linux/include/linux/usb/gadget.h
<<
>>
Prefs
   1/*
   2 * <linux/usb/gadget.h>
   3 *
   4 * We call the USB code inside a Linux-based peripheral device a "gadget"
   5 * driver, except for the hardware-specific bus glue.  One USB host can
   6 * master many USB gadgets, but the gadgets are only slaved to one host.
   7 *
   8 *
   9 * (C) Copyright 2002-2004 by David Brownell
  10 * All Rights Reserved.
  11 *
  12 * This software is licensed under the GNU GPL version 2.
  13 */
  14
  15#ifndef __LINUX_USB_GADGET_H
  16#define __LINUX_USB_GADGET_H
  17
  18#include <linux/device.h>
  19#include <linux/errno.h>
  20#include <linux/init.h>
  21#include <linux/list.h>
  22#include <linux/slab.h>
  23#include <linux/scatterlist.h>
  24#include <linux/types.h>
  25#include <linux/workqueue.h>
  26#include <linux/usb/ch9.h>
  27
  28struct usb_ep;
  29
  30/**
  31 * struct usb_request - describes one i/o request
  32 * @buf: Buffer used for data.  Always provide this; some controllers
  33 *      only use PIO, or don't use DMA for some endpoints.
  34 * @dma: DMA address corresponding to 'buf'.  If you don't set this
  35 *      field, and the usb controller needs one, it is responsible
  36 *      for mapping and unmapping the buffer.
  37 * @sg: a scatterlist for SG-capable controllers.
  38 * @num_sgs: number of SG entries
  39 * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
  40 * @length: Length of that data
  41 * @stream_id: The stream id, when USB3.0 bulk streams are being used
  42 * @no_interrupt: If true, hints that no completion irq is needed.
  43 *      Helpful sometimes with deep request queues that are handled
  44 *      directly by DMA controllers.
  45 * @zero: If true, when writing data, makes the last packet be "short"
  46 *     by adding a zero length packet as needed;
  47 * @short_not_ok: When reading data, makes short packets be
  48 *     treated as errors (queue stops advancing till cleanup).
  49 * @complete: Function called when request completes, so this request and
  50 *      its buffer may be re-used.  The function will always be called with
  51 *      interrupts disabled, and it must not sleep.
  52 *      Reads terminate with a short packet, or when the buffer fills,
  53 *      whichever comes first.  When writes terminate, some data bytes
  54 *      will usually still be in flight (often in a hardware fifo).
  55 *      Errors (for reads or writes) stop the queue from advancing
  56 *      until the completion function returns, so that any transfers
  57 *      invalidated by the error may first be dequeued.
  58 * @context: For use by the completion callback
  59 * @list: For use by the gadget driver.
  60 * @status: Reports completion code, zero or a negative errno.
  61 *      Normally, faults block the transfer queue from advancing until
  62 *      the completion callback returns.
  63 *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
  64 *      or when the driver disabled the endpoint.
  65 * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
  66 *      transfers) this may be less than the requested length.  If the
  67 *      short_not_ok flag is set, short reads are treated as errors
  68 *      even when status otherwise indicates successful completion.
  69 *      Note that for writes (IN transfers) some data bytes may still
  70 *      reside in a device-side FIFO when the request is reported as
  71 *      complete.
  72 *
  73 * These are allocated/freed through the endpoint they're used with.  The
  74 * hardware's driver can add extra per-request data to the memory it returns,
  75 * which often avoids separate memory allocations (potential failures),
  76 * later when the request is queued.
  77 *
  78 * Request flags affect request handling, such as whether a zero length
  79 * packet is written (the "zero" flag), whether a short read should be
  80 * treated as an error (blocking request queue advance, the "short_not_ok"
  81 * flag), or hinting that an interrupt is not required (the "no_interrupt"
  82 * flag, for use with deep request queues).
  83 *
  84 * Bulk endpoints can use any size buffers, and can also be used for interrupt
  85 * transfers. interrupt-only endpoints can be much less functional.
  86 *
  87 * NOTE:  this is analogous to 'struct urb' on the host side, except that
  88 * it's thinner and promotes more pre-allocation.
  89 */
  90
  91struct usb_request {
  92        void                    *buf;
  93        unsigned                length;
  94        dma_addr_t              dma;
  95
  96        struct scatterlist      *sg;
  97        unsigned                num_sgs;
  98        unsigned                num_mapped_sgs;
  99
 100        unsigned                stream_id:16;
 101        unsigned                no_interrupt:1;
 102        unsigned                zero:1;
 103        unsigned                short_not_ok:1;
 104
 105        void                    (*complete)(struct usb_ep *ep,
 106                                        struct usb_request *req);
 107        void                    *context;
 108        struct list_head        list;
 109
 110        int                     status;
 111        unsigned                actual;
 112};
 113
 114/*-------------------------------------------------------------------------*/
 115
 116/* endpoint-specific parts of the api to the usb controller hardware.
 117 * unlike the urb model, (de)multiplexing layers are not required.
 118 * (so this api could slash overhead if used on the host side...)
 119 *
 120 * note that device side usb controllers commonly differ in how many
 121 * endpoints they support, as well as their capabilities.
 122 */
 123struct usb_ep_ops {
 124        int (*enable) (struct usb_ep *ep,
 125                const struct usb_endpoint_descriptor *desc);
 126        int (*disable) (struct usb_ep *ep);
 127
 128        struct usb_request *(*alloc_request) (struct usb_ep *ep,
 129                gfp_t gfp_flags);
 130        void (*free_request) (struct usb_ep *ep, struct usb_request *req);
 131
 132        int (*queue) (struct usb_ep *ep, struct usb_request *req,
 133                gfp_t gfp_flags);
 134        int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
 135
 136        int (*set_halt) (struct usb_ep *ep, int value);
 137        int (*set_wedge) (struct usb_ep *ep);
 138
 139        int (*fifo_status) (struct usb_ep *ep);
 140        void (*fifo_flush) (struct usb_ep *ep);
 141};
 142
 143/**
 144 * struct usb_ep_caps - endpoint capabilities description
 145 * @type_control:Endpoint supports control type (reserved for ep0).
