_info *fs_info,
3614                          struct extent_page_data *epd)
3615{
3616        unsigned long i, num_pages;
3617        int flush = 0;
3618        int ret = 0;
3619
3620        if (!btrfs_try_tree_write_lock(eb)) {
3621                flush = 1;
3622                flush_write_bio(epd);
3623                btrfs_tree_lock(eb);
3624        }
3625
3626        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3627                btrfs_tree_unlock(eb);
3628                if (!epd->sync_io)
3629                        return 0;
3630                if (!flush) {
3631                        flush_write_bio(epd);
3632                        flush = 1;
3633                }
3634                while (1) {
3635                        wait_on_extent_buffer_writeback(eb);
3636                        btrfs_tree_lock(eb);
3637                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3638                                break;
3639                        btrfs_tree_unlock(eb);
3640                }
3641        }
3642
3643        /*
3644         * We need to do this to prevent races in people who check if the eb is
3645         * under IO since we can end up having no IO bits set for a short period
3646         * of time.
3647         */
3648        spin_lock(&eb->refs_lock);
3649        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3650                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3651                spin_unlock(&eb->refs_lock);
3652                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3653                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3654                                     -eb->len,
3655                                     fs_info->dirty_metadata_batch);
3656                ret = 1;
3657        } else {
3658                spin_unlock(&eb->refs_lock);
3659        }
3660
3661        btrfs_tree_unlock(eb);
3662
3663        if (!ret)
3664                return ret;
3665
3666        num_pages = num_extent_pages(eb->start, eb->len);
3667        for (i = 0; i < num_pages; i++) {
3668                struct page *p = eb->pages[i];
3669
3670                if (!trylock_page(p)) {
3671                        if (!flush) {
3672                                flush_write_bio(epd);
3673                                flush = 1;
3674                        }
3675                        lock_page(p);
3676                }
3677        }
3678
3679        return ret;
3680}
3681
3682static void end_extent_buffer_writeback(struct extent_buffer *eb)
3683{
3684        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3685        smp_mb__after_atomic();
3686        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3687}
3688
3689static void set_btree_ioerr(struct page *page)
3690{
3691        struct extent_buffer *eb = (struct extent_buffer *)page->private;
3692        struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3693
3694        SetPageError(page);
3695        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3696                return;
3697
3698        /*
3699         * If writeback for a btree extent that doesn't belong to a log tree
3700         * failed, increment the counter transaction->eb_write_errors.
3701         * We do this because while the transaction is running and before it's
3702         * committing (when we call filemap_fdata[write|wait]_range against
3703         * the btree inode), we might have
3704         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3705         * returns an error or an error happens during writeback, when we're
3706         * committing the transaction we wouldn't know about it, since the pages
3707         * can be no longer dirty nor marked anymore for writeback (if a
3708         * subsequent modification to the extent buffer didn't happen before the
3709         * transaction commit), which makes filemap_fdata[write|wait]_range not
3710         * able to find the pages tagged with SetPageError at transaction
3711         * commit time. So if this happens we must abort the transaction,
3712         * otherwise we commit a super block with btree roots that point to
3713         * btree nodes/leafs whose content on disk is invalid - either garbage
3714         * or the content of some node/leaf from a past generation that got
3715         * cowed or deleted and is no longer valid.
3716         *
3717         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3718         * not be enough - we need to distinguish between log tree extents vs
3719         * non-log tree extents, and the next filemap_fdatawait_range() call
3720         * will catch and clear such errors in the mapping - and that call might
3721         * be from a log sync and not from a transaction commit. Also, checking
3722         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3723         * not done and would not be reliable - the eb might have been released
3724         * from memory and reading it back again means that flag would not be
3725         * set (since it's a runtime flag, not persisted on disk).
3726         *
3727         * Using the flags below in the btree inode also makes us achieve the
3728         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3729         * writeback for all dirty pages and before filemap_fdatawait_range()
3730         * is called, the writeback for all dirty pages had already finished
3731         * with errors - because we were not using AS_EIO/AS_ENOSPC,
3732         * filemap_fdatawait_range() would return success, as it could not know
3733         * that writeback errors happened (the pages were no longer tagged for
3734         * writeback).
3735         */
3736        switch (eb->log_index) {
3737        case -1:
3738                set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3739                break;
3740        case 0:
3741                set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3742                break;
3743        case 1:
3744                set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3745                break;
3746        default:
3747                BUG(); /* unexpected, logic error */
3748        }
3749}
3750
3751static void end_bio_extent_buffer_writepage(struct bio *bio)
3752{
3753        struct bio_vec *bvec;
3754        struct extent_buffer *eb;
3755        int i, done;
3756
3757        bio_for_each_segment_all(bvec, bio, i) {
3758                struct page *page = bvec->bv_page;
3759
3760                eb = (struct extent_buffer *)page->private;
3761                BUG_ON(!eb);
3762                done = atomic_dec_and_test(&eb->io_pages);
3763
3764                if (bio->bi_error ||
3765                    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3766                        ClearPageUptodate(page);
3767                        set_btree_ioerr(page);
3768                }
3769
3770                end_page_writeback(page);
3771
3772                if (!done)
3773                        continue;
3774
3775                end_extent_buffer_writeback(eb);
3776        }
3777
3778        bio_put(bio);
3779}
3780
3781static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3782                        struct btrfs_fs_info *fs_info,
3783                        struct writeback_control *wbc,
3784                        struct extent_page_data *epd)
3785{
3786        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3787        struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3788        u64 offset = eb->start;
3789        unsigned long i, num_pages;
3790        unsigned long bio_flags = 0;
3791        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3792        int ret = 0;
3793
3794        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3795        num_pages = num_extent_pages(eb->start, eb->len);
3796        atomic_set(&eb->io_pages, num_pages);
3797        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3798                bio_flags = EXTENT_BIO_TREE_LOG;
3799
3800        for (i = 0; i < num_pages; i++) {
3801                struct page *p = eb->pages[i];
3802
3803                clear_page_dirty_for_io(p);
3804                set_page_writeback(p);
3805                ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3806                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3807                                         -1, end_bio_extent_buffer_writepage,
3808                                         0, epd->bio_flags, bio_flags, false);
3809                epd->bio_flags = bio_flags;
3810                if (ret) {
3811                        set_btree_ioerr(p);
3812                        end_page_writeback(p);
3813                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3814                                end_extent_buffer_writeback(eb);
3815                        ret = -EIO;
3816                        break;
3817                }
3818                offset += PAGE_CACHE_SIZE;
3819                update_nr_written(p, wbc, 1);
3820                unlock_page(p);
3821        }
3822
3823        if (unlikely(ret)) {
3824                for (; i < num_pages; i++) {
3825                        struct page *p = eb->pages[i];
3826                        clear_page_dirty_for_io(p);
3827                        unlock_page(p);
3828                }
3829        }
3830
3831        return ret;
3832}
3833
3834int btree_write_cache_pages(struct address_space *mapping,
3835                                   struct writeback_control *wbc)
3836{
3837        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3838        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3839        struct extent_buffer *eb, *prev_eb = NULL;
3840        struct extent_page_data epd = {
3841                .bio = NULL,
3842                .tree = tree,
3843                .extent_locked = 0,
3844                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3845                .bio_flags = 0,
3846        };
3847        int ret = 0;
3848        int done = 0;
3849        int nr_to_write_done = 0;
3850        struct pagevec pvec;
3851        int nr_pages;
3852        pgoff_t index;
3853        pgoff_t end;            /* Inclusive */
3854        int scanned = 0;
3855        int tag;
3856
3857        pagevec_init(&pvec, 0);
3858        if (wbc->range_cyclic) {
3859                index = mapping->writeback_index; /* Start from prev offset */
3860                end = -1;
3861        } else {
3862                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3863                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3864                scanned = 1;
3865        }
3866        if (wbc->sync_mode == WB_SYNC_ALL)
3867                tag = PAGECACHE_TAG_TOWRITE;
3868        else
3869                tag = PAGECACHE_TAG_DIRTY;
3870retry:
3871        if (wbc->sync_mode == WB_SYNC_ALL)
3872                tag_pages_for_writeback(mapping, index, end);
3873        while (!done && !nr_to_write_done && (index <= end) &&
3874               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3875                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3876                unsigned i;
3877
3878                scanned = 1;
3879                for (i = 0; i < nr_pages; i++) {
3880                        struct page *page = pvec.pages[i];
3881
3882                        if (!PagePrivate(page))
3883                                continue;
3884
3885                        if (!wbc->range_cyclic && page->index > end) {
3886                                done = 1;
3887                                break;
3888                        }
3889
3890                        spin_lock(&mapping->private_lock);
3891                        if (!PagePrivate(page)) {
3892                                spin_unlock(&mapping->private_lock);
3893                                continue;
3894                        }
3895
3896                        eb = (struct extent_buffer *)page->private;
3897
3898                        /*
3899                         * Shouldn't happen and normally this would be a BUG_ON
3900                         * but no sense in crashing the users box for something
3901                         * we can survive anyway.
