linux/fs/xfs/xfs_aops.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_mount.h"
  24#include "xfs_inode.h"
  25#include "xfs_trans.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_alloc.h"
  28#include "xfs_error.h"
  29#include "xfs_iomap.h"
  30#include "xfs_trace.h"
  31#include "xfs_bmap.h"
  32#include "xfs_bmap_util.h"
  33#include "xfs_bmap_btree.h"
  34#include <linux/gfp.h>
  35#include <linux/mpage.h>
  36#include <linux/pagevec.h>
  37#include <linux/writeback.h>
  38
  39void
  40xfs_count_page_state(
  41        struct page             *page,
  42        int                     *delalloc,
  43        int                     *unwritten)
  44{
  45        struct buffer_head      *bh, *head;
  46
  47        *delalloc = *unwritten = 0;
  48
  49        bh = head = page_buffers(page);
  50        do {
  51                if (buffer_unwritten(bh))
  52                        (*unwritten) = 1;
  53                else if (buffer_delay(bh))
  54                        (*delalloc) = 1;
  55        } while ((bh = bh->b_this_page) != head);
  56}
  57
  58STATIC struct block_device *
  59xfs_find_bdev_for_inode(
  60        struct inode            *inode)
  61{
  62        struct xfs_inode        *ip = XFS_I(inode);
  63        struct xfs_mount        *mp = ip->i_mount;
  64
  65        if (XFS_IS_REALTIME_INODE(ip))
  66                return mp->m_rtdev_targp->bt_bdev;
  67        else
  68                return mp->m_ddev_targp->bt_bdev;
  69}
  70
  71/*
  72 * We're now finished for good with this ioend structure.
  73 * Update the page state via the associated buffer_heads,
  74 * release holds on the inode and bio, and finally free
  75 * up memory.  Do not use the ioend after this.
  76 */
  77STATIC void
  78xfs_destroy_ioend(
  79        xfs_ioend_t             *ioend)
  80{
  81        struct buffer_head      *bh, *next;
  82
  83        for (bh = ioend->io_buffer_head; bh; bh = next) {
  84                next = bh->b_private;
  85                bh->b_end_io(bh, !ioend->io_error);
  86        }
  87
  88        mempool_free(ioend, xfs_ioend_pool);
  89}
  90
  91/*
  92 * Fast and loose check if this write could update the on-disk inode size.
  93 */
  94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
  95{
  96        return ioend->io_offset + ioend->io_size >
  97                XFS_I(ioend->io_inode)->i_d.di_size;
  98}
  99
 100STATIC int
 101xfs_setfilesize_trans_alloc(
 102        struct xfs_ioend        *ioend)
 103{
 104        struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
 105        struct xfs_trans        *tp;
 106        int                     error;
 107
 108        tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
 109
 110        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
 111        if (error) {
 112                xfs_trans_cancel(tp);
 113                return error;
 114        }
 115
 116        ioend->io_append_trans = tp;
 117
 118        /*
 119         * We may pass freeze protection with a transaction.  So tell lockdep
 120         * we released it.
 121         */
 122        __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 123        /*
 124         * We hand off the transaction to the completion thread now, so
 125         * clear the flag here.
 126         */
 127        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 128        return 0;
 129}
 130
 131/*
 132 * Update on-disk file size now that data has been written to disk.
 133 */
 134STATIC int
 135xfs_setfilesize(
 136        struct xfs_inode        *ip,
 137        struct xfs_trans        *tp,
 138        xfs_off_t               offset,
 139        size_t                  size)
 140{
 141        xfs_fsize_t             isize;
 142
 143        xfs_ilock(ip, XFS_ILOCK_EXCL);
 144        isize = xfs_new_eof(ip, offset + size);
 145        if (!isize) {
 146                xfs_iunlock(ip, XFS_ILOCK_EXCL);
 147                xfs_trans_cancel(tp);
 148                return 0;
 149        }
 150
 151        trace_xfs_setfilesize(ip, offset, size);
 152
 153        ip->i_d.di_size = isize;
 154        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 155        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 156
 157        return xfs_trans_commit(tp);
 158}
 159
 160STATIC int
 161xfs_setfilesize_ioend(
 162        struct xfs_ioend        *ioend)
 163{
 164        struct xfs_inode        *ip = XFS_I(ioend->io_inode);
 165        struct xfs_trans        *tp = ioend->io_append_trans;
 166
 167        /*
 168         * The transaction may have been allocated in the I/O submission thread,
 169         * thus we need to mark ourselves as being in a transaction manually.
 170         * Similarly for freeze protection.
 171         */
 172        current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 173        __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 174
 175        return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 176}
 177
 178/*
 179 * Schedule IO completion handling on the final put of an ioend.
 180 *
 181 * If there is no work to do we might as well call it a day and free the
 182 * ioend right now.
 183 */
 184STATIC void
 185xfs_finish_ioend(
 186        struct xfs_ioend        *ioend)
 187{
 188        if (atomic_dec_and_test(&ioend->io_remaining)) {
 189                struct xfs_mount        *mp = XFS_I(ioend->io_inode)->i_mount;
 190
 191                if (ioend->io_type == XFS_IO_UNWRITTEN)
 192                        queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 193                else if (ioend->io_append_trans)
 194                        queue_work(mp->m_data_workqueue, &ioend->io_work);
 195                else
 196                        xfs_destroy_ioend(ioend);
 197        }
 198}
 199
 200/*
 201 * IO write completion.
 202 */
 203STATIC void
 204xfs_end_io(
 205        struct work_struct *work)
 206{
 207        xfs_ioend_t     *ioend = container_of(work, xfs_ioend_t, io_work);
 208        struct xfs_inode *ip = XFS_I(ioend->io_inode);
 209        int             error = 0;
 210
 211        if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 212                ioend->io_error = -EIO;
 213                goto done;
 214        }
 215        if (ioend->io_error)
 216                goto done;
 217
 218        /*
 219         * For unwritten extents we need to issue transactions to convert a
 220         * range to normal written extens after the data I/O has finished.
 221         */
 222        if (ioend->io_type == XFS_IO_UNWRITTEN) {
 223                error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 224                                                  ioend->io_size);
 225        } else if (ioend->io_append_trans) {
 226                error = xfs_setfilesize_ioend(ioend);
 227        } else {
 228                ASSERT(!xfs_ioend_is_append(ioend));
 229        }
 230
 231done:
 232        if (error)
 233                ioend->io_error = error;
 234        xfs_destroy_ioend(ioend);
 235}
 236
 237/*
 238 * Allocate and initialise an IO completion structure.
 239 * We need to track unwritten extent write completion here initially.
 240 * We'll need to extend this for updating the ondisk inode size later
 241 * (vs. incore size).
 242 */
 243STATIC xfs_ioend_t *
 244xfs_alloc_ioend(
 245        struct inode            *inode,
 246        unsigned int            type)
 247{
 248        xfs_ioend_t             *ioend;
 249
 250        ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 251
 252        /*
 253         * Set the count to 1 initially, which will prevent an I/O
 254         * completion callback from happening before we have started
 255         * all the I/O from calling the completion routine too early.
