linux/include/linux/usb.h
<<
>>
Prefs
   1#ifndef __LINUX_USB_H
   2#define __LINUX_USB_H
   3
   4#include <linux/mod_devicetable.h>
   5#include <linux/usb/ch9.h>
   6
   7#define USB_MAJOR                       180
   8#define USB_DEVICE_MAJOR                189
   9
  10
  11#ifdef __KERNEL__
  12
  13#include <linux/errno.h>        /* for -ENODEV */
  14#include <linux/delay.h>        /* for mdelay() */
  15#include <linux/interrupt.h>    /* for in_interrupt() */
  16#include <linux/list.h>         /* for struct list_head */
  17#include <linux/kref.h>         /* for struct kref */
  18#include <linux/device.h>       /* for struct device */
  19#include <linux/fs.h>           /* for struct file_operations */
  20#include <linux/completion.h>   /* for struct completion */
  21#include <linux/sched.h>        /* for current && schedule_timeout */
  22#include <linux/mutex.h>        /* for struct mutex */
  23#include <linux/pm_runtime.h>   /* for runtime PM */
  24
  25struct usb_device;
  26struct usb_driver;
  27struct wusb_dev;
  28
  29/*-------------------------------------------------------------------------*/
  30
  31/*
  32 * Host-side wrappers for standard USB descriptors ... these are parsed
  33 * from the data provided by devices.  Parsing turns them from a flat
  34 * sequence of descriptors into a hierarchy:
  35 *
  36 *  - devices have one (usually) or more configs;
  37 *  - configs have one (often) or more interfaces;
  38 *  - interfaces have one (usually) or more settings;
  39 *  - each interface setting has zero or (usually) more endpoints.
  40 *  - a SuperSpeed endpoint has a companion descriptor
  41 *
  42 * And there might be other descriptors mixed in with those.
  43 *
  44 * Devices may also have class-specific or vendor-specific descriptors.
  45 */
  46
  47struct ep_device;
  48
  49/**
  50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
  51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
  52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
  53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
  54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
  55 *      with one or more transfer descriptors (TDs) per urb
  56 * @ep_dev: ep_device for sysfs info
  57 * @extra: descriptors following this endpoint in the configuration
  58 * @extralen: how many bytes of "extra" are valid
  59 * @enabled: URBs may be submitted to this endpoint
  60 * @streams: number of USB-3 streams allocated on the endpoint
  61 *
  62 * USB requests are always queued to a given endpoint, identified by a
  63 * descriptor within an active interface in a given USB configuration.
  64 */
  65struct usb_host_endpoint {
  66        struct usb_endpoint_descriptor          desc;
  67        struct usb_ss_ep_comp_descriptor        ss_ep_comp;
  68        struct list_head                urb_list;
  69        void                            *hcpriv;
  70        struct ep_device                *ep_dev;        /* For sysfs info */
  71
  72        unsigned char *extra;   /* Extra descriptors */
  73        int extralen;
  74        int enabled;
  75        int streams;
  76};
  77
  78/* host-side wrapper for one interface setting's parsed descriptors */
  79struct usb_host_interface {
  80        struct usb_interface_descriptor desc;
  81
  82        int extralen;
  83        unsigned char *extra;   /* Extra descriptors */
  84
  85        /* array of desc.bNumEndpoints endpoints associated with this
  86         * interface setting.  these will be in no particular order.
  87         */
  88        struct usb_host_endpoint *endpoint;
  89
  90        char *string;           /* iInterface string, if present */
  91};
  92
  93enum usb_interface_condition {
  94        USB_INTERFACE_UNBOUND = 0,
  95        USB_INTERFACE_BINDING,
  96        USB_INTERFACE_BOUND,
  97        USB_INTERFACE_UNBINDING,
  98};
  99
 100/**
 101 * struct usb_interface - what usb device drivers talk to
 102 * @altsetting: array of interface structures, one for each alternate
 103 *      setting that may be selected.  Each one includes a set of
 104 *      endpoint configurations.  They will be in no particular order.
 105 * @cur_altsetting: the current altsetting.
 106 * @num_altsetting: number of altsettings defined.
 107 * @intf_assoc: interface association descriptor
 108 * @minor: the minor number assigned to this interface, if this
 109 *      interface is bound to a driver that uses the USB major number.
 110 *      If this interface does not use the USB major, this field should
 111 *      be unused.  The driver should set this value in the probe()
 112 *      function of the driver, after it has been assigned a minor
 113 *      number from the USB core by calling usb_register_dev().
 114 * @condition: binding state of the interface: not bound, binding
 115 *      (in probe()), bound to a driver, or unbinding (in disconnect())
 116 * @sysfs_files_created: sysfs attributes exist
 117 * @ep_devs_created: endpoint child pseudo-devices exist
 118 * @unregistering: flag set when the interface is being unregistered
 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
 120 *      capability during autosuspend.
 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
 122 *      has been deferred.
 123 * @needs_binding: flag set when the driver should be re-probed or unbound
 124 *      following a reset or suspend operation it doesn't support.
 125 * @dev: driver model's view of this device
 126 * @usb_dev: if an interface is bound to the USB major, this will point
 127 *      to the sysfs representation for that device.
 128 * @pm_usage_cnt: PM usage counter for this interface
 129 * @reset_ws: Used for scheduling resets from atomic context.
 130 * @resetting_device: USB core reset the device, so use alt setting 0 as
 131 *      current; needs bandwidth alloc after reset.
 132 *
 133 * USB device drivers attach to interfaces on a physical device.  Each
 134 * interface encapsulates a single high level function, such as feeding
 135 * an audio stream to a speaker or reporting a change in a volume control.
 136 * Many USB devices only have one interface.  The protocol used to talk to
 137 * an interface's endpoints can be defined in a usb "class" specification,
 138 * or by a product's vendor.  The (default) control endpoint is part of
 139 * every interface, but is never listed among the interface's descriptors.
 140 *
 141 * The driver that is bound to the interface can use standard driver model
 142 * calls such as dev_get_drvdata() on the dev member of this structure.
 143 *
 144 * Each interface may have alternate settings.  The initial configuration
 145 * of a device sets altsetting 0, but the device driver can change
 146 * that setting using usb_set_interface().  Alternate settings are often
 147 * used to control the use of periodic endpoints, such as by having
 148 * different endpoints use different amounts of reserved USB bandwidth.
 149 * All standards-conformant USB devices that use isochronous endpoints
 150 * will use them in non-default settings.
 151 *
 152 * The USB specification says that alternate setting numbers must run from
 153 * 0 to one less than the total number of alternate settings.  But some
 154 * devices manage to mess this up, and the structures aren't necessarily
 155 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
 156 * look up an alternate setting in the altsetting array based on its number.
 157 */
 158struct usb_interface {
 159        /* array of alternate settings for this interface,
 160         * stored in no particular order */
 161        struct usb_host_interface *altsetting;
 162
 163        struct usb_host_interface *cur_altsetting;      /* the currently
 164                                         * active alternate setting */
 165        unsigned num_altsetting;        /* number of alternate settings */
 166
 167        /* If there is an interface association descriptor then it will list
 168         * the associated interfaces */
 169        struct usb_interface_assoc_descriptor *intf_assoc;
 170
 171        int minor;                      /* minor number this interface is
 172                                         * bound to */
 173        enum usb_interface_condition condition;         /* state of binding */
 174        unsigned sysfs_files_created:1; /* the sysfs attributes exist */
 175        unsigned ep_devs_created:1;     /* endpoint "devices" exist */
 176        unsigned unregistering:1;       /* unregistration is in progress */
 177        unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
 178        unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
 179        unsigned needs_binding:1;       /* needs delayed unbind/rebind */
 180        unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
 181
 182        struct device dev;              /* interface specific device info */
 183        struct device *usb_dev;
 184        atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
 185        struct work_struct reset_ws;    /* for resets in atomic context */
 186};
 187#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
 188
 189static inline void *usb_get_intfdata(struct usb_interface *intf)
 190{
 191        return dev_get_drvdata(&intf->dev);
 192}
 193
 194static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
 195{
 196        dev_set_drvdata(&intf->dev, data);
 197}
 198
 199struct usb_interface *usb_get_intf(struct usb_interface *intf);
 200void usb_put_intf(struct usb_interface *intf);
 201
 202/* Hard limit */
 203#define USB_MAXENDPOINTS        30
 204/* this maximum is arbitrary */
 205#define USB_MAXINTERFACES       32
 206#define USB_MAXIADS             (USB_MAXINTERFACES/2)
 207
 208/*
 209 * USB Resume Timer: Every Host controller driver should drive the resume
 210 * signalling on the bus for the amount of time defined by this macro.
