linux/fs/f2fs/node.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33        struct f2fs_nm_info *nm_i = NM_I(sbi);
  34        struct sysinfo val;
  35        unsigned long avail_ram;
  36        unsigned long mem_size = 0;
  37        bool res = false;
  38
  39        si_meminfo(&val);
  40
  41        /* only uses low memory */
  42        avail_ram = val.totalram - val.totalhigh;
  43
  44        /*
  45         * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46         */
  47        if (type == FREE_NIDS) {
  48                mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49                                                        PAGE_CACHE_SHIFT;
  50                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51        } else if (type == NAT_ENTRIES) {
  52                mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53                                                        PAGE_CACHE_SHIFT;
  54                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  55        } else if (type == DIRTY_DENTS) {
  56                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57                        return false;
  58                mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60        } else if (type == INO_ENTRIES) {
  61                int i;
  62
  63                for (i = 0; i <= UPDATE_INO; i++)
  64                        mem_size += (sbi->im[i].ino_num *
  65                                sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  66                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67        } else if (type == EXTENT_CACHE) {
  68                mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
  69                                atomic_read(&sbi->total_ext_node) *
  70                                sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
  71                res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  72        } else {
  73                if (sbi->sb->s_bdi->wb.dirty_exceeded)
  74                        return false;
  75        }
  76        return res;
  77}
  78
  79static void clear_node_page_dirty(struct page *page)
  80{
  81        struct address_space *mapping = page->mapping;
  82        unsigned int long flags;
  83
  84        if (PageDirty(page)) {
  85                spin_lock_irqsave(&mapping->tree_lock, flags);
  86                radix_tree_tag_clear(&mapping->page_tree,
  87                                page_index(page),
  88                                PAGECACHE_TAG_DIRTY);
  89                spin_unlock_irqrestore(&mapping->tree_lock, flags);
  90
  91                clear_page_dirty_for_io(page);
  92                dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  93        }
  94        ClearPageUptodate(page);
  95}
  96
  97static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  98{
  99        pgoff_t index = current_nat_addr(sbi, nid);
 100        return get_meta_page(sbi, index);
 101}
 102
 103static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 104{
 105        struct page *src_page;
 106        struct page *dst_page;
 107        pgoff_t src_off;
 108        pgoff_t dst_off;
 109        void *src_addr;
 110        void *dst_addr;
 111        struct f2fs_nm_info *nm_i = NM_I(sbi);
 112
 113        src_off = current_nat_addr(sbi, nid);
 114        dst_off = next_nat_addr(sbi, src_off);
 115
 116        /* get current nat block page with lock */
 117        src_page = get_meta_page(sbi, src_off);
 118        dst_page = grab_meta_page(sbi, dst_off);
 119        f2fs_bug_on(sbi, PageDirty(src_page));
 120
 121        src_addr = page_address(src_page);
 122        dst_addr = page_address(dst_page);
 123        memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
 124        set_page_dirty(dst_page);
 125        f2fs_put_page(src_page, 1);
 126
 127        set_to_next_nat(nm_i, nid);
 128
 129        return dst_page;
 130}
 131
 132static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 133{
 134        return radix_tree_lookup(&nm_i->nat_root, n);
 135}
 136
 137static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 138                nid_t start, unsigned int nr, struct nat_entry **ep)
 139{
 140        return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 141}
 142
 143static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 144{
 145        list_del(&e->list);
 146        radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 147        nm_i->nat_cnt--;
 148        kmem_cache_free(nat_entry_slab, e);
 149}
 150
 151static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 152                                                struct nat_entry *ne)
 153{
 154        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 155        struct nat_entry_set *head;
 156
 157        if (get_nat_flag(ne, IS_DIRTY))
 158                return;
 159
 160        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 161        if (!head) {
 162                head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 163
 164                INIT_LIST_HEAD(&head->entry_list);
 165                INIT_LIST_HEAD(&head->set_list);
 166                head->set = set;
 167                head->entry_cnt = 0;
 168                f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 169        }
 170        list_move_tail(&ne->list, &head->entry_list);
 171        nm_i->dirty_nat_cnt++;
 172        head->entry_cnt++;
 173        set_nat_flag(ne, IS_DIRTY, true);
 174}
 175
 176static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 177                                                struct nat_entry *ne)
 178{
 179        nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 180        struct nat_entry_set *head;
 181
 182        head = radix_tree_lookup(&nm_i->nat_set_root, set);
 183        if (head) {
 184                list_move_tail(&ne->list, &nm_i->nat_entries);
 185                set_nat_flag(ne, IS_DIRTY, false);
 186                head->entry_cnt--;
 187                nm_i->dirty_nat_cnt--;
 188        }
 189}
 190
 191static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 192                nid_t start, unsigned int nr, struct nat_entry_set **ep)
 193{
 194        return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 195                                                        start, nr);
 196}
 197
 198int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 199{
 200        struct f2fs_nm_info *nm_i = NM_I(sbi);
 201        struct nat_entry *e;
 202        bool need = false;
 203
 204        down_read(&nm_i->nat_tree_lock);
 205        e = __lookup_nat_cache(nm_i, nid);
 206        if (e) {
 207                if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 208                                !get_nat_flag(e, HAS_FSYNCED_INODE))
 209                        need = true;
 210        }
 211        up_read(&nm_i->nat_tree_lock);
 212        return need;
 213}
 214
 215bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 216{
 217        struct f2fs_nm_info *nm_i = NM_I(sbi);
 218        struct nat_entry *e;
 219        bool is_cp = true;
 220
 221        down_read(&nm_i->nat_tree_lock);
 222        e = __lookup_nat_cache(nm_i, nid);
 223        if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 224                is_cp = false;
 225        up_read(&nm_i->nat_tree_lock);
 226        return is_cp;
 227}
 228
 229bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 230{
 231        struct f2fs_nm_info *nm_i = NM_I(sbi);
 232        struct nat_entry *e;
 233        bool need_update = true;
 234
 235        down_read(&nm_i->nat_tree_lock);
 236        e = __lookup_nat_cache(nm_i, ino);
 237        if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 238                        (get_nat_flag(e, IS_CHECKPOINTED) ||
 239                         get_nat_flag(e, HAS_FSYNCED_INODE)))
 240                need_update = false;
 241        up_read(&nm_i->nat_tree_lock);
 242        return need_update;
 243}
 244
 245static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 246{
 247        struct nat_entry *new;
 248
 249        new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 250        f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 251        memset(new, 0, sizeof(struct nat_entry));
 252        nat_set_nid(new, nid);
 253        nat_reset_flag(new);
 254        list_add_tail(&new->list, &nm_i->nat_entries);
 255        nm_i->nat_cnt++;
 256        return new;
 257}
 258
 259static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
 260                                                struct f2fs_nat_entry *ne)
 261{
 262        struct nat_entry *e;
 263
 264        down_write(&nm_i->nat_tree_lock);
 265        e = __lookup_nat_cache(nm_i, nid);
 266        if (!e) {
 267                e = grab_nat_entry(nm_i, nid);
 268                node_info_from_raw_nat(&e->ni, ne);
 269        }
 270        up_write(&nm_i->nat_tree_lock);
 271}
 272
 273static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 274                        block_t new_blkaddr, bool fsync_done)
 275{
 276        struct f2fs_nm_info *nm_i = NM_I(sbi);
 277        struct nat_entry *e;
 278
 279        down_write(&nm_i->nat_tree_lock);
 280        e = __lookup_nat_cache(nm_i, ni->nid);
 281        if (!e) {
 282                e = grab_nat_entry(nm_i, ni->nid);
 283                copy_node_info(&e->ni, ni);
 284                f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 285        } else if (new_blkaddr == NEW_ADDR) {
 286                /*
 287                 * when nid is reallocated,
 288                 * previous nat entry can be remained in nat cache.
 289                 * So, reinitialize it with new information.