3902                         */
3903                        if (WARN_ON(!eb)) {
3904                                spin_unlock(&mapping->private_lock);
3905                                continue;
3906                        }
3907
3908                        if (eb == prev_eb) {
3909                                spin_unlock(&mapping->private_lock);
3910                                continue;
3911                        }
3912
3913                        ret = atomic_inc_not_zero(&eb->refs);
3914                        spin_unlock(&mapping->private_lock);
3915                        if (!ret)
3916                                continue;
3917
3918                        prev_eb = eb;
3919                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3920                        if (!ret) {
3921                                free_extent_buffer(eb);
3922                                continue;
3923                        }
3924
3925                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3926                        if (ret) {
3927                                done = 1;
3928                                free_extent_buffer(eb);
3929                                break;
3930                        }
3931                        free_extent_buffer(eb);
3932
3933                        /*
3934                         * the filesystem may choose to bump up nr_to_write.
3935                         * We have to make sure to honor the new nr_to_write
3936                         * at any time
3937                         */
3938                        nr_to_write_done = wbc->nr_to_write <= 0;
3939                }
3940                pagevec_release(&pvec);
3941                cond_resched();
3942        }
3943        if (!scanned && !done) {
3944                /*
3945                 * We hit the last page and there is more work to be done: wrap
3946                 * back to the start of the file
3947                 */
3948                scanned = 1;
3949                index = 0;
3950                goto retry;
3951        }
3952        flush_write_bio(&epd);
3953        return ret;
3954}
3955
3956/**
3957 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3958 * @mapping: address space structure to write
3959 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3960 * @writepage: function called for each page
3961 * @data: data passed to writepage function
3962 *
3963 * If a page is already under I/O, write_cache_pages() skips it, even
3964 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3965 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3966 * and msync() need to guarantee that all the data which was dirty at the time
3967 * the call was made get new I/O started against them.  If wbc->sync_mode is
3968 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3969 * existing IO to complete.
3970 */
3971static int extent_write_cache_pages(struct extent_io_tree *tree,
3972                             struct address_space *mapping,
3973                             struct writeback_control *wbc,
3974                             writepage_t writepage, void *data,
3975                             void (*flush_fn)(void *))
3976{
3977        struct inode *inode = mapping->host;
3978        int ret = 0;
3979        int done = 0;
3980        int err = 0;
3981        int nr_to_write_done = 0;
3982        struct pagevec pvec;
3983        int nr_pages;
3984        pgoff_t index;
3985        pgoff_t end;            /* Inclusive */
3986        int scanned = 0;
3987        int tag;
3988
3989        /*
3990         * We have to hold onto the inode so that ordered extents can do their
3991         * work when the IO finishes.  The alternative to this is failing to add
3992         * an ordered extent if the igrab() fails there and that is a huge pain
3993         * to deal with, so instead just hold onto the inode throughout the
3994         * writepages operation.  If it fails here we are freeing up the inode
3995         * anyway and we'd rather not waste our time writing out stuff that is
3996         * going to be truncated anyway.
3997         */
3998        if (!igrab(inode))
3999                return 0;
4000
4001        pagevec_init(&pvec, 0);
4002        if (wbc->range_cyclic) {
4003                index = mapping->writeback_index; /* Start from prev offset */
4004                end = -1;
4005        } else {
4006                index = wbc->range_start >> PAGE_CACHE_SHIFT;
4007                end = wbc->range_end >> PAGE_CACHE_SHIFT;
4008                scanned = 1;
4009        }
4010        if (wbc->sync_mode == WB_SYNC_ALL)
4011                tag = PAGECACHE_TAG_TOWRITE;
4012        else
4013                tag = PAGECACHE_TAG_DIRTY;
4014retry:
4015        if (wbc->sync_mode == WB_SYNC_ALL)
4016                tag_pages_for_writeback(mapping, index, end);
4017        while (!done && !nr_to_write_done && (index <= end) &&
4018               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4019                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4020                unsigned i;
4021
4022                scanned = 1;
4023                for (i = 0; i < nr_pages; i++) {
4024                        struct page *page = pvec.pages[i];
4025
4026                        /*
4027                         * At this point we hold neither mapping->tree_lock nor
4028                         * lock on the page itself: the page may be truncated or
4029                         * invalidated (changing page->mapping to NULL), or even
4030                         * swizzled back from swapper_space to tmpfs file
4031                         * mapping
4032                         */
4033                        if (!trylock_page(page)) {
4034                                flush_fn(data);
4035                                lock_page(page);
4036                        }
4037
4038                        if (unlikely(page->mapping != mapping)) {
4039                                unlock_page(page);
4040                                continue;
4041                        }
4042
4043                        if (!wbc->range_cyclic && page->index > end) {
4044                                done = 1;
4045                                unlock_page(page);
4046                                continue;
4047                        }
4048
4049                        if (wbc->sync_mode != WB_SYNC_NONE) {
4050                                if (PageWriteback(page))
4051                                        flush_fn(data);
4052                                wait_on_page_writeback(page);
4053                        }
4054
4055                        if (PageWriteback(page) ||
4056                            !clear_page_dirty_for_io(page)) {
4057                                unlock_page(page);
4058                                continue;
4059                        }
4060
4061                        ret = (*writepage)(page, wbc, data);
4062
4063                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4064                                unlock_page(page);
4065                                ret = 0;
4066                        }
4067                        if (!err && ret < 0)
4068                                err = ret;
4069
4070                        /*
4071                         * the filesystem may choose to bump up nr_to_write.
