linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
  41#include "xfs_error.h"
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
  51
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define XFS_ITRUNC_MAX_EXTENTS  2
  59
  60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61
  62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69        struct xfs_inode        *ip)
  70{
  71        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72                return ip->i_d.di_extsize;
  73        if (XFS_IS_REALTIME_INODE(ip))
  74                return ip->i_mount->m_sb.sb_rextsize;
  75        return 0;
  76}
  77
  78/*
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95        struct xfs_inode        *ip)
  96{
  97        uint                    lock_mode = XFS_ILOCK_SHARED;
  98
  99        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101                lock_mode = XFS_ILOCK_EXCL;
 102        xfs_ilock(ip, lock_mode);
 103        return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108        struct xfs_inode        *ip)
 109{
 110        uint                    lock_mode = XFS_ILOCK_SHARED;
 111
 112        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 113            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114                lock_mode = XFS_ILOCK_EXCL;
 115        xfs_ilock(ip, lock_mode);
 116        return lock_mode;
 117}
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 149void
 150xfs_ilock(
 151        xfs_inode_t             *ip,
 152        uint                    lock_flags)
 153{
 154        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 155
 156        /*
 157         * You can't set both SHARED and EXCL for the same lock,
 158         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160         */
 161        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169        if (lock_flags & XFS_IOLOCK_EXCL)
 170                mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171        else if (lock_flags & XFS_IOLOCK_SHARED)
 172                mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 173
 174        if (lock_flags & XFS_MMAPLOCK_EXCL)
 175                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179        if (lock_flags & XFS_ILOCK_EXCL)
 180                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181        else if (lock_flags & XFS_ILOCK_SHARED)
 182                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *       of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199        xfs_inode_t             *ip,
 200        uint                    lock_flags)
 201{
 202        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 203
 204        /*
 205         * You can't set both SHARED and EXCL for the same lock,
 206         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208         */
 209        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217        if (lock_flags & XFS_IOLOCK_EXCL) {
 218                if (!mrtryupdate(&ip->i_iolock))
 219                        goto out;
 220        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 221                if (!mrtryaccess(&ip->i_iolock))
 222                        goto out;
 223        }
 224
 225        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226                if (!mrtryupdate(&ip->i_mmaplock))
 227                        goto out_undo_iolock;
 228        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229                if (!mrtryaccess(&ip->i_mmaplock))
 230                        goto out_undo_iolock;
 231        }
 232
 233        if (lock_flags & XFS_ILOCK_EXCL) {
 234                if (!mrtryupdate(&ip->i_lock))
 235                        goto out_undo_mmaplock;
 236        } else if (lock_flags & XFS_ILOCK_SHARED) {
 237                if (!mrtryaccess(&ip->i_lock))
 238                        goto out_undo_mmaplock;
 239        }
 240        return 1;
 241
 242out_undo_mmaplock:
 243        if (lock_flags & XFS_MMAPLOCK_EXCL)
 244                mrunlock_excl(&ip->i_mmaplock);
 245        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246                mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248        if (lock_flags & XFS_IOLOCK_EXCL)
 249                mrunlock_excl(&ip->i_iolock);
 250        else if (lock_flags & XFS_IOLOCK_SHARED)
 251                mrunlock_shared(&ip->i_iolock);
 252out:
 253        return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *       of valid values for this parameter.
 266 *
 267 */
 268void
 269xfs_iunlock(
 270        xfs_inode_t             *ip,
 271        uint                    lock_flags)
 272{
 273        /*
 274         * You can't set both SHARED and EXCL for the same lock,
 275         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277         */
 278        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285        ASSERT(lock_flags != 0);
 286
 287        if (lock_flags & XFS_IOLOCK_EXCL)
 288                mrunlock_excl(&ip->i_iolock);
 289        else if (lock_flags & XFS_IOLOCK_SHARED)
 290                mrunlock_shared(&ip->i_iolock);
 291
 292        if (lock_flags & XFS_MMAPLOCK_EXCL)
 293                mrunlock_excl(&ip->i_mmaplock);
 294        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295                mrunlock_shared(&ip->i_mmaplock);
 296
 297        if (lock_flags & XFS_ILOCK_EXCL)
 298                mrunlock_excl(&ip->i_lock);
 299        else if (lock_flags & XFS_ILOCK_SHARED)
 300                mrunlock_shared(&ip->i_lock);
 301
 302        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311        xfs_inode_t             *ip,
 312        uint                    lock_flags)
 313{
 314        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315        ASSERT((lock_flags &
 316                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318        if (lock_flags & XFS_ILOCK_EXCL)
 319                mrdemote(&ip->i_lock);
 320        if (lock_flags & XFS_MMAPLOCK_EXCL)
 321                mrdemote(&ip->i_mmaplock);
 322        if (lock_flags & XFS_IOLOCK_EXCL)
 323                mrdemote(&ip->i_iolock);
 324
 325        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331        xfs_inode_t             *ip,
 332        uint                    lock_flags)
 333{
 334        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335                if (!(lock_flags & XFS_ILOCK_SHARED))
 336                        return !!ip->i_lock.mr_writer;
 337                return rwsem_is_locked(&ip->i_lock.mr_lock);
 338        }
 339
 340        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342                        return !!ip->i_mmaplock.mr_writer;
 343                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344        }
 345
 346        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347                if (!(lock_flags & XFS_IOLOCK_SHARED))
 348                        return !!ip->i_iolock.mr_writer;
 349                return rwsem_is_locked(&ip->i_iolock.mr_lock);
 350        }
 351
 352        ASSERT(0);
 353        return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374        int subclass)
 375{
 376        return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)       (true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 390{
 391        int     class = 0;
 392
 393        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394                              XFS_ILOCK_RTSUM)));
 395        ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399                ASSERT(xfs_lockdep_subclass_ok(subclass +
 400                                                XFS_IOLOCK_PARENT_VAL));
 401                class += subclass << XFS_IOLOCK_SHIFT;
 402                if (lock_mode & XFS_IOLOCK_PARENT)
 403                        class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404        }
 405
 406        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408                class += subclass << XFS_MMAPLOCK_SHIFT;
 409        }
 410
 411        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413                class += subclass << XFS_ILOCK_SHIFT;
 414        }
 415
 416        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436        xfs_inode_t     **ips,
 437        int             inodes,
 438        uint            lock_mode)
 439{
 440        int             attempts = 0, i, j, try_lock;
 441        xfs_log_item_t  *lp;
 442
 443        /*
 444         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445         * support an arbitrary depth of locking here, but absolute limits on
 446         * inodes depend on the the type of locking and the limits placed by
 447         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448         * the asserts.
 449         */
 450        ASSERT(ips && inodes >= 2 && inodes <= 5);
 451        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452                            XFS_ILOCK_EXCL));
 453        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454                              XFS_ILOCK_SHARED)));
 455        ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456                inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462        if (lock_mode & XFS_IOLOCK_EXCL) {
 463                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467        try_lock = 0;
 468        i = 0;
 469again:
 470        for (; i < inodes; i++) {
 471                ASSERT(ips[i]);
 472
 473                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 474                        continue;
 475
 476                /*
 477                 * If try_lock is not set yet, make sure all locked inodes are
 478                 * not in the AIL.  If any are, set try_lock to be used later.
 479                 */
 480                if (!try_lock) {
 481                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483                                if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484                                        try_lock++;
 485                        }
 486                }
 487
 488                /*
 489                 * If any of the previous locks we have locked is in the AIL,
 490                 * we must TRY to get the second and subsequent locks. If
 491                 * we can't get any, we must release all we have
 492                 * and try again.
 493                 */
 494                if (!try_lock) {
 495                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496                        continue;
 497                }
 498
 499                /* try_lock means we have an inode locked that is in the AIL. */
 500                ASSERT(i != 0);
 501                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502                        continue;
 503
 504                /*
 505                 * Unlock all previous guys and try again.  xfs_iunlock will try
 506                 * to push the tail if the inode is in the AIL.
 507                 */
 508                attempts++;
 509                for (j = i - 1; j >= 0; j--) {
 510                        /*
 511                         * Check to see if we've already unlocked this one.  Not
 512                         * the first one going back, and the inode ptr is the
 513                         * same.
 514                         */
 515                        if (j != (i - 1) && ips[j] == ips[j + 1])
 516                                continue;
 517
 518                        xfs_iunlock(ips[j], lock_mode);
 519                }
 520
 521                if ((attempts % 5) == 0) {
 522                        delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524                        xfs_lock_delays++;
 525#endif
 526                }
 527                i = 0;
 528                try_lock = 0;
 529                goto again;
 530        }
 531
 532#ifdef DEBUG
 533        if (attempts) {
 534                if (attempts < 5) xfs_small_retries++;
 535                else if (attempts < 100) xfs_middle_retries++;
 536                else xfs_lots_retries++;
 537        } else {
 538                xfs_locked_n++;
 539        }
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 548 */
 549void
 550xfs_lock_two_inodes(
 551        xfs_inode_t             *ip0,
 552        xfs_inode_t             *ip1,
 553        uint                    lock_mode)
 554{
 555        xfs_inode_t             *temp;
 556        int                     attempts = 0;
 557        xfs_log_item_t          *lp;
 558
 559        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560                ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562        } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564
 565        ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567        if (ip0->i_ino > ip1->i_ino) {
 568                temp = ip0;
 569                ip0 = ip1;
 570                ip1 = temp;
 571        }
 572
 573 again:
 574        xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576        /*
 577         * If the first lock we have locked is in the AIL, we must TRY to get
 578         * the second lock. If we can't get it, we must release the first one
 579         * and try again.
 580         */
 581        lp = (xfs_log_item_t *)ip0->i_itemp;
 582        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584                        xfs_iunlock(ip0, lock_mode);
 585                        if ((++attempts % 5) == 0)
 586                                delay(1); /* Don't just spin the CPU */
 587                        goto again;
 588                }
 589        } else {
 590                xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591        }
 592}
 593
 594
 595void
 596__xfs_iflock(
 597        struct xfs_inode        *ip)
 598{
 599        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602        do {
 603                prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604                if (xfs_isiflocked(ip))
 605                        io_schedule();
 606        } while (!xfs_iflock_nowait(ip));
 607
 608        finish_wait(wq, &wait.wait);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613        __uint16_t              di_flags)
 614{
 615        uint                    flags = 0;
 616
 617        if (di_flags & XFS_DIFLAG_ANY) {
 618                if (di_flags & XFS_DIFLAG_REALTIME)
 619                        flags |= XFS_XFLAG_REALTIME;
 620                if (di_flags & XFS_DIFLAG_PREALLOC)
 621                        flags |= XFS_XFLAG_PREALLOC;
 622                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 623                        flags |= XFS_XFLAG_IMMUTABLE;
 624                if (di_flags & XFS_DIFLAG_APPEND)
 625                        flags |= XFS_XFLAG_APPEND;
 626                if (di_flags & XFS_DIFLAG_SYNC)
 627                        flags |= XFS_XFLAG_SYNC;
 628                if (di_flags & XFS_DIFLAG_NOATIME)
 629                        flags |= XFS_XFLAG_NOATIME;
 630                if (di_flags & XFS_DIFLAG_NODUMP)
 631                        flags |= XFS_XFLAG_NODUMP;
 632                if (di_flags & XFS_DIFLAG_RTINHERIT)
 633                        flags |= XFS_XFLAG_RTINHERIT;
 634                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 635                        flags |= XFS_XFLAG_PROJINHERIT;
 636                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 637                        flags |= XFS_XFLAG_NOSYMLINKS;
 638                if (di_flags & XFS_DIFLAG_EXTSIZE)
 639                        flags |= XFS_XFLAG_EXTSIZE;
 640                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 641                        flags |= XFS_XFLAG_EXTSZINHERIT;
 642                if (di_flags & XFS_DIFLAG_NODEFRAG)
 643                        flags |= XFS_XFLAG_NODEFRAG;
 644                if (di_flags & XFS_DIFLAG_FILESTREAM)
 645                        flags |= XFS_XFLAG_FILESTREAM;
 646        }
 647
 648        return flags;
 649}
 650
 651uint
 652xfs_ip2xflags(
 653        xfs_inode_t             *ip)
 654{
 655        xfs_icdinode_t          *dic = &ip->i_d;
 656
 657        return _xfs_dic2xflags(dic->di_flags) |
 658                                (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 659}
 660
 661uint
 662xfs_dic2xflags(
 663        xfs_dinode_t            *dip)
 664{
 665        return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 666                                (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 667}
 668
 669/*
 670 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 671 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 672 * ci_name->name will point to a the actual name (caller must free) or
 673 * will be set to NULL if an exact match is found.