 290                 */
 291                copy_node_info(&e->ni, ni);
 292                f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 293        }
 294
 295        /* sanity check */
 296        f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 297        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 298                        new_blkaddr == NULL_ADDR);
 299        f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 300                        new_blkaddr == NEW_ADDR);
 301        f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 302                        nat_get_blkaddr(e) != NULL_ADDR &&
 303                        new_blkaddr == NEW_ADDR);
 304
 305        /* increment version no as node is removed */
 306        if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 307                unsigned char version = nat_get_version(e);
 308                nat_set_version(e, inc_node_version(version));
 309
 310                /* in order to reuse the nid */
 311                if (nm_i->next_scan_nid > ni->nid)
 312                        nm_i->next_scan_nid = ni->nid;
 313        }
 314
 315        /* change address */
 316        nat_set_blkaddr(e, new_blkaddr);
 317        if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 318                set_nat_flag(e, IS_CHECKPOINTED, false);
 319        __set_nat_cache_dirty(nm_i, e);
 320
 321        /* update fsync_mark if its inode nat entry is still alive */
 322        if (ni->nid != ni->ino)
 323                e = __lookup_nat_cache(nm_i, ni->ino);
 324        if (e) {
 325                if (fsync_done && ni->nid == ni->ino)
 326                        set_nat_flag(e, HAS_FSYNCED_INODE, true);
 327                set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 328        }
 329        up_write(&nm_i->nat_tree_lock);
 330}
 331
 332int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 333{
 334        struct f2fs_nm_info *nm_i = NM_I(sbi);
 335        int nr = nr_shrink;
 336
 337        if (!down_write_trylock(&nm_i->nat_tree_lock))
 338                return 0;
 339
 340        while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 341                struct nat_entry *ne;
 342                ne = list_first_entry(&nm_i->nat_entries,
 343                                        struct nat_entry, list);
 344                __del_from_nat_cache(nm_i, ne);
 345                nr_shrink--;
 346        }
 347        up_write(&nm_i->nat_tree_lock);
 348        return nr - nr_shrink;
 349}
 350
 351/*
 352 * This function always returns success
 353 */
 354void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 355{
 356        struct f2fs_nm_info *nm_i = NM_I(sbi);
 357        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 358        struct f2fs_summary_block *sum = curseg->sum_blk;
 359        nid_t start_nid = START_NID(nid);
 360        struct f2fs_nat_block *nat_blk;
 361        struct page *page = NULL;
 362        struct f2fs_nat_entry ne;
 363        struct nat_entry *e;
 364        int i;
 365
 366        ni->nid = nid;
 367
 368        /* Check nat cache */
 369        down_read(&nm_i->nat_tree_lock);
 370        e = __lookup_nat_cache(nm_i, nid);
 371        if (e) {
 372                ni->ino = nat_get_ino(e);
 373                ni->blk_addr = nat_get_blkaddr(e);
 374                ni->version = nat_get_version(e);
 375        }
 376        up_read(&nm_i->nat_tree_lock);
 377        if (e)
 378                return;
 379
 380        memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 381
 382        /* Check current segment summary */
 383        mutex_lock(&curseg->curseg_mutex);
 384        i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
 385        if (i >= 0) {
 386                ne = nat_in_journal(sum, i);
 387                node_info_from_raw_nat(ni, &ne);
 388        }
 389        mutex_unlock(&curseg->curseg_mutex);
 390        if (i >= 0)
 391                goto cache;
 392
 393        /* Fill node_info from nat page */
 394        page = get_current_nat_page(sbi, start_nid);
 395        nat_blk = (struct f2fs_nat_block *)page_address(page);
 396        ne = nat_blk->entries[nid - start_nid];
 397        node_info_from_raw_nat(ni, &ne);
 398        f2fs_put_page(page, 1);
 399cache:
 400        /* cache nat entry */
 401        cache_nat_entry(NM_I(sbi), nid, &ne);
 402}
 403
 404/*
 405 * The maximum depth is four.
 406 * Offset[0] will have raw inode offset.
 407 */
 408static int get_node_path(struct f2fs_inode_info *fi, long block,
 409                                int offset[4], unsigned int noffset[4])
 410{
 411        const long direct_index = ADDRS_PER_INODE(fi);
 412        const long direct_blks = ADDRS_PER_BLOCK;
 413        const long dptrs_per_blk = NIDS_PER_BLOCK;
 414        const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 415        const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 416        int n = 0;
 417        int level = 0;
 418
 419        noffset[0] = 0;
 420
 421        if (block < direct_index) {
 422                offset[n] = block;
 423                goto got;
 424        }
 425        block -= direct_index;
 426        if (block < direct_blks) {
 427                offset[n++] = NODE_DIR1_BLOCK;
 428                noffset[n] = 1;
 429                offset[n] = block;
 430                level = 1;
 431                goto got;
 432        }
 433        block -= direct_blks;
 434        if (block < direct_blks) {
 435                offset[n++] = NODE_DIR2_BLOCK;
 436                noffset[n] = 2;
 437                offset[n] = block;
 438                level = 1;
 439                goto got;
 440        }
 441        block -= direct_blks;
 442        if (block < indirect_blks) {
 443                offset[n++] = NODE_IND1_BLOCK;
 444                noffset[n] = 3;
 445                offset[n++] = block / direct_blks;
 446                noffset[n] = 4 + offset[n - 1];
 447                offset[n] = block % direct_blks;
 448                level = 2;
 449                goto got;
 450        }
 451        block -= indirect_blks;
 452        if (block < indirect_blks) {
 453                offset[n++] = NODE_IND2_BLOCK;
 454                noffset[n] = 4 + dptrs_per_blk;
 455                offset[n++] = block / direct_blks;
 456                noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 457                offset[n] = block % direct_blks;
 458                level = 2;
 459                goto got;
 460        }
 461        block -= indirect_blks;
 462        if (block < dindirect_blks) {
 463                offset[n++] = NODE_DIND_BLOCK;
 464                noffset[n] = 5 + (dptrs_per_blk * 2);
 465                offset[n++] = block / indirect_blks;
 466                noffset[n] = 6 + (dptrs_per_blk * 2) +
 467                              offset[n - 1] * (dptrs_per_blk + 1);
 468                offset[n++] = (block / direct_blks) % dptrs_per_blk;
 469                noffset[n] = 7 + (dptrs_per_blk * 2) +
 470                              offset[n - 2] * (dptrs_per_blk + 1) +
 471                              offset[n - 1];
 472                offset[n] = block % direct_blks;
 473                level = 3;
 474                goto got;
 475        } else {
 476                BUG();
 477        }
 478got:
 479        return level;
 480}
 481
 482/*
 483 * Caller should call f2fs_put_dnode(dn).
 484 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 485 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 486 * In the case of RDONLY_NODE, we don't need to care about mutex.