 211 *
 212 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
 213 *
 214 * Note that the USB Specification states we should drive resume for *at least*
 215 * 20 ms, but it doesn't give an upper bound. This creates two possible
 216 * situations which we want to avoid:
 217 *
 218 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
 219 * us to fail USB Electrical Tests, thus failing Certification
 220 *
 221 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
 222 * and while we can argue that's against the USB Specification, we don't have
 223 * control over which devices a certification laboratory will be using for
 224 * certification. If CertLab uses a device which was tested against Windows and
 225 * that happens to have relaxed resume signalling rules, we might fall into
 226 * situations where we fail interoperability and electrical tests.
 227 *
 228 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
 229 * should cope with both LPJ calibration errors and devices not following every
 230 * detail of the USB Specification.
 231 */
 232#define USB_RESUME_TIMEOUT      40 /* ms */
 233
 234/**
 235 * struct usb_interface_cache - long-term representation of a device interface
 236 * @num_altsetting: number of altsettings defined.
 237 * @ref: reference counter.
 238 * @altsetting: variable-length array of interface structures, one for
 239 *      each alternate setting that may be selected.  Each one includes a
 240 *      set of endpoint configurations.  They will be in no particular order.
 241 *
 242 * These structures persist for the lifetime of a usb_device, unlike
 243 * struct usb_interface (which persists only as long as its configuration
 244 * is installed).  The altsetting arrays can be accessed through these
 245 * structures at any time, permitting comparison of configurations and
 246 * providing support for the /proc/bus/usb/devices pseudo-file.
 247 */
 248struct usb_interface_cache {
 249        unsigned num_altsetting;        /* number of alternate settings */
 250        struct kref ref;                /* reference counter */
 251
 252        /* variable-length array of alternate settings for this interface,
 253         * stored in no particular order */
 254        struct usb_host_interface altsetting[0];
 255};
 256#define ref_to_usb_interface_cache(r) \
 257                container_of(r, struct usb_interface_cache, ref)
 258#define altsetting_to_usb_interface_cache(a) \
 259                container_of(a, struct usb_interface_cache, altsetting[0])
 260
 261/**
 262 * struct usb_host_config - representation of a device's configuration
 263 * @desc: the device's configuration descriptor.
 264 * @string: pointer to the cached version of the iConfiguration string, if
 265 *      present for this configuration.
 266 * @intf_assoc: list of any interface association descriptors in this config
 267 * @interface: array of pointers to usb_interface structures, one for each
 268 *      interface in the configuration.  The number of interfaces is stored
 269 *      in desc.bNumInterfaces.  These pointers are valid only while the
 270 *      the configuration is active.
 271 * @intf_cache: array of pointers to usb_interface_cache structures, one
 272 *      for each interface in the configuration.  These structures exist
 273 *      for the entire life of the device.
 274 * @extra: pointer to buffer containing all extra descriptors associated
 275 *      with this configuration (those preceding the first interface
 276 *      descriptor).
 277 * @extralen: length of the extra descriptors buffer.
 278 *
 279 * USB devices may have multiple configurations, but only one can be active
 280 * at any time.  Each encapsulates a different operational environment;
 281 * for example, a dual-speed device would have separate configurations for
 282 * full-speed and high-speed operation.  The number of configurations
 283 * available is stored in the device descriptor as bNumConfigurations.
 284 *
 285 * A configuration can contain multiple interfaces.  Each corresponds to
 286 * a different function of the USB device, and all are available whenever
 287 * the configuration is active.  The USB standard says that interfaces
 288 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
 289 * of devices get this wrong.  In addition, the interface array is not
 290 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
 291 * look up an interface entry based on its number.
 292 *
 293 * Device drivers should not attempt to activate configurations.  The choice
 294 * of which configuration to install is a policy decision based on such
 295 * considerations as available power, functionality provided, and the user's
 296 * desires (expressed through userspace tools).  However, drivers can call
 297 * usb_reset_configuration() to reinitialize the current configuration and
 298 * all its interfaces.
 299 */
 300struct usb_host_config {
 301        struct usb_config_descriptor    desc;
 302
 303        char *string;           /* iConfiguration string, if present */
 304
 305        /* List of any Interface Association Descriptors in this
 306         * configuration. */
 307        struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
 308
 309        /* the interfaces associated with this configuration,
 310         * stored in no particular order */
 311        struct usb_interface *interface[USB_MAXINTERFACES];
 312
 313        /* Interface information available even when this is not the
 314         * active configuration */
 315        struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
 316
 317        unsigned char *extra;   /* Extra descriptors */
 318        int extralen;
 319};
 320
 321/* USB2.0 and USB3.0 device BOS descriptor set */
 322struct usb_host_bos {
 323        struct usb_bos_descriptor       *desc;
 324
 325        /* wireless cap descriptor is handled by wusb */
 326        struct usb_ext_cap_descriptor   *ext_cap;
 327        struct usb_ss_cap_descriptor    *ss_cap;
 328        struct usb_ss_container_id_descriptor   *ss_id;
 329};
 330
 331int __usb_get_extra_descriptor(char *buffer, unsigned size,
 332        unsigned char type, void **ptr);
 333#define usb_get_extra_descriptor(ifpoint, type, ptr) \
 334                                __usb_get_extra_descriptor((ifpoint)->extra, \
 335                                (ifpoint)->extralen, \
 336                                type, (void **)ptr)
 337
 338/* ----------------------------------------------------------------------- */
 339
 340/* USB device number allocation bitmap */
 341struct usb_devmap {
 342        unsigned long devicemap[128 / (8*sizeof(unsigned long))];
 343};
 344
 345/*
 346 * Allocated per bus (tree of devices) we have:
 347 */
 348struct usb_bus {
 349        struct device *controller;      /* host/master side hardware */
 350        int busnum;                     /* Bus number (in order of reg) */
 351        const char *bus_name;           /* stable id (PCI slot_name etc) */
 352        u8 uses_dma;                    /* Does the host controller use DMA? */
 353        u8 uses_pio_for_control;        /*
 354                                         * Does the host controller use PIO
 355                                         * for control transfers?
 356                                         */
 357        u8 otg_port;                    /* 0, or number of OTG/HNP port */
 358        unsigned is_b_host:1;           /* true during some HNP roleswitches */
 359        unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
 360        unsigned no_stop_on_short:1;    /*
 361                                         * Quirk: some controllers don't stop
 362                                         * the ep queue on a short transfer
 363                                         * with the URB_SHORT_NOT_OK flag set.
 364                                         */
 365        unsigned no_sg_constraint:1;    /* no sg constraint */
 366        unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
 367
 368        int devnum_next;                /* Next open device number in
 369                                         * round-robin allocation */
 370
 371        struct usb_devmap devmap;       /* device address allocation map */
 372        struct usb_device *root_hub;    /* Root hub */
 373        struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
 374        struct list_head bus_list;      /* list of busses */
 375
 376        struct mutex usb_address0_mutex; /* unaddressed device mutex */
 377
 378        int bandwidth_allocated;        /* on this bus: how much of the time
 379                                         * reserved for periodic (intr/iso)
 380                                         * requests is used, on average?
 381                                         * Units: microseconds/frame.
 382                                         * Limits: Full/low speed reserve 90%,
 383                                         * while high speed reserves 80%.
 384                                         */
 385        int bandwidth_int_reqs;         /* number of Interrupt requests */
 386        int bandwidth_isoc_reqs;        /* number of Isoc. requests */
 387
 388        unsigned resuming_ports;        /* bit array: resuming root-hub ports */
 389
 390#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
 391        struct mon_bus *mon_bus;        /* non-null when associated */
 392        int monitored;                  /* non-zero when monitored */
 393#endif
 394};
 395
 396struct usb_dev_state;
 397
 398/* ----------------------------------------------------------------------- */
 399
 400struct usb_tt;
 401
 402enum usb_device_removable {
 403        USB_DEVICE_REMOVABLE_UNKNOWN = 0,
 404        USB_DEVICE_REMOVABLE,
 405        USB_DEVICE_FIXED,
 406};
 407
 408enum usb_port_connect_type {
 409        USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
 410        USB_PORT_CONNECT_TYPE_HOT_PLUG,
 411        USB_PORT_CONNECT_TYPE_HARD_WIRED,
 412        USB_PORT_NOT_USED,
 413};
 414
 415/*
 416 * USB 2.0 Link Power Management (LPM) parameters.
 417 */
 418struct usb2_lpm_parameters {
 419        /* Best effort service latency indicate how long the host will drive
 420         * resume on an exit from L1.
 421         */
 422        unsigned int besl;
 423
 424        /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
 425         * When the timer counts to zero, the parent hub will initiate a LPM
 426         * transition to L1.
 427         */
 428        int timeout;
 429};
 430
 431/*
 432 * USB 3.0 Link Power Management (LPM) parameters.
 433 *
 434 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
 435 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
 436 * All three are stored in nanoseconds.
 437 */
 438struct usb3_lpm_parameters {
 439        /*
 440         * Maximum exit latency (MEL) for the host to send a packet to the
 441         * device (either a Ping for isoc endpoints, or a data packet for
 442         * interrupt endpoints), the hubs to decode the packet, and for all hubs
 443         * in the path to transition the links to U0.