 146 * @type_iso:Endpoint supports isochronous transfers.
 147 * @type_bulk:Endpoint supports bulk transfers.
 148 * @type_int:Endpoint supports interrupt transfers.
 149 * @dir_in:Endpoint supports IN direction.
 150 * @dir_out:Endpoint supports OUT direction.
 151 */
 152struct usb_ep_caps {
 153        unsigned type_control:1;
 154        unsigned type_iso:1;
 155        unsigned type_bulk:1;
 156        unsigned type_int:1;
 157        unsigned dir_in:1;
 158        unsigned dir_out:1;
 159};
 160
 161#define USB_EP_CAPS_TYPE_CONTROL     0x01
 162#define USB_EP_CAPS_TYPE_ISO         0x02
 163#define USB_EP_CAPS_TYPE_BULK        0x04
 164#define USB_EP_CAPS_TYPE_INT         0x08
 165#define USB_EP_CAPS_TYPE_ALL \
 166        (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
 167#define USB_EP_CAPS_DIR_IN           0x01
 168#define USB_EP_CAPS_DIR_OUT          0x02
 169#define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
 170
 171#define USB_EP_CAPS(_type, _dir) \
 172        { \
 173                .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
 174                .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
 175                .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
 176                .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
 177                .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
 178                .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
 179        }
 180
 181/**
 182 * struct usb_ep - device side representation of USB endpoint
 183 * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
 184 * @ops: Function pointers used to access hardware-specific operations.
 185 * @ep_list:the gadget's ep_list holds all of its endpoints
 186 * @caps:The structure describing types and directions supported by endoint.
 187 * @maxpacket:The maximum packet size used on this endpoint.  The initial
 188 *      value can sometimes be reduced (hardware allowing), according to
 189 *      the endpoint descriptor used to configure the endpoint.
 190 * @maxpacket_limit:The maximum packet size value which can be handled by this
 191 *      endpoint. It's set once by UDC driver when endpoint is initialized, and
 192 *      should not be changed. Should not be confused with maxpacket.
 193 * @max_streams: The maximum number of streams supported
 194 *      by this EP (0 - 16, actual number is 2^n)
 195 * @mult: multiplier, 'mult' value for SS Isoc EPs
 196 * @maxburst: the maximum number of bursts supported by this EP (for usb3)
 197 * @driver_data:for use by the gadget driver.
 198 * @address: used to identify the endpoint when finding descriptor that
 199 *      matches connection speed
 200 * @desc: endpoint descriptor.  This pointer is set before the endpoint is
 201 *      enabled and remains valid until the endpoint is disabled.
 202 * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
 203 *      descriptor that is used to configure the endpoint
 204 *
 205 * the bus controller driver lists all the general purpose endpoints in
 206 * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
 207 * and is accessed only in response to a driver setup() callback.
 208 */
 209
 210struct usb_ep {
 211        void                    *driver_data;
 212
 213        const char              *name;
 214        const struct usb_ep_ops *ops;
 215        struct list_head        ep_list;
 216        struct usb_ep_caps      caps;
 217        bool                    claimed;
 218        unsigned                maxpacket:16;
 219        unsigned                maxpacket_limit:16;
 220        unsigned                max_streams:16;
 221        unsigned                mult:2;
 222        unsigned                maxburst:5;
 223        u8                      address;
 224        const struct usb_endpoint_descriptor    *desc;
 225        const struct usb_ss_ep_comp_descriptor  *comp_desc;
 226};
 227
 228/*-------------------------------------------------------------------------*/
 229
 230/**
 231 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
 232 * @ep:the endpoint being configured
 233 * @maxpacket_limit:value of maximum packet size limit
 234 *
 235 * This function should be used only in UDC drivers to initialize endpoint
 236 * (usually in probe function).
 237 */
 238static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
 239                                              unsigned maxpacket_limit)
 240{
 241        ep->maxpacket_limit = maxpacket_limit;
 242        ep->maxpacket = maxpacket_limit;
 243}
 244
 245/**
 246 * usb_ep_enable - configure endpoint, making it usable
 247 * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
 248 *      drivers discover endpoints through the ep_list of a usb_gadget.
 249 *
 250 * When configurations are set, or when interface settings change, the driver
 251 * will enable or disable the relevant endpoints.  while it is enabled, an
 252 * endpoint may be used for i/o until the driver receives a disconnect() from
 253 * the host or until the endpoint is disabled.
 254 *
 255 * the ep0 implementation (which calls this routine) must ensure that the
 256 * hardware capabilities of each endpoint match the descriptor provided
 257 * for it.  for example, an endpoint named "ep2in-bulk" would be usable
 258 * for interrupt transfers as well as bulk, but it likely couldn't be used
 259 * for iso transfers or for endpoint 14.  some endpoints are fully
 260 * configurable, with more generic names like "ep-a".  (remember that for
 261 * USB, "in" means "towards the USB master".)
 262 *
 263 * returns zero, or a negative error code.
 264 */
 265static inline int usb_ep_enable(struct usb_ep *ep)
 266{
 267        return ep->ops->enable(ep, ep->desc);
 268}
 269
 270/**
 271 * usb_ep_disable - endpoint is no longer usable
 272 * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
 273 *
 274 * no other task may be using this endpoint when this is called.
 275 * any pending and uncompleted requests will complete with status
 276 * indicating disconnect (-ESHUTDOWN) before this call returns.
 277 * gadget drivers must call usb_ep_enable() again before queueing
 278 * requests to the endpoint.
 279 *
 280 * returns zero, or a negative error code.
 281 */
 282static inline int usb_ep_disable(struct usb_ep *ep)
 283{
 284        return ep->ops->disable(ep);
 285}
 286
 287/**
 288 * usb_ep_alloc_request - allocate a request object to use with this endpoint
 289 * @ep:the endpoint to be used with with the request
 290 * @gfp_flags:GFP_* flags to use
 291 *
 292 * Request objects must be allocated with this call, since they normally
 293 * need controller-specific setup and may even need endpoint-specific
 294 * resources such as allocation of DMA descriptors.