 674 */
 675int
 676xfs_lookup(
 677        xfs_inode_t             *dp,
 678        struct xfs_name         *name,
 679        xfs_inode_t             **ipp,
 680        struct xfs_name         *ci_name)
 681{
 682        xfs_ino_t               inum;
 683        int                     error;
 684
 685        trace_xfs_lookup(dp, name);
 686
 687        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 688                return -EIO;
 689
 690        xfs_ilock(dp, XFS_IOLOCK_SHARED);
 691        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 692        if (error)
 693                goto out_unlock;
 694
 695        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 696        if (error)
 697                goto out_free_name;
 698
 699        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 700        return 0;
 701
 702out_free_name:
 703        if (ci_name)
 704                kmem_free(ci_name->name);
 705out_unlock:
 706        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 707        *ipp = NULL;
 708        return error;
 709}
 710
 711/*
 712 * Allocate an inode on disk and return a copy of its in-core version.
 713 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 714 * appropriately within the inode.  The uid and gid for the inode are
 715 * set according to the contents of the given cred structure.
 716 *
 717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 718 * has a free inode available, call xfs_iget() to obtain the in-core
 719 * version of the allocated inode.  Finally, fill in the inode and
 720 * log its initial contents.  In this case, ialloc_context would be
 721 * set to NULL.
 722 *
 723 * If xfs_dialloc() does not have an available inode, it will replenish
 724 * its supply by doing an allocation. Since we can only do one
 725 * allocation within a transaction without deadlocks, we must commit
 726 * the current transaction before returning the inode itself.
 727 * In this case, therefore, we will set ialloc_context and return.
 728 * The caller should then commit the current transaction, start a new
 729 * transaction, and call xfs_ialloc() again to actually get the inode.
 730 *
 731 * To ensure that some other process does not grab the inode that
 732 * was allocated during the first call to xfs_ialloc(), this routine
 733 * also returns the [locked] bp pointing to the head of the freelist
 734 * as ialloc_context.  The caller should hold this buffer across
 735 * the commit and pass it back into this routine on the second call.
 736 *
 737 * If we are allocating quota inodes, we do not have a parent inode
 738 * to attach to or associate with (i.e. pip == NULL) because they
 739 * are not linked into the directory structure - they are attached
 740 * directly to the superblock - and so have no parent.
 741 */
 742int
 743xfs_ialloc(
 744        xfs_trans_t     *tp,
 745        xfs_inode_t     *pip,
 746        umode_t         mode,
 747        xfs_nlink_t     nlink,
 748        xfs_dev_t       rdev,
 749        prid_t          prid,
 750        int             okalloc,
 751        xfs_buf_t       **ialloc_context,
 752        xfs_inode_t     **ipp)
 753{
 754        struct xfs_mount *mp = tp->t_mountp;
 755        xfs_ino_t       ino;
 756        xfs_inode_t     *ip;
 757        uint            flags;
 758        int             error;
 759        struct timespec tv;
 760
 761        /*
 762         * Call the space management code to pick
 763         * the on-disk inode to be allocated.
 764         */
 765        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 766                            ialloc_context, &ino);
 767        if (error)
 768                return error;
 769        if (*ialloc_context || ino == NULLFSINO) {
 770                *ipp = NULL;
 771                return 0;
 772        }
 773        ASSERT(*ialloc_context == NULL);
 774
 775        /*
 776         * Get the in-core inode with the lock held exclusively.
 777         * This is because we're setting fields here we need
 778         * to prevent others from looking at until we're done.
 779         */
 780        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 781                         XFS_ILOCK_EXCL, &ip);
 782        if (error)
 783                return error;
 784        ASSERT(ip != NULL);
 785
 786        /*
 787         * We always convert v1 inodes to v2 now - we only support filesystems
 788         * with >= v2 inode capability, so there is no reason for ever leaving
 789         * an inode in v1 format.
 790         */
 791        if (ip->i_d.di_version == 1)
 792                ip->i_d.di_version = 2;
 793
 794        ip->i_d.di_mode = mode;
 795        ip->i_d.di_onlink = 0;
 796        ip->i_d.di_nlink = nlink;
 797        ASSERT(ip->i_d.di_nlink == nlink);
 798        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 799        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 800        xfs_set_projid(ip, prid);
 801        memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 802
 803        if (pip && XFS_INHERIT_GID(pip)) {
 804                ip->i_d.di_gid = pip->i_d.di_gid;
 805                if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
 806                        ip->i_d.di_mode |= S_ISGID;
 807                }
 808        }
 809
 810        /*
 811         * If the group ID of the new file does not match the effective group
 812         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 813         * (and only if the irix_sgid_inherit compatibility variable is set).
 814         */
 815        if ((irix_sgid_inherit) &&
 816            (ip->i_d.di_mode & S_ISGID) &&
 817            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
 818                ip->i_d.di_mode &= ~S_ISGID;
 819        }
 820
 821        ip->i_d.di_size = 0;
 822        ip->i_d.di_nextents = 0;
 823        ASSERT(ip->i_d.di_nblocks == 0);
 824
 825        tv = current_fs_time(mp->m_super);
 826        ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
 827        ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
 828        ip->i_d.di_atime = ip->i_d.di_mtime;
 829        ip->i_d.di_ctime = ip->i_d.di_mtime;
 830
 831        /*
 832         * di_gen will have been taken care of in xfs_iread.
 833         */
 834        ip->i_d.di_extsize = 0;
 835        ip->i_d.di_dmevmask = 0;
 836        ip->i_d.di_dmstate = 0;
 837        ip->i_d.di_flags = 0;
 838
 839        if (ip->i_d.di_version == 3) {
 840                ASSERT(ip->i_d.di_ino == ino);
 841                ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid));
 842                ip->i_d.di_crc = 0;
 843                ip->i_d.di_changecount = 1;
 844                ip->i_d.di_lsn = 0;
 845                ip->i_d.di_flags2 = 0;
 846                memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
 847                ip->i_d.di_crtime = ip->i_d.di_mtime;
 848        }
 849
 850
 851        flags = XFS_ILOG_CORE;
 852        switch (mode & S_IFMT) {
 853        case S_IFIFO:
 854        case S_IFCHR:
 855        case S_IFBLK:
 856        case S_IFSOCK:
 857                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 858                ip->i_df.if_u2.if_rdev = rdev;
 859                ip->i_df.if_flags = 0;
 860                flags |= XFS_ILOG_DEV;
 861                break;
 862        case S_IFREG:
 863        case S_IFDIR:
 864                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 865                        uint    di_flags = 0;
 866
 867                        if (S_ISDIR(mode)) {
 868                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 869                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 870                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 871                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 872                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 873                                }
 874                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 875                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 876                        } else if (S_ISREG(mode)) {
 877                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 878                                        di_flags |= XFS_DIFLAG_REALTIME;
 879                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 880                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 881                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 882                                }
 883                        }
 884                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 885                            xfs_inherit_noatime)
 886                                di_flags |= XFS_DIFLAG_NOATIME;
 887                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 888                            xfs_inherit_nodump)
 889                                di_flags |= XFS_DIFLAG_NODUMP;
 890                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 891                            xfs_inherit_sync)
 892                                di_flags |= XFS_DIFLAG_SYNC;
 893                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 894                            xfs_inherit_nosymlinks)
 895                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 896                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 897                            xfs_inherit_nodefrag)
 898                                di_flags |= XFS_DIFLAG_NODEFRAG;
 899                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 900                                di_flags |= XFS_DIFLAG_FILESTREAM;
 901                        ip->i_d.di_flags |= di_flags;
 902                }
 903                /* FALLTHROUGH */
 904        case S_IFLNK:
 905                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 906                ip->i_df.if_flags = XFS_IFEXTENTS;
 907                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 908                ip->i_df.if_u1.if_extents = NULL;
 909                break;
 910        default:
 911                ASSERT(0);
 912        }
 913        /*
 914         * Attribute fork settings for new inode.
 915         */
 916        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 917        ip->i_d.di_anextents = 0;
 918
 919        /*
 920         * Log the new values stuffed into the inode.
 921         */
 922        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 923        xfs_trans_log_inode(tp, ip, flags);
 924
 925        /* now that we have an i_mode we can setup the inode structure */
 926        xfs_setup_inode(ip);
 927
 928        *ipp = ip;
 929        return 0;
 930}
 931
 932/*
 933 * Allocates a new inode from disk and return a pointer to the
 934 * incore copy. This routine will internally commit the current
 935 * transaction and allocate a new one if the Space Manager needed
 936 * to do an allocation to replenish the inode free-list.
 937 *
 938 * This routine is designed to be called from xfs_create and
 939 * xfs_create_dir.
 940 *
 941 */
 942int
 943xfs_dir_ialloc(
 944        xfs_trans_t     **tpp,          /* input: current transaction;
 945                                           output: may be a new transaction. */
 946        xfs_inode_t     *dp,            /* directory within whose allocate
 947                                           the inode. */
 948        umode_t         mode,
 949        xfs_nlink_t     nlink,
 950        xfs_dev_t       rdev,
 951        prid_t          prid,           /* project id */
 952        int             okalloc,        /* ok to allocate new space */
 953        xfs_inode_t     **ipp,          /* pointer to inode; it will be
 954                                           locked. */
 955        int             *committed)
 956
 957{
 958        xfs_trans_t     *tp;
 959        xfs_inode_t     *ip;
 960        xfs_buf_t       *ialloc_context = NULL;
 961        int             code;
 962        void            *dqinfo;
 963        uint            tflags;
 964
 965        tp = *tpp;
 966        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 967
 968        /*
 969         * xfs_ialloc will return a pointer to an incore inode if
 970         * the Space Manager has an available inode on the free
 971         * list. Otherwise, it will do an allocation and replenish
 972         * the freelist.  Since we can only do one allocation per
 973         * transaction without deadlocks, we will need to commit the
 974         * current transaction and start a new one.  We will then
 975         * need to call xfs_ialloc again to get the inode.
 976         *
 977         * If xfs_ialloc did an allocation to replenish the freelist,
 978         * it returns the bp containing the head of the freelist as
 979         * ialloc_context. We will hold a lock on it across the
 980         * transaction commit so that no other process can steal
 981         * the inode(s) that we've just allocated.
 982         */
 983        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 984                          &ialloc_context, &ip);
 985
 986        /*
 987         * Return an error if we were unable to allocate a new inode.
 988         * This should only happen if we run out of space on disk or
 989         * encounter a disk error.
 990         */
 991        if (code) {
 992                *ipp = NULL;
 993                return code;
 994        }
 995        if (!ialloc_context && !ip) {
 996                *ipp = NULL;
 997                return -ENOSPC;
 998        }
 999
1000        /*
1001         * If the AGI buffer is non-NULL, then we were unable to get an
1002         * inode in one operation.  We need to commit the current
1003         * transaction and call xfs_ialloc() again.  It is guaranteed
1004         * to succeed the second time.
1005         */
1006        if (ialloc_context) {
1007                /*
1008                 * Normally, xfs_trans_commit releases all the locks.
1009                 * We call bhold to hang on to the ialloc_context across
1010                 * the commit.  Holding this buffer prevents any other
1011                 * processes from doing any allocations in this
1012                 * allocation group.
1013                 */
1014                xfs_trans_bhold(tp, ialloc_context);
1015
1016                /*
1017                 * We want the quota changes to be associated with the next
1018                 * transaction, NOT this one. So, detach the dqinfo from this
1019                 * and attach it to the next transaction.
1020                 */
1021                dqinfo = NULL;
1022                tflags = 0;
1023                if (tp->t_dqinfo) {
1024                        dqinfo = (void *)tp->t_dqinfo;
1025                        tp->t_dqinfo = NULL;
1026                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1027                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1028                }
1029
1030                code = xfs_trans_roll(&tp, 0);
1031                if (committed != NULL)
1032                        *committed = 1;
1033
1034                /*
1035                 * Re-attach the quota info that we detached from prev trx.
1036                 */
1037                if (dqinfo) {
1038                        tp->t_dqinfo = dqinfo;
1039                        tp->t_flags |= tflags;
1040                }
1041
1042                if (code) {
1043                        xfs_buf_relse(ialloc_context);
1044                        *tpp = tp;
1045                        *ipp = NULL;
1046                        return code;
1047                }
1048                xfs_trans_bjoin(tp, ialloc_context);
1049
1050                /*
1051                 * Call ialloc again. Since we've locked out all
1052                 * other allocations in this allocation group,
1053                 * this call should always succeed.
1054                 */
1055                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1056                                  okalloc, &ialloc_context, &ip);
1057
1058                /*
1059                 * If we get an error at this point, return to the caller
1060                 * so that the current transaction can be aborted.
1061                 */
1062                if (code) {
1063                        *tpp = tp;
1064                        *ipp = NULL;
1065                        return code;
1066                }
1067                ASSERT(!ialloc_context && ip);
1068
1069        } else {
1070                if (committed != NULL)
1071                        *committed = 0;
1072        }
1073
1074        *ipp = ip;
1075        *tpp = tp;
1076
1077        return 0;
1078}
1079
1080/*
1081 * Decrement the link count on an inode & log the change.
1082 * If this causes the link count to go to zero, initiate the
1083 * logging activity required to truncate a file.