 256         */
 257        atomic_set(&ioend->io_remaining, 1);
 258        ioend->io_error = 0;
 259        ioend->io_list = NULL;
 260        ioend->io_type = type;
 261        ioend->io_inode = inode;
 262        ioend->io_buffer_head = NULL;
 263        ioend->io_buffer_tail = NULL;
 264        ioend->io_offset = 0;
 265        ioend->io_size = 0;
 266        ioend->io_append_trans = NULL;
 267
 268        INIT_WORK(&ioend->io_work, xfs_end_io);
 269        return ioend;
 270}
 271
 272STATIC int
 273xfs_map_blocks(
 274        struct inode            *inode,
 275        loff_t                  offset,
 276        struct xfs_bmbt_irec    *imap,
 277        int                     type,
 278        int                     nonblocking)
 279{
 280        struct xfs_inode        *ip = XFS_I(inode);
 281        struct xfs_mount        *mp = ip->i_mount;
 282        ssize_t                 count = 1 << inode->i_blkbits;
 283        xfs_fileoff_t           offset_fsb, end_fsb;
 284        int                     error = 0;
 285        int                     bmapi_flags = XFS_BMAPI_ENTIRE;
 286        int                     nimaps = 1;
 287
 288        if (XFS_FORCED_SHUTDOWN(mp))
 289                return -EIO;
 290
 291        if (type == XFS_IO_UNWRITTEN)
 292                bmapi_flags |= XFS_BMAPI_IGSTATE;
 293
 294        if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 295                if (nonblocking)
 296                        return -EAGAIN;
 297                xfs_ilock(ip, XFS_ILOCK_SHARED);
 298        }
 299
 300        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 301               (ip->i_df.if_flags & XFS_IFEXTENTS));
 302        ASSERT(offset <= mp->m_super->s_maxbytes);
 303
 304        if (offset + count > mp->m_super->s_maxbytes)
 305                count = mp->m_super->s_maxbytes - offset;
 306        end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 307        offset_fsb = XFS_B_TO_FSBT(mp, offset);
 308        error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 309                                imap, &nimaps, bmapi_flags);
 310        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 311
 312        if (error)
 313                return error;
 314
 315        if (type == XFS_IO_DELALLOC &&
 316            (!nimaps || isnullstartblock(imap->br_startblock))) {
 317                error = xfs_iomap_write_allocate(ip, offset, imap);
 318                if (!error)
 319                        trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 320                return error;
 321        }
 322
 323#ifdef DEBUG
 324        if (type == XFS_IO_UNWRITTEN) {
 325                ASSERT(nimaps);
 326                ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 327                ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 328        }
 329#endif
 330        if (nimaps)
 331                trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 332        return 0;
 333}
 334
 335STATIC int
 336xfs_imap_valid(
 337        struct inode            *inode,
 338        struct xfs_bmbt_irec    *imap,
 339        xfs_off_t               offset)
 340{
 341        offset >>= inode->i_blkbits;
 342
 343        return offset >= imap->br_startoff &&
 344                offset < imap->br_startoff + imap->br_blockcount;
 345}
 346
 347/*
 348 * BIO completion handler for buffered IO.
 349 */
 350STATIC void
 351xfs_end_bio(
 352        struct bio              *bio)
 353{
 354        xfs_ioend_t             *ioend = bio->bi_private;
 355
 356        if (!ioend->io_error)
 357                ioend->io_error = bio->bi_error;
 358
 359        /* Toss bio and pass work off to an xfsdatad thread */
 360        bio->bi_private = NULL;
 361        bio->bi_end_io = NULL;
 362        bio_put(bio);
 363
 364        xfs_finish_ioend(ioend);
 365}
 366
 367STATIC void
 368xfs_submit_ioend_bio(
 369        struct writeback_control *wbc,
 370        xfs_ioend_t             *ioend,
 371        struct bio              *bio)
 372{
 373        atomic_inc(&ioend->io_remaining);
 374        bio->bi_private = ioend;
 375        bio->bi_end_io = xfs_end_bio;
 376        submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 377}
 378
 379STATIC struct bio *
 380xfs_alloc_ioend_bio(
 381        struct buffer_head      *bh)
 382{
 383        struct bio              *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
 384
 385        ASSERT(bio->bi_private == NULL);
 386        bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 387        bio->bi_bdev = bh->b_bdev;
 388        return bio;
 389}
 390
 391STATIC void
 392xfs_start_buffer_writeback(
 393        struct buffer_head      *bh)
 394{
 395        ASSERT(buffer_mapped(bh));
 396        ASSERT(buffer_locked(bh));
 397        ASSERT(!buffer_delay(bh));
 398        ASSERT(!buffer_unwritten(bh));
 399
 400        mark_buffer_async_write(bh);
 401        set_buffer_uptodate(bh);
 402        clear_buffer_dirty(bh);
 403}
 404
 405STATIC void
 406xfs_start_page_writeback(
 407        struct page             *page,
 408        int                     clear_dirty,
 409        int                     buffers)
 410{
 411        ASSERT(PageLocked(page));
 412        ASSERT(!PageWriteback(page));
 413
 414        /*
 415         * if the page was not fully cleaned, we need to ensure that the higher
 416         * layers come back to it correctly. That means we need to keep the page
 417         * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 418         * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 419         * write this page in this writeback sweep will be made.
 420         */
 421        if (clear_dirty) {
 422                clear_page_dirty_for_io(page);
 423                set_page_writeback(page);
 424        } else
 425                set_page_writeback_keepwrite(page);
 426
 427        unlock_page(page);
 428
 429        /* If no buffers on the page are to be written, finish it here */
 430        if (!buffers)
 431                end_page_writeback(page);
 432}
 433
 434static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 435{
 436        return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 437}
 438
 439/*
 440 * Submit all of the bios for all of the ioends we have saved up, covering the
 441 * initial writepage page and also any probed pages.
 442 *
 443 * Because we may have multiple ioends spanning a page, we need to start
 444 * writeback on all the buffers before we submit them for I/O. If we mark the
 445 * buffers as we got, then we can end up with a page that only has buffers
 446 * marked async write and I/O complete on can occur before we mark the other
 447 * buffers async write.
 448 *
 449 * The end result of this is that we trip a bug in end_page_writeback() because
 450 * we call it twice for the one page as the code in end_buffer_async_write()
 451 * assumes that all buffers on the page are started at the same time.
 452 *
 453 * The fix is two passes across the ioend list - one to start writeback on the
 454 * buffer_heads, and then submit them for I/O on the second pass.
 455 *
 456 * If @fail is non-zero, it means that we have a situation where some part of
 457 * the submission process has failed after we have marked paged for writeback
 458 * and unlocked them. In this situation, we need to fail the ioend chain rather
 459 * than submit it to IO. This typically only happens on a filesystem shutdown.
 460 */
 461STATIC void
 462xfs_submit_ioend(
 463        struct writeback_control *wbc,
 464        xfs_ioend_t             *ioend,
 465        int                     fail)
 466{
 467        xfs_ioend_t             *head = ioend;
 468        xfs_ioend_t             *next;
 469        struct buffer_head      *bh;
 470        struct bio              *bio;
 471        sector_t                lastblock = 0;
 472
 473        /* Pass 1 - start writeback */
 474        do {
 475                next = ioend->io_list;
 476                for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 477                        xfs_start_buffer_writeback(bh);
 478        } while ((ioend = next) != NULL);
 479
 480        /* Pass 2 - submit I/O */
 481        ioend = head;
 482        do {
 483                next = ioend->io_list;
 484                bio = NULL;
 485
 486                /*
 487                 * If we are failing the IO now, just mark the ioend with an
 488                 * error and finish it. This will run IO completion immediately
 489                 * as there is only one reference to the ioend at this point in
 490                 * time.
 491                 */
 492                if (fail) {
 493                        ioend->io_error = fail;
 494                        xfs_finish_ioend(ioend);
 495                        continue;
 496                }
 497
 498                for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 499
 500                        if (!bio) {
 501 retry:
 502                                bio = xfs_alloc_ioend_bio(bh);
 503                        } else if (bh->b_blocknr != lastblock + 1) {
 504                                xfs_submit_ioend_bio(wbc, ioend, bio);
 505                                goto retry;
 506                        }
 507
 508                        if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
 509                                xfs_submit_ioend_bio(wbc, ioend, bio);
 510                                goto retry;
 511                        }
 512
 513                        lastblock = bh->b_blocknr;
 514                }
 515                if (bio)
 516                        xfs_submit_ioend_bio(wbc, ioend, bio);
 517                xfs_finish_ioend(ioend);
 518        } while ((ioend = next) != NULL);
 519}
 520
 521/*
 522 * Cancel submission of all buffer_heads so far in this endio.
 523 * Toss the endio too.  Only ever called for the initial page
 524 * in a writepage request, so only ever one page.
 525 */
 526STATIC void
 527xfs_cancel_ioend(
 528        xfs_ioend_t             *ioend)
 529{
 530        xfs_ioend_t             *next;
 531        struct buffer_head      *bh, *next_bh;
 532
 533        do {
 534                next = ioend->io_list;
 535                bh = ioend->io_buffer_head;
 536                do {
 537                        next_bh = bh->b_private;
 538                        clear_buffer_async_write(bh);
 539                        /*
 540                         * The unwritten flag is cleared when added to the
 541                         * ioend. We're not submitting for I/O so mark the
 542                         * buffer unwritten again for next time around.