 295 * Requests may be submitted with usb_ep_queue(), and receive a single
 296 * completion callback.  Free requests with usb_ep_free_request(), when
 297 * they are no longer needed.
 298 *
 299 * Returns the request, or null if one could not be allocated.
 300 */
 301static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
 302                                                       gfp_t gfp_flags)
 303{
 304        return ep->ops->alloc_request(ep, gfp_flags);
 305}
 306
 307/**
 308 * usb_ep_free_request - frees a request object
 309 * @ep:the endpoint associated with the request
 310 * @req:the request being freed
 311 *
 312 * Reverses the effect of usb_ep_alloc_request().
 313 * Caller guarantees the request is not queued, and that it will
 314 * no longer be requeued (or otherwise used).
 315 */
 316static inline void usb_ep_free_request(struct usb_ep *ep,
 317                                       struct usb_request *req)
 318{
 319        ep->ops->free_request(ep, req);
 320}
 321
 322/**
 323 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
 324 * @ep:the endpoint associated with the request
 325 * @req:the request being submitted
 326 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
 327 *      pre-allocate all necessary memory with the request.
 328 *
 329 * This tells the device controller to perform the specified request through
 330 * that endpoint (reading or writing a buffer).  When the request completes,
 331 * including being canceled by usb_ep_dequeue(), the request's completion
 332 * routine is called to return the request to the driver.  Any endpoint
 333 * (except control endpoints like ep0) may have more than one transfer
 334 * request queued; they complete in FIFO order.  Once a gadget driver
 335 * submits a request, that request may not be examined or modified until it
 336 * is given back to that driver through the completion callback.
 337 *
 338 * Each request is turned into one or more packets.  The controller driver
 339 * never merges adjacent requests into the same packet.  OUT transfers
 340 * will sometimes use data that's already buffered in the hardware.
 341 * Drivers can rely on the fact that the first byte of the request's buffer
 342 * always corresponds to the first byte of some USB packet, for both
 343 * IN and OUT transfers.
 344 *
 345 * Bulk endpoints can queue any amount of data; the transfer is packetized
 346 * automatically.  The last packet will be short if the request doesn't fill it
 347 * out completely.  Zero length packets (ZLPs) should be avoided in portable
 348 * protocols since not all usb hardware can successfully handle zero length
 349 * packets.  (ZLPs may be explicitly written, and may be implicitly written if
 350 * the request 'zero' flag is set.)  Bulk endpoints may also be used
 351 * for interrupt transfers; but the reverse is not true, and some endpoints
 352 * won't support every interrupt transfer.  (Such as 768 byte packets.)
 353 *
 354 * Interrupt-only endpoints are less functional than bulk endpoints, for
 355 * example by not supporting queueing or not handling buffers that are
 356 * larger than the endpoint's maxpacket size.  They may also treat data
 357 * toggle differently.
 358 *
 359 * Control endpoints ... after getting a setup() callback, the driver queues
 360 * one response (even if it would be zero length).  That enables the
 361 * status ack, after transferring data as specified in the response.  Setup
 362 * functions may return negative error codes to generate protocol stalls.
 363 * (Note that some USB device controllers disallow protocol stall responses
 364 * in some cases.)  When control responses are deferred (the response is
 365 * written after the setup callback returns), then usb_ep_set_halt() may be
 366 * used on ep0 to trigger protocol stalls.  Depending on the controller,
 367 * it may not be possible to trigger a status-stage protocol stall when the
 368 * data stage is over, that is, from within the response's completion
 369 * routine.
 370 *
 371 * For periodic endpoints, like interrupt or isochronous ones, the usb host
 372 * arranges to poll once per interval, and the gadget driver usually will
 373 * have queued some data to transfer at that time.
 374 *
 375 * Returns zero, or a negative error code.  Endpoints that are not enabled
 376 * report errors; errors will also be
 377 * reported when the usb peripheral is disconnected.
 378 */
 379static inline int usb_ep_queue(struct usb_ep *ep,
 380                               struct usb_request *req, gfp_t gfp_flags)
 381{
 382        return ep->ops->queue(ep, req, gfp_flags);
 383}
 384
 385/**
 386 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
 387 * @ep:the endpoint associated with the request
 388 * @req:the request being canceled
 389 *
 390 * If the request is still active on the endpoint, it is dequeued and its
 391 * completion routine is called (with status -ECONNRESET); else a negative
 392 * error code is returned. This is guaranteed to happen before the call to
 393 * usb_ep_dequeue() returns.
 394 *
 395 * Note that some hardware can't clear out write fifos (to unlink the request
 396 * at the head of the queue) except as part of disconnecting from usb. Such
 397 * restrictions prevent drivers from supporting configuration changes,
 398 * even to configuration zero (a "chapter 9" requirement).
 399 */
 400static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
 401{
 402        return ep->ops->dequeue(ep, req);
 403}
 404
 405/**
 406 * usb_ep_set_halt - sets the endpoint halt feature.
 407 * @ep: the non-isochronous endpoint being stalled
 408 *
 409 * Use this to stall an endpoint, perhaps as an error report.
 410 * Except for control endpoints,
 411 * the endpoint stays halted (will not stream any data) until the host
 412 * clears this feature; drivers may need to empty the endpoint's request
 413 * queue first, to make sure no inappropriate transfers happen.
 414 *
 415 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
 416 * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
 417 * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
 418 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
 419 *
 420 * Returns zero, or a negative error code.  On success, this call sets
 421 * underlying hardware state that blocks data transfers.
 422 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
 423 * transfer requests are still queued, or if the controller hardware
 424 * (usually a FIFO) still holds bytes that the host hasn't collected.
 425 */
 426static inline int usb_ep_set_halt(struct usb_ep *ep)
 427{
 428        return ep->ops->set_halt(ep, 1);
 429}
 430
 431/**
 432 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
 433 * @ep:the bulk or interrupt endpoint being reset
 434 *
 435 * Use this when responding to the standard usb "set interface" request,
 436 * for endpoints that aren't reconfigured, after clearing any other state
 437 * in the endpoint's i/o queue.