1084 */
1085int                             /* error */
1086xfs_droplink(
1087        xfs_trans_t *tp,
1088        xfs_inode_t *ip)
1089{
1090        int     error;
1091
1092        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1093
1094        ASSERT (ip->i_d.di_nlink > 0);
1095        ip->i_d.di_nlink--;
1096        drop_nlink(VFS_I(ip));
1097        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1098
1099        error = 0;
1100        if (ip->i_d.di_nlink == 0) {
1101                /*
1102                 * We're dropping the last link to this file.
1103                 * Move the on-disk inode to the AGI unlinked list.
1104                 * From xfs_inactive() we will pull the inode from
1105                 * the list and free it.
1106                 */
1107                error = xfs_iunlink(tp, ip);
1108        }
1109        return error;
1110}
1111
1112/*
1113 * Increment the link count on an inode & log the change.
1114 */
1115int
1116xfs_bumplink(
1117        xfs_trans_t *tp,
1118        xfs_inode_t *ip)
1119{
1120        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1121
1122        ASSERT(ip->i_d.di_version > 1);
1123        ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1124        ip->i_d.di_nlink++;
1125        inc_nlink(VFS_I(ip));
1126        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1127        return 0;
1128}
1129
1130int
1131xfs_create(
1132        xfs_inode_t             *dp,
1133        struct xfs_name         *name,
1134        umode_t                 mode,
1135        xfs_dev_t               rdev,
1136        xfs_inode_t             **ipp)
1137{
1138        int                     is_dir = S_ISDIR(mode);
1139        struct xfs_mount        *mp = dp->i_mount;
1140        struct xfs_inode        *ip = NULL;
1141        struct xfs_trans        *tp = NULL;
1142        int                     error;
1143        xfs_bmap_free_t         free_list;
1144        xfs_fsblock_t           first_block;
1145        bool                    unlock_dp_on_error = false;
1146        int                     committed;
1147        prid_t                  prid;
1148        struct xfs_dquot        *udqp = NULL;
1149        struct xfs_dquot        *gdqp = NULL;
1150        struct xfs_dquot        *pdqp = NULL;
1151        struct xfs_trans_res    *tres;
1152        uint                    resblks;
1153
1154        trace_xfs_create(dp, name);
1155
1156        if (XFS_FORCED_SHUTDOWN(mp))
1157                return -EIO;
1158
1159        prid = xfs_get_initial_prid(dp);
1160
1161        /*
1162         * Make sure that we have allocated dquot(s) on disk.
1163         */
1164        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1165                                        xfs_kgid_to_gid(current_fsgid()), prid,
1166                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1167                                        &udqp, &gdqp, &pdqp);
1168        if (error)
1169                return error;
1170
1171        if (is_dir) {
1172                rdev = 0;
1173                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174                tres = &M_RES(mp)->tr_mkdir;
1175                tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1176        } else {
1177                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1178                tres = &M_RES(mp)->tr_create;
1179                tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1180        }
1181
1182        /*
1183         * Initially assume that the file does not exist and
1184         * reserve the resources for that case.  If that is not
1185         * the case we'll drop the one we have and get a more
1186         * appropriate transaction later.
1187         */
1188        error = xfs_trans_reserve(tp, tres, resblks, 0);
1189        if (error == -ENOSPC) {
1190                /* flush outstanding delalloc blocks and retry */
1191                xfs_flush_inodes(mp);
1192                error = xfs_trans_reserve(tp, tres, resblks, 0);
1193        }
1194        if (error == -ENOSPC) {
1195                /* No space at all so try a "no-allocation" reservation */
1196                resblks = 0;
1197                error = xfs_trans_reserve(tp, tres, 0, 0);
1198        }
1199        if (error)
1200                goto out_trans_cancel;
1201
1202
1203        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1204                      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1205        unlock_dp_on_error = true;
1206
1207        xfs_bmap_init(&free_list, &first_block);
1208
1209        /*
1210         * Reserve disk quota and the inode.
1211         */
1212        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1213                                                pdqp, resblks, 1, 0);
1214        if (error)
1215                goto out_trans_cancel;
1216
1217        if (!resblks) {
1218                error = xfs_dir_canenter(tp, dp, name);
1219                if (error)
1220                        goto out_trans_cancel;
1221        }
1222
1223        /*
1224         * A newly created regular or special file just has one directory
1225         * entry pointing to them, but a directory also the "." entry
1226         * pointing to itself.
1227         */
1228        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1229                               prid, resblks > 0, &ip, &committed);
1230        if (error)
1231                goto out_trans_cancel;
1232
1233        /*
1234         * Now we join the directory inode to the transaction.  We do not do it
1235         * earlier because xfs_dir_ialloc might commit the previous transaction
1236         * (and release all the locks).  An error from here on will result in
1237         * the transaction cancel unlocking dp so don't do it explicitly in the
1238         * error path.
1239         */
1240        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1241        unlock_dp_on_error = false;
1242
1243        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1244                                        &first_block, &free_list, resblks ?
1245                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1246        if (error) {
1247                ASSERT(error != -ENOSPC);
1248                goto out_trans_cancel;
1249        }
1250        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1251        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1252
1253        if (is_dir) {
1254                error = xfs_dir_init(tp, ip, dp);
1255                if (error)
1256                        goto out_bmap_cancel;
1257
1258                error = xfs_bumplink(tp, dp);
1259                if (error)
1260                        goto out_bmap_cancel;
1261        }
1262
1263        /*
1264         * If this is a synchronous mount, make sure that the
1265         * create transaction goes to disk before returning to
1266         * the user.
1267         */
1268        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1269                xfs_trans_set_sync(tp);
1270
1271        /*
1272         * Attach the dquot(s) to the inodes and modify them incore.
1273         * These ids of the inode couldn't have changed since the new
1274         * inode has been locked ever since it was created.
1275         */
1276        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1277
1278        error = xfs_bmap_finish(&tp, &free_list, &committed);
1279        if (error)
1280                goto out_bmap_cancel;
1281
1282        error = xfs_trans_commit(tp);
1283        if (error)
1284                goto out_release_inode;
1285
1286        xfs_qm_dqrele(udqp);
1287        xfs_qm_dqrele(gdqp);
1288        xfs_qm_dqrele(pdqp);
1289
1290        *ipp = ip;
1291        return 0;
1292
1293 out_bmap_cancel:
1294        xfs_bmap_cancel(&free_list);
1295 out_trans_cancel:
1296        xfs_trans_cancel(tp);
1297 out_release_inode:
1298        /*
1299         * Wait until after the current transaction is aborted to finish the
1300         * setup of the inode and release the inode.  This prevents recursive
1301         * transactions and deadlocks from xfs_inactive.
1302         */
1303        if (ip) {
1304                xfs_finish_inode_setup(ip);
1305                IRELE(ip);
1306        }
1307
1308        xfs_qm_dqrele(udqp);
1309        xfs_qm_dqrele(gdqp);
1310        xfs_qm_dqrele(pdqp);
1311
1312        if (unlock_dp_on_error)
1313                xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1314        return error;
1315}
1316
1317int
1318xfs_create_tmpfile(
1319        struct xfs_inode        *dp,
1320        struct dentry           *dentry,
1321        umode_t                 mode,
1322        struct xfs_inode        **ipp)
1323{
1324        struct xfs_mount        *mp = dp->i_mount;
1325        struct xfs_inode        *ip = NULL;
1326        struct xfs_trans        *tp = NULL;
1327        int                     error;
1328        prid_t                  prid;
1329        struct xfs_dquot        *udqp = NULL;
1330        struct xfs_dquot        *gdqp = NULL;
1331        struct xfs_dquot        *pdqp = NULL;
1332        struct xfs_trans_res    *tres;
1333        uint                    resblks;
1334
1335        if (XFS_FORCED_SHUTDOWN(mp))
1336                return -EIO;
1337
1338        prid = xfs_get_initial_prid(dp);
1339
1340        /*
1341         * Make sure that we have allocated dquot(s) on disk.
1342         */
1343        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1344                                xfs_kgid_to_gid(current_fsgid()), prid,
1345                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1346                                &udqp, &gdqp, &pdqp);
1347        if (error)
1348                return error;
1349
1350        resblks = XFS_IALLOC_SPACE_RES(mp);
1351        tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1352
1353        tres = &M_RES(mp)->tr_create_tmpfile;
1354        error = xfs_trans_reserve(tp, tres, resblks, 0);
1355        if (error == -ENOSPC) {
1356                /* No space at all so try a "no-allocation" reservation */
1357                resblks = 0;
1358                error = xfs_trans_reserve(tp, tres, 0, 0);
1359        }
1360        if (error)
1361                goto out_trans_cancel;
1362
1363        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1364                                                pdqp, resblks, 1, 0);
1365        if (error)
1366                goto out_trans_cancel;
1367
1368        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1369                                prid, resblks > 0, &ip, NULL);
1370        if (error)
1371                goto out_trans_cancel;
1372
1373        if (mp->m_flags & XFS_MOUNT_WSYNC)
1374                xfs_trans_set_sync(tp);
1375
1376        /*
1377         * Attach the dquot(s) to the inodes and modify them incore.
1378         * These ids of the inode couldn't have changed since the new
1379         * inode has been locked ever since it was created.
1380         */
1381        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1382
1383        ip->i_d.di_nlink--;
1384        error = xfs_iunlink(tp, ip);
1385        if (error)
1386                goto out_trans_cancel;
1387
1388        error = xfs_trans_commit(tp);
1389        if (error)
1390                goto out_release_inode;
1391
1392        xfs_qm_dqrele(udqp);
1393        xfs_qm_dqrele(gdqp);
1394        xfs_qm_dqrele(pdqp);
1395
1396        *ipp = ip;
1397        return 0;
1398
1399 out_trans_cancel:
1400        xfs_trans_cancel(tp);
1401 out_release_inode:
1402        /*
1403         * Wait until after the current transaction is aborted to finish the
1404         * setup of the inode and release the inode.  This prevents recursive
1405         * transactions and deadlocks from xfs_inactive.
1406         */
1407        if (ip) {
1408                xfs_finish_inode_setup(ip);
1409                IRELE(ip);
1410        }
1411
1412        xfs_qm_dqrele(udqp);
1413        xfs_qm_dqrele(gdqp);
1414        xfs_qm_dqrele(pdqp);
1415
1416        return error;
1417}
1418
1419int
1420xfs_link(
1421        xfs_inode_t             *tdp,
1422        xfs_inode_t             *sip,
1423        struct xfs_name         *target_name)
1424{
1425        xfs_mount_t             *mp = tdp->i_mount;
1426        xfs_trans_t             *tp;
1427        int                     error;
1428        xfs_bmap_free_t         free_list;
1429        xfs_fsblock_t           first_block;
1430        int                     committed;
1431        int                     resblks;
1432
1433        trace_xfs_link(tdp, target_name);
1434
1435        ASSERT(!S_ISDIR(sip->i_d.di_mode));
1436
1437        if (XFS_FORCED_SHUTDOWN(mp))
1438                return -EIO;
1439
1440        error = xfs_qm_dqattach(sip, 0);
1441        if (error)
1442                goto std_return;
1443
1444        error = xfs_qm_dqattach(tdp, 0);
1445        if (error)
1446                goto std_return;
1447
1448        tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1449        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1450        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1451        if (error == -ENOSPC) {
1452                resblks = 0;
1453                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1454        }
1455        if (error)
1456                goto error_return;
1457
1458        xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1459        xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1460
1461        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1462        xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1463
1464        /*
1465         * If we are using project inheritance, we only allow hard link
1466         * creation in our tree when the project IDs are the same; else
1467         * the tree quota mechanism could be circumvented.
1468         */
1469        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1470                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1471                error = -EXDEV;
1472                goto error_return;
1473        }
1474
1475        if (!resblks) {
1476                error = xfs_dir_canenter(tp, tdp, target_name);
1477                if (error)
1478                        goto error_return;
1479        }
1480
1481        xfs_bmap_init(&free_list, &first_block);
1482
1483        if (sip->i_d.di_nlink == 0) {
1484                error = xfs_iunlink_remove(tp, sip);
1485                if (error)
1486                        goto error_return;
1487        }
1488
1489        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1490                                        &first_block, &free_list, resblks);
1491        if (error)
1492                goto error_return;
1493        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1494        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1495
1496        error = xfs_bumplink(tp, sip);
1497        if (error)
1498                goto error_return;
1499
1500        /*
1501         * If this is a synchronous mount, make sure that the
1502         * link transaction goes to disk before returning to
1503         * the user.
1504         */
1505        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1506                xfs_trans_set_sync(tp);
1507        }
1508
1509        error = xfs_bmap_finish (&tp, &free_list, &committed);
1510        if (error) {
1511                xfs_bmap_cancel(&free_list);
1512                goto error_return;
1513        }
1514
1515        return xfs_trans_commit(tp);
1516
1517 error_return:
1518        xfs_trans_cancel(tp);
1519 std_return:
1520        return error;
1521}
1522
1523/*
1524 * Free up the underlying blocks past new_size.  The new size must be smaller
1525 * than the current size.  This routine can be used both for the attribute and
1526 * data fork, and does not modify the inode size, which is left to the caller.