 543                         */
 544                        if (ioend->io_type == XFS_IO_UNWRITTEN)
 545                                set_buffer_unwritten(bh);
 546                        unlock_buffer(bh);
 547                } while ((bh = next_bh) != NULL);
 548
 549                mempool_free(ioend, xfs_ioend_pool);
 550        } while ((ioend = next) != NULL);
 551}
 552
 553/*
 554 * Test to see if we've been building up a completion structure for
 555 * earlier buffers -- if so, we try to append to this ioend if we
 556 * can, otherwise we finish off any current ioend and start another.
 557 * Return true if we've finished the given ioend.
 558 */
 559STATIC void
 560xfs_add_to_ioend(
 561        struct inode            *inode,
 562        struct buffer_head      *bh,
 563        xfs_off_t               offset,
 564        unsigned int            type,
 565        xfs_ioend_t             **result,
 566        int                     need_ioend)
 567{
 568        xfs_ioend_t             *ioend = *result;
 569
 570        if (!ioend || need_ioend || type != ioend->io_type) {
 571                xfs_ioend_t     *previous = *result;
 572
 573                ioend = xfs_alloc_ioend(inode, type);
 574                ioend->io_offset = offset;
 575                ioend->io_buffer_head = bh;
 576                ioend->io_buffer_tail = bh;
 577                if (previous)
 578                        previous->io_list = ioend;
 579                *result = ioend;
 580        } else {
 581                ioend->io_buffer_tail->b_private = bh;
 582                ioend->io_buffer_tail = bh;
 583        }
 584
 585        bh->b_private = NULL;
 586        ioend->io_size += bh->b_size;
 587}
 588
 589STATIC void
 590xfs_map_buffer(
 591        struct inode            *inode,
 592        struct buffer_head      *bh,
 593        struct xfs_bmbt_irec    *imap,
 594        xfs_off_t               offset)
 595{
 596        sector_t                bn;
 597        struct xfs_mount        *m = XFS_I(inode)->i_mount;
 598        xfs_off_t               iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 599        xfs_daddr_t             iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 600
 601        ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 602        ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 603
 604        bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 605              ((offset - iomap_offset) >> inode->i_blkbits);
 606
 607        ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 608
 609        bh->b_blocknr = bn;
 610        set_buffer_mapped(bh);
 611}
 612
 613STATIC void
 614xfs_map_at_offset(
 615        struct inode            *inode,
 616        struct buffer_head      *bh,
 617        struct xfs_bmbt_irec    *imap,
 618        xfs_off_t               offset)
 619{
 620        ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 621        ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 622
 623        xfs_map_buffer(inode, bh, imap, offset);
 624        set_buffer_mapped(bh);
 625        clear_buffer_delay(bh);
 626        clear_buffer_unwritten(bh);
 627}
 628
 629/*
 630 * Test if a given page contains at least one buffer of a given @type.
 631 * If @check_all_buffers is true, then we walk all the buffers in the page to
 632 * try to find one of the type passed in. If it is not set, then the caller only
 633 * needs to check the first buffer on the page for a match.
 634 */
 635STATIC bool
 636xfs_check_page_type(
 637        struct page             *page,
 638        unsigned int            type,
 639        bool                    check_all_buffers)
 640{
 641        struct buffer_head      *bh;
 642        struct buffer_head      *head;
 643
 644        if (PageWriteback(page))
 645                return false;
 646        if (!page->mapping)
 647                return false;
 648        if (!page_has_buffers(page))
 649                return false;
 650
 651        bh = head = page_buffers(page);
 652        do {
 653                if (buffer_unwritten(bh)) {
 654                        if (type == XFS_IO_UNWRITTEN)
 655                                return true;
 656                } else if (buffer_delay(bh)) {
 657                        if (type == XFS_IO_DELALLOC)
 658                                return true;
 659                } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 660                        if (type == XFS_IO_OVERWRITE)
 661                                return true;
 662                }
 663
 664                /* If we are only checking the first buffer, we are done now. */
 665                if (!check_all_buffers)
 666                        break;
 667        } while ((bh = bh->b_this_page) != head);
 668
 669        return false;
 670}
 671
 672/*
 673 * Allocate & map buffers for page given the extent map. Write it out.
 674 * except for the original page of a writepage, this is called on
 675 * delalloc/unwritten pages only, for the original page it is possible
 676 * that the page has no mapping at all.
 677 */
 678STATIC int
 679xfs_convert_page(
 680        struct inode            *inode,
 681        struct page             *page,
 682        loff_t                  tindex,
 683        struct xfs_bmbt_irec    *imap,
 684        xfs_ioend_t             **ioendp,
 685        struct writeback_control *wbc)
 686{
 687        struct buffer_head      *bh, *head;
 688        xfs_off_t               end_offset;
 689        unsigned long           p_offset;
 690        unsigned int            type;
 691        int                     len, page_dirty;
 692        int                     count = 0, done = 0, uptodate = 1;
 693        xfs_off_t               offset = page_offset(page);
 694
 695        if (page->index != tindex)
 696                goto fail;
 697        if (!trylock_page(page))
 698                goto fail;
 699        if (PageWriteback(page))
 700                goto fail_unlock_page;
 701        if (page->mapping != inode->i_mapping)
 702                goto fail_unlock_page;
 703        if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
 704                goto fail_unlock_page;
 705
 706        /*
 707         * page_dirty is initially a count of buffers on the page before
 708         * EOF and is decremented as we move each into a cleanable state.
 709         *
 710         * Derivation:
 711         *
 712         * End offset is the highest offset that this page should represent.
 713         * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 714         * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 715         * hence give us the correct page_dirty count. On any other page,
 716         * it will be zero and in that case we need page_dirty to be the
 717         * count of buffers on the page.
 718         */
 719        end_offset = min_t(unsigned long long,
 720                        (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 721                        i_size_read(inode));
 722
 723        /*
 724         * If the current map does not span the entire page we are about to try
 725         * to write, then give up. The only way we can write a page that spans
 726         * multiple mappings in a single writeback iteration is via the
 727         * xfs_vm_writepage() function. Data integrity writeback requires the
 728         * entire page to be written in a single attempt, otherwise the part of
 729         * the page we don't write here doesn't get written as part of the data
 730         * integrity sync.
 731         *
 732         * For normal writeback, we also don't attempt to write partial pages
 733         * here as it simply means that write_cache_pages() will see it under
 734         * writeback and ignore the page until some point in the future, at
 735         * which time this will be the only page in the file that needs
 736         * writeback.  Hence for more optimal IO patterns, we should always
 737         * avoid partial page writeback due to multiple mappings on a page here.
 738         */
 739        if (!xfs_imap_valid(inode, imap, end_offset))
 740                goto fail_unlock_page;
 741
 742        len = 1 << inode->i_blkbits;
 743        p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 744                                        PAGE_CACHE_SIZE);
 745        p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 746        page_dirty = p_offset / len;
 747
 748        /*
 749         * The moment we find a buffer that doesn't match our current type
 750         * specification or can't be written, abort the loop and start
 751         * writeback. As per the above xfs_imap_valid() check, only
 752         * xfs_vm_writepage() can handle partial page writeback fully - we are
 753         * limited here to the buffers that are contiguous with the current
 754         * ioend, and hence a buffer we can't write breaks that contiguity and
 755         * we have to defer the rest of the IO to xfs_vm_writepage().
 756         */
 757        bh = head = page_buffers(page);
 758        do {
 759                if (offset >= end_offset)
 760                        break;
 761                if (!buffer_uptodate(bh))
 762                        uptodate = 0;
 763                if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 764                        done = 1;
 765                        break;
 766                }
 767
 768                if (buffer_unwritten(bh) || buffer_delay(bh) ||
 769                    buffer_mapped(bh)) {
 770                        if (buffer_unwritten(bh))
 771                                type = XFS_IO_UNWRITTEN;
 772                        else if (buffer_delay(bh))
 773                                type = XFS_IO_DELALLOC;
 774                        else
 775                                type = XFS_IO_OVERWRITE;
 776
 777                        /*
 778                         * imap should always be valid because of the above
 779                         * partial page end_offset check on the imap.