4072                         * We have to make sure to honor the new nr_to_write
4073                         * at any time
4074                         */
4075                        nr_to_write_done = wbc->nr_to_write <= 0;
4076                }
4077                pagevec_release(&pvec);
4078                cond_resched();
4079        }
4080        if (!scanned && !done && !err) {
4081                /*
4082                 * We hit the last page and there is more work to be done: wrap
4083                 * back to the start of the file
4084                 */
4085                scanned = 1;
4086                index = 0;
4087                goto retry;
4088        }
4089        btrfs_add_delayed_iput(inode);
4090        return err;
4091}
4092
4093static void flush_epd_write_bio(struct extent_page_data *epd)
4094{
4095        if (epd->bio) {
4096                int rw = WRITE;
4097                int ret;
4098
4099                if (epd->sync_io)
4100                        rw = WRITE_SYNC;
4101
4102                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4103                BUG_ON(ret < 0); /* -ENOMEM */
4104                epd->bio = NULL;
4105        }
4106}
4107
4108static noinline void flush_write_bio(void *data)
4109{
4110        struct extent_page_data *epd = data;
4111        flush_epd_write_bio(epd);
4112}
4113
4114int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4115                          get_extent_t *get_extent,
4116                          struct writeback_control *wbc)
4117{
4118        int ret;
4119        struct extent_page_data epd = {
4120                .bio = NULL,
4121                .tree = tree,
4122                .get_extent = get_extent,
4123                .extent_locked = 0,
4124                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4125                .bio_flags = 0,
4126        };
4127
4128        ret = __extent_writepage(page, wbc, &epd);
4129
4130        flush_epd_write_bio(&epd);
4131        return ret;
4132}
4133
4134int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4135                              u64 start, u64 end, get_extent_t *get_extent,
4136                              int mode)
4137{
4138        int ret = 0;
4139        struct address_space *mapping = inode->i_mapping;
4140        struct page *page;
4141        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4142                PAGE_CACHE_SHIFT;
4143
4144        struct extent_page_data epd = {
4145                .bio = NULL,
4146                .tree = tree,
4147                .get_extent = get_extent,
4148                .extent_locked = 1,
4149                .sync_io = mode == WB_SYNC_ALL,
4150                .bio_flags = 0,
4151        };
4152        struct writeback_control wbc_writepages = {
4153                .sync_mode      = mode,
4154                .nr_to_write    = nr_pages * 2,
4155                .range_start    = start,
4156                .range_end      = end + 1,
4157        };
4158
4159        while (start <= end) {
4160                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4161                if (clear_page_dirty_for_io(page))
4162                        ret = __extent_writepage(page, &wbc_writepages, &epd);
4163                else {
4164                        if (tree->ops && tree->ops->writepage_end_io_hook)
4165                                tree->ops->writepage_end_io_hook(page, start,
4166                                                 start + PAGE_CACHE_SIZE - 1,
4167                                                 NULL, 1);
4168                        unlock_page(page);
4169                }
4170                page_cache_release(page);
4171                start += PAGE_CACHE_SIZE;
4172        }
4173
4174        flush_epd_write_bio(&epd);
4175        return ret;
4176}
4177
4178int extent_writepages(struct extent_io_tree *tree,
4179                      struct address_space *mapping,
4180                      get_extent_t *get_extent,
4181                      struct writeback_control *wbc)
4182{
4183        int ret = 0;
4184        struct extent_page_data epd = {
4185                .bio = NULL,
4186                .tree = tree,
4187                .get_extent = get_extent,
4188                .extent_locked = 0,
4189                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4190                .bio_flags = 0,
4191        };
4192
4193        ret = extent_write_cache_pages(tree, mapping, wbc,
4194                                       __extent_writepage, &epd,
4195                                       flush_write_bio);
4196        flush_epd_write_bio(&epd);
4197        return ret;
4198}
4199
4200int extent_readpages(struct extent_io_tree *tree,
4201                     struct address_space *mapping,
4202                     struct list_head *pages, unsigned nr_pages,
4203                     get_extent_t get_extent)
4204{
4205        struct bio *bio = NULL;
4206        unsigned page_idx;
4207        unsigned long bio_flags = 0;
4208        struct page *pagepool[16];
4209        struct page *page;
4210        struct extent_map *em_cached = NULL;
4211        int nr = 0;
4212        u64 prev_em_start = (u64)-1;
4213
4214        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4215                page = list_entry(pages->prev, struct page, lru);
4216
4217                prefetchw(&page->flags);
4218                list_del(&page->lru);
4219                if (add_to_page_cache_lru(page, mapping,
4220                                        page->index, GFP_NOFS)) {
4221                        page_cache_release(page);
4222                        continue;
4223                }
4224
4225                pagepool[nr++] = page;
4226                if (nr < ARRAY_SIZE(pagepool))
4227                        continue;
4228                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4229                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4230                nr = 0;
4231        }
4232        if (nr)
4233                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4234                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4235
4236        if (em_cached)
4237                free_extent_map(em_cached);
4238
4239        BUG_ON(!list_empty(pages));
4240        if (bio)
4241                return submit_one_bio(READ, bio, 0, bio_flags);
4242        return 0;
4243}
4244
4245/*
4246 * basic invalidatepage code, this waits on any locked or writeback
4247 * ranges corresponding to the page, and then deletes any extent state
4248 * records from the tree
4249 */
4250int extent_invalidatepage(struct extent_io_tree *tree,
4251                          struct page *page, unsigned long offset)
4252{
4253        struct extent_state *cached_state = NULL;
4254        u64 start = page_offset(page);
4255        u64 end = start + PAGE_CACHE_SIZE - 1;
4256        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4257
4258        start += ALIGN(offset, blocksize);
4259        if (start > end)
4260                return 0;
4261
4262        lock_extent_bits(tree, start, end, 0, &cached_state);
4263        wait_on_page_writeback(page);
4264        clear_extent_bit(tree, start, end,
4265                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4266                         EXTENT_DO_ACCOUNTING,
4267                         1, 1, &cached_state, GFP_NOFS);
4268        return 0;
4269}
4270
4271/*
4272 * a helper for releasepage, this tests for areas of the page that
4273 * are locked or under IO and drops the related state bits if it is safe
4274 * to drop the page.
4275 */
4276static int try_release_extent_state(struct extent_map_tree *map,
4277                                    struct extent_io_tree *tree,
4278                                    struct page *page, gfp_t mask)
4279{
4280        u64 start = page_offset(page);
4281        u64 end = start + PAGE_CACHE_SIZE - 1;
4282        int ret = 1;
4283
4284        if (test_range_bit(tree, start, end,
4285                           EXTENT_IOBITS, 0, NULL))
4286                ret = 0;
4287        else {
4288                if ((mask & GFP_NOFS) == GFP_NOFS)
4289                        mask = GFP_NOFS;
4290                /*
4291                 * at this point we can safely clear everything except the
4292                 * locked bit and the nodatasum bit
4293                 */
4294                ret = clear_extent_bit(tree, start, end,
4295                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4296                                 0, 0, NULL, mask);
4297
4298                /* if clear_extent_bit failed for enomem reasons,
4299                 * we can't allow the release to continue.
4300                 */
4301                if (ret < 0)
4302                        ret = 0;
4303                else
4304                        ret = 1;
4305        }
4306        return ret;
4307}
4308
4309/*
4310 * a helper for releasepage.  As long as there are no locked extents
4311 * in the range corresponding to the page, both state records and extent
4312 * map records are removed
4313 */
4314int try_release_extent_mapping(struct extent_map_tree *map,
4315                               struct extent_io_tree *tree, struct page *page,
4316                               gfp_t mask)
4317{
4318        struct extent_map *em;
4319        u64 start = page_offset(page);
4320        u64 end = start + PAGE_CACHE_SIZE - 1;
4321
4322        if ((mask & __GFP_WAIT) &&
4323            page->mapping->host->i_size > 16 * 1024 * 1024) {
4324                u64 len;
4325                while (start <= end) {
4326                        len = end - start + 1;
4327                        write_lock(&map->lock);
4328                        em = lookup_extent_mapping(map, start, len);
4329                        if (!em) {
4330                                write_unlock(&map->lock);
4331                                break;
4332                        }
4333                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4334                            em->start != start) {
4335                                write_unlock(&map->lock);
4336                                free_extent_map(em);
4337                                break;
4338                        }
4339                        if (!test_range_bit(tree, em->start,
4340                                            extent_map_end(em) - 1,
4341                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4342                                            0, NULL)) {
4343                                remove_extent_mapping(map, em);
4344                                /* once for the rb tree */
4345                                free_extent_map(em);
4346                        }
4347                        start = extent_map_end(em);
4348                        write_unlock(&map->lock);
4349
4350                        /* once for us */
4351                        free_extent_map(em);
4352                }
4353        }
4354        return try_release_extent_state(map, tree, page, mask);
4355}
4356
4357/*
4358 * helper function for fiemap, which doesn't want to see any holes.