1527 *
1528 * The transaction passed to this routine must have made a permanent log
1529 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1530 * given transaction and start new ones, so make sure everything involved in
1531 * the transaction is tidy before calling here.  Some transaction will be
1532 * returned to the caller to be committed.  The incoming transaction must
1533 * already include the inode, and both inode locks must be held exclusively.
1534 * The inode must also be "held" within the transaction.  On return the inode
1535 * will be "held" within the returned transaction.  This routine does NOT
1536 * require any disk space to be reserved for it within the transaction.
1537 *
1538 * If we get an error, we must return with the inode locked and linked into the
1539 * current transaction. This keeps things simple for the higher level code,
1540 * because it always knows that the inode is locked and held in the transaction
1541 * that returns to it whether errors occur or not.  We don't mark the inode
1542 * dirty on error so that transactions can be easily aborted if possible.
1543 */
1544int
1545xfs_itruncate_extents(
1546        struct xfs_trans        **tpp,
1547        struct xfs_inode        *ip,
1548        int                     whichfork,
1549        xfs_fsize_t             new_size)
1550{
1551        struct xfs_mount        *mp = ip->i_mount;
1552        struct xfs_trans        *tp = *tpp;
1553        xfs_bmap_free_t         free_list;
1554        xfs_fsblock_t           first_block;
1555        xfs_fileoff_t           first_unmap_block;
1556        xfs_fileoff_t           last_block;
1557        xfs_filblks_t           unmap_len;
1558        int                     committed;
1559        int                     error = 0;
1560        int                     done = 0;
1561
1562        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1563        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1564               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1565        ASSERT(new_size <= XFS_ISIZE(ip));
1566        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1567        ASSERT(ip->i_itemp != NULL);
1568        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1569        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1570
1571        trace_xfs_itruncate_extents_start(ip, new_size);
1572
1573        /*
1574         * Since it is possible for space to become allocated beyond
1575         * the end of the file (in a crash where the space is allocated
1576         * but the inode size is not yet updated), simply remove any
1577         * blocks which show up between the new EOF and the maximum
1578         * possible file size.  If the first block to be removed is
1579         * beyond the maximum file size (ie it is the same as last_block),
1580         * then there is nothing to do.
1581         */
1582        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1583        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1584        if (first_unmap_block == last_block)
1585                return 0;
1586
1587        ASSERT(first_unmap_block < last_block);
1588        unmap_len = last_block - first_unmap_block + 1;
1589        while (!done) {
1590                xfs_bmap_init(&free_list, &first_block);
1591                error = xfs_bunmapi(tp, ip,
1592                                    first_unmap_block, unmap_len,
1593                                    xfs_bmapi_aflag(whichfork),
1594                                    XFS_ITRUNC_MAX_EXTENTS,
1595                                    &first_block, &free_list,
1596                                    &done);
1597                if (error)
1598                        goto out_bmap_cancel;
1599
1600                /*
1601                 * Duplicate the transaction that has the permanent
1602                 * reservation and commit the old transaction.
1603                 */
1604                error = xfs_bmap_finish(&tp, &free_list, &committed);
1605                if (committed)
1606                        xfs_trans_ijoin(tp, ip, 0);
1607                if (error)
1608                        goto out_bmap_cancel;
1609
1610                error = xfs_trans_roll(&tp, ip);
1611                if (error)
1612                        goto out;
1613        }
1614
1615        /*
1616         * Always re-log the inode so that our permanent transaction can keep
1617         * on rolling it forward in the log.
1618         */
1619        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621        trace_xfs_itruncate_extents_end(ip, new_size);
1622
1623out:
1624        *tpp = tp;
1625        return error;
1626out_bmap_cancel:
1627        /*
1628         * If the bunmapi call encounters an error, return to the caller where
1629         * the transaction can be properly aborted.  We just need to make sure
1630         * we're not holding any resources that we were not when we came in.
1631         */
1632        xfs_bmap_cancel(&free_list);
1633        goto out;
1634}
1635
1636int
1637xfs_release(
1638        xfs_inode_t     *ip)
1639{
1640        xfs_mount_t     *mp = ip->i_mount;
1641        int             error;
1642
1643        if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1644                return 0;
1645
1646        /* If this is a read-only mount, don't do this (would generate I/O) */
1647        if (mp->m_flags & XFS_MOUNT_RDONLY)
1648                return 0;
1649
1650        if (!XFS_FORCED_SHUTDOWN(mp)) {
1651                int truncated;
1652
1653                /*
1654                 * If we previously truncated this file and removed old data
1655                 * in the process, we want to initiate "early" writeout on
1656                 * the last close.  This is an attempt to combat the notorious
1657                 * NULL files problem which is particularly noticeable from a
1658                 * truncate down, buffered (re-)write (delalloc), followed by
1659                 * a crash.  What we are effectively doing here is
1660                 * significantly reducing the time window where we'd otherwise
1661                 * be exposed to that problem.
1662                 */
1663                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664                if (truncated) {
1665                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1666                        if (ip->i_delayed_blks > 0) {
1667                                error = filemap_flush(VFS_I(ip)->i_mapping);
1668                                if (error)
1669                                        return error;
1670                        }
1671                }
1672        }
1673
1674        if (ip->i_d.di_nlink == 0)
1675                return 0;
1676
1677        if (xfs_can_free_eofblocks(ip, false)) {
1678
1679                /*
1680                 * If we can't get the iolock just skip truncating the blocks
1681                 * past EOF because we could deadlock with the mmap_sem
1682                 * otherwise.  We'll get another chance to drop them once the
1683                 * last reference to the inode is dropped, so we'll never leak
1684                 * blocks permanently.
1685                 *
1686                 * Further, check if the inode is being opened, written and
1687                 * closed frequently and we have delayed allocation blocks
1688                 * outstanding (e.g. streaming writes from the NFS server),
1689                 * truncating the blocks past EOF will cause fragmentation to
1690                 * occur.
1691                 *
1692                 * In this case don't do the truncation, either, but we have to
1693                 * be careful how we detect this case. Blocks beyond EOF show
1694                 * up as i_delayed_blks even when the inode is clean, so we
1695                 * need to truncate them away first before checking for a dirty
1696                 * release. Hence on the first dirty close we will still remove
1697                 * the speculative allocation, but after that we will leave it
1698                 * in place.
1699                 */
1700                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1701                        return 0;
1702
1703                error = xfs_free_eofblocks(mp, ip, true);
1704                if (error && error != -EAGAIN)
1705                        return error;
1706
1707                /* delalloc blocks after truncation means it really is dirty */
1708                if (ip->i_delayed_blks)
1709                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1710        }
1711        return 0;
1712}
1713
1714/*
1715 * xfs_inactive_truncate
1716 *
1717 * Called to perform a truncate when an inode becomes unlinked.
1718 */
1719STATIC int
1720xfs_inactive_truncate(
1721        struct xfs_inode *ip)
1722{
1723        struct xfs_mount        *mp = ip->i_mount;
1724        struct xfs_trans        *tp;
1725        int                     error;
1726
1727        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1728        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1729        if (error) {
1730                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1731                xfs_trans_cancel(tp);
1732                return error;
1733        }
1734
1735        xfs_ilock(ip, XFS_ILOCK_EXCL);
1736        xfs_trans_ijoin(tp, ip, 0);
1737
1738        /*
1739         * Log the inode size first to prevent stale data exposure in the event
1740         * of a system crash before the truncate completes. See the related
1741         * comment in xfs_setattr_size() for details.
1742         */
1743        ip->i_d.di_size = 0;
1744        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747        if (error)
1748                goto error_trans_cancel;
1749
1750        ASSERT(ip->i_d.di_nextents == 0);
1751
1752        error = xfs_trans_commit(tp);
1753        if (error)
1754                goto error_unlock;
1755
1756        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757        return 0;
1758
1759error_trans_cancel:
1760        xfs_trans_cancel(tp);
1761error_unlock:
1762        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763        return error;
1764}
1765
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773        struct xfs_inode *ip)
1774{
1775        xfs_bmap_free_t         free_list;
1776        xfs_fsblock_t           first_block;
1777        int                     committed;
1778        struct xfs_mount        *mp = ip->i_mount;
1779        struct xfs_trans        *tp;
1780        int                     error;
1781
1782        tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1783
1784        /*
1785         * The ifree transaction might need to allocate blocks for record
1786         * insertion to the finobt. We don't want to fail here at ENOSPC, so
1787         * allow ifree to dip into the reserved block pool if necessary.
1788         *
1789         * Freeing large sets of inodes generally means freeing inode chunks,
1790         * directory and file data blocks, so this should be relatively safe.
1791         * Only under severe circumstances should it be possible to free enough
1792         * inodes to exhaust the reserve block pool via finobt expansion while
1793         * at the same time not creating free space in the filesystem.
1794         *
1795         * Send a warning if the reservation does happen to fail, as the inode
1796         * now remains allocated and sits on the unlinked list until the fs is
1797         * repaired.
1798         */
1799        tp->t_flags |= XFS_TRANS_RESERVE;
1800        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1801                                  XFS_IFREE_SPACE_RES(mp), 0);
1802        if (error) {
1803                if (error == -ENOSPC) {
1804                        xfs_warn_ratelimited(mp,
1805                        "Failed to remove inode(s) from unlinked list. "
1806                        "Please free space, unmount and run xfs_repair.");
1807                } else {
1808                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1809                }
1810                xfs_trans_cancel(tp);
1811                return error;
1812        }
1813
1814        xfs_ilock(ip, XFS_ILOCK_EXCL);
1815        xfs_trans_ijoin(tp, ip, 0);
1816
1817        xfs_bmap_init(&free_list, &first_block);
1818        error = xfs_ifree(tp, ip, &free_list);
1819        if (error) {
1820                /*
1821                 * If we fail to free the inode, shut down.  The cancel
1822                 * might do that, we need to make sure.  Otherwise the
1823                 * inode might be lost for a long time or forever.
1824                 */
1825                if (!XFS_FORCED_SHUTDOWN(mp)) {
1826                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1827                                __func__, error);
1828                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1829                }
1830                xfs_trans_cancel(tp);
1831                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1832                return error;
1833        }
1834
1835        /*
1836         * Credit the quota account(s). The inode is gone.
1837         */
1838        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1839
1840        /*
1841         * Just ignore errors at this point.  There is nothing we can do except
1842         * to try to keep going. Make sure it's not a silent error.
1843         */
1844        error = xfs_bmap_finish(&tp,  &free_list, &committed);
1845        if (error) {
1846                xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1847                        __func__, error);
1848                xfs_bmap_cancel(&free_list);
1849        }
1850        error = xfs_trans_commit(tp);
1851        if (error)
1852                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1853                        __func__, error);
1854
1855        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1856        return 0;
1857}
1858
1859/*
1860 * xfs_inactive
1861 *
1862 * This is called when the vnode reference count for the vnode
1863 * goes to zero.  If the file has been unlinked, then it must
1864 * now be truncated.  Also, we clear all of the read-ahead state
1865 * kept for the inode here since the file is now closed.
1866 */
1867void
1868xfs_inactive(
1869        xfs_inode_t     *ip)
1870{
1871        struct xfs_mount        *mp;
1872        int                     error;
1873        int                     truncate = 0;
1874
1875        /*
1876         * If the inode is already free, then there can be nothing
1877         * to clean up here.
1878         */
1879        if (ip->i_d.di_mode == 0) {
1880                ASSERT(ip->i_df.if_real_bytes == 0);
1881                ASSERT(ip->i_df.if_broot_bytes == 0);
1882                return;
1883        }
1884
1885        mp = ip->i_mount;
1886
1887        /* If this is a read-only mount, don't do this (would generate I/O) */
1888        if (mp->m_flags & XFS_MOUNT_RDONLY)
1889                return;
1890
1891        if (ip->i_d.di_nlink != 0) {
1892                /*
1893                 * force is true because we are evicting an inode from the
1894                 * cache. Post-eof blocks must be freed, lest we end up with
1895                 * broken free space accounting.
1896                 */
1897                if (xfs_can_free_eofblocks(ip, true))
1898                        xfs_free_eofblocks(mp, ip, false);
1899
1900                return;
1901        }
1902
1903        if (S_ISREG(ip->i_d.di_mode) &&
1904            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1905             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1906                truncate = 1;
1907
1908        error = xfs_qm_dqattach(ip, 0);
1909        if (error)
1910                return;
1911
1912        if (S_ISLNK(ip->i_d.di_mode))
1913                error = xfs_inactive_symlink(ip);
1914        else if (truncate)
1915                error = xfs_inactive_truncate(ip);
1916        if (error)
1917                return;
1918
1919        /*
1920         * If there are attributes associated with the file then blow them away
1921         * now.  The code calls a routine that recursively deconstructs the
1922         * attribute fork. If also blows away the in-core attribute fork.
1923         */
1924        if (XFS_IFORK_Q(ip)) {
1925                error = xfs_attr_inactive(ip);
1926                if (error)
1927                        return;
1928        }
1929
1930        ASSERT(!ip->i_afp);
1931        ASSERT(ip->i_d.di_anextents == 0);
1932        ASSERT(ip->i_d.di_forkoff == 0);
1933
1934        /*
1935         * Free the inode.