 780                         */
 781                        ASSERT(xfs_imap_valid(inode, imap, offset));
 782
 783                        lock_buffer(bh);
 784                        if (type != XFS_IO_OVERWRITE)
 785                                xfs_map_at_offset(inode, bh, imap, offset);
 786                        xfs_add_to_ioend(inode, bh, offset, type,
 787                                         ioendp, done);
 788
 789                        page_dirty--;
 790                        count++;
 791                } else {
 792                        done = 1;
 793                        break;
 794                }
 795        } while (offset += len, (bh = bh->b_this_page) != head);
 796
 797        if (uptodate && bh == head)
 798                SetPageUptodate(page);
 799
 800        if (count) {
 801                if (--wbc->nr_to_write <= 0 &&
 802                    wbc->sync_mode == WB_SYNC_NONE)
 803                        done = 1;
 804        }
 805        xfs_start_page_writeback(page, !page_dirty, count);
 806
 807        return done;
 808 fail_unlock_page:
 809        unlock_page(page);
 810 fail:
 811        return 1;
 812}
 813
 814/*
 815 * Convert & write out a cluster of pages in the same extent as defined
 816 * by mp and following the start page.
 817 */
 818STATIC void
 819xfs_cluster_write(
 820        struct inode            *inode,
 821        pgoff_t                 tindex,
 822        struct xfs_bmbt_irec    *imap,
 823        xfs_ioend_t             **ioendp,
 824        struct writeback_control *wbc,
 825        pgoff_t                 tlast)
 826{
 827        struct pagevec          pvec;
 828        int                     done = 0, i;
 829
 830        pagevec_init(&pvec, 0);
 831        while (!done && tindex <= tlast) {
 832                unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 833
 834                if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 835                        break;
 836
 837                for (i = 0; i < pagevec_count(&pvec); i++) {
 838                        done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 839                                        imap, ioendp, wbc);
 840                        if (done)
 841                                break;
 842                }
 843
 844                pagevec_release(&pvec);
 845                cond_resched();
 846        }
 847}
 848
 849STATIC void
 850xfs_vm_invalidatepage(
 851        struct page             *page,
 852        unsigned int            offset,
 853        unsigned int            length)
 854{
 855        trace_xfs_invalidatepage(page->mapping->host, page, offset,
 856                                 length);
 857        block_invalidatepage(page, offset, length);
 858}
 859
 860/*
 861 * If the page has delalloc buffers on it, we need to punch them out before we
 862 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 863 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 864 * is done on that same region - the delalloc extent is returned when none is
 865 * supposed to be there.
 866 *
 867 * We prevent this by truncating away the delalloc regions on the page before
 868 * invalidating it. Because they are delalloc, we can do this without needing a
 869 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 870 * truncation without a transaction as there is no space left for block
 871 * reservation (typically why we see a ENOSPC in writeback).
 872 *
 873 * This is not a performance critical path, so for now just do the punching a
 874 * buffer head at a time.
 875 */
 876STATIC void
 877xfs_aops_discard_page(
 878        struct page             *page)
 879{
 880        struct inode            *inode = page->mapping->host;
 881        struct xfs_inode        *ip = XFS_I(inode);
 882        struct buffer_head      *bh, *head;
 883        loff_t                  offset = page_offset(page);
 884
 885        if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 886                goto out_invalidate;
 887
 888        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 889                goto out_invalidate;
 890
 891        xfs_alert(ip->i_mount,
 892                "page discard on page %p, inode 0x%llx, offset %llu.",
 893                        page, ip->i_ino, offset);
 894
 895        xfs_ilock(ip, XFS_ILOCK_EXCL);
 896        bh = head = page_buffers(page);
 897        do {
 898                int             error;
 899                xfs_fileoff_t   start_fsb;
 900
 901                if (!buffer_delay(bh))
 902                        goto next_buffer;
 903
 904                start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 905                error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 906                if (error) {
 907                        /* something screwed, just bail */
 908                        if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 909                                xfs_alert(ip->i_mount,
 910                        "page discard unable to remove delalloc mapping.");
 911                        }
 912                        break;
 913                }
 914next_buffer:
 915                offset += 1 << inode->i_blkbits;
 916
 917        } while ((bh = bh->b_this_page) != head);
 918
 919        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 920out_invalidate:
 921        xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 922        return;
 923}
 924
 925/*
 926 * Write out a dirty page.
 927 *
 928 * For delalloc space on the page we need to allocate space and flush it.
 929 * For unwritten space on the page we need to start the conversion to
 930 * regular allocated space.
 931 * For any other dirty buffer heads on the page we should flush them.
 932 */
 933STATIC int
 934xfs_vm_writepage(
 935        struct page             *page,
 936        struct writeback_control *wbc)
 937{
 938        struct inode            *inode = page->mapping->host;
 939        struct buffer_head      *bh, *head;
 940        struct xfs_bmbt_irec    imap;
 941        xfs_ioend_t             *ioend = NULL, *iohead = NULL;
 942        loff_t                  offset;
 943        unsigned int            type;
 944        __uint64_t              end_offset;
 945        pgoff_t                 end_index, last_index;
 946        ssize_t                 len;
 947        int                     err, imap_valid = 0, uptodate = 1;
 948        int                     count = 0;
 949        int                     nonblocking = 0;
 950
 951        trace_xfs_writepage(inode, page, 0, 0);
 952
 953        ASSERT(page_has_buffers(page));
 954
 955        /*
 956         * Refuse to write the page out if we are called from reclaim context.
 957         *
 958         * This avoids stack overflows when called from deeply used stacks in
 959         * random callers for direct reclaim or memcg reclaim.  We explicitly
 960         * allow reclaim from kswapd as the stack usage there is relatively low.
 961         *
 962         * This should never happen except in the case of a VM regression so
 963         * warn about it.
 964         */
 965        if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
 966                        PF_MEMALLOC))
 967                goto redirty;
 968
 969        /*
 970         * Given that we do not allow direct reclaim to call us, we should
 971         * never be called while in a filesystem transaction.
 972         */
 973        if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
 974                goto redirty;
 975
 976        /* Is this page beyond the end of the file? */
 977        offset = i_size_read(inode);
 978        end_index = offset >> PAGE_CACHE_SHIFT;
 979        last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 980
 981        /*
 982         * The page index is less than the end_index, adjust the end_offset
 983         * to the highest offset that this page should represent.
 984         * -----------------------------------------------------
 985         * |                    file mapping           | <EOF> |
 986         * -----------------------------------------------------
 987         * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
 988         * ^--------------------------------^----------|--------
 989         * |     desired writeback range    |      see else    |
 990         * ---------------------------------^------------------|
 991         */
 992        if (page->index < end_index)
 993                end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
 994        else {
 995                /*
 996                 * Check whether the page to write out is beyond or straddles
 997                 * i_size or not.
 998                 * -------------------------------------------------------
 999                 * |            file mapping                    | <EOF>  |
1000                 * -------------------------------------------------------
1001                 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1002                 * ^--------------------------------^-----------|---------
1003                 * |                                |      Straddles     |
1004                 * ---------------------------------^-----------|--------|
1005                 */
1006                unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1007
1008                /*
1009                 * Skip the page if it is fully outside i_size, e.g. due to a
1010                 * truncate operation that is in progress. We must redirty the
1011                 * page so that reclaim stops reclaiming it. Otherwise
1012                 * xfs_vm_releasepage() is called on it and gets confused.
1013                 *
1014                 * Note that the end_index is unsigned long, it would overflow
1015                 * if the given offset is greater than 16TB on 32-bit system
1016                 * and if we do check the page is fully outside i_size or not
1017                 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1018                 * will be evaluated to 0.  Hence this page will be redirtied
1019                 * and be written out repeatedly which would result in an
1020                 * infinite loop, the user program that perform this operation
1021                 * will hang.  Instead, we can verify this situation by checking
1022                 * if the page to write is totally beyond the i_size or if it's
1023                 * offset is just equal to the EOF.
1024                 */
1025                if (page->index > end_index ||
1026                    (page->index == end_index && offset_into_page == 0))
1027                        goto redirty;
1028
1029                /*
1030                 * The page straddles i_size.  It must be zeroed out on each
1031                 * and every writepage invocation because it may be mmapped.