 444         */
 445        unsigned int mel;
 446        /*
 447         * Maximum exit latency for a device-initiated LPM transition to bring
 448         * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
 449         * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
 450         */
 451        unsigned int pel;
 452
 453        /*
 454         * The System Exit Latency (SEL) includes PEL, and three other
 455         * latencies.  After a device initiates a U0 transition, it will take
 456         * some time from when the device sends the ERDY to when it will finally
 457         * receive the data packet.  Basically, SEL should be the worse-case
 458         * latency from when a device starts initiating a U0 transition to when
 459         * it will get data.
 460         */
 461        unsigned int sel;
 462        /*
 463         * The idle timeout value that is currently programmed into the parent
 464         * hub for this device.  When the timer counts to zero, the parent hub
 465         * will initiate an LPM transition to either U1 or U2.
 466         */
 467        int timeout;
 468};
 469
 470/**
 471 * struct usb_device - kernel's representation of a USB device
 472 * @devnum: device number; address on a USB bus
 473 * @devpath: device ID string for use in messages (e.g., /port/...)
 474 * @route: tree topology hex string for use with xHCI
 475 * @state: device state: configured, not attached, etc.
 476 * @speed: device speed: high/full/low (or error)
 477 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
 478 * @ttport: device port on that tt hub
 479 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
 480 * @parent: our hub, unless we're the root
 481 * @bus: bus we're part of
 482 * @ep0: endpoint 0 data (default control pipe)
 483 * @dev: generic device interface
 484 * @descriptor: USB device descriptor
 485 * @bos: USB device BOS descriptor set
 486 * @config: all of the device's configs
 487 * @actconfig: the active configuration
 488 * @ep_in: array of IN endpoints
 489 * @ep_out: array of OUT endpoints
 490 * @rawdescriptors: raw descriptors for each config
 491 * @bus_mA: Current available from the bus
 492 * @portnum: parent port number (origin 1)
 493 * @level: number of USB hub ancestors
 494 * @can_submit: URBs may be submitted
 495 * @persist_enabled:  USB_PERSIST enabled for this device
 496 * @have_langid: whether string_langid is valid
 497 * @authorized: policy has said we can use it;
 498 *      (user space) policy determines if we authorize this device to be
 499 *      used or not. By default, wired USB devices are authorized.
 500 *      WUSB devices are not, until we authorize them from user space.
 501 *      FIXME -- complete doc
 502 * @authenticated: Crypto authentication passed
 503 * @wusb: device is Wireless USB
 504 * @lpm_capable: device supports LPM
 505 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
 506 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
 507 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
 508 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
 509 * @usb3_lpm_enabled: USB3 hardware LPM enabled
 510 * @string_langid: language ID for strings
 511 * @product: iProduct string, if present (static)
 512 * @manufacturer: iManufacturer string, if present (static)
 513 * @serial: iSerialNumber string, if present (static)
 514 * @filelist: usbfs files that are open to this device
 515 * @maxchild: number of ports if hub
 516 * @quirks: quirks of the whole device
 517 * @urbnum: number of URBs submitted for the whole device
 518 * @active_duration: total time device is not suspended
 519 * @connect_time: time device was first connected
 520 * @do_remote_wakeup:  remote wakeup should be enabled
 521 * @reset_resume: needs reset instead of resume
 522 * @port_is_suspended: the upstream port is suspended (L2 or U3)
 523 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
 524 *      specific data for the device.
 525 * @slot_id: Slot ID assigned by xHCI
 526 * @removable: Device can be physically removed from this port
 527 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
 528 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
 529 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
 530 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
 531 *      to keep track of the number of functions that require USB 3.0 Link Power
 532 *      Management to be disabled for this usb_device.  This count should only
 533 *      be manipulated by those functions, with the bandwidth_mutex is held.
 534 *
 535 * Notes:
 536 * Usbcore drivers should not set usbdev->state directly.  Instead use
 537 * usb_set_device_state().
 538 */
 539struct usb_device {
 540        int             devnum;
 541        char            devpath[16];
 542        u32             route;
 543        enum usb_device_state   state;
 544        enum usb_device_speed   speed;
 545
 546        struct usb_tt   *tt;
 547        int             ttport;
 548
 549        unsigned int toggle[2];
 550
 551        struct usb_device *parent;
 552        struct usb_bus *bus;
 553        struct usb_host_endpoint ep0;
 554
 555        struct device dev;
 556
 557        struct usb_device_descriptor descriptor;
 558        struct usb_host_bos *bos;
 559        struct usb_host_config *config;
 560
 561        struct usb_host_config *actconfig;
 562        struct usb_host_endpoint *ep_in[16];
 563        struct usb_host_endpoint *ep_out[16];
 564
 565        char **rawdescriptors;
 566
 567        unsigned short bus_mA;
 568        u8 portnum;
 569        u8 level;
 570
 571        unsigned can_submit:1;
 572        unsigned persist_enabled:1;
 573        unsigned have_langid:1;
 574        unsigned authorized:1;
 575        unsigned authenticated:1;
 576        unsigned wusb:1;
 577        unsigned lpm_capable:1;
 578        unsigned usb2_hw_lpm_capable:1;
 579        unsigned usb2_hw_lpm_besl_capable:1;
 580        unsigned usb2_hw_lpm_enabled:1;
 581        unsigned usb2_hw_lpm_allowed:1;
 582        unsigned usb3_lpm_enabled:1;
 583        int string_langid;
 584
 585        /* static strings from the device */
 586        char *product;
 587        char *manufacturer;
 588        char *serial;
 589
 590        struct list_head filelist;
 591
 592        int maxchild;
 593
 594        u32 quirks;
 595        atomic_t urbnum;
 596
 597        unsigned long active_duration;
 598
 599#ifdef CONFIG_PM
 600        unsigned long connect_time;
 601
 602        unsigned do_remote_wakeup:1;
 603        unsigned reset_resume:1;
 604        unsigned port_is_suspended:1;
 605#endif
 606        struct wusb_dev *wusb_dev;
 607        int slot_id;
 608        enum usb_device_removable removable;
 609        struct usb2_lpm_parameters l1_params;
 610        struct usb3_lpm_parameters u1_params;
 611        struct usb3_lpm_parameters u2_params;
 612        unsigned lpm_disable_count;
 613};
 614#define to_usb_device(d) container_of(d, struct usb_device, dev)
 615
 616static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
 617{
 618        return to_usb_device(intf->dev.parent);
 619}
 620
 621extern struct usb_device *usb_get_dev(struct usb_device *dev);
 622extern void usb_put_dev(struct usb_device *dev);
 623extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
 624        int port1);
 625
 626/**
 627 * usb_hub_for_each_child - iterate over all child devices on the hub
 628 * @hdev:  USB device belonging to the usb hub
 629 * @port1: portnum associated with child device
 630 * @child: child device pointer
 631 */
 632#define usb_hub_for_each_child(hdev, port1, child) \
 633        for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
 634                        port1 <= hdev->maxchild; \
 635                        child = usb_hub_find_child(hdev, ++port1)) \
 636                if (!child) continue; else
 637
 638/* USB device locking */
 639#define usb_lock_device(udev)           device_lock(&(udev)->dev)
 640#define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
 641#define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
 642extern int usb_lock_device_for_reset(struct usb_device *udev,
 643                                     const struct usb_interface *iface);
 644
 645/* USB port reset for device reinitialization */
 646extern int usb_reset_device(struct usb_device *dev);
 647extern void usb_queue_reset_device(struct usb_interface *dev);
 648
 649#ifdef CONFIG_ACPI
 650extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 651        bool enable);
 652extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
 653#else
 654static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
 655        bool enable) { return 0; }
 656static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
 657        { return true; }
 658#endif
 659
 660/* USB autosuspend and autoresume */
 661#ifdef CONFIG_PM
 662extern void usb_enable_autosuspend(struct usb_device *udev);
 663extern void usb_disable_autosuspend(struct usb_device *udev);
 664
 665extern int usb_autopm_get_interface(struct usb_interface *intf);
 666extern void usb_autopm_put_interface(struct usb_interface *intf);
 667extern int usb_autopm_get_interface_async(struct usb_interface *intf);
 668extern void usb_autopm_put_interface_async(struct usb_interface *intf);
 669extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
 670extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
 671
 672static inline void usb_mark_last_busy(struct usb_device *udev)
 673{
 674        pm_runtime_mark_last_busy(&udev->dev);
 675}
 676
 677#else
 678
 679static inline int usb_enable_autosuspend(struct usb_device *udev)
 680{ return 0; }
 681static inline int usb_disable_autosuspend(struct usb_device *udev)
 682{ return 0; }
 683
 684static inline int usb_autopm_get_interface(struct usb_interface *intf)
 685{ return 0; }
 686static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
 687{ return 0; }
 688
 689static inline void usb_autopm_put_interface(struct usb_interface *intf)
 690{ }
 691static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
 692{ }
 693static inline void usb_autopm_get_interface_no_resume(
 694                struct usb_interface *intf)
 695{ }
 696static inline void usb_autopm_put_interface_no_suspend(
 697                struct usb_interface *intf)
 698{ }
 699static inline void usb_mark_last_busy(struct usb_device *udev)
 700{ }
 701#endif
 702
 703extern int usb_disable_lpm(struct usb_device *udev);
 704extern void usb_enable_lpm(struct usb_device *udev);
 705/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
 706extern int usb_unlocked_disable_lpm(struct usb_device *udev);
 707extern void usb_unlocked_enable_lpm(struct usb_device *udev);
 708
 709extern int usb_disable_ltm(struct usb_device *udev);
 710extern void usb_enable_ltm(struct usb_device *udev);
 711
 712static inline bool usb_device_supports_ltm(struct usb_device *udev)
 713{
 714        if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
 715                return false;
 716        return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
 717}
 718
 719static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
 720{
 721        return udev && udev->bus && udev->bus->no_sg_constraint;
 722}
 723
 724
 725/*-------------------------------------------------------------------------*/
 726
 727/* for drivers using iso endpoints */
 728extern int usb_get_current_frame_number(struct usb_device *usb_dev);
 729
 730/* Sets up a group of bulk endpoints to support multiple stream IDs. */
 731extern int usb_alloc_streams(struct usb_interface *interface,
 732                struct usb_host_endpoint **eps, unsigned int num_eps,
 733                unsigned int num_streams, gfp_t mem_flags);
 734
 735/* Reverts a group of bulk endpoints back to not using stream IDs. */
 736extern int usb_free_streams(struct usb_interface *interface,
 737                struct usb_host_endpoint **eps, unsigned int num_eps,
 738                gfp_t mem_flags);
 739
 740/* used these for multi-interface device registration */
 741extern int usb_driver_claim_interface(struct usb_driver *driver,
 742                        struct usb_interface *iface, void *priv);
 743
 744/**
 745 * usb_interface_claimed - returns true iff an interface is claimed
 746 * @iface: the interface being checked
 747 *
 748 * Return: %true (nonzero) iff the interface is claimed, else %false
 749 * (zero).