1936         */
1937        error = xfs_inactive_ifree(ip);
1938        if (error)
1939                return;
1940
1941        /*
1942         * Release the dquots held by inode, if any.
1943         */
1944        xfs_qm_dqdetach(ip);
1945}
1946
1947/*
1948 * This is called when the inode's link count goes to 0.
1949 * We place the on-disk inode on a list in the AGI.  It
1950 * will be pulled from this list when the inode is freed.
1951 */
1952int
1953xfs_iunlink(
1954        xfs_trans_t     *tp,
1955        xfs_inode_t     *ip)
1956{
1957        xfs_mount_t     *mp;
1958        xfs_agi_t       *agi;
1959        xfs_dinode_t    *dip;
1960        xfs_buf_t       *agibp;
1961        xfs_buf_t       *ibp;
1962        xfs_agino_t     agino;
1963        short           bucket_index;
1964        int             offset;
1965        int             error;
1966
1967        ASSERT(ip->i_d.di_nlink == 0);
1968        ASSERT(ip->i_d.di_mode != 0);
1969
1970        mp = tp->t_mountp;
1971
1972        /*
1973         * Get the agi buffer first.  It ensures lock ordering
1974         * on the list.
1975         */
1976        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1977        if (error)
1978                return error;
1979        agi = XFS_BUF_TO_AGI(agibp);
1980
1981        /*
1982         * Get the index into the agi hash table for the
1983         * list this inode will go on.
1984         */
1985        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1986        ASSERT(agino != 0);
1987        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1988        ASSERT(agi->agi_unlinked[bucket_index]);
1989        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1990
1991        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1992                /*
1993                 * There is already another inode in the bucket we need
1994                 * to add ourselves to.  Add us at the front of the list.
1995                 * Here we put the head pointer into our next pointer,
1996                 * and then we fall through to point the head at us.
1997                 */
1998                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1999                                       0, 0);
2000                if (error)
2001                        return error;
2002
2003                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2004                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2005                offset = ip->i_imap.im_boffset +
2006                        offsetof(xfs_dinode_t, di_next_unlinked);
2007
2008                /* need to recalc the inode CRC if appropriate */
2009                xfs_dinode_calc_crc(mp, dip);
2010
2011                xfs_trans_inode_buf(tp, ibp);
2012                xfs_trans_log_buf(tp, ibp, offset,
2013                                  (offset + sizeof(xfs_agino_t) - 1));
2014                xfs_inobp_check(mp, ibp);
2015        }
2016
2017        /*
2018         * Point the bucket head pointer at the inode being inserted.
2019         */
2020        ASSERT(agino != 0);
2021        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2022        offset = offsetof(xfs_agi_t, agi_unlinked) +
2023                (sizeof(xfs_agino_t) * bucket_index);
2024        xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2025        xfs_trans_log_buf(tp, agibp, offset,
2026                          (offset + sizeof(xfs_agino_t) - 1));
2027        return 0;
2028}
2029
2030/*
2031 * Pull the on-disk inode from the AGI unlinked list.
2032 */
2033STATIC int
2034xfs_iunlink_remove(
2035        xfs_trans_t     *tp,
2036        xfs_inode_t     *ip)
2037{
2038        xfs_ino_t       next_ino;
2039        xfs_mount_t     *mp;
2040        xfs_agi_t       *agi;
2041        xfs_dinode_t    *dip;
2042        xfs_buf_t       *agibp;
2043        xfs_buf_t       *ibp;
2044        xfs_agnumber_t  agno;
2045        xfs_agino_t     agino;
2046        xfs_agino_t     next_agino;
2047        xfs_buf_t       *last_ibp;
2048        xfs_dinode_t    *last_dip = NULL;
2049        short           bucket_index;
2050        int             offset, last_offset = 0;
2051        int             error;
2052
2053        mp = tp->t_mountp;
2054        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2055
2056        /*
2057         * Get the agi buffer first.  It ensures lock ordering
2058         * on the list.
2059         */
2060        error = xfs_read_agi(mp, tp, agno, &agibp);
2061        if (error)
2062                return error;
2063
2064        agi = XFS_BUF_TO_AGI(agibp);
2065
2066        /*
2067         * Get the index into the agi hash table for the
2068         * list this inode will go on.
2069         */
2070        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2071        ASSERT(agino != 0);
2072        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2073        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2074        ASSERT(agi->agi_unlinked[bucket_index]);
2075
2076        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2077                /*
2078                 * We're at the head of the list.  Get the inode's on-disk
2079                 * buffer to see if there is anyone after us on the list.
2080                 * Only modify our next pointer if it is not already NULLAGINO.
2081                 * This saves us the overhead of dealing with the buffer when
2082                 * there is no need to change it.
2083                 */
2084                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2085                                       0, 0);
2086                if (error) {
2087                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2088                                __func__, error);
2089                        return error;
2090                }
2091                next_agino = be32_to_cpu(dip->di_next_unlinked);
2092                ASSERT(next_agino != 0);
2093                if (next_agino != NULLAGINO) {
2094                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2095                        offset = ip->i_imap.im_boffset +
2096                                offsetof(xfs_dinode_t, di_next_unlinked);
2097
2098                        /* need to recalc the inode CRC if appropriate */
2099                        xfs_dinode_calc_crc(mp, dip);
2100
2101                        xfs_trans_inode_buf(tp, ibp);
2102                        xfs_trans_log_buf(tp, ibp, offset,
2103                                          (offset + sizeof(xfs_agino_t) - 1));
2104                        xfs_inobp_check(mp, ibp);
2105                } else {
2106                        xfs_trans_brelse(tp, ibp);
2107                }
2108                /*
2109                 * Point the bucket head pointer at the next inode.
2110                 */
2111                ASSERT(next_agino != 0);
2112                ASSERT(next_agino != agino);
2113                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2114                offset = offsetof(xfs_agi_t, agi_unlinked) +
2115                        (sizeof(xfs_agino_t) * bucket_index);
2116                xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2117                xfs_trans_log_buf(tp, agibp, offset,
2118                                  (offset + sizeof(xfs_agino_t) - 1));
2119        } else {
2120                /*
2121                 * We need to search the list for the inode being freed.
2122                 */
2123                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2124                last_ibp = NULL;
2125                while (next_agino != agino) {
2126                        struct xfs_imap imap;
2127
2128                        if (last_ibp)
2129                                xfs_trans_brelse(tp, last_ibp);
2130
2131                        imap.im_blkno = 0;
2132                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2133
2134                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2135                        if (error) {
2136                                xfs_warn(mp,
2137        "%s: xfs_imap returned error %d.",
2138                                         __func__, error);
2139                                return error;
2140                        }
2141
2142                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2143                                               &last_ibp, 0, 0);
2144                        if (error) {
2145                                xfs_warn(mp,
2146        "%s: xfs_imap_to_bp returned error %d.",
2147                                        __func__, error);
2148                                return error;
2149                        }
2150
2151                        last_offset = imap.im_boffset;
2152                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2153                        ASSERT(next_agino != NULLAGINO);
2154                        ASSERT(next_agino != 0);
2155                }
2156
2157                /*
2158                 * Now last_ibp points to the buffer previous to us on the
2159                 * unlinked list.  Pull us from the list.
2160                 */
2161                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2162                                       0, 0);
2163                if (error) {
2164                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2165                                __func__, error);
2166                        return error;
2167                }
2168                next_agino = be32_to_cpu(dip->di_next_unlinked);
2169                ASSERT(next_agino != 0);
2170                ASSERT(next_agino != agino);
2171                if (next_agino != NULLAGINO) {
2172                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2173                        offset = ip->i_imap.im_boffset +
2174                                offsetof(xfs_dinode_t, di_next_unlinked);
2175
2176                        /* need to recalc the inode CRC if appropriate */
2177                        xfs_dinode_calc_crc(mp, dip);
2178
2179                        xfs_trans_inode_buf(tp, ibp);
2180                        xfs_trans_log_buf(tp, ibp, offset,
2181                                          (offset + sizeof(xfs_agino_t) - 1));
2182                        xfs_inobp_check(mp, ibp);
2183                } else {
2184                        xfs_trans_brelse(tp, ibp);
2185                }
2186                /*
2187                 * Point the previous inode on the list to the next inode.
2188                 */
2189                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2190                ASSERT(next_agino != 0);
2191                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2192
2193                /* need to recalc the inode CRC if appropriate */
2194                xfs_dinode_calc_crc(mp, last_dip);
2195
2196                xfs_trans_inode_buf(tp, last_ibp);
2197                xfs_trans_log_buf(tp, last_ibp, offset,
2198                                  (offset + sizeof(xfs_agino_t) - 1));
2199                xfs_inobp_check(mp, last_ibp);
2200        }
2201        return 0;
2202}
2203
2204/*
2205 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2206 * inodes that are in memory - they all must be marked stale and attached to
2207 * the cluster buffer.
2208 */
2209STATIC int
2210xfs_ifree_cluster(
2211        xfs_inode_t             *free_ip,
2212        xfs_trans_t             *tp,
2213        struct xfs_icluster     *xic)
2214{
2215        xfs_mount_t             *mp = free_ip->i_mount;
2216        int                     blks_per_cluster;
2217        int                     inodes_per_cluster;
2218        int                     nbufs;
2219        int                     i, j;
2220        int                     ioffset;
2221        xfs_daddr_t             blkno;
2222        xfs_buf_t               *bp;
2223        xfs_inode_t             *ip;
2224        xfs_inode_log_item_t    *iip;
2225        xfs_log_item_t          *lip;
2226        struct xfs_perag        *pag;
2227        xfs_ino_t               inum;
2228
2229        inum = xic->first_ino;
2230        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2231        blks_per_cluster = xfs_icluster_size_fsb(mp);
2232        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2233        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2234
2235        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2236                /*
2237                 * The allocation bitmap tells us which inodes of the chunk were
2238                 * physically allocated. Skip the cluster if an inode falls into
2239                 * a sparse region.
2240                 */
2241                ioffset = inum - xic->first_ino;
2242                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2243                        ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2244                        continue;
2245                }
2246
2247                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2248                                         XFS_INO_TO_AGBNO(mp, inum));
2249
2250                /*
2251                 * We obtain and lock the backing buffer first in the process
2252                 * here, as we have to ensure that any dirty inode that we
2253                 * can't get the flush lock on is attached to the buffer.
2254                 * If we scan the in-memory inodes first, then buffer IO can
2255                 * complete before we get a lock on it, and hence we may fail
2256                 * to mark all the active inodes on the buffer stale.
2257                 */
2258                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2259                                        mp->m_bsize * blks_per_cluster,
2260                                        XBF_UNMAPPED);
2261
2262                if (!bp)
2263                        return -ENOMEM;
2264
2265                /*
2266                 * This buffer may not have been correctly initialised as we
2267                 * didn't read it from disk. That's not important because we are
2268                 * only using to mark the buffer as stale in the log, and to
2269                 * attach stale cached inodes on it. That means it will never be
2270                 * dispatched for IO. If it is, we want to know about it, and we
2271                 * want it to fail. We can acheive this by adding a write
2272                 * verifier to the buffer.
2273                 */
2274                 bp->b_ops = &xfs_inode_buf_ops;
2275
2276                /*
2277                 * Walk the inodes already attached to the buffer and mark them
2278                 * stale. These will all have the flush locks held, so an
2279                 * in-memory inode walk can't lock them. By marking them all
2280                 * stale first, we will not attempt to lock them in the loop
2281                 * below as the XFS_ISTALE flag will be set.
2282                 */
2283                lip = bp->b_fspriv;
2284                while (lip) {
2285                        if (lip->li_type == XFS_LI_INODE) {
2286                                iip = (xfs_inode_log_item_t *)lip;
2287                                ASSERT(iip->ili_logged == 1);
2288                                lip->li_cb = xfs_istale_done;
2289                                xfs_trans_ail_copy_lsn(mp->m_ail,
2290                                                        &iip->ili_flush_lsn,
2291                                                        &iip->ili_item.li_lsn);
2292                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2293                        }
2294                        lip = lip->li_bio_list;
2295                }
2296
2297
2298                /*
2299                 * For each inode in memory attempt to add it to the inode
2300                 * buffer and set it up for being staled on buffer IO
2301                 * completion.  This is safe as we've locked out tail pushing
2302                 * and flushing by locking the buffer.
2303                 *
2304                 * We have already marked every inode that was part of a
2305                 * transaction stale above, which means there is no point in
2306                 * even trying to lock them.
2307                 */
2308                for (i = 0; i < inodes_per_cluster; i++) {
2309retry:
2310                        rcu_read_lock();
2311                        ip = radix_tree_lookup(&pag->pag_ici_root,
2312                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2313
2314                        /* Inode not in memory, nothing to do */
2315                        if (!ip) {
2316                                rcu_read_unlock();
2317                                continue;
2318                        }
2319
2320                        /*
2321                         * because this is an RCU protected lookup, we could
2322                         * find a recently freed or even reallocated inode
2323                         * during the lookup. We need to check under the
2324                         * i_flags_lock for a valid inode here. Skip it if it
2325                         * is not valid, the wrong inode or stale.