4359 * This maps until we find something past 'last'
4360 */
4361static struct extent_map *get_extent_skip_holes(struct inode *inode,
4362                                                u64 offset,
4363                                                u64 last,
4364                                                get_extent_t *get_extent)
4365{
4366        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4367        struct extent_map *em;
4368        u64 len;
4369
4370        if (offset >= last)
4371                return NULL;
4372
4373        while (1) {
4374                len = last - offset;
4375                if (len == 0)
4376                        break;
4377                len = ALIGN(len, sectorsize);
4378                em = get_extent(inode, NULL, 0, offset, len, 0);
4379                if (IS_ERR_OR_NULL(em))
4380                        return em;
4381
4382                /* if this isn't a hole return it */
4383                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4384                    em->block_start != EXTENT_MAP_HOLE) {
4385                        return em;
4386                }
4387
4388                /* this is a hole, advance to the next extent */
4389                offset = extent_map_end(em);
4390                free_extent_map(em);
4391                if (offset >= last)
4392                        break;
4393        }
4394        return NULL;
4395}
4396
4397int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4398                __u64 start, __u64 len, get_extent_t *get_extent)
4399{
4400        int ret = 0;
4401        u64 off = start;
4402        u64 max = start + len;
4403        u32 flags = 0;
4404        u32 found_type;
4405        u64 last;
4406        u64 last_for_get_extent = 0;
4407        u64 disko = 0;
4408        u64 isize = i_size_read(inode);
4409        struct btrfs_key found_key;
4410        struct extent_map *em = NULL;
4411        struct extent_state *cached_state = NULL;
4412        struct btrfs_path *path;
4413        struct btrfs_root *root = BTRFS_I(inode)->root;
4414        int end = 0;
4415        u64 em_start = 0;
4416        u64 em_len = 0;
4417        u64 em_end = 0;
4418
4419        if (len == 0)
4420                return -EINVAL;
4421
4422        path = btrfs_alloc_path();
4423        if (!path)
4424                return -ENOMEM;
4425        path->leave_spinning = 1;
4426
4427        start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4428        len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4429
4430        /*
4431         * lookup the last file extent.  We're not using i_size here
4432         * because there might be preallocation past i_size
4433         */
4434        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4435                                       0);
4436        if (ret < 0) {
4437                btrfs_free_path(path);
4438                return ret;
4439        }
4440        WARN_ON(!ret);
4441        path->slots[0]--;
4442        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4443        found_type = found_key.type;
4444
4445        /* No extents, but there might be delalloc bits */
4446        if (found_key.objectid != btrfs_ino(inode) ||
4447            found_type != BTRFS_EXTENT_DATA_KEY) {
4448                /* have to trust i_size as the end */
4449                last = (u64)-1;
4450                last_for_get_extent = isize;
4451        } else {
4452                /*
4453                 * remember the start of the last extent.  There are a
4454                 * bunch of different factors that go into the length of the
4455                 * extent, so its much less complex to remember where it started
4456                 */
4457                last = found_key.offset;
4458                last_for_get_extent = last + 1;
4459        }
4460        btrfs_release_path(path);
4461
4462        /*
4463         * we might have some extents allocated but more delalloc past those
4464         * extents.  so, we trust isize unless the start of the last extent is
4465         * beyond isize
4466         */
4467        if (last < isize) {
4468                last = (u64)-1;
4469                last_for_get_extent = isize;
4470        }
4471
4472        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4473                         &cached_state);
4474
4475        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4476                                   get_extent);
4477        if (!em)
4478                goto out;
4479        if (IS_ERR(em)) {
4480                ret = PTR_ERR(em);
4481                goto out;
4482        }
4483
4484        while (!end) {
4485                u64 offset_in_extent = 0;
4486
4487                /* break if the extent we found is outside the range */
4488                if (em->start >= max || extent_map_end(em) < off)
4489                        break;
4490
4491                /*
4492                 * get_extent may return an extent that starts before our
4493                 * requested range.  We have to make sure the ranges
4494                 * we return to fiemap always move forward and don't
4495                 * overlap, so adjust the offsets here
4496                 */
4497                em_start = max(em->start, off);
4498
4499                /*
4500                 * record the offset from the start of the extent
4501                 * for adjusting the disk offset below.  Only do this if the
4502                 * extent isn't compressed since our in ram offset may be past
4503                 * what we have actually allocated on disk.
4504                 */
4505                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4506                        offset_in_extent = em_start - em->start;
4507                em_end = extent_map_end(em);
4508                em_len = em_end - em_start;
4509                disko = 0;
4510                flags = 0;
4511
4512                /*
4513                 * bump off for our next call to get_extent
4514                 */
4515                off = extent_map_end(em);
4516                if (off >= max)
4517                        end = 1;
4518
4519                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4520                        end = 1;
4521                        flags |= FIEMAP_EXTENT_LAST;
4522                } else if (em->block_start == EXTENT_MAP_INLINE) {
4523                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4524                                  FIEMAP_EXTENT_NOT_ALIGNED);
4525                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4526                        flags |= (FIEMAP_EXTENT_DELALLOC |
4527                                  FIEMAP_EXTENT_UNKNOWN);
4528                } else if (fieinfo->fi_extents_max) {
4529                        u64 bytenr = em->block_start -
4530                                (em->start - em->orig_start);
4531
4532                        disko = em->block_start + offset_in_extent;
4533
4534                        /*
4535                         * As btrfs supports shared space, this information
4536                         * can be exported to userspace tools via
4537                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4538                         * then we're just getting a count and we can skip the
4539                         * lookup stuff.
4540                         */
4541                        ret = btrfs_check_shared(NULL, root->fs_info,
4542                                                 root->objectid,
4543                                                 btrfs_ino(inode), bytenr);
4544                        if (ret < 0)
4545                                goto out_free;
4546                        if (ret)
4547                                flags |= FIEMAP_EXTENT_SHARED;
4548                        ret = 0;
4549                }
4550                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4551                        flags |= FIEMAP_EXTENT_ENCODED;
4552                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4553                        flags |= FIEMAP_EXTENT_UNWRITTEN;
4554
4555                free_extent_map(em);
4556                em = NULL;
4557                if ((em_start >= last) || em_len == (u64)-1 ||
4558                   (last == (u64)-1 && isize <= em_end)) {
4559                        flags |= FIEMAP_EXTENT_LAST;
4560                        end = 1;
4561                }
4562
4563                /* now scan forward to see if this is really the last extent. */
4564                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4565                                           get_extent);
4566                if (IS_ERR(em)) {
4567                        ret = PTR_ERR(em);
4568                        goto out;
4569                }
4570                if (!em) {
4571                        flags |= FIEMAP_EXTENT_LAST;
4572                        end = 1;
4573                }
4574                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4575                                              em_len, flags);
4576                if (ret) {
4577                        if (ret == 1)
4578                                ret = 0;
4579                        goto out_free;
4580                }
4581        }
4582out_free:
4583        free_extent_map(em);
4584out:
4585        btrfs_free_path(path);
4586        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4587                             &cached_state, GFP_NOFS);
4588        return ret;
4589}
4590
4591static void __free_extent_buffer(struct extent_buffer *eb)
4592{
4593        btrfs_leak_debug_del(&eb->leak_list);
4594        kmem_cache_free(extent_buffer_cache, eb);
4595}
4596
4597int extent_buffer_under_io(struct extent_buffer *eb)
4598{
4599        return (atomic_read(&eb->io_pages) ||
4600                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4601                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4602}
4603
4604/*
4605 * Helper for releasing extent buffer page.
4606 */
4607static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4608{
4609        unsigned long index;
4610        struct page *page;
4611        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4612
4613        BUG_ON(extent_buffer_under_io(eb));
4614
4615        index = num_extent_pages(eb->start, eb->len);
4616        if (index == 0)
4617                return;
4618
4619        do {
4620                index--;
4621                page = eb->pages[index];
4622                if (!page)
4623                        continue;
4624                if (mapped)
4625                        spin_lock(&page->mapping->private_lock);
4626                /*
4627                 * We do this since we'll remove the pages after we've
4628                 * removed the eb from the radix tree, so we could race
4629                 * and have this page now attached to the new eb.  So
4630                 * only clear page_private if it's still connected to
4631                 * this eb.