 750 *
 751 * Note:
 752 * Callers must own the driver model's usb bus readlock.  So driver
 753 * probe() entries don't need extra locking, but other call contexts
 754 * may need to explicitly claim that lock.
 755 *
 756 */
 757static inline int usb_interface_claimed(struct usb_interface *iface)
 758{
 759        return (iface->dev.driver != NULL);
 760}
 761
 762extern void usb_driver_release_interface(struct usb_driver *driver,
 763                        struct usb_interface *iface);
 764const struct usb_device_id *usb_match_id(struct usb_interface *interface,
 765                                         const struct usb_device_id *id);
 766extern int usb_match_one_id(struct usb_interface *interface,
 767                            const struct usb_device_id *id);
 768
 769extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
 770extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
 771                int minor);
 772extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
 773                unsigned ifnum);
 774extern struct usb_host_interface *usb_altnum_to_altsetting(
 775                const struct usb_interface *intf, unsigned int altnum);
 776extern struct usb_host_interface *usb_find_alt_setting(
 777                struct usb_host_config *config,
 778                unsigned int iface_num,
 779                unsigned int alt_num);
 780
 781/* port claiming functions */
 782int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
 783                struct usb_dev_state *owner);
 784int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
 785                struct usb_dev_state *owner);
 786
 787/**
 788 * usb_make_path - returns stable device path in the usb tree
 789 * @dev: the device whose path is being constructed
 790 * @buf: where to put the string
 791 * @size: how big is "buf"?
 792 *
 793 * Return: Length of the string (> 0) or negative if size was too small.
 794 *
 795 * Note:
 796 * This identifier is intended to be "stable", reflecting physical paths in
 797 * hardware such as physical bus addresses for host controllers or ports on
 798 * USB hubs.  That makes it stay the same until systems are physically
 799 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
 800 * controllers.  Adding and removing devices, including virtual root hubs
 801 * in host controller driver modules, does not change these path identifiers;
 802 * neither does rebooting or re-enumerating.  These are more useful identifiers
 803 * than changeable ("unstable") ones like bus numbers or device addresses.
 804 *
 805 * With a partial exception for devices connected to USB 2.0 root hubs, these
 806 * identifiers are also predictable.  So long as the device tree isn't changed,
 807 * plugging any USB device into a given hub port always gives it the same path.
 808 * Because of the use of "companion" controllers, devices connected to ports on
 809 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
 810 * high speed, and a different one if they are full or low speed.
 811 */
 812static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
 813{
 814        int actual;
 815        actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
 816                          dev->devpath);
 817        return (actual >= (int)size) ? -1 : actual;
 818}
 819
 820/*-------------------------------------------------------------------------*/
 821
 822#define USB_DEVICE_ID_MATCH_DEVICE \
 823                (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
 824#define USB_DEVICE_ID_MATCH_DEV_RANGE \
 825                (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
 826#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
 827                (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
 828#define USB_DEVICE_ID_MATCH_DEV_INFO \
 829                (USB_DEVICE_ID_MATCH_DEV_CLASS | \
 830                USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
 831                USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
 832#define USB_DEVICE_ID_MATCH_INT_INFO \
 833                (USB_DEVICE_ID_MATCH_INT_CLASS | \
 834                USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
 835                USB_DEVICE_ID_MATCH_INT_PROTOCOL)
 836
 837/**
 838 * USB_DEVICE - macro used to describe a specific usb device
 839 * @vend: the 16 bit USB Vendor ID
 840 * @prod: the 16 bit USB Product ID
 841 *
 842 * This macro is used to create a struct usb_device_id that matches a
 843 * specific device.
 844 */
 845#define USB_DEVICE(vend, prod) \
 846        .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
 847        .idVendor = (vend), \
 848        .idProduct = (prod)
 849/**
 850 * USB_DEVICE_VER - describe a specific usb device with a version range
 851 * @vend: the 16 bit USB Vendor ID
 852 * @prod: the 16 bit USB Product ID
 853 * @lo: the bcdDevice_lo value
 854 * @hi: the bcdDevice_hi value
 855 *
 856 * This macro is used to create a struct usb_device_id that matches a
 857 * specific device, with a version range.
 858 */
 859#define USB_DEVICE_VER(vend, prod, lo, hi) \
 860        .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
 861        .idVendor = (vend), \
 862        .idProduct = (prod), \
 863        .bcdDevice_lo = (lo), \
 864        .bcdDevice_hi = (hi)
 865
 866/**
 867 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
 868 * @vend: the 16 bit USB Vendor ID
 869 * @prod: the 16 bit USB Product ID
 870 * @cl: bInterfaceClass value
 871 *
 872 * This macro is used to create a struct usb_device_id that matches a
 873 * specific interface class of devices.
 874 */
 875#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
 876        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 877                       USB_DEVICE_ID_MATCH_INT_CLASS, \
 878        .idVendor = (vend), \
 879        .idProduct = (prod), \
 880        .bInterfaceClass = (cl)
 881
 882/**
 883 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
 884 * @vend: the 16 bit USB Vendor ID
 885 * @prod: the 16 bit USB Product ID
 886 * @pr: bInterfaceProtocol value
 887 *
 888 * This macro is used to create a struct usb_device_id that matches a
 889 * specific interface protocol of devices.
 890 */
 891#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
 892        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 893                       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
 894        .idVendor = (vend), \
 895        .idProduct = (prod), \
 896        .bInterfaceProtocol = (pr)
 897
 898/**
 899 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
 900 * @vend: the 16 bit USB Vendor ID
 901 * @prod: the 16 bit USB Product ID
 902 * @num: bInterfaceNumber value
 903 *
 904 * This macro is used to create a struct usb_device_id that matches a
 905 * specific interface number of devices.
 906 */
 907#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
 908        .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
 909                       USB_DEVICE_ID_MATCH_INT_NUMBER, \
 910        .idVendor = (vend), \
 911        .idProduct = (prod), \
 912        .bInterfaceNumber = (num)
 913
 914/**
 915 * USB_DEVICE_INFO - macro used to describe a class of usb devices
 916 * @cl: bDeviceClass value
 917 * @sc: bDeviceSubClass value
 918 * @pr: bDeviceProtocol value
 919 *
 920 * This macro is used to create a struct usb_device_id that matches a
 921 * specific class of devices.
 922 */
 923#define USB_DEVICE_INFO(cl, sc, pr) \
 924        .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
 925        .bDeviceClass = (cl), \
 926        .bDeviceSubClass = (sc), \
 927        .bDeviceProtocol = (pr)
 928
 929/**
 930 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 931 * @cl: bInterfaceClass value
 932 * @sc: bInterfaceSubClass value
 933 * @pr: bInterfaceProtocol value
 934 *
 935 * This macro is used to create a struct usb_device_id that matches a
 936 * specific class of interfaces.