2326                         */
2327                        spin_lock(&ip->i_flags_lock);
2328                        if (ip->i_ino != inum + i ||
2329                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2330                                spin_unlock(&ip->i_flags_lock);
2331                                rcu_read_unlock();
2332                                continue;
2333                        }
2334                        spin_unlock(&ip->i_flags_lock);
2335
2336                        /*
2337                         * Don't try to lock/unlock the current inode, but we
2338                         * _cannot_ skip the other inodes that we did not find
2339                         * in the list attached to the buffer and are not
2340                         * already marked stale. If we can't lock it, back off
2341                         * and retry.
2342                         */
2343                        if (ip != free_ip &&
2344                            !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2345                                rcu_read_unlock();
2346                                delay(1);
2347                                goto retry;
2348                        }
2349                        rcu_read_unlock();
2350
2351                        xfs_iflock(ip);
2352                        xfs_iflags_set(ip, XFS_ISTALE);
2353
2354                        /*
2355                         * we don't need to attach clean inodes or those only
2356                         * with unlogged changes (which we throw away, anyway).
2357                         */
2358                        iip = ip->i_itemp;
2359                        if (!iip || xfs_inode_clean(ip)) {
2360                                ASSERT(ip != free_ip);
2361                                xfs_ifunlock(ip);
2362                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363                                continue;
2364                        }
2365
2366                        iip->ili_last_fields = iip->ili_fields;
2367                        iip->ili_fields = 0;
2368                        iip->ili_logged = 1;
2369                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2370                                                &iip->ili_item.li_lsn);
2371
2372                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2373                                                  &iip->ili_item);
2374
2375                        if (ip != free_ip)
2376                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2377                }
2378
2379                xfs_trans_stale_inode_buf(tp, bp);
2380                xfs_trans_binval(tp, bp);
2381        }
2382
2383        xfs_perag_put(pag);
2384        return 0;
2385}
2386
2387/*
2388 * This is called to return an inode to the inode free list.
2389 * The inode should already be truncated to 0 length and have
2390 * no pages associated with it.  This routine also assumes that
2391 * the inode is already a part of the transaction.
2392 *
2393 * The on-disk copy of the inode will have been added to the list
2394 * of unlinked inodes in the AGI. We need to remove the inode from
2395 * that list atomically with respect to freeing it here.
2396 */
2397int
2398xfs_ifree(
2399        xfs_trans_t     *tp,
2400        xfs_inode_t     *ip,
2401        xfs_bmap_free_t *flist)
2402{
2403        int                     error;
2404        struct xfs_icluster     xic = { 0 };
2405
2406        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2407        ASSERT(ip->i_d.di_nlink == 0);
2408        ASSERT(ip->i_d.di_nextents == 0);
2409        ASSERT(ip->i_d.di_anextents == 0);
2410        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2411        ASSERT(ip->i_d.di_nblocks == 0);
2412
2413        /*
2414         * Pull the on-disk inode from the AGI unlinked list.
2415         */
2416        error = xfs_iunlink_remove(tp, ip);
2417        if (error)
2418                return error;
2419
2420        error = xfs_difree(tp, ip->i_ino, flist, &xic);
2421        if (error)
2422                return error;
2423
2424        ip->i_d.di_mode = 0;            /* mark incore inode as free */
2425        ip->i_d.di_flags = 0;
2426        ip->i_d.di_dmevmask = 0;
2427        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2428        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2429        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2430        /*
2431         * Bump the generation count so no one will be confused
2432         * by reincarnations of this inode.
2433         */
2434        ip->i_d.di_gen++;
2435        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2436
2437        if (xic.deleted)
2438                error = xfs_ifree_cluster(ip, tp, &xic);
2439
2440        return error;
2441}
2442
2443/*
2444 * This is called to unpin an inode.  The caller must have the inode locked
2445 * in at least shared mode so that the buffer cannot be subsequently pinned
2446 * once someone is waiting for it to be unpinned.
2447 */
2448static void
2449xfs_iunpin(
2450        struct xfs_inode        *ip)
2451{
2452        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2453
2454        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2455
2456        /* Give the log a push to start the unpinning I/O */
2457        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2458
2459}
2460
2461static void
2462__xfs_iunpin_wait(
2463        struct xfs_inode        *ip)
2464{
2465        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2466        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2467
2468        xfs_iunpin(ip);
2469
2470        do {
2471                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2472                if (xfs_ipincount(ip))
2473                        io_schedule();
2474        } while (xfs_ipincount(ip));
2475        finish_wait(wq, &wait.wait);
2476}
2477
2478void
2479xfs_iunpin_wait(
2480        struct xfs_inode        *ip)
2481{
2482        if (xfs_ipincount(ip))
2483                __xfs_iunpin_wait(ip);
2484}
2485
2486/*
2487 * Removing an inode from the namespace involves removing the directory entry
2488 * and dropping the link count on the inode. Removing the directory entry can
2489 * result in locking an AGF (directory blocks were freed) and removing a link
2490 * count can result in placing the inode on an unlinked list which results in
2491 * locking an AGI.
2492 *
2493 * The big problem here is that we have an ordering constraint on AGF and AGI
2494 * locking - inode allocation locks the AGI, then can allocate a new extent for
2495 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2496 * removes the inode from the unlinked list, requiring that we lock the AGI
2497 * first, and then freeing the inode can result in an inode chunk being freed
2498 * and hence freeing disk space requiring that we lock an AGF.
2499 *
2500 * Hence the ordering that is imposed by other parts of the code is AGI before
2501 * AGF. This means we cannot remove the directory entry before we drop the inode
2502 * reference count and put it on the unlinked list as this results in a lock
2503 * order of AGF then AGI, and this can deadlock against inode allocation and
2504 * freeing. Therefore we must drop the link counts before we remove the
2505 * directory entry.
2506 *
2507 * This is still safe from a transactional point of view - it is not until we
2508 * get to xfs_bmap_finish() that we have the possibility of multiple
2509 * transactions in this operation. Hence as long as we remove the directory
2510 * entry and drop the link count in the first transaction of the remove
2511 * operation, there are no transactional constraints on the ordering here.
2512 */
2513int
2514xfs_remove(
2515        xfs_inode_t             *dp,
2516        struct xfs_name         *name,
2517        xfs_inode_t             *ip)
2518{
2519        xfs_mount_t             *mp = dp->i_mount;
2520        xfs_trans_t             *tp = NULL;
2521        int                     is_dir = S_ISDIR(ip->i_d.di_mode);
2522        int                     error = 0;
2523        xfs_bmap_free_t         free_list;
2524        xfs_fsblock_t           first_block;
2525        int                     committed;
2526        uint                    resblks;
2527
2528        trace_xfs_remove(dp, name);
2529
2530        if (XFS_FORCED_SHUTDOWN(mp))
2531                return -EIO;
2532
2533        error = xfs_qm_dqattach(dp, 0);
2534        if (error)
2535                goto std_return;
2536
2537        error = xfs_qm_dqattach(ip, 0);
2538        if (error)
2539                goto std_return;
2540
2541        if (is_dir)
2542                tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2543        else
2544                tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2545
2546        /*
2547         * We try to get the real space reservation first,
2548         * allowing for directory btree deletion(s) implying
2549         * possible bmap insert(s).  If we can't get the space
2550         * reservation then we use 0 instead, and avoid the bmap
2551         * btree insert(s) in the directory code by, if the bmap
2552         * insert tries to happen, instead trimming the LAST
2553         * block from the directory.
2554         */
2555        resblks = XFS_REMOVE_SPACE_RES(mp);
2556        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2557        if (error == -ENOSPC) {
2558                resblks = 0;
2559                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2560        }
2561        if (error) {
2562                ASSERT(error != -ENOSPC);
2563                goto out_trans_cancel;
2564        }
2565
2566        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2567        xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2568
2569        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2570        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2571
2572        /*
2573         * If we're removing a directory perform some additional validation.
2574         */
2575        if (is_dir) {
2576                ASSERT(ip->i_d.di_nlink >= 2);
2577                if (ip->i_d.di_nlink != 2) {
2578                        error = -ENOTEMPTY;
2579                        goto out_trans_cancel;
2580                }
2581                if (!xfs_dir_isempty(ip)) {
2582                        error = -ENOTEMPTY;
2583                        goto out_trans_cancel;
2584                }
2585
2586                /* Drop the link from ip's "..".  */
2587                error = xfs_droplink(tp, dp);
2588                if (error)
2589                        goto out_trans_cancel;
2590
2591                /* Drop the "." link from ip to self.  */
2592                error = xfs_droplink(tp, ip);
2593                if (error)
2594                        goto out_trans_cancel;
2595        } else {
2596                /*
2597                 * When removing a non-directory we need to log the parent
2598                 * inode here.  For a directory this is done implicitly
2599                 * by the xfs_droplink call for the ".." entry.
2600                 */
2601                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2602        }
2603        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2604
2605        /* Drop the link from dp to ip. */
2606        error = xfs_droplink(tp, ip);
2607        if (error)
2608                goto out_trans_cancel;
2609
2610        xfs_bmap_init(&free_list, &first_block);
2611        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2612                                        &first_block, &free_list, resblks);
2613        if (error) {
2614                ASSERT(error != -ENOENT);
2615                goto out_bmap_cancel;
2616        }
2617
2618        /*
2619         * If this is a synchronous mount, make sure that the
2620         * remove transaction goes to disk before returning to
2621         * the user.
2622         */
2623        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2624                xfs_trans_set_sync(tp);
2625
2626        error = xfs_bmap_finish(&tp, &free_list, &committed);
2627        if (error)
2628                goto out_bmap_cancel;
2629
2630        error = xfs_trans_commit(tp);
2631        if (error)
2632                goto std_return;
2633
2634        if (is_dir && xfs_inode_is_filestream(ip))
2635                xfs_filestream_deassociate(ip);
2636
2637        return 0;
2638
2639 out_bmap_cancel:
2640        xfs_bmap_cancel(&free_list);
2641 out_trans_cancel:
2642        xfs_trans_cancel(tp);
2643 std_return:
2644        return error;
2645}
2646
2647/*
2648 * Enter all inodes for a rename transaction into a sorted array.
2649 */
2650#define __XFS_SORT_INODES       5
2651STATIC void
2652xfs_sort_for_rename(
2653        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2654        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2655        struct xfs_inode        *ip1,   /* in: inode of old entry */
2656        struct xfs_inode        *ip2,   /* in: inode of new entry */
2657        struct xfs_inode        *wip,   /* in: whiteout inode */
2658        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2659        int                     *num_inodes)  /* in/out: inodes in array */
2660{
2661        int                     i, j;
2662
2663        ASSERT(*num_inodes == __XFS_SORT_INODES);
2664        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2665
2666        /*
2667         * i_tab contains a list of pointers to inodes.  We initialize
2668         * the table here & we'll sort it.  We will then use it to
2669         * order the acquisition of the inode locks.
2670         *
2671         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2672         */
2673        i = 0;
2674        i_tab[i++] = dp1;
2675        i_tab[i++] = dp2;
2676        i_tab[i++] = ip1;
2677        if (ip2)
2678                i_tab[i++] = ip2;
2679        if (wip)
2680                i_tab[i++] = wip;
2681        *num_inodes = i;
2682
2683        /*
2684         * Sort the elements via bubble sort.  (Remember, there are at
2685         * most 5 elements to sort, so this is adequate.)
2686         */
2687        for (i = 0; i < *num_inodes; i++) {
2688                for (j = 1; j < *num_inodes; j++) {
2689                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2690                                struct xfs_inode *temp = i_tab[j];
2691                                i_tab[j] = i_tab[j-1];
2692                                i_tab[j-1] = temp;
2693                        }
2694                }
2695        }
2696}
2697
2698static int
2699xfs_finish_rename(
2700        struct xfs_trans        *tp,
2701        struct xfs_bmap_free    *free_list)
2702{
2703        int                     committed = 0;
2704        int                     error;
2705
2706        /*
2707         * If this is a synchronous mount, make sure that the rename transaction
2708         * goes to disk before returning to the user.