 438 *
 439 * Returns zero, or a negative error code.  On success, this call clears
 440 * the underlying hardware state reflecting endpoint halt and data toggle.
 441 * Note that some hardware can't support this request (like pxa2xx_udc),
 442 * and accordingly can't correctly implement interface altsettings.
 443 */
 444static inline int usb_ep_clear_halt(struct usb_ep *ep)
 445{
 446        return ep->ops->set_halt(ep, 0);
 447}
 448
 449/**
 450 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
 451 * @ep: the endpoint being wedged
 452 *
 453 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
 454 * requests. If the gadget driver clears the halt status, it will
 455 * automatically unwedge the endpoint.
 456 *
 457 * Returns zero on success, else negative errno.
 458 */
 459static inline int
 460usb_ep_set_wedge(struct usb_ep *ep)
 461{
 462        if (ep->ops->set_wedge)
 463                return ep->ops->set_wedge(ep);
 464        else
 465                return ep->ops->set_halt(ep, 1);
 466}
 467
 468/**
 469 * usb_ep_fifo_status - returns number of bytes in fifo, or error
 470 * @ep: the endpoint whose fifo status is being checked.
 471 *
 472 * FIFO endpoints may have "unclaimed data" in them in certain cases,
 473 * such as after aborted transfers.  Hosts may not have collected all
 474 * the IN data written by the gadget driver (and reported by a request
 475 * completion).  The gadget driver may not have collected all the data
 476 * written OUT to it by the host.  Drivers that need precise handling for
 477 * fault reporting or recovery may need to use this call.
 478 *
 479 * This returns the number of such bytes in the fifo, or a negative
 480 * errno if the endpoint doesn't use a FIFO or doesn't support such
 481 * precise handling.
 482 */
 483static inline int usb_ep_fifo_status(struct usb_ep *ep)
 484{
 485        if (ep->ops->fifo_status)
 486                return ep->ops->fifo_status(ep);
 487        else
 488                return -EOPNOTSUPP;
 489}
 490
 491/**
 492 * usb_ep_fifo_flush - flushes contents of a fifo
 493 * @ep: the endpoint whose fifo is being flushed.
 494 *
 495 * This call may be used to flush the "unclaimed data" that may exist in
 496 * an endpoint fifo after abnormal transaction terminations.  The call
 497 * must never be used except when endpoint is not being used for any
 498 * protocol translation.
 499 */
 500static inline void usb_ep_fifo_flush(struct usb_ep *ep)
 501{
 502        if (ep->ops->fifo_flush)
 503                ep->ops->fifo_flush(ep);
 504}
 505
 506
 507/*-------------------------------------------------------------------------*/
 508
 509struct usb_dcd_config_params {
 510        __u8  bU1devExitLat;    /* U1 Device exit Latency */
 511#define USB_DEFAULT_U1_DEV_EXIT_LAT     0x01    /* Less then 1 microsec */
 512        __le16 bU2DevExitLat;   /* U2 Device exit Latency */
 513#define USB_DEFAULT_U2_DEV_EXIT_LAT     0x1F4   /* Less then 500 microsec */
 514};
 515
 516
 517struct usb_gadget;
 518struct usb_gadget_driver;
 519struct usb_udc;
 520
 521/* the rest of the api to the controller hardware: device operations,
 522 * which don't involve endpoints (or i/o).
 523 */
 524struct usb_gadget_ops {
 525        int     (*get_frame)(struct usb_gadget *);
 526        int     (*wakeup)(struct usb_gadget *);
 527        int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
 528        int     (*vbus_session) (struct usb_gadget *, int is_active);
 529        int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
 530        int     (*pullup) (struct usb_gadget *, int is_on);
 531        int     (*ioctl)(struct usb_gadget *,
 532                                unsigned code, unsigned long param);
 533        void    (*get_config_params)(struct usb_dcd_config_params *);
 534        int     (*udc_start)(struct usb_gadget *,
 535                        struct usb_gadget_driver *);
 536        int     (*udc_stop)(struct usb_gadget *);
 537        struct usb_ep *(*match_ep)(struct usb_gadget *,
 538                        struct usb_endpoint_descriptor *,
 539                        struct usb_ss_ep_comp_descriptor *);
 540};
 541
 542/**
 543 * struct usb_gadget - represents a usb slave device
 544 * @work: (internal use) Workqueue to be used for sysfs_notify()
 545 * @udc: struct usb_udc pointer for this gadget
 546 * @ops: Function pointers used to access hardware-specific operations.
 547 * @ep0: Endpoint zero, used when reading or writing responses to
 548 *      driver setup() requests
 549 * @ep_list: List of other endpoints supported by the device.
 550 * @speed: Speed of current connection to USB host.
 551 * @max_speed: Maximal speed the UDC can handle.  UDC must support this
 552 *      and all slower speeds.
 553 * @state: the state we are now (attached, suspended, configured, etc)
 554 * @name: Identifies the controller hardware type.  Used in diagnostics
 555 *      and sometimes configuration.
 556 * @dev: Driver model state for this abstract device.
 557 * @out_epnum: last used out ep number
 558 * @in_epnum: last used in ep number
 559 * @otg_caps: OTG capabilities of this gadget.
 560 * @sg_supported: true if we can handle scatter-gather
 561 * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
 562 *      gadget driver must provide a USB OTG descriptor.
 563 * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
 564 *      is in the Mini-AB jack, and HNP has been used to switch roles
 565 *      so that the "A" device currently acts as A-Peripheral, not A-Host.
 566 * @a_hnp_support: OTG device feature flag, indicating that the A-Host
 567 *      supports HNP at this port.
 568 * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
 569 *      only supports HNP on a different root port.
 570 * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
 571 *      enabled HNP support.
 572 * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
 573 *      MaxPacketSize.
 574 * @is_selfpowered: if the gadget is self-powered.