 487 */
 488int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 489{
 490        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 491        struct page *npage[4];
 492        struct page *parent = NULL;
 493        int offset[4];
 494        unsigned int noffset[4];
 495        nid_t nids[4];
 496        int level, i;
 497        int err = 0;
 498
 499        level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
 500
 501        nids[0] = dn->inode->i_ino;
 502        npage[0] = dn->inode_page;
 503
 504        if (!npage[0]) {
 505                npage[0] = get_node_page(sbi, nids[0]);
 506                if (IS_ERR(npage[0]))
 507                        return PTR_ERR(npage[0]);
 508        }
 509
 510        /* if inline_data is set, should not report any block indices */
 511        if (f2fs_has_inline_data(dn->inode) && index) {
 512                err = -ENOENT;
 513                f2fs_put_page(npage[0], 1);
 514                goto release_out;
 515        }
 516
 517        parent = npage[0];
 518        if (level != 0)
 519                nids[1] = get_nid(parent, offset[0], true);
 520        dn->inode_page = npage[0];
 521        dn->inode_page_locked = true;
 522
 523        /* get indirect or direct nodes */
 524        for (i = 1; i <= level; i++) {
 525                bool done = false;
 526
 527                if (!nids[i] && mode == ALLOC_NODE) {
 528                        /* alloc new node */
 529                        if (!alloc_nid(sbi, &(nids[i]))) {
 530                                err = -ENOSPC;
 531                                goto release_pages;
 532                        }
 533
 534                        dn->nid = nids[i];
 535                        npage[i] = new_node_page(dn, noffset[i], NULL);
 536                        if (IS_ERR(npage[i])) {
 537                                alloc_nid_failed(sbi, nids[i]);
 538                                err = PTR_ERR(npage[i]);
 539                                goto release_pages;
 540                        }
 541
 542                        set_nid(parent, offset[i - 1], nids[i], i == 1);
 543                        alloc_nid_done(sbi, nids[i]);
 544                        done = true;
 545                } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 546                        npage[i] = get_node_page_ra(parent, offset[i - 1]);
 547                        if (IS_ERR(npage[i])) {
 548                                err = PTR_ERR(npage[i]);
 549                                goto release_pages;
 550                        }
 551                        done = true;
 552                }
 553                if (i == 1) {
 554                        dn->inode_page_locked = false;
 555                        unlock_page(parent);
 556                } else {
 557                        f2fs_put_page(parent, 1);
 558                }
 559
 560                if (!done) {
 561                        npage[i] = get_node_page(sbi, nids[i]);
 562                        if (IS_ERR(npage[i])) {
 563                                err = PTR_ERR(npage[i]);
 564                                f2fs_put_page(npage[0], 0);
 565                                goto release_out;
 566                        }
 567                }
 568                if (i < level) {
 569                        parent = npage[i];
 570                        nids[i + 1] = get_nid(parent, offset[i], false);
 571                }
 572        }
 573        dn->nid = nids[level];
 574        dn->ofs_in_node = offset[level];
 575        dn->node_page = npage[level];
 576        dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 577        return 0;
 578
 579release_pages:
 580        f2fs_put_page(parent, 1);
 581        if (i > 1)
 582                f2fs_put_page(npage[0], 0);
 583release_out:
 584        dn->inode_page = NULL;
 585        dn->node_page = NULL;
 586        return err;
 587}
 588
 589static void truncate_node(struct dnode_of_data *dn)
 590{
 591        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 592        struct node_info ni;
 593
 594        get_node_info(sbi, dn->nid, &ni);
 595        if (dn->inode->i_blocks == 0) {
 596                f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 597                goto invalidate;
 598        }
 599        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 600
 601        /* Deallocate node address */
 602        invalidate_blocks(sbi, ni.blk_addr);
 603        dec_valid_node_count(sbi, dn->inode);
 604        set_node_addr(sbi, &ni, NULL_ADDR, false);
 605
 606        if (dn->nid == dn->inode->i_ino) {
 607                remove_orphan_inode(sbi, dn->nid);
 608                dec_valid_inode_count(sbi);
 609        } else {
 610                sync_inode_page(dn);
 611        }
 612invalidate:
 613        clear_node_page_dirty(dn->node_page);
 614        set_sbi_flag(sbi, SBI_IS_DIRTY);
 615
 616        f2fs_put_page(dn->node_page, 1);
 617
 618        invalidate_mapping_pages(NODE_MAPPING(sbi),
 619                        dn->node_page->index, dn->node_page->index);
 620
 621        dn->node_page = NULL;
 622        trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 623}
 624
 625static int truncate_dnode(struct dnode_of_data *dn)
 626{
 627        struct page *page;
 628
 629        if (dn->nid == 0)
 630                return 1;
 631
 632        /* get direct node */
 633        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 634        if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 635                return 1;
 636        else if (IS_ERR(page))
 637                return PTR_ERR(page);
 638
 639        /* Make dnode_of_data for parameter */
 640        dn->node_page = page;
 641        dn->ofs_in_node = 0;
 642        truncate_data_blocks(dn);
 643        truncate_node(dn);
 644        return 1;
 645}
 646
 647static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 648                                                int ofs, int depth)
 649{
 650        struct dnode_of_data rdn = *dn;
 651        struct page *page;
 652        struct f2fs_node *rn;
 653        nid_t child_nid;
 654        unsigned int child_nofs;
 655        int freed = 0;
 656        int i, ret;
 657
 658        if (dn->nid == 0)
 659                return NIDS_PER_BLOCK + 1;
 660
 661        trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 662
 663        page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 664        if (IS_ERR(page)) {
 665                trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 666                return PTR_ERR(page);
 667        }
 668
 669        rn = F2FS_NODE(page);
 670        if (depth < 3) {
 671                for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 672                        child_nid = le32_to_cpu(rn->in.nid[i]);
 673                        if (child_nid == 0)
 674                                continue;
 675                        rdn.nid = child_nid;
 676                        ret = truncate_dnode(&rdn);
 677                        if (ret < 0)
 678                                goto out_err;
 679                        set_nid(page, i, 0, false);
 680                }
 681        } else {
 682                child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 683                for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 684                        child_nid = le32_to_cpu(rn->in.nid[i]);
 685                        if (child_nid == 0) {
 686                                child_nofs += NIDS_PER_BLOCK + 1;
 687                                continue;
 688                        }
 689                        rdn.nid = child_nid;
 690                        ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 691                        if (ret == (NIDS_PER_BLOCK + 1)) {
 692                                set_nid(page, i, 0, false);
 693                                child_nofs += ret;
 694                        } else if (ret < 0 && ret != -ENOENT) {
 695                                goto out_err;
 696                        }
 697                }
 698                freed = child_nofs;
 699        }
 700
 701        if (!ofs) {
 702                /* remove current indirect node */
 703                dn->node_page = page;
 704                truncate_node(dn);
 705                freed++;
 706        } else {
 707                f2fs_put_page(page, 1);
 708        }
 709        trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 710        return freed;
 711
 712out_err:
 713        f2fs_put_page(page, 1);
 714        trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 715        return ret;
 716}
 717
 718static int truncate_partial_nodes(struct dnode_of_data *dn,
 719                        struct f2fs_inode *ri, int *offset, int depth)
 720{
 721        struct page *pages[2];
 722        nid_t nid[3];
 723        nid_t child_nid;
 724        int err = 0;
 725        int i;
 726        int idx = depth - 2;
 727
 728        nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 729        if (!nid[0])
 730                return 0;
 731
 732        /* get indirect nodes in the path */
 733        for (i = 0; i < idx + 1; i++) {
 734                /* reference count'll be increased */
 735                pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 736                if (IS_ERR(pages[i])) {
 737                        err = PTR_ERR(pages[i]);
 738                        idx = i - 1;
 739                        goto fail;
 740                }
 741                nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 742        }
 743
 744        /* free direct nodes linked to a partial indirect node */
 745        for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 746                child_nid = get_nid(pages[idx], i, false);
 747                if (!child_nid)
 748                        continue;
 749                dn->nid = child_nid;
 750                err = truncate_dnode(dn);
 751                if (err < 0)
 752                        goto fail;
 753                set_nid(pages[idx], i, 0, false);
 754        }
 755
 756        if (offset[idx + 1] == 0) {
 757                dn->node_page = pages[idx];
 758                dn->nid = nid[idx];
 759                truncate_node(dn);
 760        } else {
 761                f2fs_put_page(pages[idx], 1);
 762        }
 763        offset[idx]++;
 764        offset[idx + 1] = 0;
 765        idx--;
 766fail:
 767        for (i = idx; i >= 0; i--)
 768                f2fs_put_page(pages[i], 1);
 769
 770        trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 771
 772        return err;
 773}
 774
 775/*
 776 * All the block addresses of data and nodes should be nullified.