2709         */
2710        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2711                xfs_trans_set_sync(tp);
2712
2713        error = xfs_bmap_finish(&tp, free_list, &committed);
2714        if (error) {
2715                xfs_bmap_cancel(free_list);
2716                xfs_trans_cancel(tp);
2717                return error;
2718        }
2719
2720        return xfs_trans_commit(tp);
2721}
2722
2723/*
2724 * xfs_cross_rename()
2725 *
2726 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2727 */
2728STATIC int
2729xfs_cross_rename(
2730        struct xfs_trans        *tp,
2731        struct xfs_inode        *dp1,
2732        struct xfs_name         *name1,
2733        struct xfs_inode        *ip1,
2734        struct xfs_inode        *dp2,
2735        struct xfs_name         *name2,
2736        struct xfs_inode        *ip2,
2737        struct xfs_bmap_free    *free_list,
2738        xfs_fsblock_t           *first_block,
2739        int                     spaceres)
2740{
2741        int             error = 0;
2742        int             ip1_flags = 0;
2743        int             ip2_flags = 0;
2744        int             dp2_flags = 0;
2745
2746        /* Swap inode number for dirent in first parent */
2747        error = xfs_dir_replace(tp, dp1, name1,
2748                                ip2->i_ino,
2749                                first_block, free_list, spaceres);
2750        if (error)
2751                goto out_trans_abort;
2752
2753        /* Swap inode number for dirent in second parent */
2754        error = xfs_dir_replace(tp, dp2, name2,
2755                                ip1->i_ino,
2756                                first_block, free_list, spaceres);
2757        if (error)
2758                goto out_trans_abort;
2759
2760        /*
2761         * If we're renaming one or more directories across different parents,
2762         * update the respective ".." entries (and link counts) to match the new
2763         * parents.
2764         */
2765        if (dp1 != dp2) {
2766                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2767
2768                if (S_ISDIR(ip2->i_d.di_mode)) {
2769                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2770                                                dp1->i_ino, first_block,
2771                                                free_list, spaceres);
2772                        if (error)
2773                                goto out_trans_abort;
2774
2775                        /* transfer ip2 ".." reference to dp1 */
2776                        if (!S_ISDIR(ip1->i_d.di_mode)) {
2777                                error = xfs_droplink(tp, dp2);
2778                                if (error)
2779                                        goto out_trans_abort;
2780                                error = xfs_bumplink(tp, dp1);
2781                                if (error)
2782                                        goto out_trans_abort;
2783                        }
2784
2785                        /*
2786                         * Although ip1 isn't changed here, userspace needs
2787                         * to be warned about the change, so that applications
2788                         * relying on it (like backup ones), will properly
2789                         * notify the change
2790                         */
2791                        ip1_flags |= XFS_ICHGTIME_CHG;
2792                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2793                }
2794
2795                if (S_ISDIR(ip1->i_d.di_mode)) {
2796                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2797                                                dp2->i_ino, first_block,
2798                                                free_list, spaceres);
2799                        if (error)
2800                                goto out_trans_abort;
2801
2802                        /* transfer ip1 ".." reference to dp2 */
2803                        if (!S_ISDIR(ip2->i_d.di_mode)) {
2804                                error = xfs_droplink(tp, dp1);
2805                                if (error)
2806                                        goto out_trans_abort;
2807                                error = xfs_bumplink(tp, dp2);
2808                                if (error)
2809                                        goto out_trans_abort;
2810                        }
2811
2812                        /*
2813                         * Although ip2 isn't changed here, userspace needs
2814                         * to be warned about the change, so that applications
2815                         * relying on it (like backup ones), will properly
2816                         * notify the change
2817                         */
2818                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2819                        ip2_flags |= XFS_ICHGTIME_CHG;
2820                }
2821        }
2822
2823        if (ip1_flags) {
2824                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2825                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2826        }
2827        if (ip2_flags) {
2828                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2829                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2830        }
2831        if (dp2_flags) {
2832                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2833                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2834        }
2835        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2836        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2837        return xfs_finish_rename(tp, free_list);
2838
2839out_trans_abort:
2840        xfs_bmap_cancel(free_list);
2841        xfs_trans_cancel(tp);
2842        return error;
2843}
2844
2845/*
2846 * xfs_rename_alloc_whiteout()
2847 *
2848 * Return a referenced, unlinked, unlocked inode that that can be used as a
2849 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2850 * crash between allocating the inode and linking it into the rename transaction
2851 * recovery will free the inode and we won't leak it.
2852 */
2853static int
2854xfs_rename_alloc_whiteout(
2855        struct xfs_inode        *dp,
2856        struct xfs_inode        **wip)
2857{
2858        struct xfs_inode        *tmpfile;
2859        int                     error;
2860
2861        error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2862        if (error)
2863                return error;
2864
2865        /*
2866         * Prepare the tmpfile inode as if it were created through the VFS.
2867         * Otherwise, the link increment paths will complain about nlink 0->1.
2868         * Drop the link count as done by d_tmpfile(), complete the inode setup
2869         * and flag it as linkable.
2870         */
2871        drop_nlink(VFS_I(tmpfile));
2872        xfs_finish_inode_setup(tmpfile);
2873        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2874
2875        *wip = tmpfile;
2876        return 0;
2877}
2878
2879/*
2880 * xfs_rename
2881 */
2882int
2883xfs_rename(
2884        struct xfs_inode        *src_dp,
2885        struct xfs_name         *src_name,
2886        struct xfs_inode        *src_ip,
2887        struct xfs_inode        *target_dp,
2888        struct xfs_name         *target_name,
2889        struct xfs_inode        *target_ip,
2890        unsigned int            flags)
2891{
2892        struct xfs_mount        *mp = src_dp->i_mount;
2893        struct xfs_trans        *tp;
2894        struct xfs_bmap_free    free_list;
2895        xfs_fsblock_t           first_block;
2896        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2897        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2898        int                     num_inodes = __XFS_SORT_INODES;
2899        bool                    new_parent = (src_dp != target_dp);
2900        bool                    src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2901        int                     spaceres;
2902        int                     error;
2903
2904        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2905
2906        if ((flags & RENAME_EXCHANGE) && !target_ip)
2907                return -EINVAL;
2908
2909        /*
2910         * If we are doing a whiteout operation, allocate the whiteout inode
2911         * we will be placing at the target and ensure the type is set
2912         * appropriately.
2913         */
2914        if (flags & RENAME_WHITEOUT) {
2915                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2916                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2917                if (error)
2918                        return error;
2919
2920                /* setup target dirent info as whiteout */
2921                src_name->type = XFS_DIR3_FT_CHRDEV;
2922        }
2923
2924        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2925                                inodes, &num_inodes);
2926
2927        tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2928        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2929        error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2930        if (error == -ENOSPC) {
2931                spaceres = 0;
2932                error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2933        }
2934        if (error)
2935                goto out_trans_cancel;
2936
2937        /*
2938         * Attach the dquots to the inodes
2939         */
2940        error = xfs_qm_vop_rename_dqattach(inodes);
2941        if (error)
2942                goto out_trans_cancel;
2943
2944        /*
2945         * Lock all the participating inodes. Depending upon whether
2946         * the target_name exists in the target directory, and
2947         * whether the target directory is the same as the source
2948         * directory, we can lock from 2 to 4 inodes.
2949         */
2950        if (!new_parent)
2951                xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2952        else
2953                xfs_lock_two_inodes(src_dp, target_dp,
2954                                    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2955
2956        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2957
2958        /*
2959         * Join all the inodes to the transaction. From this point on,
2960         * we can rely on either trans_commit or trans_cancel to unlock
2961         * them.
2962         */
2963        xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2964        if (new_parent)
2965                xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2966        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2967        if (target_ip)
2968                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2969        if (wip)
2970                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2971
2972        /*
2973         * If we are using project inheritance, we only allow renames
2974         * into our tree when the project IDs are the same; else the
2975         * tree quota mechanism would be circumvented.
2976         */
2977        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2978                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2979                error = -EXDEV;
2980                goto out_trans_cancel;
2981        }
2982
2983        xfs_bmap_init(&free_list, &first_block);
2984
2985        /* RENAME_EXCHANGE is unique from here on. */
2986        if (flags & RENAME_EXCHANGE)
2987                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2988                                        target_dp, target_name, target_ip,
2989                                        &free_list, &first_block, spaceres);
2990
2991        /*
2992         * Set up the target.
2993         */
2994        if (target_ip == NULL) {
2995                /*
2996                 * If there's no space reservation, check the entry will
2997                 * fit before actually inserting it.
2998                 */
2999                if (!spaceres) {
3000                        error = xfs_dir_canenter(tp, target_dp, target_name);
3001                        if (error)
3002                                goto out_trans_cancel;
3003                }
3004                /*
3005                 * If target does not exist and the rename crosses
3006                 * directories, adjust the target directory link count
3007                 * to account for the ".." reference from the new entry.
3008                 */
3009                error = xfs_dir_createname(tp, target_dp, target_name,
3010                                                src_ip->i_ino, &first_block,
3011                                                &free_list, spaceres);
3012                if (error)
3013                        goto out_bmap_cancel;
3014
3015                xfs_trans_ichgtime(tp, target_dp,
3016                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3017
3018                if (new_parent && src_is_directory) {
3019                        error = xfs_bumplink(tp, target_dp);
3020                        if (error)
3021                                goto out_bmap_cancel;
3022                }
3023        } else { /* target_ip != NULL */
3024                /*
3025                 * If target exists and it's a directory, check that both
3026                 * target and source are directories and that target can be
3027                 * destroyed, or that neither is a directory.
3028                 */
3029                if (S_ISDIR(target_ip->i_d.di_mode)) {
3030                        /*
3031                         * Make sure target dir is empty.
3032                         */
3033                        if (!(xfs_dir_isempty(target_ip)) ||
3034                            (target_ip->i_d.di_nlink > 2)) {
3035                                error = -EEXIST;
3036                                goto out_trans_cancel;
3037                        }
3038                }
3039
3040                /*
3041                 * Link the source inode under the target name.
3042                 * If the source inode is a directory and we are moving
3043                 * it across directories, its ".." entry will be
3044                 * inconsistent until we replace that down below.
3045                 *
3046                 * In case there is already an entry with the same
3047                 * name at the destination directory, remove it first.
3048                 */
3049                error = xfs_dir_replace(tp, target_dp, target_name,
3050                                        src_ip->i_ino,
3051                                        &first_block, &free_list, spaceres);
3052                if (error)
3053                        goto out_bmap_cancel;
3054
3055                xfs_trans_ichgtime(tp, target_dp,
3056                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3057
3058                /*
3059                 * Decrement the link count on the target since the target
3060                 * dir no longer points to it.
3061                 */
3062                error = xfs_droplink(tp, target_ip);
3063                if (error)
3064                        goto out_bmap_cancel;
3065
3066                if (src_is_directory) {
3067                        /*
3068                         * Drop the link from the old "." entry.
3069                         */
3070                        error = xfs_droplink(tp, target_ip);
3071                        if (error)
3072                                goto out_bmap_cancel;
3073                }
3074        } /* target_ip != NULL */
3075
3076        /*
3077         * Remove the source.
3078         */
3079        if (new_parent && src_is_directory) {
3080                /*
3081                 * Rewrite the ".." entry to point to the new
3082                 * directory.
3083                 */
3084                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3085                                        target_dp->i_ino,
3086                                        &first_block, &free_list, spaceres);
3087                ASSERT(error != -EEXIST);
3088                if (error)
3089                        goto out_bmap_cancel;
3090        }
3091
3092        /*
3093         * We always want to hit the ctime on the source inode.
3094         *
3095         * This isn't strictly required by the standards since the source
3096         * inode isn't really being changed, but old unix file systems did
3097         * it and some incremental backup programs won't work without it.
3098         */
3099        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3100        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3101
3102        /*
3103         * Adjust the link count on src_dp.  This is necessary when
3104         * renaming a directory, either within one parent when
3105         * the target existed, or across two parent directories.
3106         */
3107        if (src_is_directory && (new_parent || target_ip != NULL)) {
3108
3109                /*
3110                 * Decrement link count on src_directory since the
3111                 * entry that's moved no longer points to it.
3112                 */
3113                error = xfs_droplink(tp, src_dp);
3114                if (error)
3115                        goto out_bmap_cancel;
3116        }
3117
3118        /*
3119         * For whiteouts, we only need to update the source dirent with the
3120         * inode number of the whiteout inode rather than removing it
3121         * altogether.
3122         */
3123        if (wip) {
3124                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3125                                        &first_block, &free_list, spaceres);
3126        } else
3127                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3128                                           &first_block, &free_list, spaceres);
3129        if (error)
3130                goto out_bmap_cancel;
3131
3132        /*
3133         * For whiteouts, we need to bump the link count on the whiteout inode.
3134         * This means that failures all the way up to this point leave the inode
3135         * on the unlinked list and so cleanup is a simple matter of dropping
3136         * the remaining reference to it. If we fail here after bumping the link
3137         * count, we're shutting down the filesystem so we'll never see the
3138         * intermediate state on disk.
3139         */
3140        if (wip) {
3141                ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3142                error = xfs_bumplink(tp, wip);
3143                if (error)
3144                        goto out_bmap_cancel;
3145                error = xfs_iunlink_remove(tp, wip);
3146                if (error)
3147                        goto out_bmap_cancel;
3148                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3149
3150                /*
3151                 * Now we have a real link, clear the "I'm a tmpfile" state
3152                 * flag from the inode so it doesn't accidentally get misused in
3153                 * future.