 575 * @deactivated: True if gadget is deactivated - in deactivated state it cannot
 576 *      be connected.
 577 * @connected: True if gadget is connected.
 578 *
 579 * Gadgets have a mostly-portable "gadget driver" implementing device
 580 * functions, handling all usb configurations and interfaces.  Gadget
 581 * drivers talk to hardware-specific code indirectly, through ops vectors.
 582 * That insulates the gadget driver from hardware details, and packages
 583 * the hardware endpoints through generic i/o queues.  The "usb_gadget"
 584 * and "usb_ep" interfaces provide that insulation from the hardware.
 585 *
 586 * Except for the driver data, all fields in this structure are
 587 * read-only to the gadget driver.  That driver data is part of the
 588 * "driver model" infrastructure in 2.6 (and later) kernels, and for
 589 * earlier systems is grouped in a similar structure that's not known
 590 * to the rest of the kernel.
 591 *
 592 * Values of the three OTG device feature flags are updated before the
 593 * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
 594 * driver suspend() calls.  They are valid only when is_otg, and when the
 595 * device is acting as a B-Peripheral (so is_a_peripheral is false).
 596 */
 597struct usb_gadget {
 598        struct work_struct              work;
 599        struct usb_udc                  *udc;
 600        /* readonly to gadget driver */
 601        const struct usb_gadget_ops     *ops;
 602        struct usb_ep                   *ep0;
 603        struct list_head                ep_list;        /* of usb_ep */
 604        enum usb_device_speed           speed;
 605        enum usb_device_speed           max_speed;
 606        enum usb_device_state           state;
 607        const char                      *name;
 608        struct device                   dev;
 609        unsigned                        out_epnum;
 610        unsigned                        in_epnum;
 611        struct usb_otg_caps             *otg_caps;
 612
 613        unsigned                        sg_supported:1;
 614        unsigned                        is_otg:1;
 615        unsigned                        is_a_peripheral:1;
 616        unsigned                        b_hnp_enable:1;
 617        unsigned                        a_hnp_support:1;
 618        unsigned                        a_alt_hnp_support:1;
 619        unsigned                        quirk_ep_out_aligned_size:1;
 620        unsigned                        quirk_altset_not_supp:1;
 621        unsigned                        quirk_stall_not_supp:1;
 622        unsigned                        quirk_zlp_not_supp:1;
 623        unsigned                        is_selfpowered:1;
 624        unsigned                        deactivated:1;
 625        unsigned                        connected:1;
 626};
 627#define work_to_gadget(w)       (container_of((w), struct usb_gadget, work))
 628
 629static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
 630        { dev_set_drvdata(&gadget->dev, data); }
 631static inline void *get_gadget_data(struct usb_gadget *gadget)
 632        { return dev_get_drvdata(&gadget->dev); }
 633static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
 634{
 635        return container_of(dev, struct usb_gadget, dev);
 636}
 637
 638/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
 639#define gadget_for_each_ep(tmp, gadget) \
 640        list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
 641
 642/**
 643 * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
 644 *      requires quirk_ep_out_aligned_size, otherwise reguens len.
 645 * @g: controller to check for quirk
 646 * @ep: the endpoint whose maxpacketsize is used to align @len
 647 * @len: buffer size's length to align to @ep's maxpacketsize
 648 *
 649 * This helper is used in case it's required for any reason to check and maybe
 650 * align buffer's size to an ep's maxpacketsize.
 651 */
 652static inline size_t
 653usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
 654{
 655        return !g->quirk_ep_out_aligned_size ? len :
 656                        round_up(len, (size_t)ep->desc->wMaxPacketSize);
 657}
 658
 659/**
 660 * gadget_is_altset_supported - return true iff the hardware supports
 661 *      altsettings
 662 * @g: controller to check for quirk
 663 */
 664static inline int gadget_is_altset_supported(struct usb_gadget *g)
 665{
 666        return !g->quirk_altset_not_supp;
 667}
 668
 669/**
 670 * gadget_is_stall_supported - return true iff the hardware supports stalling
 671 * @g: controller to check for quirk
 672 */
 673static inline int gadget_is_stall_supported(struct usb_gadget *g)
 674{
 675        return !g->quirk_stall_not_supp;
 676}
 677
 678/**
 679 * gadget_is_zlp_supported - return true iff the hardware supports zlp
 680 * @g: controller to check for quirk
 681 */
 682static inline int gadget_is_zlp_supported(struct usb_gadget *g)
 683{
 684        return !g->quirk_zlp_not_supp;
 685}
 686
 687/**
 688 * gadget_is_dualspeed - return true iff the hardware handles high speed
 689 * @g: controller that might support both high and full speeds
 690 */
 691static inline int gadget_is_dualspeed(struct usb_gadget *g)
 692{
 693        return g->max_speed >= USB_SPEED_HIGH;
 694}
 695
 696/**
 697 * gadget_is_superspeed() - return true if the hardware handles superspeed
 698 * @g: controller that might support superspeed
 699 */
 700static inline int gadget_is_superspeed(struct usb_gadget *g)
 701{
 702        return g->max_speed >= USB_SPEED_SUPER;
 703}
 704
 705/**
 706 * gadget_is_otg - return true iff the hardware is OTG-ready
 707 * @g: controller that might have a Mini-AB connector
 708 *
 709 * This is a runtime test, since kernels with a USB-OTG stack sometimes
 710 * run on boards which only have a Mini-B (or Mini-A) connector.
 711 */
 712static inline int gadget_is_otg(struct usb_gadget *g)
 713{
 714#ifdef CONFIG_USB_OTG
 715        return g->is_otg;
 716#else
 717        return 0;
 718#endif
 719}
 720
 721/**
 722 * usb_gadget_frame_number - returns the current frame number
 723 * @gadget: controller that reports the frame number
 724 *
 725 * Returns the usb frame number, normally eleven bits from a SOF packet,
 726 * or negative errno if this device doesn't support this capability.