 777 */
 778int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 779{
 780        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 781        int err = 0, cont = 1;
 782        int level, offset[4], noffset[4];
 783        unsigned int nofs = 0;
 784        struct f2fs_inode *ri;
 785        struct dnode_of_data dn;
 786        struct page *page;
 787
 788        trace_f2fs_truncate_inode_blocks_enter(inode, from);
 789
 790        level = get_node_path(F2FS_I(inode), from, offset, noffset);
 791restart:
 792        page = get_node_page(sbi, inode->i_ino);
 793        if (IS_ERR(page)) {
 794                trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 795                return PTR_ERR(page);
 796        }
 797
 798        set_new_dnode(&dn, inode, page, NULL, 0);
 799        unlock_page(page);
 800
 801        ri = F2FS_INODE(page);
 802        switch (level) {
 803        case 0:
 804        case 1:
 805                nofs = noffset[1];
 806                break;
 807        case 2:
 808                nofs = noffset[1];
 809                if (!offset[level - 1])
 810                        goto skip_partial;
 811                err = truncate_partial_nodes(&dn, ri, offset, level);
 812                if (err < 0 && err != -ENOENT)
 813                        goto fail;
 814                nofs += 1 + NIDS_PER_BLOCK;
 815                break;
 816        case 3:
 817                nofs = 5 + 2 * NIDS_PER_BLOCK;
 818                if (!offset[level - 1])
 819                        goto skip_partial;
 820                err = truncate_partial_nodes(&dn, ri, offset, level);
 821                if (err < 0 && err != -ENOENT)
 822                        goto fail;
 823                break;
 824        default:
 825                BUG();
 826        }
 827
 828skip_partial:
 829        while (cont) {
 830                dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 831                switch (offset[0]) {
 832                case NODE_DIR1_BLOCK:
 833                case NODE_DIR2_BLOCK:
 834                        err = truncate_dnode(&dn);
 835                        break;
 836
 837                case NODE_IND1_BLOCK:
 838                case NODE_IND2_BLOCK:
 839                        err = truncate_nodes(&dn, nofs, offset[1], 2);
 840                        break;
 841
 842                case NODE_DIND_BLOCK:
 843                        err = truncate_nodes(&dn, nofs, offset[1], 3);
 844                        cont = 0;
 845                        break;
 846
 847                default:
 848                        BUG();
 849                }
 850                if (err < 0 && err != -ENOENT)
 851                        goto fail;
 852                if (offset[1] == 0 &&
 853                                ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 854                        lock_page(page);
 855                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 856                                f2fs_put_page(page, 1);
 857                                goto restart;
 858                        }
 859                        f2fs_wait_on_page_writeback(page, NODE);
 860                        ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 861                        set_page_dirty(page);
 862                        unlock_page(page);
 863                }
 864                offset[1] = 0;
 865                offset[0]++;
 866                nofs += err;
 867        }
 868fail:
 869        f2fs_put_page(page, 0);
 870        trace_f2fs_truncate_inode_blocks_exit(inode, err);
 871        return err > 0 ? 0 : err;
 872}
 873
 874int truncate_xattr_node(struct inode *inode, struct page *page)
 875{
 876        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 877        nid_t nid = F2FS_I(inode)->i_xattr_nid;
 878        struct dnode_of_data dn;
 879        struct page *npage;
 880
 881        if (!nid)
 882                return 0;
 883
 884        npage = get_node_page(sbi, nid);
 885        if (IS_ERR(npage))
 886                return PTR_ERR(npage);
 887
 888        F2FS_I(inode)->i_xattr_nid = 0;
 889
 890        /* need to do checkpoint during fsync */
 891        F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 892
 893        set_new_dnode(&dn, inode, page, npage, nid);
 894
 895        if (page)
 896                dn.inode_page_locked = true;
 897        truncate_node(&dn);
 898        return 0;
 899}
 900
 901/*
 902 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 903 * f2fs_unlock_op().
 904 */
 905int remove_inode_page(struct inode *inode)
 906{
 907        struct dnode_of_data dn;
 908        int err;
 909
 910        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 911        err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 912        if (err)
 913                return err;
 914
 915        err = truncate_xattr_node(inode, dn.inode_page);
 916        if (err) {
 917                f2fs_put_dnode(&dn);
 918                return err;
 919        }
 920
 921        /* remove potential inline_data blocks */
 922        if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 923                                S_ISLNK(inode->i_mode))
 924                truncate_data_blocks_range(&dn, 1);
 925
 926        /* 0 is possible, after f2fs_new_inode() has failed */
 927        f2fs_bug_on(F2FS_I_SB(inode),
 928                        inode->i_blocks != 0 && inode->i_blocks != 1);
 929
 930        /* will put inode & node pages */
 931        truncate_node(&dn);
 932        return 0;
 933}
 934
 935struct page *new_inode_page(struct inode *inode)
 936{
 937        struct dnode_of_data dn;
 938
 939        /* allocate inode page for new inode */
 940        set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 941
 942        /* caller should f2fs_put_page(page, 1); */
 943        return new_node_page(&dn, 0, NULL);
 944}
 945
 946struct page *new_node_page(struct dnode_of_data *dn,
 947                                unsigned int ofs, struct page *ipage)
 948{
 949        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 950        struct node_info old_ni, new_ni;
 951        struct page *page;
 952        int err;
 953
 954        if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 955                return ERR_PTR(-EPERM);
 956
 957        page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
 958        if (!page)
 959                return ERR_PTR(-ENOMEM);
 960
 961        if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
 962                err = -ENOSPC;
 963                goto fail;
 964        }
 965
 966        get_node_info(sbi, dn->nid, &old_ni);
 967
 968        /* Reinitialize old_ni with new node page */
 969        f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
 970        new_ni = old_ni;
 971        new_ni.ino = dn->inode->i_ino;
 972        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
 973
 974        f2fs_wait_on_page_writeback(page, NODE);
 975        fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
 976        set_cold_node(dn->inode, page);
 977        SetPageUptodate(page);
 978        set_page_dirty(page);
 979
 980        if (f2fs_has_xattr_block(ofs))
 981                F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
 982
 983        dn->node_page = page;
 984        if (ipage)
 985                update_inode(dn->inode, ipage);
 986        else
 987                sync_inode_page(dn);
 988        if (ofs == 0)
 989                inc_valid_inode_count(sbi);
 990
 991        return page;
 992
 993fail:
 994        clear_node_page_dirty(page);
 995        f2fs_put_page(page, 1);
 996        return ERR_PTR(err);
 997}
 998
 999/*
1000 * Caller should do after getting the following values.
1001 * 0: f2fs_put_page(page, 0)
1002 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1003 */
1004static int read_node_page(struct page *page, int rw)
1005{
1006        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1007        struct node_info ni;
1008        struct f2fs_io_info fio = {
1009                .sbi = sbi,
1010                .type = NODE,
1011                .rw = rw,
1012                .page = page,
1013                .encrypted_page = NULL,
1014        };
1015
1016        get_node_info(sbi, page->index, &ni);
1017
1018        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1019                ClearPageUptodate(page);
1020                return -ENOENT;
1021        }
1022
1023        if (PageUptodate(page))
1024                return LOCKED_PAGE;
1025
1026        fio.blk_addr = ni.blk_addr;
1027        return f2fs_submit_page_bio(&fio);
1028}
1029
1030/*
1031 * Readahead a node page
1032 */
1033void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1034{
1035        struct page *apage;
1036        int err;
1037
1038        apage = find_get_page(NODE_MAPPING(sbi), nid);
1039        if (apage && PageUptodate(apage)) {
1040                f2fs_put_page(apage, 0);
1041                return;
1042        }
1043        f2fs_put_page(apage, 0);
1044
1045        apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1046        if (!apage)
1047                return;
1048
1049        err = read_node_page(apage, READA);
1050        f2fs_put_page(apage, err ? 1 : 0);
1051}
1052
1053struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1054{
1055        struct page *page;
1056        int err;
1057repeat:
1058        page = grab_cache_page(NODE_MAPPING(sbi), nid);
1059        if (!page)
1060                return ERR_PTR(-ENOMEM);
1061
1062        err = read_node_page(page, READ_SYNC);
1063        if (err < 0) {
1064                f2fs_put_page(page, 1);
1065                return ERR_PTR(err);
1066        } else if (err != LOCKED_PAGE) {
1067                lock_page(page);
1068        }
1069
1070        if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1071                ClearPageUptodate(page);
1072                f2fs_put_page(page, 1);
1073                return ERR_PTR(-EIO);
1074        }
1075        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1076                f2fs_put_page(page, 1);
1077                goto repeat;
1078        }
1079        return page;
1080}
1081
1082/*
1083 * Return a locked page for the desired node page.
1084 * And, readahead MAX_RA_NODE number of node pages.