3154                 */
3155                VFS_I(wip)->i_state &= ~I_LINKABLE;
3156        }
3157
3158        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3159        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3160        if (new_parent)
3161                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3162
3163        error = xfs_finish_rename(tp, &free_list);
3164        if (wip)
3165                IRELE(wip);
3166        return error;
3167
3168out_bmap_cancel:
3169        xfs_bmap_cancel(&free_list);
3170out_trans_cancel:
3171        xfs_trans_cancel(tp);
3172        if (wip)
3173                IRELE(wip);
3174        return error;
3175}
3176
3177STATIC int
3178xfs_iflush_cluster(
3179        xfs_inode_t     *ip,
3180        xfs_buf_t       *bp)
3181{
3182        xfs_mount_t             *mp = ip->i_mount;
3183        struct xfs_perag        *pag;
3184        unsigned long           first_index, mask;
3185        unsigned long           inodes_per_cluster;
3186        int                     ilist_size;
3187        xfs_inode_t             **ilist;
3188        xfs_inode_t             *iq;
3189        int                     nr_found;
3190        int                     clcount = 0;
3191        int                     bufwasdelwri;
3192        int                     i;
3193
3194        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3195
3196        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3197        ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3198        ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3199        if (!ilist)
3200                goto out_put;
3201
3202        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3203        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3204        rcu_read_lock();
3205        /* really need a gang lookup range call here */
3206        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3207                                        first_index, inodes_per_cluster);
3208        if (nr_found == 0)
3209                goto out_free;
3210
3211        for (i = 0; i < nr_found; i++) {
3212                iq = ilist[i];
3213                if (iq == ip)
3214                        continue;
3215
3216                /*
3217                 * because this is an RCU protected lookup, we could find a
3218                 * recently freed or even reallocated inode during the lookup.
3219                 * We need to check under the i_flags_lock for a valid inode
3220                 * here. Skip it if it is not valid or the wrong inode.
3221                 */
3222                spin_lock(&ip->i_flags_lock);
3223                if (!ip->i_ino ||
3224                    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3225                        spin_unlock(&ip->i_flags_lock);
3226                        continue;
3227                }
3228                spin_unlock(&ip->i_flags_lock);
3229
3230                /*
3231                 * Do an un-protected check to see if the inode is dirty and
3232                 * is a candidate for flushing.  These checks will be repeated
3233                 * later after the appropriate locks are acquired.
3234                 */
3235                if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3236                        continue;
3237
3238                /*
3239                 * Try to get locks.  If any are unavailable or it is pinned,
3240                 * then this inode cannot be flushed and is skipped.
3241                 */
3242
3243                if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3244                        continue;
3245                if (!xfs_iflock_nowait(iq)) {
3246                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
3247                        continue;
3248                }
3249                if (xfs_ipincount(iq)) {
3250                        xfs_ifunlock(iq);
3251                        xfs_iunlock(iq, XFS_ILOCK_SHARED);
3252                        continue;
3253                }
3254
3255                /*
3256                 * arriving here means that this inode can be flushed.  First
3257                 * re-check that it's dirty before flushing.
3258                 */
3259                if (!xfs_inode_clean(iq)) {
3260                        int     error;
3261                        error = xfs_iflush_int(iq, bp);
3262                        if (error) {
3263                                xfs_iunlock(iq, XFS_ILOCK_SHARED);
3264                                goto cluster_corrupt_out;
3265                        }
3266                        clcount++;
3267                } else {
3268                        xfs_ifunlock(iq);
3269                }
3270                xfs_iunlock(iq, XFS_ILOCK_SHARED);
3271        }
3272
3273        if (clcount) {
3274                XFS_STATS_INC(xs_icluster_flushcnt);
3275                XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3276        }
3277
3278out_free:
3279        rcu_read_unlock();
3280        kmem_free(ilist);
3281out_put:
3282        xfs_perag_put(pag);
3283        return 0;
3284
3285
3286cluster_corrupt_out:
3287        /*
3288         * Corruption detected in the clustering loop.  Invalidate the
3289         * inode buffer and shut down the filesystem.
3290         */
3291        rcu_read_unlock();
3292        /*
3293         * Clean up the buffer.  If it was delwri, just release it --
3294         * brelse can handle it with no problems.  If not, shut down the
3295         * filesystem before releasing the buffer.
3296         */
3297        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3298        if (bufwasdelwri)
3299                xfs_buf_relse(bp);
3300
3301        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3302
3303        if (!bufwasdelwri) {
3304                /*
3305                 * Just like incore_relse: if we have b_iodone functions,
3306                 * mark the buffer as an error and call them.  Otherwise
3307                 * mark it as stale and brelse.
3308                 */
3309                if (bp->b_iodone) {
3310                        XFS_BUF_UNDONE(bp);
3311                        xfs_buf_stale(bp);
3312                        xfs_buf_ioerror(bp, -EIO);
3313                        xfs_buf_ioend(bp);
3314                } else {
3315                        xfs_buf_stale(bp);
3316                        xfs_buf_relse(bp);
3317                }
3318        }
3319
3320        /*
3321         * Unlocks the flush lock
3322         */
3323        xfs_iflush_abort(iq, false);
3324        kmem_free(ilist);
3325        xfs_perag_put(pag);
3326        return -EFSCORRUPTED;
3327}
3328
3329/*
3330 * Flush dirty inode metadata into the backing buffer.
3331 *
3332 * The caller must have the inode lock and the inode flush lock held.  The
3333 * inode lock will still be held upon return to the caller, and the inode
3334 * flush lock will be released after the inode has reached the disk.
3335 *
3336 * The caller must write out the buffer returned in *bpp and release it.
3337 */
3338int
3339xfs_iflush(
3340        struct xfs_inode        *ip,
3341        struct xfs_buf          **bpp)
3342{
3343        struct xfs_mount        *mp = ip->i_mount;
3344        struct xfs_buf          *bp;
3345        struct xfs_dinode       *dip;
3346        int                     error;
3347
3348        XFS_STATS_INC(xs_iflush_count);
3349
3350        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3351        ASSERT(xfs_isiflocked(ip));
3352        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3353               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3354
3355        *bpp = NULL;
3356
3357        xfs_iunpin_wait(ip);
3358
3359        /*
3360         * For stale inodes we cannot rely on the backing buffer remaining
3361         * stale in cache for the remaining life of the stale inode and so
3362         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3363         * inodes below. We have to check this after ensuring the inode is
3364         * unpinned so that it is safe to reclaim the stale inode after the
3365         * flush call.
3366         */
3367        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3368                xfs_ifunlock(ip);
3369                return 0;
3370        }
3371
3372        /*
3373         * This may have been unpinned because the filesystem is shutting
3374         * down forcibly. If that's the case we must not write this inode
3375         * to disk, because the log record didn't make it to disk.
3376         *
3377         * We also have to remove the log item from the AIL in this case,
3378         * as we wait for an empty AIL as part of the unmount process.
3379         */
3380        if (XFS_FORCED_SHUTDOWN(mp)) {
3381                error = -EIO;
3382                goto abort_out;
3383        }
3384
3385        /*
3386         * Get the buffer containing the on-disk inode.
3387         */
3388        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3389                               0);
3390        if (error || !bp) {
3391                xfs_ifunlock(ip);
3392                return error;
3393        }
3394
3395        /*
3396         * First flush out the inode that xfs_iflush was called with.
3397         */
3398        error = xfs_iflush_int(ip, bp);
3399        if (error)
3400                goto corrupt_out;
3401
3402        /*
3403         * If the buffer is pinned then push on the log now so we won't
3404         * get stuck waiting in the write for too long.
3405         */
3406        if (xfs_buf_ispinned(bp))
3407                xfs_log_force(mp, 0);
3408
3409        /*
3410         * inode clustering:
3411         * see if other inodes can be gathered into this write
3412         */
3413        error = xfs_iflush_cluster(ip, bp);
3414        if (error)
3415                goto cluster_corrupt_out;
3416
3417        *bpp = bp;
3418        return 0;
3419
3420corrupt_out:
3421        xfs_buf_relse(bp);
3422        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3423cluster_corrupt_out:
3424        error = -EFSCORRUPTED;
3425abort_out:
3426        /*
3427         * Unlocks the flush lock
3428         */
3429        xfs_iflush_abort(ip, false);
3430        return error;
3431}
3432
3433STATIC int
3434xfs_iflush_int(
3435        struct xfs_inode        *ip,
3436        struct xfs_buf          *bp)
3437{
3438        struct xfs_inode_log_item *iip = ip->i_itemp;
3439        struct xfs_dinode       *dip;
3440        struct xfs_mount        *mp = ip->i_mount;
3441
3442        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3443        ASSERT(xfs_isiflocked(ip));
3444        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3445               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3446        ASSERT(iip != NULL && iip->ili_fields != 0);
3447        ASSERT(ip->i_d.di_version > 1);
3448
3449        /* set *dip = inode's place in the buffer */
3450        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3451
3452        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3453                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3454                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3455                        "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3456                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3457                goto corrupt_out;
3458        }
3459        if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3460                                mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3461                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462                        "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3463                        __func__, ip->i_ino, ip, ip->i_d.di_magic);
3464                goto corrupt_out;
3465        }
3466        if (S_ISREG(ip->i_d.di_mode)) {
3467                if (XFS_TEST_ERROR(
3468                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3469                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3470                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3471                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3472                                "%s: Bad regular inode %Lu, ptr 0x%p",
3473                                __func__, ip->i_ino, ip);
3474                        goto corrupt_out;
3475                }
3476        } else if (S_ISDIR(ip->i_d.di_mode)) {
3477                if (XFS_TEST_ERROR(
3478                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3479                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3480                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3481                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3482                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483                                "%s: Bad directory inode %Lu, ptr 0x%p",
3484                                __func__, ip->i_ino, ip);
3485                        goto corrupt_out;
3486                }
3487        }
3488        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3489                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3490                                XFS_RANDOM_IFLUSH_5)) {
3491                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3492                        "%s: detected corrupt incore inode %Lu, "
3493                        "total extents = %d, nblocks = %Ld, ptr 0x%p",
3494                        __func__, ip->i_ino,
3495                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3496                        ip->i_d.di_nblocks, ip);
3497                goto corrupt_out;
3498        }
3499        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3500                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3501                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3502                        "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3503                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3504                goto corrupt_out;
3505        }
3506
3507        /*
3508         * Inode item log recovery for v2 inodes are dependent on the
3509         * di_flushiter count for correct sequencing. We bump the flush
3510         * iteration count so we can detect flushes which postdate a log record
3511         * during recovery. This is redundant as we now log every change and
3512         * hence this can't happen but we need to still do it to ensure
3513         * backwards compatibility with old kernels that predate logging all
3514         * inode changes.
3515         */
3516        if (ip->i_d.di_version < 3)
3517                ip->i_d.di_flushiter++;
3518
3519        /*
3520         * Copy the dirty parts of the inode into the on-disk
3521         * inode.  We always copy out the core of the inode,
3522         * because if the inode is dirty at all the core must
3523         * be.
3524         */
3525        xfs_dinode_to_disk(dip, &ip->i_d);
3526
3527        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3528        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3529                ip->i_d.di_flushiter = 0;
3530
3531        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3532        if (XFS_IFORK_Q(ip))
3533                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3534        xfs_inobp_check(mp, bp);
3535
3536        /*
3537         * We've recorded everything logged in the inode, so we'd like to clear
3538         * the ili_fields bits so we don't log and flush things unnecessarily.
3539         * However, we can't stop logging all this information until the data
3540         * we've copied into the disk buffer is written to disk.  If we did we
3541         * might overwrite the copy of the inode in the log with all the data
3542         * after re-logging only part of it, and in the face of a crash we
3543         * wouldn't have all the data we need to recover.
3544         *
3545         * What we do is move the bits to the ili_last_fields field.  When
3546         * logging the inode, these bits are moved back to the ili_fields field.
3547         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3548         * know that the information those bits represent is permanently on
3549         * disk.  As long as the flush completes before the inode is logged
3550         * again, then both ili_fields and ili_last_fields will be cleared.
3551         *
3552         * We can play with the ili_fields bits here, because the inode lock
3553         * must be held exclusively in order to set bits there and the flush
3554         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3555         * done routine can tell whether or not to look in the AIL.  Also, store
3556         * the current LSN of the inode so that we can tell whether the item has
3557         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3558         * need the AIL lock, because it is a 64 bit value that cannot be read
3559         * atomically.
3560         */
3561        iip->ili_last_fields = iip->ili_fields;
3562        iip->ili_fields = 0;
3563        iip->ili_logged = 1;
3564
3565        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3566                                &iip->ili_item.li_lsn);
3567
3568        /*
3569         * Attach the function xfs_iflush_done to the inode's
3570         * buffer.  This will remove the inode from the AIL
3571         * and unlock the inode's flush lock when the inode is
3572         * completely written to disk.
3573         */
3574        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3575
3576        /* update the lsn in the on disk inode if required */
3577        if (ip->i_d.di_version == 3)
3578                dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3579
3580        /* generate the checksum. */
3581        xfs_dinode_calc_crc(mp, dip);
3582
3583        ASSERT(bp->b_fspriv != NULL);
3584        ASSERT(bp->b_iodone != NULL);
3585        return 0;
3586
3587corrupt_out:
3588        return -EFSCORRUPTED;
3589}
3590