 727 */
 728static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
 729{
 730        return gadget->ops->get_frame(gadget);
 731}
 732
 733/**
 734 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
 735 * @gadget: controller used to wake up the host
 736 *
 737 * Returns zero on success, else negative error code if the hardware
 738 * doesn't support such attempts, or its support has not been enabled
 739 * by the usb host.  Drivers must return device descriptors that report
 740 * their ability to support this, or hosts won't enable it.
 741 *
 742 * This may also try to use SRP to wake the host and start enumeration,
 743 * even if OTG isn't otherwise in use.  OTG devices may also start
 744 * remote wakeup even when hosts don't explicitly enable it.
 745 */
 746static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
 747{
 748        if (!gadget->ops->wakeup)
 749                return -EOPNOTSUPP;
 750        return gadget->ops->wakeup(gadget);
 751}
 752
 753/**
 754 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
 755 * @gadget:the device being declared as self-powered
 756 *
 757 * this affects the device status reported by the hardware driver
 758 * to reflect that it now has a local power supply.
 759 *
 760 * returns zero on success, else negative errno.
 761 */
 762static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
 763{
 764        if (!gadget->ops->set_selfpowered)
 765                return -EOPNOTSUPP;
 766        return gadget->ops->set_selfpowered(gadget, 1);
 767}
 768
 769/**
 770 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
 771 * @gadget:the device being declared as bus-powered
 772 *
 773 * this affects the device status reported by the hardware driver.
 774 * some hardware may not support bus-powered operation, in which
 775 * case this feature's value can never change.
 776 *
 777 * returns zero on success, else negative errno.
 778 */
 779static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
 780{
 781        if (!gadget->ops->set_selfpowered)
 782                return -EOPNOTSUPP;
 783        return gadget->ops->set_selfpowered(gadget, 0);
 784}
 785
 786/**
 787 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
 788 * @gadget:The device which now has VBUS power.
 789 * Context: can sleep
 790 *
 791 * This call is used by a driver for an external transceiver (or GPIO)
 792 * that detects a VBUS power session starting.  Common responses include
 793 * resuming the controller, activating the D+ (or D-) pullup to let the
 794 * host detect that a USB device is attached, and starting to draw power
 795 * (8mA or possibly more, especially after SET_CONFIGURATION).
 796 *
 797 * Returns zero on success, else negative errno.
 798 */
 799static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
 800{
 801        if (!gadget->ops->vbus_session)
 802                return -EOPNOTSUPP;
 803        return gadget->ops->vbus_session(gadget, 1);
 804}
 805
 806/**
 807 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
 808 * @gadget:The device whose VBUS usage is being described
 809 * @mA:How much current to draw, in milliAmperes.  This should be twice
 810 *      the value listed in the configuration descriptor bMaxPower field.
 811 *
 812 * This call is used by gadget drivers during SET_CONFIGURATION calls,
 813 * reporting how much power the device may consume.  For example, this
 814 * could affect how quickly batteries are recharged.
 815 *
 816 * Returns zero on success, else negative errno.
 817 */
 818static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
 819{
 820        if (!gadget->ops->vbus_draw)
 821                return -EOPNOTSUPP;
 822        return gadget->ops->vbus_draw(gadget, mA);
 823}
 824
 825/**
 826 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
 827 * @gadget:the device whose VBUS supply is being described
 828 * Context: can sleep
 829 *
 830 * This call is used by a driver for an external transceiver (or GPIO)
 831 * that detects a VBUS power session ending.  Common responses include
 832 * reversing everything done in usb_gadget_vbus_connect().
 833 *
 834 * Returns zero on success, else negative errno.
 835 */
 836static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
 837{
 838        if (!gadget->ops->vbus_session)
 839                return -EOPNOTSUPP;
 840        return gadget->ops->vbus_session(gadget, 0);
 841}
 842
 843/**
 844 * usb_gadget_connect - software-controlled connect to USB host
 845 * @gadget:the peripheral being connected
 846 *
 847 * Enables the D+ (or potentially D-) pullup.  The host will start
 848 * enumerating this gadget when the pullup is active and a VBUS session
 849 * is active (the link is powered).  This pullup is always enabled unless
 850 * usb_gadget_disconnect() has been used to disable it.
 851 *
 852 * Returns zero on success, else negative errno.
 853 */
 854static inline int usb_gadget_connect(struct usb_gadget *gadget)
 855{
 856        int ret;
 857
 858        if (!gadget->ops->pullup)
 859                return -EOPNOTSUPP;
 860
 861        if (gadget->deactivated) {
 862                /*
 863                 * If gadget is deactivated we only save new state.
 864                 * Gadget will be connected automatically after activation.
 865                 */
 866                gadget->connected = true;
 867                return 0;
 868        }
 869
 870        ret = gadget->ops->pullup(gadget, 1);
 871        if (!ret)
 872                gadget->connected = 1;
 873        return ret;
 874}
 875
 876/**
 877 * usb_gadget_disconnect - software-controlled disconnect from USB host
 878 * @gadget:the peripheral being disconnected
 879 *
 880 * Disables the D+ (or potentially D-) pullup, which the host may see
 881 * as a disconnect (when a VBUS session is active).  Not all systems
 882 * support software pullup controls.
 883 *
 884 * Returns zero on success, else negative errno.
 885 */
 886static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
 887{
 888        int ret;
 889
 890        if (!gadget->ops->pullup)
 891                return -EOPNOTSUPP;
 892
 893        if (gadget->deactivated) {
 894                /*
 895                 * If gadget is deactivated we only save new state.
 896                 * Gadget will stay disconnected after activation.
 897                 */
 898                gadget->connected = false;
 899                return 0;
 900        }
 901
 902        ret = gadget->ops->pullup(gadget, 0);
 903        if (!ret)
 904                gadget->connected = 0;
 905        return ret;
 906}
 907
 908/**
 909 * usb_gadget_deactivate - deactivate function which is not ready to work
 910 * @gadget: the peripheral being deactivated
 911 *
 912 * This routine may be used during the gadget driver bind() call to prevent
 913 * the peripheral from ever being visible to the USB host, unless later
 914 * usb_gadget_activate() is called.  For example, user mode components may
 915 * need to be activated before the system can talk to hosts.