1085 */
1086struct page *get_node_page_ra(struct page *parent, int start)
1087{
1088        struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1089        struct blk_plug plug;
1090        struct page *page;
1091        int err, i, end;
1092        nid_t nid;
1093
1094        /* First, try getting the desired direct node. */
1095        nid = get_nid(parent, start, false);
1096        if (!nid)
1097                return ERR_PTR(-ENOENT);
1098repeat:
1099        page = grab_cache_page(NODE_MAPPING(sbi), nid);
1100        if (!page)
1101                return ERR_PTR(-ENOMEM);
1102
1103        err = read_node_page(page, READ_SYNC);
1104        if (err < 0) {
1105                f2fs_put_page(page, 1);
1106                return ERR_PTR(err);
1107        } else if (err == LOCKED_PAGE) {
1108                goto page_hit;
1109        }
1110
1111        blk_start_plug(&plug);
1112
1113        /* Then, try readahead for siblings of the desired node */
1114        end = start + MAX_RA_NODE;
1115        end = min(end, NIDS_PER_BLOCK);
1116        for (i = start + 1; i < end; i++) {
1117                nid = get_nid(parent, i, false);
1118                if (!nid)
1119                        continue;
1120                ra_node_page(sbi, nid);
1121        }
1122
1123        blk_finish_plug(&plug);
1124
1125        lock_page(page);
1126        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1127                f2fs_put_page(page, 1);
1128                goto repeat;
1129        }
1130page_hit:
1131        if (unlikely(!PageUptodate(page))) {
1132                f2fs_put_page(page, 1);
1133                return ERR_PTR(-EIO);
1134        }
1135        return page;
1136}
1137
1138void sync_inode_page(struct dnode_of_data *dn)
1139{
1140        if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1141                update_inode(dn->inode, dn->node_page);
1142        } else if (dn->inode_page) {
1143                if (!dn->inode_page_locked)
1144                        lock_page(dn->inode_page);
1145                update_inode(dn->inode, dn->inode_page);
1146                if (!dn->inode_page_locked)
1147                        unlock_page(dn->inode_page);
1148        } else {
1149                update_inode_page(dn->inode);
1150        }
1151}
1152
1153int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1154                                        struct writeback_control *wbc)
1155{
1156        pgoff_t index, end;
1157        struct pagevec pvec;
1158        int step = ino ? 2 : 0;
1159        int nwritten = 0, wrote = 0;
1160
1161        pagevec_init(&pvec, 0);
1162
1163next_step:
1164        index = 0;
1165        end = LONG_MAX;
1166
1167        while (index <= end) {
1168                int i, nr_pages;
1169                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1170                                PAGECACHE_TAG_DIRTY,
1171                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1172                if (nr_pages == 0)
1173                        break;
1174
1175                for (i = 0; i < nr_pages; i++) {
1176                        struct page *page = pvec.pages[i];
1177
1178                        /*
1179                         * flushing sequence with step:
1180                         * 0. indirect nodes
1181                         * 1. dentry dnodes
1182                         * 2. file dnodes
1183                         */
1184                        if (step == 0 && IS_DNODE(page))
1185                                continue;
1186                        if (step == 1 && (!IS_DNODE(page) ||
1187                                                is_cold_node(page)))
1188                                continue;
1189                        if (step == 2 && (!IS_DNODE(page) ||
1190                                                !is_cold_node(page)))
1191                                continue;
1192
1193                        /*
1194                         * If an fsync mode,
1195                         * we should not skip writing node pages.
1196                         */
1197                        if (ino && ino_of_node(page) == ino)
1198                                lock_page(page);
1199                        else if (!trylock_page(page))
1200                                continue;
1201
1202                        if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1203continue_unlock:
1204                                unlock_page(page);
1205                                continue;
1206                        }
1207                        if (ino && ino_of_node(page) != ino)
1208                                goto continue_unlock;
1209
1210                        if (!PageDirty(page)) {
1211                                /* someone wrote it for us */
1212                                goto continue_unlock;
1213                        }
1214
1215                        if (!clear_page_dirty_for_io(page))
1216                                goto continue_unlock;
1217
1218                        /* called by fsync() */
1219                        if (ino && IS_DNODE(page)) {
1220                                set_fsync_mark(page, 1);
1221                                if (IS_INODE(page))
1222                                        set_dentry_mark(page,
1223                                                need_dentry_mark(sbi, ino));
1224                                nwritten++;
1225                        } else {
1226                                set_fsync_mark(page, 0);
1227                                set_dentry_mark(page, 0);
1228                        }
1229
1230                        if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1231                                unlock_page(page);
1232                        else
1233                                wrote++;
1234
1235                        if (--wbc->nr_to_write == 0)
1236                                break;
1237                }
1238                pagevec_release(&pvec);
1239                cond_resched();
1240
1241                if (wbc->nr_to_write == 0) {
1242                        step = 2;
1243                        break;
1244                }
1245        }
1246
1247        if (step < 2) {
1248                step++;
1249                goto next_step;
1250        }
1251
1252        if (wrote)
1253                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1254        return nwritten;
1255}
1256
1257int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1258{
1259        pgoff_t index = 0, end = LONG_MAX;
1260        struct pagevec pvec;
1261        int ret2 = 0, ret = 0;
1262
1263        pagevec_init(&pvec, 0);
1264
1265        while (index <= end) {
1266                int i, nr_pages;
1267                nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1268                                PAGECACHE_TAG_WRITEBACK,
1269                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1270                if (nr_pages == 0)
1271                        break;
1272
1273                for (i = 0; i < nr_pages; i++) {
1274                        struct page *page = pvec.pages[i];
1275
1276                        /* until radix tree lookup accepts end_index */
1277                        if (unlikely(page->index > end))
1278                                continue;
1279
1280                        if (ino && ino_of_node(page) == ino) {
1281                                f2fs_wait_on_page_writeback(page, NODE);
1282                                if (TestClearPageError(page))
1283                                        ret = -EIO;
1284                        }
1285                }
1286                pagevec_release(&pvec);
1287                cond_resched();
1288        }
1289
1290        if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1291                ret2 = -ENOSPC;
1292        if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1293                ret2 = -EIO;
1294        if (!ret)
1295                ret = ret2;
1296        return ret;
1297}
1298
1299static int f2fs_write_node_page(struct page *page,
1300                                struct writeback_control *wbc)
1301{
1302        struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1303        nid_t nid;
1304        struct node_info ni;
1305        struct f2fs_io_info fio = {
1306                .sbi = sbi,
1307                .type = NODE,
1308                .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1309                .page = page,
1310                .encrypted_page = NULL,
1311        };
1312
1313        trace_f2fs_writepage(page, NODE);
1314
1315        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1316                goto redirty_out;
1317        if (unlikely(f2fs_cp_error(sbi)))
1318                goto redirty_out;
1319
1320        f2fs_wait_on_page_writeback(page, NODE);
1321
1322        /* get old block addr of this node page */
1323        nid = nid_of_node(page);
1324        f2fs_bug_on(sbi, page->index != nid);
1325
1326        get_node_info(sbi, nid, &ni);
1327
1328        /* This page is already truncated */
1329        if (unlikely(ni.blk_addr == NULL_ADDR)) {
1330                ClearPageUptodate(page);
1331                dec_page_count(sbi, F2FS_DIRTY_NODES);
1332                unlock_page(page);
1333                return 0;
1334        }
1335
1336        if (wbc->for_reclaim) {
1337                if (!down_read_trylock(&sbi->node_write))
1338                        goto redirty_out;
1339        } else {
1340                down_read(&sbi->node_write);
1341        }
1342
1343        set_page_writeback(page);
1344        fio.blk_addr = ni.blk_addr;
1345        write_node_page(nid, &fio);
1346        set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1347        dec_page_count(sbi, F2FS_DIRTY_NODES);
1348        up_read(&sbi->node_write);
1349        unlock_page(page);