4632                 */
4633                if (PagePrivate(page) &&
4634                    page->private == (unsigned long)eb) {
4635                        BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4636                        BUG_ON(PageDirty(page));
4637                        BUG_ON(PageWriteback(page));
4638                        /*
4639                         * We need to make sure we haven't be attached
4640                         * to a new eb.
4641                         */
4642                        ClearPagePrivate(page);
4643                        set_page_private(page, 0);
4644                        /* One for the page private */
4645                        page_cache_release(page);
4646                }
4647
4648                if (mapped)
4649                        spin_unlock(&page->mapping->private_lock);
4650
4651                /* One for when we alloced the page */
4652                page_cache_release(page);
4653        } while (index != 0);
4654}
4655
4656/*
4657 * Helper for releasing the extent buffer.
4658 */
4659static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4660{
4661        btrfs_release_extent_buffer_page(eb);
4662        __free_extent_buffer(eb);
4663}
4664
4665static struct extent_buffer *
4666__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4667                      unsigned long len)
4668{
4669        struct extent_buffer *eb = NULL;
4670
4671        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4672        eb->start = start;
4673        eb->len = len;
4674        eb->fs_info = fs_info;
4675        eb->bflags = 0;
4676        rwlock_init(&eb->lock);
4677        atomic_set(&eb->write_locks, 0);
4678        atomic_set(&eb->read_locks, 0);
4679        atomic_set(&eb->blocking_readers, 0);
4680        atomic_set(&eb->blocking_writers, 0);
4681        atomic_set(&eb->spinning_readers, 0);
4682        atomic_set(&eb->spinning_writers, 0);
4683        eb->lock_nested = 0;
4684        init_waitqueue_head(&eb->write_lock_wq);
4685        init_waitqueue_head(&eb->read_lock_wq);
4686
4687        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4688
4689        spin_lock_init(&eb->refs_lock);
4690        atomic_set(&eb->refs, 1);
4691        atomic_set(&eb->io_pages, 0);
4692
4693        /*
4694         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4695         */
4696        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4697                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4698        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4699
4700        return eb;
4701}
4702
4703struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4704{
4705        unsigned long i;
4706        struct page *p;
4707        struct extent_buffer *new;
4708        unsigned long num_pages = num_extent_pages(src->start, src->len);
4709
4710        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4711        if (new == NULL)
4712                return NULL;
4713
4714        for (i = 0; i < num_pages; i++) {
4715                p = alloc_page(GFP_NOFS);
4716                if (!p) {
4717                        btrfs_release_extent_buffer(new);
4718                        return NULL;
4719                }
4720                attach_extent_buffer_page(new, p);
4721                WARN_ON(PageDirty(p));
4722                SetPageUptodate(p);
4723                new->pages[i] = p;
4724        }
4725
4726        copy_extent_buffer(new, src, 0, 0, src->len);
4727        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4728        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4729
4730        return new;
4731}
4732
4733struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4734                                                u64 start)
4735{
4736        struct extent_buffer *eb;
4737        unsigned long len;
4738        unsigned long num_pages;
4739        unsigned long i;
4740
4741        if (!fs_info) {
4742                /*
4743                 * Called only from tests that don't always have a fs_info
4744                 * available, but we know that nodesize is 4096
4745                 */
4746                len = 4096;
4747        } else {
4748                len = fs_info->tree_root->nodesize;
4749        }
4750        num_pages = num_extent_pages(0, len);
4751
4752        eb = __alloc_extent_buffer(fs_info, start, len);
4753        if (!eb)
4754                return NULL;
4755
4756        for (i = 0; i < num_pages; i++) {
4757                eb->pages[i] = alloc_page(GFP_NOFS);
4758                if (!eb->pages[i])
4759                        goto err;
4760        }
4761        set_extent_buffer_uptodate(eb);
4762        btrfs_set_header_nritems(eb, 0);
4763        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4764
4765        return eb;
4766err:
4767        for (; i > 0; i--)
4768                __free_page(eb->pages[i - 1]);
4769        __free_extent_buffer(eb);
4770        return NULL;
4771}
4772
4773static void check_buffer_tree_ref(struct extent_buffer *eb)
4774{
4775        int refs;
4776        /* the ref bit is tricky.  We have to make sure it is set
4777         * if we have the buffer dirty.   Otherwise the
4778         * code to free a buffer can end up dropping a dirty
4779         * page
4780         *
4781         * Once the ref bit is set, it won't go away while the
4782         * buffer is dirty or in writeback, and it also won't
4783         * go away while we have the reference count on the
4784         * eb bumped.
4785         *
4786         * We can't just set the ref bit without bumping the
4787         * ref on the eb because free_extent_buffer might
4788         * see the ref bit and try to clear it.  If this happens
4789         * free_extent_buffer might end up dropping our original
4790         * ref by mistake and freeing the page before we are able
4791         * to add one more ref.
4792         *
4793         * So bump the ref count first, then set the bit.  If someone
4794         * beat us to it, drop the ref we added.
4795         */
4796        refs = atomic_read(&eb->refs);
4797        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4798                return;
4799
4800        spin_lock(&eb->refs_lock);
4801        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4802                atomic_inc(&eb->refs);
4803        spin_unlock(&eb->refs_lock);
4804}
4805
4806static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4807                struct page *accessed)
4808{
4809        unsigned long num_pages, i;
4810
4811        check_buffer_tree_ref(eb);
4812
4813        num_pages = num_extent_pages(eb->start, eb->len);
4814        for (i = 0; i < num_pages; i++) {
4815                struct page *p = eb->pages[i];
4816
4817                if (p != accessed)
4818                        mark_page_accessed(p);
4819        }
4820}
4821
4822struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4823                                         u64 start)
4824{
4825        struct extent_buffer *eb;
4826
4827        rcu_read_lock();
4828        eb = radix_tree_lookup(&fs_info->buffer_radix,
4829                               start >> PAGE_CACHE_SHIFT);
4830        if (eb && atomic_inc_not_zero(&eb->refs)) {
4831                rcu_read_unlock();
4832                /*
4833                 * Lock our eb's refs_lock to avoid races with
4834                 * free_extent_buffer. When we get our eb it might be flagged
4835                 * with EXTENT_BUFFER_STALE and another task running
4836                 * free_extent_buffer might have seen that flag set,
4837                 * eb->refs == 2, that the buffer isn't under IO (dirty and
4838                 * writeback flags not set) and it's still in the tree (flag
4839                 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4840                 * of decrementing the extent buffer's reference count twice.
4841                 * So here we could race and increment the eb's reference count,
4842                 * clear its stale flag, mark it as dirty and drop our reference
4843                 * before the other task finishes executing free_extent_buffer,
4844                 * which would later result in an attempt to free an extent
4845                 * buffer that is dirty.