 937 */
 938#define USB_INTERFACE_INFO(cl, sc, pr) \
 939        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
 940        .bInterfaceClass = (cl), \
 941        .bInterfaceSubClass = (sc), \
 942        .bInterfaceProtocol = (pr)
 943
 944/**
 945 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
 946 * @vend: the 16 bit USB Vendor ID
 947 * @prod: the 16 bit USB Product ID
 948 * @cl: bInterfaceClass value
 949 * @sc: bInterfaceSubClass value
 950 * @pr: bInterfaceProtocol value
 951 *
 952 * This macro is used to create a struct usb_device_id that matches a
 953 * specific device with a specific class of interfaces.
 954 *
 955 * This is especially useful when explicitly matching devices that have
 956 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 957 */
 958#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
 959        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 960                | USB_DEVICE_ID_MATCH_DEVICE, \
 961        .idVendor = (vend), \
 962        .idProduct = (prod), \
 963        .bInterfaceClass = (cl), \
 964        .bInterfaceSubClass = (sc), \
 965        .bInterfaceProtocol = (pr)
 966
 967/**
 968 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
 969 * @vend: the 16 bit USB Vendor ID
 970 * @cl: bInterfaceClass value
 971 * @sc: bInterfaceSubClass value
 972 * @pr: bInterfaceProtocol value
 973 *
 974 * This macro is used to create a struct usb_device_id that matches a
 975 * specific vendor with a specific class of interfaces.
 976 *
 977 * This is especially useful when explicitly matching devices that have
 978 * vendor specific bDeviceClass values, but standards-compliant interfaces.
 979 */
 980#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
 981        .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
 982                | USB_DEVICE_ID_MATCH_VENDOR, \
 983        .idVendor = (vend), \
 984        .bInterfaceClass = (cl), \
 985        .bInterfaceSubClass = (sc), \
 986        .bInterfaceProtocol = (pr)
 987
 988/* ----------------------------------------------------------------------- */
 989
 990/* Stuff for dynamic usb ids */
 991struct usb_dynids {
 992        spinlock_t lock;
 993        struct list_head list;
 994};
 995
 996struct usb_dynid {
 997        struct list_head node;
 998        struct usb_device_id id;
 999};
1000
1001extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1002                                const struct usb_device_id *id_table,
1003                                struct device_driver *driver,
1004                                const char *buf, size_t count);
1005
1006extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1007
1008/**
1009 * struct usbdrv_wrap - wrapper for driver-model structure
1010 * @driver: The driver-model core driver structure.
1011 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1012 */
1013struct usbdrv_wrap {
1014        struct device_driver driver;
1015        int for_devices;
1016};
1017
1018/**
1019 * struct usb_driver - identifies USB interface driver to usbcore
1020 * @name: The driver name should be unique among USB drivers,
1021 *      and should normally be the same as the module name.
1022 * @probe: Called to see if the driver is willing to manage a particular
1023 *      interface on a device.  If it is, probe returns zero and uses
1024 *      usb_set_intfdata() to associate driver-specific data with the
1025 *      interface.  It may also use usb_set_interface() to specify the
1026 *      appropriate altsetting.  If unwilling to manage the interface,
1027 *      return -ENODEV, if genuine IO errors occurred, an appropriate
1028 *      negative errno value.
1029 * @disconnect: Called when the interface is no longer accessible, usually
1030 *      because its device has been (or is being) disconnected or the
1031 *      driver module is being unloaded.
1032 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1033 *      the "usbfs" filesystem.  This lets devices provide ways to
1034 *      expose information to user space regardless of where they
1035 *      do (or don't) show up otherwise in the filesystem.
1036 * @suspend: Called when the device is going to be suspended by the
1037 *      system either from system sleep or runtime suspend context. The
1038 *      return value will be ignored in system sleep context, so do NOT
1039 *      try to continue using the device if suspend fails in this case.
1040 *      Instead, let the resume or reset-resume routine recover from
1041 *      the failure.
1042 * @resume: Called when the device is being resumed by the system.
1043 * @reset_resume: Called when the suspended device has been reset instead
1044 *      of being resumed.
1045 * @pre_reset: Called by usb_reset_device() when the device is about to be
1046 *      reset.  This routine must not return until the driver has no active
1047 *      URBs for the device, and no more URBs may be submitted until the
1048 *      post_reset method is called.
1049 * @post_reset: Called by usb_reset_device() after the device
1050 *      has been reset
1051 * @id_table: USB drivers use ID table to support hotplugging.
1052 *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1053 *      or your driver's probe function will never get called.
1054 * @dynids: used internally to hold the list of dynamically added device
1055 *      ids for this driver.
1056 * @drvwrap: Driver-model core structure wrapper.
1057 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1058 *      added to this driver by preventing the sysfs file from being created.
1059 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1060 *      for interfaces bound to this driver.
1061 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1062 *      endpoints before calling the driver's disconnect method.
1063 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1064 *      to initiate lower power link state transitions when an idle timeout
1065 *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1066 *
1067 * USB interface drivers must provide a name, probe() and disconnect()
1068 * methods, and an id_table.  Other driver fields are optional.
1069 *
1070 * The id_table is used in hotplugging.  It holds a set of descriptors,
1071 * and specialized data may be associated with each entry.  That table
1072 * is used by both user and kernel mode hotplugging support.
1073 *
1074 * The probe() and disconnect() methods are called in a context where
1075 * they can sleep, but they should avoid abusing the privilege.  Most
1076 * work to connect to a device should be done when the device is opened,
1077 * and undone at the last close.  The disconnect code needs to address
1078 * concurrency issues with respect to open() and close() methods, as
1079 * well as forcing all pending I/O requests to complete (by unlinking
1080 * them as necessary, and blocking until the unlinks complete).
1081 */
1082struct usb_driver {
1083        const char *name;
1084
1085        int (*probe) (struct usb_interface *intf,
1086                      const struct usb_device_id *id);
1087
1088        void (*disconnect) (struct usb_interface *intf);
1089
1090        int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1091                        void *buf);
1092
1093        int (*suspend) (struct usb_interface *intf, pm_message_t message);
1094        int (*resume) (struct usb_interface *intf);
1095        int (*reset_resume)(struct usb_interface *intf);
1096
1097        int (*pre_reset)(struct usb_interface *intf);
1098        int (*post_reset)(struct usb_interface *intf);
1099
1100        const struct usb_device_id *id_table;
1101
1102        struct usb_dynids dynids;
1103        struct usbdrv_wrap drvwrap;
1104        unsigned int no_dynamic_id:1;
1105        unsigned int supports_autosuspend:1;
1106        unsigned int disable_hub_initiated_lpm:1;
1107        unsigned int soft_unbind:1;
1108};
1109#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1110
1111/**
1112 * struct usb_device_driver - identifies USB device driver to usbcore
1113 * @name: The driver name should be unique among USB drivers,
1114 *      and should normally be the same as the module name.
1115 * @probe: Called to see if the driver is willing to manage a particular
1116 *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1117 *      to associate driver-specific data with the device.  If unwilling
1118 *      to manage the device, return a negative errno value.
1119 * @disconnect: Called when the device is no longer accessible, usually
1120 *      because it has been (or is being) disconnected or the driver's
1121 *      module is being unloaded.
1122 * @suspend: Called when the device is going to be suspended by the system.
1123 * @resume: Called when the device is being resumed by the system.
1124 * @drvwrap: Driver-model core structure wrapper.
1125 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1126 *      for devices bound to this driver.
1127 *
1128 * USB drivers must provide all the fields listed above except drvwrap.
1129 */
1130struct usb_device_driver {
1131        const char *name;
1132
1133        int (*probe) (struct usb_device *udev);
1134        void (*disconnect) (struct usb_device *udev);
1135
1136        int (*suspend) (struct usb_device *udev, pm_message_t message);
1137        int (*resume) (struct usb_device *udev, pm_message_t message);
1138        struct usbdrv_wrap drvwrap;
1139        unsigned int supports_autosuspend:1;
1140};
1141#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1142                drvwrap.driver)
1143
1144extern struct bus_type usb_bus_type;
1145
1146/**
1147 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1148 * @name: the usb class device name for this driver.  Will show up in sysfs.
1149 * @devnode: Callback to provide a naming hint for a possible
1150 *      device node to create.
1151 * @fops: pointer to the struct file_operations of this driver.
1152 * @minor_base: the start of the minor range for this driver.
1153 *
1154 * This structure is used for the usb_register_dev() and
1155 * usb_unregister_dev() functions, to consolidate a number of the
1156 * parameters used for them.