1350
1351        if (wbc->for_reclaim)
1352                f2fs_submit_merged_bio(sbi, NODE, WRITE);
1353
1354        return 0;
1355
1356redirty_out:
1357        redirty_page_for_writepage(wbc, page);
1358        return AOP_WRITEPAGE_ACTIVATE;
1359}
1360
1361static int f2fs_write_node_pages(struct address_space *mapping,
1362                            struct writeback_control *wbc)
1363{
1364        struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1365        long diff;
1366
1367        trace_f2fs_writepages(mapping->host, wbc, NODE);
1368
1369        /* balancing f2fs's metadata in background */
1370        f2fs_balance_fs_bg(sbi);
1371
1372        /* collect a number of dirty node pages and write together */
1373        if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1374                goto skip_write;
1375
1376        diff = nr_pages_to_write(sbi, NODE, wbc);
1377        wbc->sync_mode = WB_SYNC_NONE;
1378        sync_node_pages(sbi, 0, wbc);
1379        wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1380        return 0;
1381
1382skip_write:
1383        wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1384        return 0;
1385}
1386
1387static int f2fs_set_node_page_dirty(struct page *page)
1388{
1389        trace_f2fs_set_page_dirty(page, NODE);
1390
1391        SetPageUptodate(page);
1392        if (!PageDirty(page)) {
1393                __set_page_dirty_nobuffers(page);
1394                inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1395                SetPagePrivate(page);
1396                f2fs_trace_pid(page);
1397                return 1;
1398        }
1399        return 0;
1400}
1401
1402/*
1403 * Structure of the f2fs node operations
1404 */
1405const struct address_space_operations f2fs_node_aops = {
1406        .writepage      = f2fs_write_node_page,
1407        .writepages     = f2fs_write_node_pages,
1408        .set_page_dirty = f2fs_set_node_page_dirty,
1409        .invalidatepage = f2fs_invalidate_page,
1410        .releasepage    = f2fs_release_page,
1411};
1412
1413static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1414                                                nid_t n)
1415{
1416        return radix_tree_lookup(&nm_i->free_nid_root, n);
1417}
1418
1419static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1420                                                struct free_nid *i)
1421{
1422        list_del(&i->list);
1423        radix_tree_delete(&nm_i->free_nid_root, i->nid);
1424}
1425
1426static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1427{
1428        struct f2fs_nm_info *nm_i = NM_I(sbi);
1429        struct free_nid *i;
1430        struct nat_entry *ne;
1431        bool allocated = false;
1432
1433        if (!available_free_memory(sbi, FREE_NIDS))
1434                return -1;
1435
1436        /* 0 nid should not be used */
1437        if (unlikely(nid == 0))
1438                return 0;
1439
1440        if (build) {
1441                /* do not add allocated nids */
1442                down_read(&nm_i->nat_tree_lock);
1443                ne = __lookup_nat_cache(nm_i, nid);
1444                if (ne &&
1445                        (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1446                                nat_get_blkaddr(ne) != NULL_ADDR))
1447                        allocated = true;
1448                up_read(&nm_i->nat_tree_lock);
1449                if (allocated)
1450                        return 0;
1451        }
1452
1453        i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1454        i->nid = nid;
1455        i->state = NID_NEW;
1456
1457        if (radix_tree_preload(GFP_NOFS)) {
1458                kmem_cache_free(free_nid_slab, i);
1459                return 0;
1460        }
1461
1462        spin_lock(&nm_i->free_nid_list_lock);
1463        if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1464                spin_unlock(&nm_i->free_nid_list_lock);
1465                radix_tree_preload_end();
1466                kmem_cache_free(free_nid_slab, i);
1467                return 0;
1468        }
1469        list_add_tail(&i->list, &nm_i->free_nid_list);
1470        nm_i->fcnt++;
1471        spin_unlock(&nm_i->free_nid_list_lock);
1472        radix_tree_preload_end();
1473        return 1;
1474}
1475
1476static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1477{
1478        struct free_nid *i;
1479        bool need_free = false;
1480
1481        spin_lock(&nm_i->free_nid_list_lock);
1482        i = __lookup_free_nid_list(nm_i, nid);
1483        if (i && i->state == NID_NEW) {
1484                __del_from_free_nid_list(nm_i, i);
1485                nm_i->fcnt--;
1486                need_free = true;
1487        }
1488        spin_unlock(&nm_i->free_nid_list_lock);
1489
1490        if (need_free)
1491                kmem_cache_free(free_nid_slab, i);
1492}
1493
1494static void scan_nat_page(struct f2fs_sb_info *sbi,
1495                        struct page *nat_page, nid_t start_nid)
1496{
1497        struct f2fs_nm_info *nm_i = NM_I(sbi);
1498        struct f2fs_nat_block *nat_blk = page_address(nat_page);
1499        block_t blk_addr;
1500        int i;
1501
1502        i = start_nid % NAT_ENTRY_PER_BLOCK;
1503
1504        for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1505
1506                if (unlikely(start_nid >= nm_i->max_nid))
1507                        break;
1508
1509                blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1510                f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1511                if (blk_addr == NULL_ADDR) {
1512                        if (add_free_nid(sbi, start_nid, true) < 0)
1513                                break;
1514                }
1515        }
1516}
1517
1518static void build_free_nids(struct f2fs_sb_info *sbi)
1519{
1520        struct f2fs_nm_info *nm_i = NM_I(sbi);
1521        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1522        struct f2fs_summary_block *sum = curseg->sum_blk;
1523        int i = 0;
1524        nid_t nid = nm_i->next_scan_nid;
1525
1526        /* Enough entries */
1527        if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1528                return;
1529
1530        /* readahead nat pages to be scanned */
1531        ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1532
1533        while (1) {
1534                struct page *page = get_current_nat_page(sbi, nid);
1535
1536                scan_nat_page(sbi, page, nid);
1537                f2fs_put_page(page, 1);
1538
1539                nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1540                if (unlikely(nid >= nm_i->max_nid))
1541                        nid = 0;
1542
1543                if (++i >= FREE_NID_PAGES)
1544                        break;
1545        }
1546
1547        /* go to the next free nat pages to find free nids abundantly */
1548        nm_i->next_scan_nid = nid;
1549
1550        /* find free nids from current sum_pages */
1551        mutex_lock(&curseg->curseg_mutex);
1552        for (i = 0; i < nats_in_cursum(sum); i++) {
1553                block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1554                nid = le32_to_cpu(nid_in_journal(sum, i));
1555                if (addr == NULL_ADDR)
1556                        add_free_nid(sbi, nid, true);
1557                else
1558                        remove_free_nid(nm_i, nid);
1559        }
1560        mutex_unlock(&curseg->curseg_mutex);
1561}
1562
1563/*
1564 * If this function returns success, caller can obtain a new nid
1565 * from second parameter of this function.
1566 * The returned nid could be used ino as well as nid when inode is created.
1567 */
1568bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1569{
1570        struct f2fs_nm_info *nm_i = NM_I(sbi);
1571        struct free_nid *i = NULL;
1572retry:
1573        if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1574                return false;
1575
1576        spin_lock(&nm_i->free_nid_list_lock);
1577
1578        /* We should not use stale free nids created by build_free_nids */
1579        if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1580                struct node_info ni;
1581
1582                f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1583                list_for_each_entry(i, &nm_i->free_nid_list, list)
1584                        if (i->state == NID_NEW)
1585                                break;
1586
1587                f2fs_bug_on(sbi, i->state != NID_NEW);
1588                *nid = i->nid;
1589                i->state = NID_ALLOC;
1590                nm_i->fcnt--;
1591                spin_unlock(&nm_i->free_nid_list_lock);
1592
1593                /* check nid is allocated already */
1594                get_node_info(sbi, *nid, &ni);
1595                if (ni.blk_addr != NULL_ADDR) {
1596                        alloc_nid_done(sbi, *nid);
1597                        goto retry;
1598                }
1599                return true;
1600        }
1601        spin_unlock(&nm_i->free_nid_list_lock);
1602
1603        /* Let's scan nat pages and its caches to get free nids */
1604        mutex_lock(&nm_i->build_lock);
1605        build_free_nids(sbi);
1606        mutex_unlock(&nm_i->build_lock);
1607        goto retry;
1608}
1609
1610/*
1611 * alloc_nid() should be called prior to this function.
1612 */
1613void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1614{
1615        struct f2fs_nm_info *nm_i = NM_I(sbi);
1616        struct free_nid *i;
1617
1618        spin_lock(&nm_i->free_nid_list_lock);
1619        i = __lookup_free_nid_list(nm_i, nid);
1620        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1621        __del_from_free_nid_list(nm_i, i);
1622        spin_unlock(&nm_i->free_nid_list_lock);
1623
1624        kmem_cache_free(free_nid_slab, i);
1625}
1626
1627/*
1628 * alloc_nid() should be called prior to this function.