1032                 * "A file is mapped in multiples of the page size.  For a file
1033                 * that is not a multiple of the page size, the remaining
1034                 * memory is zeroed when mapped, and writes to that region are
1035                 * not written out to the file."
1036                 */
1037                zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1038
1039                /* Adjust the end_offset to the end of file */
1040                end_offset = offset;
1041        }
1042
1043        len = 1 << inode->i_blkbits;
1044
1045        bh = head = page_buffers(page);
1046        offset = page_offset(page);
1047        type = XFS_IO_OVERWRITE;
1048
1049        if (wbc->sync_mode == WB_SYNC_NONE)
1050                nonblocking = 1;
1051
1052        do {
1053                int new_ioend = 0;
1054
1055                if (offset >= end_offset)
1056                        break;
1057                if (!buffer_uptodate(bh))
1058                        uptodate = 0;
1059
1060                /*
1061                 * set_page_dirty dirties all buffers in a page, independent
1062                 * of their state.  The dirty state however is entirely
1063                 * meaningless for holes (!mapped && uptodate), so skip
1064                 * buffers covering holes here.
1065                 */
1066                if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1067                        imap_valid = 0;
1068                        continue;
1069                }
1070
1071                if (buffer_unwritten(bh)) {
1072                        if (type != XFS_IO_UNWRITTEN) {
1073                                type = XFS_IO_UNWRITTEN;
1074                                imap_valid = 0;
1075                        }
1076                } else if (buffer_delay(bh)) {
1077                        if (type != XFS_IO_DELALLOC) {
1078                                type = XFS_IO_DELALLOC;
1079                                imap_valid = 0;
1080                        }
1081                } else if (buffer_uptodate(bh)) {
1082                        if (type != XFS_IO_OVERWRITE) {
1083                                type = XFS_IO_OVERWRITE;
1084                                imap_valid = 0;
1085                        }
1086                } else {
1087                        if (PageUptodate(page))
1088                                ASSERT(buffer_mapped(bh));
1089                        /*
1090                         * This buffer is not uptodate and will not be
1091                         * written to disk.  Ensure that we will put any
1092                         * subsequent writeable buffers into a new
1093                         * ioend.
1094                         */
1095                        imap_valid = 0;
1096                        continue;
1097                }
1098
1099                if (imap_valid)
1100                        imap_valid = xfs_imap_valid(inode, &imap, offset);
1101                if (!imap_valid) {
1102                        /*
1103                         * If we didn't have a valid mapping then we need to
1104                         * put the new mapping into a separate ioend structure.
1105                         * This ensures non-contiguous extents always have
1106                         * separate ioends, which is particularly important
1107                         * for unwritten extent conversion at I/O completion
1108                         * time.
1109                         */
1110                        new_ioend = 1;
1111                        err = xfs_map_blocks(inode, offset, &imap, type,
1112                                             nonblocking);
1113                        if (err)
1114                                goto error;
1115                        imap_valid = xfs_imap_valid(inode, &imap, offset);
1116                }
1117                if (imap_valid) {
1118                        lock_buffer(bh);
1119                        if (type != XFS_IO_OVERWRITE)
1120                                xfs_map_at_offset(inode, bh, &imap, offset);
1121                        xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1122                                         new_ioend);
1123                        count++;
1124                }
1125
1126                if (!iohead)
1127                        iohead = ioend;
1128
1129        } while (offset += len, ((bh = bh->b_this_page) != head));
1130
1131        if (uptodate && bh == head)
1132                SetPageUptodate(page);
1133
1134        xfs_start_page_writeback(page, 1, count);
1135
1136        /* if there is no IO to be submitted for this page, we are done */
1137        if (!ioend)
1138                return 0;
1139
1140        ASSERT(iohead);
1141
1142        /*
1143         * Any errors from this point onwards need tobe reported through the IO
1144         * completion path as we have marked the initial page as under writeback
1145         * and unlocked it.
1146         */
1147        if (imap_valid) {
1148                xfs_off_t               end_index;
1149
1150                end_index = imap.br_startoff + imap.br_blockcount;
1151
1152                /* to bytes */
1153                end_index <<= inode->i_blkbits;
1154
1155                /* to pages */
1156                end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1157
1158                /* check against file size */
1159                if (end_index > last_index)
1160                        end_index = last_index;
1161
1162                xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1163                                  wbc, end_index);
1164        }
1165
1166
1167        /*
1168         * Reserve log space if we might write beyond the on-disk inode size.
1169         */
1170        err = 0;
1171        if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1172                err = xfs_setfilesize_trans_alloc(ioend);
1173
1174        xfs_submit_ioend(wbc, iohead, err);
1175
1176        return 0;
1177
1178error:
1179        if (iohead)
1180                xfs_cancel_ioend(iohead);
1181
1182        if (err == -EAGAIN)
1183                goto redirty;
1184
1185        xfs_aops_discard_page(page);
1186        ClearPageUptodate(page);
1187        unlock_page(page);
1188        return err;
1189
1190redirty:
1191        redirty_page_for_writepage(wbc, page);
1192        unlock_page(page);
1193        return 0;
1194}
1195
1196STATIC int
1197xfs_vm_writepages(
1198        struct address_space    *mapping,
1199        struct writeback_control *wbc)
1200{
1201        xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1202        return generic_writepages(mapping, wbc);
1203}
1204
1205/*
1206 * Called to move a page into cleanable state - and from there
1207 * to be released. The page should already be clean. We always
1208 * have buffer heads in this call.
1209 *
1210 * Returns 1 if the page is ok to release, 0 otherwise.
1211 */
1212STATIC int
1213xfs_vm_releasepage(
1214        struct page             *page,
1215        gfp_t                   gfp_mask)
1216{
1217        int                     delalloc, unwritten;
1218
1219        trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1220
1221        xfs_count_page_state(page, &delalloc, &unwritten);
1222
1223        if (WARN_ON_ONCE(delalloc))
1224                return 0;
1225        if (WARN_ON_ONCE(unwritten))
1226                return 0;
1227
1228        return try_to_free_buffers(page);
1229}
1230
1231/*
1232 * When we map a DIO buffer, we may need to attach an ioend that describes the
1233 * type of write IO we are doing. This passes to the completion function the
1234 * operations it needs to perform. If the mapping is for an overwrite wholly
1235 * within the EOF then we don't need an ioend and so we don't allocate one.
1236 * This avoids the unnecessary overhead of allocating and freeing ioends for
1237 * workloads that don't require transactions on IO completion.
1238 *
1239 * If we get multiple mappings in a single IO, we might be mapping different
1240 * types. But because the direct IO can only have a single private pointer, we
1241 * need to ensure that:
1242 *
1243 * a) i) the ioend spans the entire region of unwritten mappings; or
1244 *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
1245 * b) if it contains unwritten extents, it is *permanently* marked as such
1246 *
1247 * We could do this by chaining ioends like buffered IO does, but we only
1248 * actually get one IO completion callback from the direct IO, and that spans
1249 * the entire IO regardless of how many mappings and IOs are needed to complete
1250 * the DIO. There is only going to be one reference to the ioend and its life
1251 * cycle is constrained by the DIO completion code. hence we don't need
1252 * reference counting here.
1253 */
1254static void
1255xfs_map_direct(
1256        struct inode            *inode,
1257        struct buffer_head      *bh_result,
1258        struct xfs_bmbt_irec    *imap,
1259        xfs_off_t               offset)
1260{
1261        struct xfs_ioend        *ioend;
1262        xfs_off_t               size = bh_result->b_size;
1263        int                     type;
1264
1265        if (ISUNWRITTEN(imap))
1266                type = XFS_IO_UNWRITTEN;
1267        else
1268                type = XFS_IO_OVERWRITE;
1269
1270        trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1271
1272        if (bh_result->b_private) {
1273                ioend = bh_result->b_private;
1274                ASSERT(ioend->io_size > 0);
1275                ASSERT(offset >= ioend->io_offset);
1276                if (offset + size > ioend->io_offset + ioend->io_size)
1277                        ioend->io_size = offset - ioend->io_offset + size;
1278
1279                if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1280                        ioend->io_type = XFS_IO_UNWRITTEN;
1281
1282                trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1283                                              ioend->io_size, ioend->io_type,
1284                                              imap);
1285        } else if (type == XFS_IO_UNWRITTEN ||
1286                   offset + size > i_size_read(inode)) {
1287                ioend = xfs_alloc_ioend(inode, type);
1288                ioend->io_offset = offset;
1289                ioend->io_size = size;
1290
1291                bh_result->b_private = ioend;
1292                set_buffer_defer_completion(bh_result);
1293
1294                trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1295                                           imap);
1296        } else {
1297                trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1298                                            imap);
1299        }
1300}
1301
1302/*
1303 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1304 * is, so that we can avoid repeated get_blocks calls.