 916 *
 917 * Returns zero on success, else negative errno.
 918 */
 919static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
 920{
 921        int ret;
 922
 923        if (gadget->deactivated)
 924                return 0;
 925
 926        if (gadget->connected) {
 927                ret = usb_gadget_disconnect(gadget);
 928                if (ret)
 929                        return ret;
 930                /*
 931                 * If gadget was being connected before deactivation, we want
 932                 * to reconnect it in usb_gadget_activate().
 933                 */
 934                gadget->connected = true;
 935        }
 936        gadget->deactivated = true;
 937
 938        return 0;
 939}
 940
 941/**
 942 * usb_gadget_activate - activate function which is not ready to work
 943 * @gadget: the peripheral being activated
 944 *
 945 * This routine activates gadget which was previously deactivated with
 946 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
 947 *
 948 * Returns zero on success, else negative errno.
 949 */
 950static inline int usb_gadget_activate(struct usb_gadget *gadget)
 951{
 952        if (!gadget->deactivated)
 953                return 0;
 954
 955        gadget->deactivated = false;
 956
 957        /*
 958         * If gadget has been connected before deactivation, or became connected
 959         * while it was being deactivated, we call usb_gadget_connect().
 960         */
 961        if (gadget->connected)
 962                return usb_gadget_connect(gadget);
 963
 964        return 0;
 965}
 966
 967/*-------------------------------------------------------------------------*/
 968
 969/**
 970 * struct usb_gadget_driver - driver for usb 'slave' devices
 971 * @function: String describing the gadget's function
 972 * @max_speed: Highest speed the driver handles.
 973 * @setup: Invoked for ep0 control requests that aren't handled by
 974 *      the hardware level driver. Most calls must be handled by
 975 *      the gadget driver, including descriptor and configuration
 976 *      management.  The 16 bit members of the setup data are in
 977 *      USB byte order. Called in_interrupt; this may not sleep.  Driver
 978 *      queues a response to ep0, or returns negative to stall.
 979 * @disconnect: Invoked after all transfers have been stopped,
 980 *      when the host is disconnected.  May be called in_interrupt; this
 981 *      may not sleep.  Some devices can't detect disconnect, so this might
 982 *      not be called except as part of controller shutdown.
 983 * @bind: the driver's bind callback
 984 * @unbind: Invoked when the driver is unbound from a gadget,
 985 *      usually from rmmod (after a disconnect is reported).
 986 *      Called in a context that permits sleeping.
 987 * @suspend: Invoked on USB suspend.  May be called in_interrupt.
 988 * @resume: Invoked on USB resume.  May be called in_interrupt.
 989 * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
 990 *      and should be called in_interrupt.
 991 * @driver: Driver model state for this driver.
 992 *
 993 * Devices are disabled till a gadget driver successfully bind()s, which
 994 * means the driver will handle setup() requests needed to enumerate (and
 995 * meet "chapter 9" requirements) then do some useful work.
 996 *
 997 * If gadget->is_otg is true, the gadget driver must provide an OTG
 998 * descriptor during enumeration, or else fail the bind() call.  In such
 999 * cases, no USB traffic may flow until both bind() returns without
1000 * having called usb_gadget_disconnect(), and the USB host stack has
1001 * initialized.
1002 *
1003 * Drivers use hardware-specific knowledge to configure the usb hardware.
1004 * endpoint addressing is only one of several hardware characteristics that
1005 * are in descriptors the ep0 implementation returns from setup() calls.
1006 *
1007 * Except for ep0 implementation, most driver code shouldn't need change to
1008 * run on top of different usb controllers.  It'll use endpoints set up by
1009 * that ep0 implementation.
1010 *
1011 * The usb controller driver handles a few standard usb requests.  Those
1012 * include set_address, and feature flags for devices, interfaces, and
1013 * endpoints (the get_status, set_feature, and clear_feature requests).
1014 *
1015 * Accordingly, the driver's setup() callback must always implement all
1016 * get_descriptor requests, returning at least a device descriptor and
1017 * a configuration descriptor.  Drivers must make sure the endpoint
1018 * descriptors match any hardware constraints. Some hardware also constrains
1019 * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
1020 *
1021 * The driver's setup() callback must also implement set_configuration,
1022 * and should also implement set_interface, get_configuration, and
1023 * get_interface.  Setting a configuration (or interface) is where
1024 * endpoints should be activated or (config 0) shut down.
1025 *
1026 * (Note that only the default control endpoint is supported.  Neither
1027 * hosts nor devices generally support control traffic except to ep0.)
1028 *
1029 * Most devices will ignore USB suspend/resume operations, and so will
1030 * not provide those callbacks.  However, some may need to change modes
1031 * when the host is not longer directing those activities.  For example,
1032 * local controls (buttons, dials, etc) may need to be re-enabled since
1033 * the (remote) host can't do that any longer; or an error state might
1034 * be cleared, to make the device behave identically whether or not
1035 * power is maintained.
1036 */
1037struct usb_gadget_driver {
1038        char                    *function;
1039        enum usb_device_speed   max_speed;
1040        int                     (*bind)(struct usb_gadget *gadget,
1041                                        struct usb_gadget_driver *driver);
1042        void                    (*unbind)(struct usb_gadget *);
1043        int                     (*setup)(struct usb_gadget *,
1044                                        const struct usb_ctrlrequest *);
1045        void                    (*disconnect)(struct usb_gadget *);
1046        void                    (*suspend)(struct usb_gadget *);
1047        void                    (*resume)(struct usb_gadget *);
1048        void                    (*reset)(struct usb_gadget *);
1049
1050        /* FIXME support safe rmmod */
1051        struct device_driver    driver;
1052};
1053
1054
1055
1056/*-------------------------------------------------------------------------*/
1057
1058/* driver modules register and unregister, as usual.
1059 * these calls must be made in a context that can sleep.