4846                 */
4847                if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4848                        spin_lock(&eb->refs_lock);
4849                        spin_unlock(&eb->refs_lock);
4850                }
4851                mark_extent_buffer_accessed(eb, NULL);
4852                return eb;
4853        }
4854        rcu_read_unlock();
4855
4856        return NULL;
4857}
4858
4859#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4860struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4861                                               u64 start)
4862{
4863        struct extent_buffer *eb, *exists = NULL;
4864        int ret;
4865
4866        eb = find_extent_buffer(fs_info, start);
4867        if (eb)
4868                return eb;
4869        eb = alloc_dummy_extent_buffer(fs_info, start);
4870        if (!eb)
4871                return NULL;
4872        eb->fs_info = fs_info;
4873again:
4874        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4875        if (ret)
4876                goto free_eb;
4877        spin_lock(&fs_info->buffer_lock);
4878        ret = radix_tree_insert(&fs_info->buffer_radix,
4879                                start >> PAGE_CACHE_SHIFT, eb);
4880        spin_unlock(&fs_info->buffer_lock);
4881        radix_tree_preload_end();
4882        if (ret == -EEXIST) {
4883                exists = find_extent_buffer(fs_info, start);
4884                if (exists)
4885                        goto free_eb;
4886                else
4887                        goto again;
4888        }
4889        check_buffer_tree_ref(eb);
4890        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4891
4892        /*
4893         * We will free dummy extent buffer's if they come into
4894         * free_extent_buffer with a ref count of 2, but if we are using this we
4895         * want the buffers to stay in memory until we're done with them, so
4896         * bump the ref count again.
4897         */
4898        atomic_inc(&eb->refs);
4899        return eb;
4900free_eb:
4901        btrfs_release_extent_buffer(eb);
4902        return exists;
4903}
4904#endif
4905
4906struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4907                                          u64 start)
4908{
4909        unsigned long len = fs_info->tree_root->nodesize;
4910        unsigned long num_pages = num_extent_pages(start, len);
4911        unsigned long i;
4912        unsigned long index = start >> PAGE_CACHE_SHIFT;
4913        struct extent_buffer *eb;
4914        struct extent_buffer *exists = NULL;
4915        struct page *p;
4916        struct address_space *mapping = fs_info->btree_inode->i_mapping;
4917        int uptodate = 1;
4918        int ret;
4919
4920        eb = find_extent_buffer(fs_info, start);
4921        if (eb)
4922                return eb;
4923
4924        eb = __alloc_extent_buffer(fs_info, start, len);
4925        if (!eb)
4926                return NULL;
4927
4928        for (i = 0; i < num_pages; i++, index++) {
4929                p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4930                if (!p)
4931                        goto free_eb;
4932
4933                spin_lock(&mapping->private_lock);
4934                if (PagePrivate(p)) {
4935                        /*
4936                         * We could have already allocated an eb for this page
4937                         * and attached one so lets see if we can get a ref on
4938                         * the existing eb, and if we can we know it's good and
4939                         * we can just return that one, else we know we can just
4940                         * overwrite page->private.
4941                         */
4942                        exists = (struct extent_buffer *)p->private;
4943                        if (atomic_inc_not_zero(&exists->refs)) {
4944                                spin_unlock(&mapping->private_lock);
4945                                unlock_page(p);
4946                                page_cache_release(p);
4947                                mark_extent_buffer_accessed(exists, p);
4948                                goto free_eb;
4949                        }
4950                        exists = NULL;
4951
4952                        /*
4953                         * Do this so attach doesn't complain and we need to
4954                         * drop the ref the old guy had.
4955                         */
4956                        ClearPagePrivate(p);
4957                        WARN_ON(PageDirty(p));
4958                        page_cache_release(p);
4959                }
4960                attach_extent_buffer_page(eb, p);
4961                spin_unlock(&mapping->private_lock);
4962                WARN_ON(PageDirty(p));
4963                eb->pages[i] = p;
4964                if (!PageUptodate(p))
4965                        uptodate = 0;
4966
4967                /*
4968                 * see below about how we avoid a nasty race with release page
4969                 * and why we unlock later
4970                 */
4971        }
4972        if (uptodate)
4973                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4974again:
4975        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4976        if (ret)
4977                goto free_eb;
4978
4979        spin_lock(&fs_info->buffer_lock);
4980        ret = radix_tree_insert(&fs_info->buffer_radix,
4981                                start >> PAGE_CACHE_SHIFT, eb);
4982        spin_unlock(&fs_info->buffer_lock);
4983        radix_tree_preload_end();
4984        if (ret == -EEXIST) {
4985                exists = find_extent_buffer(fs_info, start);
4986                if (exists)
4987                        goto free_eb;
4988                else
4989                        goto again;
4990        }
4991        /* add one reference for the tree */
4992        check_buffer_tree_ref(eb);
4993        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4994
4995        /*
4996         * there is a race where release page may have
4997         * tried to find this extent buffer in the radix
4998         * but failed.  It will tell the VM it is safe to
4999         * reclaim the, and it will clear the page private bit.
5000         * We must make sure to set the page private bit properly
5001         * after the extent buffer is in the radix tree so
5002         * it doesn't get lost
5003         */
5004        SetPageChecked(eb->pages[0]);
5005        for (i = 1; i < num_pages; i++) {
5006                p = eb->pages[i];
5007                ClearPageChecked(p);
5008                unlock_page(p);
5009        }
5010        unlock_page(eb->pages[0]);
5011        return eb;
5012
5013free_eb:
5014        WARN_ON(!atomic_dec_and_test(&eb->refs));
5015        for (i = 0; i < num_pages; i++) {
5016                if (eb->pages[i])
5017                        unlock_page(eb->pages[i]);
5018        }
5019
5020        btrfs_release_extent_buffer(eb);
5021        return exists;
5022}
5023
5024static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5025{
5026        struct extent_buffer *eb =
5027                        container_of(head, struct extent_buffer, rcu_head);
5028
5029        __free_extent_buffer(eb);
5030}
5031
5032/* Expects to have eb->eb_lock already held */
5033static int release_extent_buffer(struct extent_buffer *eb)
5034{
5035        WARN_ON(atomic_read(&eb->refs) == 0);
5036        if (atomic_dec_and_test(&eb->refs)) {
5037                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5038                        struct btrfs_fs_info *fs_info = eb->fs_info;
5039
5040                        spin_unlock(&eb->refs_lock);
5041
5042                        spin_lock(&fs_info->buffer_lock);
5043                        radix_tree_delete(&fs_info->buffer_radix,
5044                                          eb->start >> PAGE_CACHE_SHIFT);
5045                        spin_unlock(&fs_info->buffer_lock);
5046                } else {
5047                        spin_unlock(&eb->refs_lock);
5048                }
5049
5050                /* Should be safe to release our pages at this point */
5051                btrfs_release_extent_buffer_page(eb);
5052#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5053                if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5054                        __free_extent_buffer(eb);
5055                        return 1;
5056                }
5057#endif
5058                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5059                return 1;
5060        }
5061        spin_unlock(&eb->refs_lock);
5062
5063        return 0;
5064}
5065
5066void free_extent_buffer(struct extent_buffer *eb)
5067{
5068        int refs;
5069        int old;
5070        if (!eb)
5071                return;
5072
5073        while (1) {
5074                refs = atomic_read(&eb->refs);
5075                if (refs <= 3)
5076                        break;
5077                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5078                if (old == refs)
5079                        return;
5080        }
5081
5082        spin_lock(&eb->refs_lock);
5083        if (atomic_read(&eb->refs) == 2 &&
5084            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5085                atomic_dec(&eb->refs);
5086
5087        if (atomic_read(&eb->refs) == 2 &&
5088            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5089            !extent_buffer_under_io(eb) &&
5090            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5091                atomic_dec(&eb->refs);
5092
5093        /*
5094         * I know this is terrible, but it's temporary until we stop tracking
5095         * the uptodate bits and such for the extent buffers.