1305 *
1306 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1307 * for blocks beyond EOF must be marked new so that sub block regions can be
1308 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1309 * was just allocated or is unwritten, otherwise the callers would overwrite
1310 * existing data with zeros. Hence we have to split the mapping into a range up
1311 * to and including EOF, and a second mapping for beyond EOF.
1312 */
1313static void
1314xfs_map_trim_size(
1315        struct inode            *inode,
1316        sector_t                iblock,
1317        struct buffer_head      *bh_result,
1318        struct xfs_bmbt_irec    *imap,
1319        xfs_off_t               offset,
1320        ssize_t                 size)
1321{
1322        xfs_off_t               mapping_size;
1323
1324        mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1325        mapping_size <<= inode->i_blkbits;
1326
1327        ASSERT(mapping_size > 0);
1328        if (mapping_size > size)
1329                mapping_size = size;
1330        if (offset < i_size_read(inode) &&
1331            offset + mapping_size >= i_size_read(inode)) {
1332                /* limit mapping to block that spans EOF */
1333                mapping_size = roundup_64(i_size_read(inode) - offset,
1334                                          1 << inode->i_blkbits);
1335        }
1336        if (mapping_size > LONG_MAX)
1337                mapping_size = LONG_MAX;
1338
1339        bh_result->b_size = mapping_size;
1340}
1341
1342STATIC int
1343__xfs_get_blocks(
1344        struct inode            *inode,
1345        sector_t                iblock,
1346        struct buffer_head      *bh_result,
1347        int                     create,
1348        bool                    direct)
1349{
1350        struct xfs_inode        *ip = XFS_I(inode);
1351        struct xfs_mount        *mp = ip->i_mount;
1352        xfs_fileoff_t           offset_fsb, end_fsb;
1353        int                     error = 0;
1354        int                     lockmode = 0;
1355        struct xfs_bmbt_irec    imap;
1356        int                     nimaps = 1;
1357        xfs_off_t               offset;
1358        ssize_t                 size;
1359        int                     new = 0;
1360
1361        if (XFS_FORCED_SHUTDOWN(mp))
1362                return -EIO;
1363
1364        offset = (xfs_off_t)iblock << inode->i_blkbits;
1365        ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1366        size = bh_result->b_size;
1367
1368        if (!create && direct && offset >= i_size_read(inode))
1369                return 0;
1370
1371        /*
1372         * Direct I/O is usually done on preallocated files, so try getting
1373         * a block mapping without an exclusive lock first.  For buffered
1374         * writes we already have the exclusive iolock anyway, so avoiding
1375         * a lock roundtrip here by taking the ilock exclusive from the
1376         * beginning is a useful micro optimization.
1377         */
1378        if (create && !direct) {
1379                lockmode = XFS_ILOCK_EXCL;
1380                xfs_ilock(ip, lockmode);
1381        } else {
1382                lockmode = xfs_ilock_data_map_shared(ip);
1383        }
1384
1385        ASSERT(offset <= mp->m_super->s_maxbytes);
1386        if (offset + size > mp->m_super->s_maxbytes)
1387                size = mp->m_super->s_maxbytes - offset;
1388        end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1389        offset_fsb = XFS_B_TO_FSBT(mp, offset);
1390
1391        error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1392                                &imap, &nimaps, XFS_BMAPI_ENTIRE);
1393        if (error)
1394                goto out_unlock;
1395
1396        if (create &&
1397            (!nimaps ||
1398             (imap.br_startblock == HOLESTARTBLOCK ||
1399              imap.br_startblock == DELAYSTARTBLOCK))) {
1400                if (direct || xfs_get_extsz_hint(ip)) {
1401                        /*
1402                         * Drop the ilock in preparation for starting the block
1403                         * allocation transaction.  It will be retaken
1404                         * exclusively inside xfs_iomap_write_direct for the
1405                         * actual allocation.
1406                         */
1407                        xfs_iunlock(ip, lockmode);
1408                        error = xfs_iomap_write_direct(ip, offset, size,
1409                                                       &imap, nimaps);
1410                        if (error)
1411                                return error;
1412                        new = 1;
1413
1414                } else {
1415                        /*
1416                         * Delalloc reservations do not require a transaction,
1417                         * we can go on without dropping the lock here. If we
1418                         * are allocating a new delalloc block, make sure that
1419                         * we set the new flag so that we mark the buffer new so
1420                         * that we know that it is newly allocated if the write
1421                         * fails.
1422                         */
1423                        if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1424                                new = 1;
1425                        error = xfs_iomap_write_delay(ip, offset, size, &imap);
1426                        if (error)
1427                                goto out_unlock;
1428
1429                        xfs_iunlock(ip, lockmode);
1430                }
1431                trace_xfs_get_blocks_alloc(ip, offset, size,
1432                                ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1433                                                   : XFS_IO_DELALLOC, &imap);
1434        } else if (nimaps) {
1435                trace_xfs_get_blocks_found(ip, offset, size,
1436                                ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1437                                                   : XFS_IO_OVERWRITE, &imap);
1438                xfs_iunlock(ip, lockmode);
1439        } else {
1440                trace_xfs_get_blocks_notfound(ip, offset, size);
1441                goto out_unlock;
1442        }
1443
1444        /* trim mapping down to size requested */
1445        if (direct || size > (1 << inode->i_blkbits))
1446                xfs_map_trim_size(inode, iblock, bh_result,
1447                                  &imap, offset, size);
1448
1449        /*
1450         * For unwritten extents do not report a disk address in the buffered
1451         * read case (treat as if we're reading into a hole).
1452         */
1453        if (imap.br_startblock != HOLESTARTBLOCK &&
1454            imap.br_startblock != DELAYSTARTBLOCK &&
1455            (create || !ISUNWRITTEN(&imap))) {
1456                xfs_map_buffer(inode, bh_result, &imap, offset);
1457                if (ISUNWRITTEN(&imap))
1458                        set_buffer_unwritten(bh_result);
1459                /* direct IO needs special help */
1460                if (create && direct)
1461                        xfs_map_direct(inode, bh_result, &imap, offset);
1462        }
1463
1464        /*
1465         * If this is a realtime file, data may be on a different device.
1466         * to that pointed to from the buffer_head b_bdev currently.
1467         */
1468        bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1469
1470        /*
1471         * If we previously allocated a block out beyond eof and we are now
1472         * coming back to use it then we will need to flag it as new even if it
1473         * has a disk address.
1474         *
1475         * With sub-block writes into unwritten extents we also need to mark
1476         * the buffer as new so that the unwritten parts of the buffer gets
1477         * correctly zeroed.
1478         */
1479        if (create &&
1480            ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1481             (offset >= i_size_read(inode)) ||
1482             (new || ISUNWRITTEN(&imap))))
1483                set_buffer_new(bh_result);
1484
1485        if (imap.br_startblock == DELAYSTARTBLOCK) {
1486                BUG_ON(direct);
1487                if (create) {
1488                        set_buffer_uptodate(bh_result);
1489                        set_buffer_mapped(bh_result);
1490                        set_buffer_delay(bh_result);
1491                }
1492        }
1493
1494        return 0;
1495
1496out_unlock:
1497        xfs_iunlock(ip, lockmode);
1498        return error;
1499}
1500
1501int
1502xfs_get_blocks(
1503        struct inode            *inode,
1504        sector_t                iblock,
1505        struct buffer_head      *bh_result,
1506        int                     create)
1507{
1508        return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1509}
1510
1511int
1512xfs_get_blocks_direct(
1513        struct inode            *inode,
1514        sector_t                iblock,
1515        struct buffer_head      *bh_result,
1516        int                     create)
1517{
1518        return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1519}
1520
1521static void
1522__xfs_end_io_direct_write(
1523        struct inode            *inode,
1524        struct xfs_ioend        *ioend,
1525        loff_t                  offset,
1526        ssize_t                 size)
1527{
1528        struct xfs_mount        *mp = XFS_I(inode)->i_mount;
1529
1530        if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1531                goto out_end_io;
1532
1533        /*
1534         * dio completion end_io functions are only called on writes if more
1535         * than 0 bytes was written.