1629 */
1630void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1631{
1632        struct f2fs_nm_info *nm_i = NM_I(sbi);
1633        struct free_nid *i;
1634        bool need_free = false;
1635
1636        if (!nid)
1637                return;
1638
1639        spin_lock(&nm_i->free_nid_list_lock);
1640        i = __lookup_free_nid_list(nm_i, nid);
1641        f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1642        if (!available_free_memory(sbi, FREE_NIDS)) {
1643                __del_from_free_nid_list(nm_i, i);
1644                need_free = true;
1645        } else {
1646                i->state = NID_NEW;
1647                nm_i->fcnt++;
1648        }
1649        spin_unlock(&nm_i->free_nid_list_lock);
1650
1651        if (need_free)
1652                kmem_cache_free(free_nid_slab, i);
1653}
1654
1655int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1656{
1657        struct f2fs_nm_info *nm_i = NM_I(sbi);
1658        struct free_nid *i, *next;
1659        int nr = nr_shrink;
1660
1661        if (!mutex_trylock(&nm_i->build_lock))
1662                return 0;
1663
1664        spin_lock(&nm_i->free_nid_list_lock);
1665        list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1666                if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1667                        break;
1668                if (i->state == NID_ALLOC)
1669                        continue;
1670                __del_from_free_nid_list(nm_i, i);
1671                kmem_cache_free(free_nid_slab, i);
1672                nm_i->fcnt--;
1673                nr_shrink--;
1674        }
1675        spin_unlock(&nm_i->free_nid_list_lock);
1676        mutex_unlock(&nm_i->build_lock);
1677
1678        return nr - nr_shrink;
1679}
1680
1681void recover_inline_xattr(struct inode *inode, struct page *page)
1682{
1683        void *src_addr, *dst_addr;
1684        size_t inline_size;
1685        struct page *ipage;
1686        struct f2fs_inode *ri;
1687
1688        ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1689        f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1690
1691        ri = F2FS_INODE(page);
1692        if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1693                clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1694                goto update_inode;
1695        }
1696
1697        dst_addr = inline_xattr_addr(ipage);
1698        src_addr = inline_xattr_addr(page);
1699        inline_size = inline_xattr_size(inode);
1700
1701        f2fs_wait_on_page_writeback(ipage, NODE);
1702        memcpy(dst_addr, src_addr, inline_size);
1703update_inode:
1704        update_inode(inode, ipage);
1705        f2fs_put_page(ipage, 1);
1706}
1707
1708void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1709{
1710        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1711        nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1712        nid_t new_xnid = nid_of_node(page);
1713        struct node_info ni;
1714
1715        /* 1: invalidate the previous xattr nid */
1716        if (!prev_xnid)
1717                goto recover_xnid;
1718
1719        /* Deallocate node address */
1720        get_node_info(sbi, prev_xnid, &ni);
1721        f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1722        invalidate_blocks(sbi, ni.blk_addr);
1723        dec_valid_node_count(sbi, inode);
1724        set_node_addr(sbi, &ni, NULL_ADDR, false);
1725
1726recover_xnid:
1727        /* 2: allocate new xattr nid */
1728        if (unlikely(!inc_valid_node_count(sbi, inode)))
1729                f2fs_bug_on(sbi, 1);
1730
1731        remove_free_nid(NM_I(sbi), new_xnid);
1732        get_node_info(sbi, new_xnid, &ni);
1733        ni.ino = inode->i_ino;
1734        set_node_addr(sbi, &ni, NEW_ADDR, false);
1735        F2FS_I(inode)->i_xattr_nid = new_xnid;
1736
1737        /* 3: update xattr blkaddr */
1738        refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1739        set_node_addr(sbi, &ni, blkaddr, false);
1740
1741        update_inode_page(inode);
1742}
1743
1744int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1745{
1746        struct f2fs_inode *src, *dst;
1747        nid_t ino = ino_of_node(page);
1748        struct node_info old_ni, new_ni;
1749        struct page *ipage;
1750
1751        get_node_info(sbi, ino, &old_ni);
1752
1753        if (unlikely(old_ni.blk_addr != NULL_ADDR))
1754                return -EINVAL;
1755
1756        ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1757        if (!ipage)
1758                return -ENOMEM;
1759
1760        /* Should not use this inode from free nid list */
1761        remove_free_nid(NM_I(sbi), ino);
1762
1763        SetPageUptodate(ipage);
1764        fill_node_footer(ipage, ino, ino, 0, true);
1765
1766        src = F2FS_INODE(page);
1767        dst = F2FS_INODE(ipage);
1768
1769        memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1770        dst->i_size = 0;
1771        dst->i_blocks = cpu_to_le64(1);
1772        dst->i_links = cpu_to_le32(1);
1773        dst->i_xattr_nid = 0;
1774        dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1775
1776        new_ni = old_ni;
1777        new_ni.ino = ino;
1778
1779        if (unlikely(!inc_valid_node_count(sbi, NULL)))
1780                WARN_ON(1);
1781        set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1782        inc_valid_inode_count(sbi);
1783        set_page_dirty(ipage);
1784        f2fs_put_page(ipage, 1);
1785        return 0;
1786}
1787
1788int restore_node_summary(struct f2fs_sb_info *sbi,
1789                        unsigned int segno, struct f2fs_summary_block *sum)
1790{
1791        struct f2fs_node *rn;
1792        struct f2fs_summary *sum_entry;
1793        block_t addr;
1794        int bio_blocks = MAX_BIO_BLOCKS(sbi);
1795        int i, idx, last_offset, nrpages;
1796
1797        /* scan the node segment */
1798        last_offset = sbi->blocks_per_seg;
1799        addr = START_BLOCK(sbi, segno);
1800        sum_entry = &sum->entries[0];
1801
1802        for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1803                nrpages = min(last_offset - i, bio_blocks);
1804
1805                /* readahead node pages */
1806                ra_meta_pages(sbi, addr, nrpages, META_POR);
1807
1808                for (idx = addr; idx < addr + nrpages; idx++) {
1809                        struct page *page = get_meta_page(sbi, idx);
1810
1811                        rn = F2FS_NODE(page);
1812                        sum_entry->nid = rn->footer.nid;
1813                        sum_entry->version = 0;
1814                        sum_entry->ofs_in_node = 0;
1815                        sum_entry++;
1816                        f2fs_put_page(page, 1);
1817                }
1818
1819                invalidate_mapping_pages(META_MAPPING(sbi), addr,
1820                                                        addr + nrpages);
1821        }
1822        return 0;
1823}
1824
1825static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1826{
1827        struct f2fs_nm_info *nm_i = NM_I(sbi);
1828        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1829        struct f2fs_summary_block *sum = curseg->sum_blk;
1830        int i;
1831
1832        mutex_lock(&curseg->curseg_mutex);
1833        for (i = 0; i < nats_in_cursum(sum); i++) {
1834                struct nat_entry *ne;
1835                struct f2fs_nat_entry raw_ne;
1836                nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1837
1838                raw_ne = nat_in_journal(sum, i);
1839
1840                down_write(&nm_i->nat_tree_lock);
1841                ne = __lookup_nat_cache(nm_i, nid);
1842                if (!ne) {
1843                        ne = grab_nat_entry(nm_i, nid);
1844                        node_info_from_raw_nat(&ne->ni, &raw_ne);
1845                }
1846                __set_nat_cache_dirty(nm_i, ne);
1847                up_write(&nm_i->nat_tree_lock);
1848        }
1849        update_nats_in_cursum(sum, -i);
1850        mutex_unlock(&curseg->curseg_mutex);
1851}
1852
1853static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1854                                                struct list_head *head, int max)
1855{
1856        struct nat_entry_set *cur;
1857
1858        if (nes->entry_cnt >= max)
1859                goto add_out;
1860
1861        list_for_each_entry(cur, head, set_list) {
1862                if (cur->entry_cnt >= nes->entry_cnt) {
1863                        list_add(&nes->set_list, cur->set_list.prev);
1864                        return;
1865                }
1866        }
1867add_out:
1868        list_add_tail(&nes->set_list, head);
1869}
1870
1871static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1872                                        struct nat_entry_set *set)
1873{
1874        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1875        struct f2fs_summary_block *sum = curseg->sum_blk;
1876        nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1877        bool to_journal = true;
1878        struct f2fs_nat_block *nat_blk;
1879        struct nat_entry *ne, *cur;
1880        struct page *page = NULL;
1881        struct f2fs_nm_info *nm_i = NM_I(sbi);
1882
1883        /*
1884         * there are two steps to flush nat entries:
1885         * #1, flush nat entries to journal in current hot data summary block.
1886         * #2, flush nat entries to nat page.