5096         */
5097        release_extent_buffer(eb);
5098}
5099
5100void free_extent_buffer_stale(struct extent_buffer *eb)
5101{
5102        if (!eb)
5103                return;
5104
5105        spin_lock(&eb->refs_lock);
5106        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5107
5108        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5109            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5110                atomic_dec(&eb->refs);
5111        release_extent_buffer(eb);
5112}
5113
5114void clear_extent_buffer_dirty(struct extent_buffer *eb)
5115{
5116        unsigned long i;
5117        unsigned long num_pages;
5118        struct page *page;
5119
5120        num_pages = num_extent_pages(eb->start, eb->len);
5121
5122        for (i = 0; i < num_pages; i++) {
5123                page = eb->pages[i];
5124                if (!PageDirty(page))
5125                        continue;
5126
5127                lock_page(page);
5128                WARN_ON(!PagePrivate(page));
5129
5130                clear_page_dirty_for_io(page);
5131                spin_lock_irq(&page->mapping->tree_lock);
5132                if (!PageDirty(page)) {
5133                        radix_tree_tag_clear(&page->mapping->page_tree,
5134                                                page_index(page),
5135                                                PAGECACHE_TAG_DIRTY);
5136                }
5137                spin_unlock_irq(&page->mapping->tree_lock);
5138                ClearPageError(page);
5139                unlock_page(page);
5140        }
5141        WARN_ON(atomic_read(&eb->refs) == 0);
5142}
5143
5144int set_extent_buffer_dirty(struct extent_buffer *eb)
5145{
5146        unsigned long i;
5147        unsigned long num_pages;
5148        int was_dirty = 0;
5149
5150        check_buffer_tree_ref(eb);
5151
5152        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5153
5154        num_pages = num_extent_pages(eb->start, eb->len);
5155        WARN_ON(atomic_read(&eb->refs) == 0);
5156        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5157
5158        for (i = 0; i < num_pages; i++)
5159                set_page_dirty(eb->pages[i]);
5160        return was_dirty;
5161}
5162
5163int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5164{
5165        unsigned long i;
5166        struct page *page;
5167        unsigned long num_pages;
5168
5169        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5170        num_pages = num_extent_pages(eb->start, eb->len);
5171        for (i = 0; i < num_pages; i++) {
5172                page = eb->pages[i];
5173                if (page)
5174                        ClearPageUptodate(page);
5175        }
5176        return 0;
5177}
5178
5179int set_extent_buffer_uptodate(struct extent_buffer *eb)
5180{
5181        unsigned long i;
5182        struct page *page;
5183        unsigned long num_pages;
5184
5185        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186        num_pages = num_extent_pages(eb->start, eb->len);
5187        for (i = 0; i < num_pages; i++) {
5188                page = eb->pages[i];
5189                SetPageUptodate(page);
5190        }
5191        return 0;
5192}
5193
5194int extent_buffer_uptodate(struct extent_buffer *eb)
5195{
5196        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5197}
5198
5199int read_extent_buffer_pages(struct extent_io_tree *tree,
5200                             struct extent_buffer *eb, u64 start, int wait,
5201                             get_extent_t *get_extent, int mirror_num)
5202{
5203        unsigned long i;
5204        unsigned long start_i;
5205        struct page *page;
5206        int err;
5207        int ret = 0;
5208        int locked_pages = 0;
5209        int all_uptodate = 1;
5210        unsigned long num_pages;
5211        unsigned long num_reads = 0;
5212        struct bio *bio = NULL;
5213        unsigned long bio_flags = 0;
5214
5215        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5216                return 0;
5217
5218        if (start) {
5219                WARN_ON(start < eb->start);
5220                start_i = (start >> PAGE_CACHE_SHIFT) -
5221                        (eb->start >> PAGE_CACHE_SHIFT);
5222        } else {
5223                start_i = 0;
5224        }
5225
5226        num_pages = num_extent_pages(eb->start, eb->len);
5227        for (i = start_i; i < num_pages; i++) {
5228                page = eb->pages[i];
5229                if (wait == WAIT_NONE) {
5230                        if (!trylock_page(page))
5231                                goto unlock_exit;
5232                } else {
5233                        lock_page(page);
5234                }
5235                locked_pages++;
5236                if (!PageUptodate(page)) {
5237                        num_reads++;
5238                        all_uptodate = 0;
5239                }
5240        }
5241        if (all_uptodate) {
5242                if (start_i == 0)
5243                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5244                goto unlock_exit;
5245        }
5246
5247        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5248        eb->read_mirror = 0;
5249        atomic_set(&eb->io_pages, num_reads);
5250        for (i = start_i; i < num_pages; i++) {
5251                page = eb->pages[i];
5252                if (!PageUptodate(page)) {
5253                        ClearPageError(page);
5254                        err = __extent_read_full_page(tree, page,
5255                                                      get_extent, &bio,
5256                                                      mirror_num, &bio_flags,
5257                                                      READ | REQ_META);
5258                        if (err)
5259                                ret = err;
5260                } else {
5261                        unlock_page(page);
5262                }
5263        }
5264
5265        if (bio) {
5266                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5267                                     bio_flags);
5268                if (err)
5269                        return err;
5270        }
5271
5272        if (ret || wait != WAIT_COMPLETE)
5273                return ret;
5274
5275        for (i = start_i; i < num_pages; i++) {
5276                page = eb->pages[i];
5277                wait_on_page_locked(page);
5278                if (!PageUptodate(page))
5279                        ret = -EIO;
5280        }
5281
5282        return ret;
5283
5284unlock_exit:
5285        i = start_i;
5286        while (locked_pages > 0) {
5287                page = eb->pages[i];
5288                i++;
5289                unlock_page(page);
5290                locked_pages--;
5291        }
5292        return ret;
5293}
5294
5295void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5296                        unsigned long start,
5297                        unsigned long len)
5298{
5299        size_t cur;
5300        size_t offset;
5301        struct page *page;
5302        char *kaddr;
5303        char *dst = (char *)dstv;
5304        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5305        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5306
5307        WARN_ON(start > eb->len);
5308        WARN_ON(start + len > eb->start + eb->len);
5309
5310        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5311
5312        while (len > 0) {
5313                page = eb->pages[i];
5314
5315                cur = min(len, (PAGE_CACHE_SIZE - offset));
5316                kaddr = page_address(page);
5317                memcpy(dst, kaddr + offset, cur);
5318
5319                dst += cur;
5320                len -= cur;
5321                offset = 0;
5322                i++;
5323        }
5324}
5325
5326int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5327                        unsigned long start,
5328                        unsigned long len)
5329{
5330        size_t cur;
5331        size_t offset;
5332        struct page *page;
5333        char *kaddr;
5334        char __user *dst = (char __user *)dstv;
5335        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5336        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5337        int ret = 0;
5338
5339        WARN_ON(start > eb->len);
5340        WARN_ON(start + len > eb->start + eb->len);
5341
5342        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5343
5344        while (len > 0) {
5345                page = eb->pages[i];
5346
5347                cur = min(len, (PAGE_CACHE_SIZE - offset));
5348                kaddr = page_address(page);
5349                if (copy_to_user(dst, kaddr + offset, cur)) {
5350                        ret = -EFAULT;
5351                        break;
5352                }
5353
5354                dst += cur;
5355                len -= cur;
5356                offset = 0;
5357                i++;
5358        }
5359
5360        return ret;
5361}
5362
5363int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5364                               unsigned long min_len, char **map,
5365                               unsigned long *map_start,
5366                               unsigned long *map_len)
5367{
5368        size_t offset = start & (PAGE_CACHE_SIZE - 1);
5369        char *kaddr;
5370        struct page *p;
5371        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5372        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5373        unsigned long end_i = (start_offset + start + min_len - 1) >>
5374                PAGE_CACHE_SHIFT;
5375
5376        if (i != end_i)
5377                return -EINVAL;
5378
5379        if (i == 0) {
5380                offset = start_offset;
5381                *map_start = 0;
5382        } else {
5383                offset = 0;
5384                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5385        }
5386
5387        if (start + min_len > eb->len) {
5388                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5389                       "wanted %lu %lu\n",
5390                       eb->start, eb->len, start, min_len);
5391                return -EINVAL;
5392        }
5393
5394        p = eb->pages[i];
5395        kaddr = page_address(p);
5396        *map = kaddr + offset;
5397        *map_len = PAGE_CACHE_SIZE - offset;
5398        return 0;
5399}
5400
5401int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5402                          unsigned long start,