1536         */
1537        ASSERT(size > 0);
1538
1539        /*
1540         * The ioend only maps whole blocks, while the IO may be sector aligned.
1541         * Hence the ioend offset/size may not match the IO offset/size exactly.
1542         * Because we don't map overwrites within EOF into the ioend, the offset
1543         * may not match, but only if the endio spans EOF.  Either way, write
1544         * the IO sizes into the ioend so that completion processing does the
1545         * right thing.
1546         */
1547        ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1548        ioend->io_size = size;
1549        ioend->io_offset = offset;
1550
1551        /*
1552         * The ioend tells us whether we are doing unwritten extent conversion
1553         * or an append transaction that updates the on-disk file size. These
1554         * cases are the only cases where we should *potentially* be needing
1555         * to update the VFS inode size.
1556         *
1557         * We need to update the in-core inode size here so that we don't end up
1558         * with the on-disk inode size being outside the in-core inode size. We
1559         * have no other method of updating EOF for AIO, so always do it here
1560         * if necessary.
1561         *
1562         * We need to lock the test/set EOF update as we can be racing with
1563         * other IO completions here to update the EOF. Failing to serialise
1564         * here can result in EOF moving backwards and Bad Things Happen when
1565         * that occurs.
1566         */
1567        spin_lock(&XFS_I(inode)->i_flags_lock);
1568        if (offset + size > i_size_read(inode))
1569                i_size_write(inode, offset + size);
1570        spin_unlock(&XFS_I(inode)->i_flags_lock);
1571
1572        /*
1573         * If we are doing an append IO that needs to update the EOF on disk,
1574         * do the transaction reserve now so we can use common end io
1575         * processing. Stashing the error (if there is one) in the ioend will
1576         * result in the ioend processing passing on the error if it is
1577         * possible as we can't return it from here.
1578         */
1579        if (ioend->io_type == XFS_IO_OVERWRITE)
1580                ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1581
1582out_end_io:
1583        xfs_end_io(&ioend->io_work);
1584        return;
1585}
1586
1587/*
1588 * Complete a direct I/O write request.
1589 *
1590 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1591 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1592 * wholly within the EOF and so there is nothing for us to do. Note that in this
1593 * case the completion can be called in interrupt context, whereas if we have an
1594 * ioend we will always be called in task context (i.e. from a workqueue).
1595 */
1596STATIC void
1597xfs_end_io_direct_write(
1598        struct kiocb            *iocb,
1599        loff_t                  offset,
1600        ssize_t                 size,
1601        void                    *private)
1602{
1603        struct inode            *inode = file_inode(iocb->ki_filp);
1604        struct xfs_ioend        *ioend = private;
1605
1606        trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1607                                     ioend ? ioend->io_type : 0, NULL);
1608
1609        if (!ioend) {
1610                ASSERT(offset + size <= i_size_read(inode));
1611                return;
1612        }
1613
1614        __xfs_end_io_direct_write(inode, ioend, offset, size);
1615}
1616
1617/*
1618 * For DAX we need a mapping buffer callback for unwritten extent conversion
1619 * when page faults allocate blocks and then zero them. Note that in this
1620 * case the mapping indicated by the ioend may extend beyond EOF. We most
1621 * definitely do not want to extend EOF here, so we trim back the ioend size to
1622 * EOF.
1623 */
1624#ifdef CONFIG_FS_DAX
1625void
1626xfs_end_io_dax_write(
1627        struct buffer_head      *bh,
1628        int                     uptodate)
1629{
1630        struct xfs_ioend        *ioend = bh->b_private;
1631        struct inode            *inode = ioend->io_inode;
1632        ssize_t                 size = ioend->io_size;
1633
1634        ASSERT(IS_DAX(ioend->io_inode));
1635
1636        /* if there was an error zeroing, then don't convert it */
1637        if (!uptodate)
1638                ioend->io_error = -EIO;
1639
1640        /*
1641         * Trim update to EOF, so we don't extend EOF during unwritten extent
1642         * conversion of partial EOF blocks.
1643         */
1644        spin_lock(&XFS_I(inode)->i_flags_lock);
1645        if (ioend->io_offset + size > i_size_read(inode))
1646                size = i_size_read(inode) - ioend->io_offset;
1647        spin_unlock(&XFS_I(inode)->i_flags_lock);
1648
1649        __xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1650
1651}
1652#else
1653void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1654#endif
1655
1656static inline ssize_t
1657xfs_vm_do_dio(
1658        struct inode            *inode,
1659        struct kiocb            *iocb,
1660        struct iov_iter         *iter,
1661        loff_t                  offset,
1662        void                    (*endio)(struct kiocb   *iocb,
1663                                         loff_t         offset,
1664                                         ssize_t        size,
1665                                         void           *private),
1666        int                     flags)
1667{
1668        struct block_device     *bdev;
1669
1670        if (IS_DAX(inode))
1671                return dax_do_io(iocb, inode, iter, offset,
1672                                 xfs_get_blocks_direct, endio, 0);
1673
1674        bdev = xfs_find_bdev_for_inode(inode);
1675        return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1676                                     xfs_get_blocks_direct, endio, NULL, flags);
1677}
1678
1679STATIC ssize_t
1680xfs_vm_direct_IO(
1681        struct kiocb            *iocb,
1682        struct iov_iter         *iter,
1683        loff_t                  offset)
1684{
1685        struct inode            *inode = iocb->ki_filp->f_mapping->host;
1686
1687        if (iov_iter_rw(iter) == WRITE)
1688                return xfs_vm_do_dio(inode, iocb, iter, offset,
1689                                     xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1690        return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1691}
1692
1693/*
1694 * Punch out the delalloc blocks we have already allocated.
1695 *
1696 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1697 * as the page is still locked at this point.
1698 */
1699STATIC void
1700xfs_vm_kill_delalloc_range(
1701        struct inode            *inode,
1702        loff_t                  start,
1703        loff_t                  end)
1704{
1705        struct xfs_inode        *ip = XFS_I(inode);
1706        xfs_fileoff_t           start_fsb;
1707        xfs_fileoff_t           end_fsb;
1708        int                     error;
1709
1710        start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1711        end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1712        if (end_fsb <= start_fsb)
1713                return;
1714
1715        xfs_ilock(ip, XFS_ILOCK_EXCL);
1716        error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1717                                                end_fsb - start_fsb);
1718        if (error) {
1719                /* something screwed, just bail */
1720                if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1721                        xfs_alert(ip->i_mount,
1722                "xfs_vm_write_failed: unable to clean up ino %lld",
1723                                        ip->i_ino);
1724                }
1725        }
1726        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1727}
1728
1729STATIC void
1730xfs_vm_write_failed(
1731        struct inode            *inode,
1732        struct page             *page,
1733        loff_t                  pos,
1734        unsigned                len)
1735{
1736        loff_t                  block_offset;
1737        loff_t                  block_start;
1738        loff_t                  block_end;
1739        loff_t                  from = pos & (PAGE_CACHE_SIZE - 1);
1740        loff_t                  to = from + len;
1741        struct buffer_head      *bh, *head;
1742
1743        /*
1744         * The request pos offset might be 32 or 64 bit, this is all fine
1745         * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1746         * platform, the high 32-bit will be masked off if we evaluate the
1747         * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1748         * 0xfffff000 as an unsigned long, hence the result is incorrect
1749         * which could cause the following ASSERT failed in most cases.
1750         * In order to avoid this, we can evaluate the block_offset of the
1751         * start of the page by using shifts rather than masks the mismatch
1752         * problem.