1157 */
1158struct usb_class_driver {
1159        char *name;
1160        char *(*devnode)(struct device *dev, umode_t *mode);
1161        const struct file_operations *fops;
1162        int minor_base;
1163};
1164
1165/*
1166 * use these in module_init()/module_exit()
1167 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1168 */
1169extern int usb_register_driver(struct usb_driver *, struct module *,
1170                               const char *);
1171
1172/* use a define to avoid include chaining to get THIS_MODULE & friends */
1173#define usb_register(driver) \
1174        usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1175
1176extern void usb_deregister(struct usb_driver *);
1177
1178/**
1179 * module_usb_driver() - Helper macro for registering a USB driver
1180 * @__usb_driver: usb_driver struct
1181 *
1182 * Helper macro for USB drivers which do not do anything special in module
1183 * init/exit. This eliminates a lot of boilerplate. Each module may only
1184 * use this macro once, and calling it replaces module_init() and module_exit()
1185 */
1186#define module_usb_driver(__usb_driver) \
1187        module_driver(__usb_driver, usb_register, \
1188                       usb_deregister)
1189
1190extern int usb_register_device_driver(struct usb_device_driver *,
1191                        struct module *);
1192extern void usb_deregister_device_driver(struct usb_device_driver *);
1193
1194extern int usb_register_dev(struct usb_interface *intf,
1195                            struct usb_class_driver *class_driver);
1196extern void usb_deregister_dev(struct usb_interface *intf,
1197                               struct usb_class_driver *class_driver);
1198
1199extern int usb_disabled(void);
1200
1201/* ----------------------------------------------------------------------- */
1202
1203/*
1204 * URB support, for asynchronous request completions
1205 */
1206
1207/*
1208 * urb->transfer_flags:
1209 *
1210 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1211 */
1212#define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1213#define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1214                                         * slot in the schedule */
1215#define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1216#define URB_NO_FSBR             0x0020  /* UHCI-specific */
1217#define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1218#define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1219                                         * needed */
1220#define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1221
1222/* The following flags are used internally by usbcore and HCDs */
1223#define URB_DIR_IN              0x0200  /* Transfer from device to host */
1224#define URB_DIR_OUT             0
1225#define URB_DIR_MASK            URB_DIR_IN
1226
1227#define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1228#define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1229#define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1230#define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1231#define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1232#define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1233#define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1234#define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1235
1236struct usb_iso_packet_descriptor {
1237        unsigned int offset;
1238        unsigned int length;            /* expected length */
1239        unsigned int actual_length;
1240        int status;
1241};
1242
1243struct urb;
1244
1245struct usb_anchor {
1246        struct list_head urb_list;
1247        wait_queue_head_t wait;
1248        spinlock_t lock;
1249        atomic_t suspend_wakeups;
1250        unsigned int poisoned:1;
1251};
1252
1253static inline void init_usb_anchor(struct usb_anchor *anchor)
1254{
1255        memset(anchor, 0, sizeof(*anchor));
1256        INIT_LIST_HEAD(&anchor->urb_list);
1257        init_waitqueue_head(&anchor->wait);
1258        spin_lock_init(&anchor->lock);
1259}
1260
1261typedef void (*usb_complete_t)(struct urb *);
1262
1263/**
1264 * struct urb - USB Request Block
1265 * @urb_list: For use by current owner of the URB.
1266 * @anchor_list: membership in the list of an anchor
1267 * @anchor: to anchor URBs to a common mooring
1268 * @ep: Points to the endpoint's data structure.  Will eventually
1269 *      replace @pipe.
1270 * @pipe: Holds endpoint number, direction, type, and more.
1271 *      Create these values with the eight macros available;
1272 *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1273 *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1274 *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1275 *      numbers range from zero to fifteen.  Note that "in" endpoint two
1276 *      is a different endpoint (and pipe) from "out" endpoint two.
1277 *      The current configuration controls the existence, type, and
1278 *      maximum packet size of any given endpoint.
1279 * @stream_id: the endpoint's stream ID for bulk streams
1280 * @dev: Identifies the USB device to perform the request.
1281 * @status: This is read in non-iso completion functions to get the
1282 *      status of the particular request.  ISO requests only use it
1283 *      to tell whether the URB was unlinked; detailed status for
1284 *      each frame is in the fields of the iso_frame-desc.
1285 * @transfer_flags: A variety of flags may be used to affect how URB
1286 *      submission, unlinking, or operation are handled.  Different
1287 *      kinds of URB can use different flags.
1288 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1289 *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1290 *      (however, do not leave garbage in transfer_buffer even then).
1291 *      This buffer must be suitable for DMA; allocate it with
1292 *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1293 *      of this buffer will be modified.  This buffer is used for the data
1294 *      stage of control transfers.
1295 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1296 *      the device driver is saying that it provided this DMA address,
1297 *      which the host controller driver should use in preference to the
1298 *      transfer_buffer.
1299 * @sg: scatter gather buffer list, the buffer size of each element in
1300 *      the list (except the last) must be divisible by the endpoint's
1301 *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1302 * @num_mapped_sgs: (internal) number of mapped sg entries
1303 * @num_sgs: number of entries in the sg list
1304 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1305 *      be broken up into chunks according to the current maximum packet
1306 *      size for the endpoint, which is a function of the configuration
1307 *      and is encoded in the pipe.  When the length is zero, neither
1308 *      transfer_buffer nor transfer_dma is used.
1309 * @actual_length: This is read in non-iso completion functions, and
1310 *      it tells how many bytes (out of transfer_buffer_length) were
1311 *      transferred.  It will normally be the same as requested, unless
1312 *      either an error was reported or a short read was performed.
1313 *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1314 *      short reads be reported as errors.
1315 * @setup_packet: Only used for control transfers, this points to eight bytes
1316 *      of setup data.  Control transfers always start by sending this data
1317 *      to the device.  Then transfer_buffer is read or written, if needed.
1318 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1319 *      this field; setup_packet must point to a valid buffer.
1320 * @start_frame: Returns the initial frame for isochronous transfers.
1321 * @number_of_packets: Lists the number of ISO transfer buffers.
1322 * @interval: Specifies the polling interval for interrupt or isochronous
1323 *      transfers.  The units are frames (milliseconds) for full and low
1324 *      speed devices, and microframes (1/8 millisecond) for highspeed
1325 *      and SuperSpeed devices.
1326 * @error_count: Returns the number of ISO transfers that reported errors.
1327 * @context: For use in completion functions.  This normally points to
1328 *      request-specific driver context.
1329 * @complete: Completion handler. This URB is passed as the parameter to the
1330 *      completion function.  The completion function may then do what
1331 *      it likes with the URB, including resubmitting or freeing it.
1332 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1333 *      collect the transfer status for each buffer.
1334 *
1335 * This structure identifies USB transfer requests.  URBs must be allocated by
1336 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1337 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1338 * are submitted using usb_submit_urb(), and pending requests may be canceled
1339 * using usb_unlink_urb() or usb_kill_urb().
1340 *
1341 * Data Transfer Buffers:
1342 *
1343 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1344 * taken from the general page pool.  That is provided by transfer_buffer
1345 * (control requests also use setup_packet), and host controller drivers
1346 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1347 * mapping operations can be expensive on some platforms (perhaps using a dma
1348 * bounce buffer or talking to an IOMMU),
1349 * although they're cheap on commodity x86 and ppc hardware.
1350 *
1351 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1352 * which tells the host controller driver that no such mapping is needed for
1353 * the transfer_buffer since
1354 * the device driver is DMA-aware.  For example, a device driver might
1355 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1356 * When this transfer flag is provided, host controller drivers will
1357 * attempt to use the dma address found in the transfer_dma
1358 * field rather than determining a dma address themselves.
1359 *
1360 * Note that transfer_buffer must still be set if the controller
1361 * does not support DMA (as indicated by bus.uses_dma) and when talking
1362 * to root hub. If you have to trasfer between highmem zone and the device
1363 * on such controller, create a bounce buffer or bail out with an error.
1364 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1365 * capable, assign NULL to it, so that usbmon knows not to use the value.
1366 * The setup_packet must always be set, so it cannot be located in highmem.
1367 *
1368 * Initialization:
1369 *
1370 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1371 * zero), and complete fields.  All URBs must also initialize
1372 * transfer_buffer and transfer_buffer_length.  They may provide the
1373 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1374 * to be treated as errors; that flag is invalid for write requests.
1375 *
1376 * Bulk URBs may
1377 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1378 * should always terminate with a short packet, even if it means adding an
1379 * extra zero length packet.
1380 *
1381 * Control URBs must provide a valid pointer in the setup_packet field.
1382 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1383 * beforehand.
1384 *
1385 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1386 * or, for highspeed devices, 125 microsecond units)
1387 * to poll for transfers.  After the URB has been submitted, the interval
1388 * field reflects how the transfer was actually scheduled.
1389 * The polling interval may be more frequent than requested.
1390 * For example, some controllers have a maximum interval of 32 milliseconds,
1391 * while others support intervals of up to 1024 milliseconds.
1392 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1393 * endpoints, as well as high speed interrupt endpoints, the encoding of
1394 * the transfer interval in the endpoint descriptor is logarithmic.
1395 * Device drivers must convert that value to linear units themselves.)