1887         */
1888        if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1889                to_journal = false;
1890
1891        if (to_journal) {
1892                mutex_lock(&curseg->curseg_mutex);
1893        } else {
1894                page = get_next_nat_page(sbi, start_nid);
1895                nat_blk = page_address(page);
1896                f2fs_bug_on(sbi, !nat_blk);
1897        }
1898
1899        /* flush dirty nats in nat entry set */
1900        list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1901                struct f2fs_nat_entry *raw_ne;
1902                nid_t nid = nat_get_nid(ne);
1903                int offset;
1904
1905                if (nat_get_blkaddr(ne) == NEW_ADDR)
1906                        continue;
1907
1908                if (to_journal) {
1909                        offset = lookup_journal_in_cursum(sum,
1910                                                        NAT_JOURNAL, nid, 1);
1911                        f2fs_bug_on(sbi, offset < 0);
1912                        raw_ne = &nat_in_journal(sum, offset);
1913                        nid_in_journal(sum, offset) = cpu_to_le32(nid);
1914                } else {
1915                        raw_ne = &nat_blk->entries[nid - start_nid];
1916                }
1917                raw_nat_from_node_info(raw_ne, &ne->ni);
1918
1919                down_write(&NM_I(sbi)->nat_tree_lock);
1920                nat_reset_flag(ne);
1921                __clear_nat_cache_dirty(NM_I(sbi), ne);
1922                up_write(&NM_I(sbi)->nat_tree_lock);
1923
1924                if (nat_get_blkaddr(ne) == NULL_ADDR)
1925                        add_free_nid(sbi, nid, false);
1926        }
1927
1928        if (to_journal)
1929                mutex_unlock(&curseg->curseg_mutex);
1930        else
1931                f2fs_put_page(page, 1);
1932
1933        f2fs_bug_on(sbi, set->entry_cnt);
1934
1935        down_write(&nm_i->nat_tree_lock);
1936        radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1937        up_write(&nm_i->nat_tree_lock);
1938        kmem_cache_free(nat_entry_set_slab, set);
1939}
1940
1941/*
1942 * This function is called during the checkpointing process.
1943 */
1944void flush_nat_entries(struct f2fs_sb_info *sbi)
1945{
1946        struct f2fs_nm_info *nm_i = NM_I(sbi);
1947        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1948        struct f2fs_summary_block *sum = curseg->sum_blk;
1949        struct nat_entry_set *setvec[SETVEC_SIZE];
1950        struct nat_entry_set *set, *tmp;
1951        unsigned int found;
1952        nid_t set_idx = 0;
1953        LIST_HEAD(sets);
1954
1955        if (!nm_i->dirty_nat_cnt)
1956                return;
1957        /*
1958         * if there are no enough space in journal to store dirty nat
1959         * entries, remove all entries from journal and merge them
1960         * into nat entry set.
1961         */
1962        if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1963                remove_nats_in_journal(sbi);
1964
1965        down_write(&nm_i->nat_tree_lock);
1966        while ((found = __gang_lookup_nat_set(nm_i,
1967                                        set_idx, SETVEC_SIZE, setvec))) {
1968                unsigned idx;
1969                set_idx = setvec[found - 1]->set + 1;
1970                for (idx = 0; idx < found; idx++)
1971                        __adjust_nat_entry_set(setvec[idx], &sets,
1972                                                        MAX_NAT_JENTRIES(sum));
1973        }
1974        up_write(&nm_i->nat_tree_lock);
1975
1976        /* flush dirty nats in nat entry set */
1977        list_for_each_entry_safe(set, tmp, &sets, set_list)
1978                __flush_nat_entry_set(sbi, set);
1979
1980        f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1981}
1982
1983static int init_node_manager(struct f2fs_sb_info *sbi)
1984{
1985        struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1986        struct f2fs_nm_info *nm_i = NM_I(sbi);
1987        unsigned char *version_bitmap;
1988        unsigned int nat_segs, nat_blocks;
1989
1990        nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1991
1992        /* segment_count_nat includes pair segment so divide to 2. */
1993        nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1994        nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1995
1996        nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1997
1998        /* not used nids: 0, node, meta, (and root counted as valid node) */
1999        nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2000        nm_i->fcnt = 0;
2001        nm_i->nat_cnt = 0;
2002        nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2003
2004        INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2005        INIT_LIST_HEAD(&nm_i->free_nid_list);
2006        INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2007        INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2008        INIT_LIST_HEAD(&nm_i->nat_entries);
2009
2010        mutex_init(&nm_i->build_lock);
2011        spin_lock_init(&nm_i->free_nid_list_lock);
2012        init_rwsem(&nm_i->nat_tree_lock);
2013
2014        nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2015        nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2016        version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2017        if (!version_bitmap)
2018                return -EFAULT;
2019
2020        nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2021                                        GFP_KERNEL);
2022        if (!nm_i->nat_bitmap)
2023                return -ENOMEM;
2024        return 0;
2025}
2026
2027int build_node_manager(struct f2fs_sb_info *sbi)
2028{
2029        int err;
2030
2031        sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2032        if (!sbi->nm_info)
2033                return -ENOMEM;
2034
2035        err = init_node_manager(sbi);
2036        if (err)
2037                return err;
2038
2039        build_free_nids(sbi);
2040        return 0;
2041}
2042
2043void destroy_node_manager(struct f2fs_sb_info *sbi)
2044{
2045        struct f2fs_nm_info *nm_i = NM_I(sbi);
2046        struct free_nid *i, *next_i;
2047        struct nat_entry *natvec[NATVEC_SIZE];
2048        struct nat_entry_set *setvec[SETVEC_SIZE];
2049        nid_t nid = 0;
2050        unsigned int found;
2051
2052        if (!nm_i)
2053                return;
2054
2055        /* destroy free nid list */
2056        spin_lock(&nm_i->free_nid_list_lock);
2057        list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2058                f2fs_bug_on(sbi, i->state == NID_ALLOC);
2059                __del_from_free_nid_list(nm_i, i);
2060                nm_i->fcnt--;
2061                spin_unlock(&nm_i->free_nid_list_lock);
2062                kmem_cache_free(free_nid_slab, i);
2063                spin_lock(&nm_i->free_nid_list_lock);
2064        }
2065        f2fs_bug_on(sbi, nm_i->fcnt);
2066        spin_unlock(&nm_i->free_nid_list_lock);
2067
2068        /* destroy nat cache */
2069        down_write(&nm_i->nat_tree_lock);
2070        while ((found = __gang_lookup_nat_cache(nm_i,
2071                                        nid, NATVEC_SIZE, natvec))) {
2072                unsigned idx;
2073
2074                nid = nat_get_nid(natvec[found - 1]) + 1;
2075                for (idx = 0; idx < found; idx++)
2076                        __del_from_nat_cache(nm_i, natvec[idx]);
2077        }
2078        f2fs_bug_on(sbi, nm_i->nat_cnt);
2079
2080        /* destroy nat set cache */
2081        nid = 0;
2082        while ((found = __gang_lookup_nat_set(nm_i,
2083                                        nid, SETVEC_SIZE, setvec))) {
2084                unsigned idx;
2085
2086                nid = setvec[found - 1]->set + 1;
2087                for (idx = 0; idx < found; idx++) {
2088                        /* entry_cnt is not zero, when cp_error was occurred */
2089                        f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2090                        radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2091                        kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2092                }
2093        }
2094        up_write(&nm_i->nat_tree_lock);
2095
2096        kfree(nm_i->nat_bitmap);
2097        sbi->nm_info = NULL;
2098        kfree(nm_i);
2099}
2100
2101int __init create_node_manager_caches(void)
2102{
2103        nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2104                        sizeof(struct nat_entry));
2105        if (!nat_entry_slab)
2106                goto fail;
2107
2108        free_nid_slab = f2fs_kmem_cache_create("free_nid",
2109                        sizeof(struct free_nid));
2110        if (!free_nid_slab)
2111                goto destroy_nat_entry;
2112
2113        nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2114                        sizeof(struct nat_entry_set));
2115        if (!nat_entry_set_slab)
2116                goto destroy_free_nid;
2117        return 0;
2118
2119destroy_free_nid:
2120        kmem_cache_destroy(free_nid_slab);
2121destroy_nat_entry:
2122        kmem_cache_destroy(nat_entry_slab);
2123fail:
2124        return -ENOMEM;
2125}
2126
2127void destroy_node_manager_caches(void)
2128{
2129        kmem_cache_destroy(nat_entry_set_slab);
2130        kmem_cache_destroy(free_nid_slab);
2131        kmem_cache_destroy(nat_entry_slab);
2132}
2133