1753         */
1754        block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1755
1756        ASSERT(block_offset + from == pos);
1757
1758        head = page_buffers(page);
1759        block_start = 0;
1760        for (bh = head; bh != head || !block_start;
1761             bh = bh->b_this_page, block_start = block_end,
1762                                   block_offset += bh->b_size) {
1763                block_end = block_start + bh->b_size;
1764
1765                /* skip buffers before the write */
1766                if (block_end <= from)
1767                        continue;
1768
1769                /* if the buffer is after the write, we're done */
1770                if (block_start >= to)
1771                        break;
1772
1773                if (!buffer_delay(bh))
1774                        continue;
1775
1776                if (!buffer_new(bh) && block_offset < i_size_read(inode))
1777                        continue;
1778
1779                xfs_vm_kill_delalloc_range(inode, block_offset,
1780                                           block_offset + bh->b_size);
1781
1782                /*
1783                 * This buffer does not contain data anymore. make sure anyone
1784                 * who finds it knows that for certain.
1785                 */
1786                clear_buffer_delay(bh);
1787                clear_buffer_uptodate(bh);
1788                clear_buffer_mapped(bh);
1789                clear_buffer_new(bh);
1790                clear_buffer_dirty(bh);
1791        }
1792
1793}
1794
1795/*
1796 * This used to call block_write_begin(), but it unlocks and releases the page
1797 * on error, and we need that page to be able to punch stale delalloc blocks out
1798 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1799 * the appropriate point.
1800 */
1801STATIC int
1802xfs_vm_write_begin(
1803        struct file             *file,
1804        struct address_space    *mapping,
1805        loff_t                  pos,
1806        unsigned                len,
1807        unsigned                flags,
1808        struct page             **pagep,
1809        void                    **fsdata)
1810{
1811        pgoff_t                 index = pos >> PAGE_CACHE_SHIFT;
1812        struct page             *page;
1813        int                     status;
1814
1815        ASSERT(len <= PAGE_CACHE_SIZE);
1816
1817        page = grab_cache_page_write_begin(mapping, index, flags);
1818        if (!page)
1819                return -ENOMEM;
1820
1821        status = __block_write_begin(page, pos, len, xfs_get_blocks);
1822        if (unlikely(status)) {
1823                struct inode    *inode = mapping->host;
1824                size_t          isize = i_size_read(inode);
1825
1826                xfs_vm_write_failed(inode, page, pos, len);
1827                unlock_page(page);
1828
1829                /*
1830                 * If the write is beyond EOF, we only want to kill blocks
1831                 * allocated in this write, not blocks that were previously
1832                 * written successfully.
1833                 */
1834                if (pos + len > isize) {
1835                        ssize_t start = max_t(ssize_t, pos, isize);
1836
1837                        truncate_pagecache_range(inode, start, pos + len);
1838                }
1839
1840                page_cache_release(page);
1841                page = NULL;
1842        }
1843
1844        *pagep = page;
1845        return status;
1846}
1847
1848/*
1849 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1850 * this specific write because they will never be written. Previous writes
1851 * beyond EOF where block allocation succeeded do not need to be trashed, so
1852 * only new blocks from this write should be trashed. For blocks within
1853 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1854 * written with all the other valid data.
1855 */
1856STATIC int
1857xfs_vm_write_end(
1858        struct file             *file,
1859        struct address_space    *mapping,
1860        loff_t                  pos,
1861        unsigned                len,
1862        unsigned                copied,
1863        struct page             *page,
1864        void                    *fsdata)
1865{
1866        int                     ret;
1867
1868        ASSERT(len <= PAGE_CACHE_SIZE);
1869
1870        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1871        if (unlikely(ret < len)) {
1872                struct inode    *inode = mapping->host;
1873                size_t          isize = i_size_read(inode);
1874                loff_t          to = pos + len;
1875
1876                if (to > isize) {
1877                        /* only kill blocks in this write beyond EOF */
1878                        if (pos > isize)
1879                                isize = pos;
1880                        xfs_vm_kill_delalloc_range(inode, isize, to);
1881                        truncate_pagecache_range(inode, isize, to);
1882                }
1883        }
1884        return ret;
1885}
1886
1887STATIC sector_t
1888xfs_vm_bmap(
1889        struct address_space    *mapping,
1890        sector_t                block)
1891{
1892        struct inode            *inode = (struct inode *)mapping->host;
1893        struct xfs_inode        *ip = XFS_I(inode);
1894
1895        trace_xfs_vm_bmap(XFS_I(inode));
1896        xfs_ilock(ip, XFS_IOLOCK_SHARED);
1897        filemap_write_and_wait(mapping);
1898        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1899        return generic_block_bmap(mapping, block, xfs_get_blocks);
1900}
1901
1902STATIC int
1903xfs_vm_readpage(
1904        struct file             *unused,
1905        struct page             *page)
1906{
1907        return mpage_readpage(page, xfs_get_blocks);
1908}
1909
1910STATIC int
1911xfs_vm_readpages(
1912        struct file             *unused,
1913        struct address_space    *mapping,
1914        struct list_head        *pages,
1915        unsigned                nr_pages)
1916{
1917        return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1918}
1919
1920/*
1921 * This is basically a copy of __set_page_dirty_buffers() with one
1922 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1923 * dirty, we'll never be able to clean them because we don't write buffers
1924 * beyond EOF, and that means we can't invalidate pages that span EOF
1925 * that have been marked dirty. Further, the dirty state can leak into
1926 * the file interior if the file is extended, resulting in all sorts of
1927 * bad things happening as the state does not match the underlying data.
1928 *
1929 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1930 * this only exist because of bufferheads and how the generic code manages them.
1931 */
1932STATIC int
1933xfs_vm_set_page_dirty(
1934        struct page             *page)
1935{
1936        struct address_space    *mapping = page->mapping;
1937        struct inode            *inode = mapping->host;
1938        loff_t                  end_offset;
1939        loff_t                  offset;
1940        int                     newly_dirty;
1941        struct mem_cgroup       *memcg;
1942
1943        if (unlikely(!mapping))
1944                return !TestSetPageDirty(page);
1945
1946        end_offset = i_size_read(inode);
1947        offset = page_offset(page);
1948
1949        spin_lock(&mapping->private_lock);
1950        if (page_has_buffers(page)) {
1951                struct buffer_head *head = page_buffers(page);
1952                struct buffer_head *bh = head;
1953
1954                do {
1955                        if (offset < end_offset)
1956                                set_buffer_dirty(bh);
1957                        bh = bh->b_this_page;
1958                        offset += 1 << inode->i_blkbits;
1959                } while (bh != head);
1960        }
1961        /*
1962         * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1963         * per-memcg dirty page counters.
1964         */
1965        memcg = mem_cgroup_begin_page_stat(page);
1966        newly_dirty = !TestSetPageDirty(page);
1967        spin_unlock(&mapping->private_lock);
1968
1969        if (newly_dirty) {
1970                /* sigh - __set_page_dirty() is static, so copy it here, too */
1971                unsigned long flags;
1972
1973                spin_lock_irqsave(&mapping->tree_lock, flags);
1974                if (page->mapping) {    /* Race with truncate? */
1975                        WARN_ON_ONCE(!PageUptodate(page));
1976                        account_page_dirtied(page, mapping, memcg);
1977                        radix_tree_tag_set(&mapping->page_tree,
1978                                        page_index(page), PAGECACHE_TAG_DIRTY);
1979                }
1980                spin_unlock_irqrestore(&mapping->tree_lock, flags);
1981        }
1982        mem_cgroup_end_page_stat(memcg);
1983        if (newly_dirty)
1984                __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1985        return newly_dirty;
1986}
1987
1988const struct address_space_operations xfs_address_space_operations = {
1989        .readpage               = xfs_vm_readpage,
1990        .readpages              = xfs_vm_readpages,
1991        .writepage              = xfs_vm_writepage,
1992        .writepages             = xfs_vm_writepages,
1993        .set_page_dirty         = xfs_vm_set_page_dirty,
1994        .releasepage            = xfs_vm_releasepage,
1995        .invalidatepage         = xfs_vm_invalidatepage,
1996        .write_begin            = xfs_vm_write_begin,
1997        .write_end              = xfs_vm_write_end,
1998        .bmap                   = xfs_vm_bmap,
1999        .direct_IO              = xfs_vm_direct_IO,
2000        .migratepage            = buffer_migrate_page,
2001        .is_partially_uptodate  = block_is_partially_uptodate,
2002        .error_remove_page      = generic_error_remove_page,
2003};
2004