1060 *
1061 * these will usually be implemented directly by the hardware-dependent
1062 * usb bus interface driver, which will only support a single driver.
1063 */
1064
1065/**
1066 * usb_gadget_probe_driver - probe a gadget driver
1067 * @driver: the driver being registered
1068 * Context: can sleep
1069 *
1070 * Call this in your gadget driver's module initialization function,
1071 * to tell the underlying usb controller driver about your driver.
1072 * The @bind() function will be called to bind it to a gadget before this
1073 * registration call returns.  It's expected that the @bind() function will
1074 * be in init sections.
1075 */
1076int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
1077
1078/**
1079 * usb_gadget_unregister_driver - unregister a gadget driver
1080 * @driver:the driver being unregistered
1081 * Context: can sleep
1082 *
1083 * Call this in your gadget driver's module cleanup function,
1084 * to tell the underlying usb controller that your driver is
1085 * going away.  If the controller is connected to a USB host,
1086 * it will first disconnect().  The driver is also requested
1087 * to unbind() and clean up any device state, before this procedure
1088 * finally returns.  It's expected that the unbind() functions
1089 * will in in exit sections, so may not be linked in some kernels.
1090 */
1091int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
1092
1093extern int usb_add_gadget_udc_release(struct device *parent,
1094                struct usb_gadget *gadget, void (*release)(struct device *dev));
1095extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
1096extern void usb_del_gadget_udc(struct usb_gadget *gadget);
1097extern int usb_udc_attach_driver(const char *name,
1098                struct usb_gadget_driver *driver);
1099
1100/*-------------------------------------------------------------------------*/
1101
1102/* utility to simplify dealing with string descriptors */
1103
1104/**
1105 * struct usb_string - wraps a C string and its USB id
1106 * @id:the (nonzero) ID for this string
1107 * @s:the string, in UTF-8 encoding
1108 *
1109 * If you're using usb_gadget_get_string(), use this to wrap a string
1110 * together with its ID.
1111 */
1112struct usb_string {
1113        u8                      id;
1114        const char              *s;
1115};
1116
1117/**
1118 * struct usb_gadget_strings - a set of USB strings in a given language
1119 * @language:identifies the strings' language (0x0409 for en-us)
1120 * @strings:array of strings with their ids
1121 *
1122 * If you're using usb_gadget_get_string(), use this to wrap all the
1123 * strings for a given language.
1124 */
1125struct usb_gadget_strings {
1126        u16                     language;       /* 0x0409 for en-us */
1127        struct usb_string       *strings;
1128};
1129
1130struct usb_gadget_string_container {
1131        struct list_head        list;
1132        u8                      *stash[0];
1133};
1134
1135/* put descriptor for string with that id into buf (buflen >= 256) */
1136int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
1137
1138/*-------------------------------------------------------------------------*/
1139
1140/* utility to simplify managing config descriptors */
1141
1142/* write vector of descriptors into buffer */
1143int usb_descriptor_fillbuf(void *, unsigned,
1144                const struct usb_descriptor_header **);
1145
1146/* build config descriptor from single descriptor vector */
1147int usb_gadget_config_buf(const struct usb_config_descriptor *config,
1148        void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
1149
1150/* copy a NULL-terminated vector of descriptors */
1151struct usb_descriptor_header **usb_copy_descriptors(
1152                struct usb_descriptor_header **);
1153
1154/**
1155 * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
1156 * @v: vector of descriptors
1157 */
1158static inline void usb_free_descriptors(struct usb_descriptor_header **v)
1159{
1160        kfree(v);
1161}
1162
1163struct usb_function;
1164int usb_assign_descriptors(struct usb_function *f,
1165                struct usb_descriptor_header **fs,
1166                struct usb_descriptor_header **hs,
1167                struct usb_descriptor_header **ss);
1168void usb_free_all_descriptors(struct usb_function *f);
1169
1170struct usb_descriptor_header *usb_otg_descriptor_alloc(
1171                                struct usb_gadget *gadget);
1172int usb_otg_descriptor_init(struct usb_gadget *gadget,
1173                struct usb_descriptor_header *otg_desc);
1174/*-------------------------------------------------------------------------*/
1175
1176/* utility to simplify map/unmap of usb_requests to/from DMA */
1177
1178extern int usb_gadget_map_request(struct usb_gadget *gadget,
1179                struct usb_request *req, int is_in);
1180
1181extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
1182                struct usb_request *req, int is_in);
1183
1184/*-------------------------------------------------------------------------*/
1185
1186/* utility to set gadget state properly */
1187
1188extern void usb_gadget_set_state(struct usb_gadget *gadget,
1189                enum usb_device_state state);
1190
1191/*-------------------------------------------------------------------------*/
1192
1193/* utility to tell udc core that the bus reset occurs */
1194extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
1195                struct usb_gadget_driver *driver);
1196
1197/*-------------------------------------------------------------------------*/
1198
1199/* utility to give requests back to the gadget layer */
1200
1201extern void usb_gadget_giveback_request(struct usb_ep *ep,
1202                struct usb_request *req);
1203
1204/*-------------------------------------------------------------------------*/
1205
1206/* utility to find endpoint by name */
1207
1208extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
1209                const char *name);
1210
1211/*-------------------------------------------------------------------------*/
1212
1213/* utility to check if endpoint caps match descriptor needs */
1214
1215extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1216                struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1217                struct usb_ss_ep_comp_descriptor *ep_comp);
1218
1219/*-------------------------------------------------------------------------*/
1220
1221/* utility to update vbus status for udc core, it may be scheduled */
1222extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
1223
1224/*-------------------------------------------------------------------------*/
1225
1226/* utility wrapping a simple endpoint selection policy */
1227
1228extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
1229                        struct usb_endpoint_descriptor *);
1230
1231
1232extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
1233                        struct usb_endpoint_descriptor *,
1234                        struct usb_ss_ep_comp_descriptor *);
1235
1236extern void usb_ep_autoconfig_reset(struct usb_gadget *);
1237
1238#endif /* __LINUX_USB_GADGET_H */
1239