1396 *
1397 * If an isochronous endpoint queue isn't already running, the host
1398 * controller will schedule a new URB to start as soon as bandwidth
1399 * utilization allows.  If the queue is running then a new URB will be
1400 * scheduled to start in the first transfer slot following the end of the
1401 * preceding URB, if that slot has not already expired.  If the slot has
1402 * expired (which can happen when IRQ delivery is delayed for a long time),
1403 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1404 * is clear then the URB will be scheduled to start in the expired slot,
1405 * implying that some of its packets will not be transferred; if the flag
1406 * is set then the URB will be scheduled in the first unexpired slot,
1407 * breaking the queue's synchronization.  Upon URB completion, the
1408 * start_frame field will be set to the (micro)frame number in which the
1409 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1410 * and can go from as low as 256 to as high as 65536 frames.
1411 *
1412 * Isochronous URBs have a different data transfer model, in part because
1413 * the quality of service is only "best effort".  Callers provide specially
1414 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1415 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1416 * URBs are normally queued, submitted by drivers to arrange that
1417 * transfers are at least double buffered, and then explicitly resubmitted
1418 * in completion handlers, so
1419 * that data (such as audio or video) streams at as constant a rate as the
1420 * host controller scheduler can support.
1421 *
1422 * Completion Callbacks:
1423 *
1424 * The completion callback is made in_interrupt(), and one of the first
1425 * things that a completion handler should do is check the status field.
1426 * The status field is provided for all URBs.  It is used to report
1427 * unlinked URBs, and status for all non-ISO transfers.  It should not
1428 * be examined before the URB is returned to the completion handler.
1429 *
1430 * The context field is normally used to link URBs back to the relevant
1431 * driver or request state.
1432 *
1433 * When the completion callback is invoked for non-isochronous URBs, the
1434 * actual_length field tells how many bytes were transferred.  This field
1435 * is updated even when the URB terminated with an error or was unlinked.
1436 *
1437 * ISO transfer status is reported in the status and actual_length fields
1438 * of the iso_frame_desc array, and the number of errors is reported in
1439 * error_count.  Completion callbacks for ISO transfers will normally
1440 * (re)submit URBs to ensure a constant transfer rate.
1441 *
1442 * Note that even fields marked "public" should not be touched by the driver
1443 * when the urb is owned by the hcd, that is, since the call to
1444 * usb_submit_urb() till the entry into the completion routine.
1445 */
1446struct urb {
1447        /* private: usb core and host controller only fields in the urb */
1448        struct kref kref;               /* reference count of the URB */
1449        void *hcpriv;                   /* private data for host controller */
1450        atomic_t use_count;             /* concurrent submissions counter */
1451        atomic_t reject;                /* submissions will fail */
1452        int unlinked;                   /* unlink error code */
1453
1454        /* public: documented fields in the urb that can be used by drivers */
1455        struct list_head urb_list;      /* list head for use by the urb's
1456                                         * current owner */
1457        struct list_head anchor_list;   /* the URB may be anchored */
1458        struct usb_anchor *anchor;
1459        struct usb_device *dev;         /* (in) pointer to associated device */
1460        struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1461        unsigned int pipe;              /* (in) pipe information */
1462        unsigned int stream_id;         /* (in) stream ID */
1463        int status;                     /* (return) non-ISO status */
1464        unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1465        void *transfer_buffer;          /* (in) associated data buffer */
1466        dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1467        struct scatterlist *sg;         /* (in) scatter gather buffer list */
1468        int num_mapped_sgs;             /* (internal) mapped sg entries */
1469        int num_sgs;                    /* (in) number of entries in the sg list */
1470        u32 transfer_buffer_length;     /* (in) data buffer length */
1471        u32 actual_length;              /* (return) actual transfer length */
1472        unsigned char *setup_packet;    /* (in) setup packet (control only) */
1473        dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1474        int start_frame;                /* (modify) start frame (ISO) */
1475        int number_of_packets;          /* (in) number of ISO packets */
1476        int interval;                   /* (modify) transfer interval
1477                                         * (INT/ISO) */
1478        int error_count;                /* (return) number of ISO errors */
1479        void *context;                  /* (in) context for completion */
1480        usb_complete_t complete;        /* (in) completion routine */
1481        struct usb_iso_packet_descriptor iso_frame_desc[0];
1482                                        /* (in) ISO ONLY */
1483};
1484
1485/* ----------------------------------------------------------------------- */
1486
1487/**
1488 * usb_fill_control_urb - initializes a control urb
1489 * @urb: pointer to the urb to initialize.
1490 * @dev: pointer to the struct usb_device for this urb.
1491 * @pipe: the endpoint pipe
1492 * @setup_packet: pointer to the setup_packet buffer
1493 * @transfer_buffer: pointer to the transfer buffer
1494 * @buffer_length: length of the transfer buffer
1495 * @complete_fn: pointer to the usb_complete_t function
1496 * @context: what to set the urb context to.
1497 *
1498 * Initializes a control urb with the proper information needed to submit
1499 * it to a device.
1500 */
1501static inline void usb_fill_control_urb(struct urb *urb,
1502                                        struct usb_device *dev,
1503                                        unsigned int pipe,
1504                                        unsigned char *setup_packet,
1505                                        void *transfer_buffer,
1506                                        int buffer_length,
1507                                        usb_complete_t complete_fn,
1508                                        void *context)
1509{
1510        urb->dev = dev;
1511        urb->pipe = pipe;
1512        urb->setup_packet = setup_packet;
1513        urb->transfer_buffer = transfer_buffer;
1514        urb->transfer_buffer_length = buffer_length;
1515        urb->complete = complete_fn;
1516        urb->context = context;
1517}
1518
1519/**
1520 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1521 * @urb: pointer to the urb to initialize.
1522 * @dev: pointer to the struct usb_device for this urb.
1523 * @pipe: the endpoint pipe
1524 * @transfer_buffer: pointer to the transfer buffer
1525 * @buffer_length: length of the transfer buffer
1526 * @complete_fn: pointer to the usb_complete_t function
1527 * @context: what to set the urb context to.
1528 *
1529 * Initializes a bulk urb with the proper information needed to submit it
1530 * to a device.
1531 */
1532static inline void usb_fill_bulk_urb(struct urb *urb,
1533                                     struct usb_device *dev,
1534                                     unsigned int pipe,
1535                                     void *transfer_buffer,
1536                                     int buffer_length,
1537                                     usb_complete_t complete_fn,
1538                                     void *context)
1539{
1540        urb->dev = dev;
1541        urb->pipe = pipe;
1542        urb->transfer_buffer = transfer_buffer;
1543        urb->transfer_buffer_length = buffer_length;
1544        urb->complete = complete_fn;
1545        urb->context = context;
1546}
1547
1548/**
1549 * usb_fill_int_urb - macro to help initialize a interrupt urb
1550 * @urb: pointer to the urb to initialize.
1551 * @dev: pointer to the struct usb_device for this urb.
1552 * @pipe: the endpoint pipe
1553 * @transfer_buffer: pointer to the transfer buffer
1554 * @buffer_length: length of the transfer buffer
1555 * @complete_fn: pointer to the usb_complete_t function
1556 * @context: what to set the urb context to.
1557 * @interval: what to set the urb interval to, encoded like
1558 *      the endpoint descriptor's bInterval value.
1559 *
1560 * Initializes a interrupt urb with the proper information needed to submit
1561 * it to a device.
1562 *
1563 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1564 * encoding of the endpoint interval, and express polling intervals in
1565 * microframes (eight per millisecond) rather than in frames (one per
1566 * millisecond).
1567 *
1568 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1569 * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1570 * through to the host controller, rather than being translated into microframe
1571 * units.
1572 */
1573static inline void usb_fill_int_urb(struct urb *urb,
1574                                    struct usb_device *dev,
1575                                    unsigned int pipe,
1576                                    void *transfer_buffer,
1577                                    int buffer_length,
1578                                    usb_complete_t complete_fn,
1579                                    void *context,
1580                                    int interval)
1581{
1582        urb->dev = dev;
1583        urb->pipe = pipe;
1584        urb->transfer_buffer = transfer_buffer;
1585        urb->transfer_buffer_length = buffer_length;
1586        urb->complete = complete_fn;
1587        urb->context = context;
1588
1589        if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1590                /* make sure interval is within allowed range */
1591                interval = clamp(interval, 1, 16);
1592
1593                urb->interval = 1 << (interval - 1);
1594        } else {
1595                urb->interval = interval;
1596        }
1597
1598        urb->start_frame = -1;
1599}
1600
1601extern void usb_init_urb(struct urb *urb);
1602extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1603extern void usb_free_urb(struct urb *urb);
1604#define usb_put_urb usb_free_urb
1605extern struct urb *usb_get_urb(struct urb *urb);
1606extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1607extern int usb_unlink_urb(struct urb *urb);
1608extern void usb_kill_urb(struct urb *urb);
1609extern void usb_poison_urb(struct urb *urb);
1610extern void usb_unpoison_urb(struct urb *urb);
1611extern void usb_block_urb(struct urb *urb);
1612extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1613extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1614extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1615extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1616extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1617extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1618extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1619extern void usb_unanchor_urb(struct urb *urb);
1620extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1621                                         unsigned int timeout);
1622extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1623extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1624extern int usb_anchor_empty(struct usb_anchor *anchor);
1625
1626#define usb_unblock_urb usb_unpoison_urb
1627
1628/**
1629 * usb_urb_dir_in - check if an URB describes an IN transfer
1630 * @urb: URB to be checked
1631 *
1632 * Return: 1 if @urb describes an IN transfer (device-to-host),
1633 * otherwise 0.