5403                          unsigned long len)
5404{
5405        size_t cur;
5406        size_t offset;
5407        struct page *page;
5408        char *kaddr;
5409        char *ptr = (char *)ptrv;
5410        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5411        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5412        int ret = 0;
5413
5414        WARN_ON(start > eb->len);
5415        WARN_ON(start + len > eb->start + eb->len);
5416
5417        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5418
5419        while (len > 0) {
5420                page = eb->pages[i];
5421
5422                cur = min(len, (PAGE_CACHE_SIZE - offset));
5423
5424                kaddr = page_address(page);
5425                ret = memcmp(ptr, kaddr + offset, cur);
5426                if (ret)
5427                        break;
5428
5429                ptr += cur;
5430                len -= cur;
5431                offset = 0;
5432                i++;
5433        }
5434        return ret;
5435}
5436
5437void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5438                         unsigned long start, unsigned long len)
5439{
5440        size_t cur;
5441        size_t offset;
5442        struct page *page;
5443        char *kaddr;
5444        char *src = (char *)srcv;
5445        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5446        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5447
5448        WARN_ON(start > eb->len);
5449        WARN_ON(start + len > eb->start + eb->len);
5450
5451        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5452
5453        while (len > 0) {
5454                page = eb->pages[i];
5455                WARN_ON(!PageUptodate(page));
5456
5457                cur = min(len, PAGE_CACHE_SIZE - offset);
5458                kaddr = page_address(page);
5459                memcpy(kaddr + offset, src, cur);
5460
5461                src += cur;
5462                len -= cur;
5463                offset = 0;
5464                i++;
5465        }
5466}
5467
5468void memset_extent_buffer(struct extent_buffer *eb, char c,
5469                          unsigned long start, unsigned long len)
5470{
5471        size_t cur;
5472        size_t offset;
5473        struct page *page;
5474        char *kaddr;
5475        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5476        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5477
5478        WARN_ON(start > eb->len);
5479        WARN_ON(start + len > eb->start + eb->len);
5480
5481        offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5482
5483        while (len > 0) {
5484                page = eb->pages[i];
5485                WARN_ON(!PageUptodate(page));
5486
5487                cur = min(len, PAGE_CACHE_SIZE - offset);
5488                kaddr = page_address(page);
5489                memset(kaddr + offset, c, cur);
5490
5491                len -= cur;
5492                offset = 0;
5493                i++;
5494        }
5495}
5496
5497void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5498                        unsigned long dst_offset, unsigned long src_offset,
5499                        unsigned long len)
5500{
5501        u64 dst_len = dst->len;
5502        size_t cur;
5503        size_t offset;
5504        struct page *page;
5505        char *kaddr;
5506        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5507        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5508
5509        WARN_ON(src->len != dst_len);
5510
5511        offset = (start_offset + dst_offset) &
5512                (PAGE_CACHE_SIZE - 1);
5513
5514        while (len > 0) {
5515                page = dst->pages[i];
5516                WARN_ON(!PageUptodate(page));
5517
5518                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5519
5520                kaddr = page_address(page);
5521                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5522
5523                src_offset += cur;
5524                len -= cur;
5525                offset = 0;
5526                i++;
5527        }
5528}
5529
5530static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5531{
5532        unsigned long distance = (src > dst) ? src - dst : dst - src;
5533        return distance < len;
5534}
5535
5536static void copy_pages(struct page *dst_page, struct page *src_page,
5537                       unsigned long dst_off, unsigned long src_off,
5538                       unsigned long len)
5539{
5540        char *dst_kaddr = page_address(dst_page);
5541        char *src_kaddr;
5542        int must_memmove = 0;
5543
5544        if (dst_page != src_page) {
5545                src_kaddr = page_address(src_page);
5546        } else {
5547                src_kaddr = dst_kaddr;
5548                if (areas_overlap(src_off, dst_off, len))
5549                        must_memmove = 1;
5550        }
5551
5552        if (must_memmove)
5553                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5554        else
5555                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5556}
5557
5558void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5559                           unsigned long src_offset, unsigned long len)
5560{
5561        size_t cur;
5562        size_t dst_off_in_page;
5563        size_t src_off_in_page;
5564        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5565        unsigned long dst_i;
5566        unsigned long src_i;
5567
5568        if (src_offset + len > dst->len) {
5569                printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5570                       "len %lu dst len %lu\n", src_offset, len, dst->len);
5571                BUG_ON(1);
5572        }
5573        if (dst_offset + len > dst->len) {
5574                printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5575                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5576                BUG_ON(1);
5577        }
5578
5579        while (len > 0) {
5580                dst_off_in_page = (start_offset + dst_offset) &
5581                        (PAGE_CACHE_SIZE - 1);
5582                src_off_in_page = (start_offset + src_offset) &
5583                        (PAGE_CACHE_SIZE - 1);
5584
5585                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5586                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5587
5588                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5589                                               src_off_in_page));
5590                cur = min_t(unsigned long, cur,
5591                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5592
5593                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5594                           dst_off_in_page, src_off_in_page, cur);
5595
5596                src_offset += cur;
5597                dst_offset += cur;
5598                len -= cur;
5599        }
5600}
5601
5602void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5603                           unsigned long src_offset, unsigned long len)
5604{
5605        size_t cur;
5606        size_t dst_off_in_page;
5607        size_t src_off_in_page;
5608        unsigned long dst_end = dst_offset + len - 1;
5609        unsigned long src_end = src_offset + len - 1;
5610        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5611        unsigned long dst_i;
5612        unsigned long src_i;
5613
5614        if (src_offset + len > dst->len) {
5615                printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5616                       "len %lu len %lu\n", src_offset, len, dst->len);
5617                BUG_ON(1);
5618        }
5619        if (dst_offset + len > dst->len) {
5620                printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5621                       "len %lu len %lu\n", dst_offset, len, dst->len);
5622                BUG_ON(1);
5623        }
5624        if (dst_offset < src_offset) {
5625                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5626                return;
5627        }
5628        while (len > 0) {
5629                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5630                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5631
5632                dst_off_in_page = (start_offset + dst_end) &
5633                        (PAGE_CACHE_SIZE - 1);
5634                src_off_in_page = (start_offset + src_end) &
5635                        (PAGE_CACHE_SIZE - 1);
5636
5637                cur = min_t(unsigned long, len, src_off_in_page + 1);
5638                cur = min(cur, dst_off_in_page + 1);
5639                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5640                           dst_off_in_page - cur + 1,
5641                           src_off_in_page - cur + 1, cur);
5642
5643                dst_end -= cur;
5644                src_end -= cur;
5645                len -= cur;
5646        }
5647}
5648
5649int try_release_extent_buffer(struct page *page)
5650{
5651        struct extent_buffer *eb;
5652
5653        /*
5654         * We need to make sure noboody is attaching this page to an eb right
5655         * now.
5656         */
5657        spin_lock(&page->mapping->private_lock);
5658        if (!PagePrivate(page)) {
5659                spin_unlock(&page->mapping->private_lock);
5660                return 1;
5661        }
5662
5663        eb = (struct extent_buffer *)page->private;
5664        BUG_ON(!eb);
5665
5666        /*
5667         * This is a little awful but should be ok, we need to make sure that
5668         * the eb doesn't disappear out from under us while we're looking at
5669         * this page.
5670         */
5671        spin_lock(&eb->refs_lock);
5672        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5673                spin_unlock(&eb->refs_lock);
5674                spin_unlock(&page->mapping->private_lock);
5675                return 0;
5676        }
5677        spin_unlock(&page->mapping->private_lock);
5678
5679        /*
5680         * If tree ref isn't set then we know the ref on this eb is a real ref,
5681         * so just return, this page will likely be freed soon anyway.
5682         */
5683        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5684                spin_unlock(&eb->refs_lock);
5685                return 0;
5686        }
5687
5688        return release_extent_buffer(eb);
5689}
5690