1634 */
1635static inline int usb_urb_dir_in(struct urb *urb)
1636{
1637        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1638}
1639
1640/**
1641 * usb_urb_dir_out - check if an URB describes an OUT transfer
1642 * @urb: URB to be checked
1643 *
1644 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1645 * otherwise 0.
1646 */
1647static inline int usb_urb_dir_out(struct urb *urb)
1648{
1649        return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1650}
1651
1652void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1653        gfp_t mem_flags, dma_addr_t *dma);
1654void usb_free_coherent(struct usb_device *dev, size_t size,
1655        void *addr, dma_addr_t dma);
1656
1657#if 0
1658struct urb *usb_buffer_map(struct urb *urb);
1659void usb_buffer_dmasync(struct urb *urb);
1660void usb_buffer_unmap(struct urb *urb);
1661#endif
1662
1663struct scatterlist;
1664int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1665                      struct scatterlist *sg, int nents);
1666#if 0
1667void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1668                           struct scatterlist *sg, int n_hw_ents);
1669#endif
1670void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1671                         struct scatterlist *sg, int n_hw_ents);
1672
1673/*-------------------------------------------------------------------*
1674 *                         SYNCHRONOUS CALL SUPPORT                  *
1675 *-------------------------------------------------------------------*/
1676
1677extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1678        __u8 request, __u8 requesttype, __u16 value, __u16 index,
1679        void *data, __u16 size, int timeout);
1680extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1681        void *data, int len, int *actual_length, int timeout);
1682extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1683        void *data, int len, int *actual_length,
1684        int timeout);
1685
1686/* wrappers around usb_control_msg() for the most common standard requests */
1687extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1688        unsigned char descindex, void *buf, int size);
1689extern int usb_get_status(struct usb_device *dev,
1690        int type, int target, void *data);
1691extern int usb_string(struct usb_device *dev, int index,
1692        char *buf, size_t size);
1693
1694/* wrappers that also update important state inside usbcore */
1695extern int usb_clear_halt(struct usb_device *dev, int pipe);
1696extern int usb_reset_configuration(struct usb_device *dev);
1697extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1698extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1699
1700/* this request isn't really synchronous, but it belongs with the others */
1701extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1702
1703/* choose and set configuration for device */
1704extern int usb_choose_configuration(struct usb_device *udev);
1705extern int usb_set_configuration(struct usb_device *dev, int configuration);
1706
1707/*
1708 * timeouts, in milliseconds, used for sending/receiving control messages
1709 * they typically complete within a few frames (msec) after they're issued
1710 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1711 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1712 */
1713#define USB_CTRL_GET_TIMEOUT    5000
1714#define USB_CTRL_SET_TIMEOUT    5000
1715
1716
1717/**
1718 * struct usb_sg_request - support for scatter/gather I/O
1719 * @status: zero indicates success, else negative errno
1720 * @bytes: counts bytes transferred.
1721 *
1722 * These requests are initialized using usb_sg_init(), and then are used
1723 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1724 * members of the request object aren't for driver access.
1725 *
1726 * The status and bytecount values are valid only after usb_sg_wait()
1727 * returns.  If the status is zero, then the bytecount matches the total
1728 * from the request.
1729 *
1730 * After an error completion, drivers may need to clear a halt condition
1731 * on the endpoint.
1732 */
1733struct usb_sg_request {
1734        int                     status;
1735        size_t                  bytes;
1736
1737        /* private:
1738         * members below are private to usbcore,
1739         * and are not provided for driver access!
1740         */
1741        spinlock_t              lock;
1742
1743        struct usb_device       *dev;
1744        int                     pipe;
1745
1746        int                     entries;
1747        struct urb              **urbs;
1748
1749        int                     count;
1750        struct completion       complete;
1751};
1752
1753int usb_sg_init(
1754        struct usb_sg_request   *io,
1755        struct usb_device       *dev,
1756        unsigned                pipe,
1757        unsigned                period,
1758        struct scatterlist      *sg,
1759        int                     nents,
1760        size_t                  length,
1761        gfp_t                   mem_flags
1762);
1763void usb_sg_cancel(struct usb_sg_request *io);
1764void usb_sg_wait(struct usb_sg_request *io);
1765
1766
1767/* ----------------------------------------------------------------------- */
1768
1769/*
1770 * For various legacy reasons, Linux has a small cookie that's paired with
1771 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1772 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1773 * an unsigned int encoded as:
1774 *
1775 *  - direction:        bit 7           (0 = Host-to-Device [Out],
1776 *                                       1 = Device-to-Host [In] ...
1777 *                                      like endpoint bEndpointAddress)
1778 *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1779 *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1780 *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1781 *                                       10 = control, 11 = bulk)
1782 *
1783 * Given the device address and endpoint descriptor, pipes are redundant.
1784 */
1785
1786/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1787/* (yet ... they're the values used by usbfs) */
1788#define PIPE_ISOCHRONOUS                0
1789#define PIPE_INTERRUPT                  1
1790#define PIPE_CONTROL                    2
1791#define PIPE_BULK                       3
1792
1793#define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1794#define usb_pipeout(pipe)       (!usb_pipein(pipe))
1795
1796#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1797#define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1798
1799#define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1800#define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1801#define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1802#define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1803#define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1804
1805static inline unsigned int __create_pipe(struct usb_device *dev,
1806                unsigned int endpoint)
1807{
1808        return (dev->devnum << 8) | (endpoint << 15);
1809}
1810
1811/* Create various pipes... */
1812#define usb_sndctrlpipe(dev, endpoint)  \
1813        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1814#define usb_rcvctrlpipe(dev, endpoint)  \
1815        ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1816#define usb_sndisocpipe(dev, endpoint)  \
1817        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1818#define usb_rcvisocpipe(dev, endpoint)  \
1819        ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1820#define usb_sndbulkpipe(dev, endpoint)  \
1821        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1822#define usb_rcvbulkpipe(dev, endpoint)  \
1823        ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824#define usb_sndintpipe(dev, endpoint)   \
1825        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1826#define usb_rcvintpipe(dev, endpoint)   \
1827        ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828
1829static inline struct usb_host_endpoint *
1830usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1831{
1832        struct usb_host_endpoint **eps;
1833        eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1834        return eps[usb_pipeendpoint(pipe)];
1835}
1836
1837/*-------------------------------------------------------------------------*/
1838
1839static inline __u16
1840usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1841{
1842        struct usb_host_endpoint        *ep;
1843        unsigned                        epnum = usb_pipeendpoint(pipe);
1844
1845        if (is_out) {
1846                WARN_ON(usb_pipein(pipe));
1847                ep = udev->ep_out[epnum];
1848        } else {
1849                WARN_ON(usb_pipeout(pipe));
1850                ep = udev->ep_in[epnum];
1851        }
1852        if (!ep)
1853                return 0;
1854
1855        /* NOTE:  only 0x07ff bits are for packet size... */
1856        return usb_endpoint_maxp(&ep->desc);
1857}
1858
1859/* ----------------------------------------------------------------------- */
1860
1861/* translate USB error codes to codes user space understands */
1862static inline int usb_translate_errors(int error_code)
1863{
1864        switch (error_code) {
1865        case 0:
1866        case -ENOMEM:
1867        case -ENODEV:
1868        case -EOPNOTSUPP:
1869                return error_code;
1870        default:
1871                return -EIO;
1872        }
1873}
1874
1875/* Events from the usb core */
1876#define USB_DEVICE_ADD          0x0001
1877#define USB_DEVICE_REMOVE       0x0002
1878#define USB_BUS_ADD             0x0003
1879#define USB_BUS_REMOVE          0x0004
1880extern void usb_register_notify(struct notifier_block *nb);
1881extern void usb_unregister_notify(struct notifier_block *nb);
1882
1883/* debugfs stuff */
1884extern struct dentry *usb_debug_root;
1885
1886/* LED triggers */
1887enum usb_led_event {
1888        USB_LED_EVENT_HOST = 0,
1889        USB_LED_EVENT_GADGET = 1,
1890};
1891
1892#ifdef CONFIG_USB_LED_TRIG
1893extern void usb_led_activity(enum usb_led_event ev);
1894#else
1895static inline void usb_led_activity(enum usb_led_event ev) {}
1896#endif
1897
1898#endif  /* __KERNEL__ */
1899
1900#endif
1901