linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#include <linux/page_counter.h>
  58#include <linux/memcontrol.h>
  59#include <linux/static_key.h>
  60#include <linux/sched.h>
  61
  62#include <linux/filter.h>
  63#include <linux/rculist_nulls.h>
  64#include <linux/poll.h>
  65
  66#include <linux/atomic.h>
  67#include <net/dst.h>
  68#include <net/checksum.h>
  69#include <net/tcp_states.h>
  70#include <linux/net_tstamp.h>
  71
  72struct cgroup;
  73struct cgroup_subsys;
  74#ifdef CONFIG_NET
  75int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  76void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  77#else
  78static inline
  79int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  80{
  81        return 0;
  82}
  83static inline
  84void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  85{
  86}
  87#endif
  88/*
  89 * This structure really needs to be cleaned up.
  90 * Most of it is for TCP, and not used by any of
  91 * the other protocols.
  92 */
  93
  94/* Define this to get the SOCK_DBG debugging facility. */
  95#define SOCK_DEBUGGING
  96#ifdef SOCK_DEBUGGING
  97#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
  98                                        printk(KERN_DEBUG msg); } while (0)
  99#else
 100/* Validate arguments and do nothing */
 101static inline __printf(2, 3)
 102void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 103{
 104}
 105#endif
 106
 107/* This is the per-socket lock.  The spinlock provides a synchronization
 108 * between user contexts and software interrupt processing, whereas the
 109 * mini-semaphore synchronizes multiple users amongst themselves.
 110 */
 111typedef struct {
 112        spinlock_t              slock;
 113        int                     owned;
 114        wait_queue_head_t       wq;
 115        /*
 116         * We express the mutex-alike socket_lock semantics
 117         * to the lock validator by explicitly managing
 118         * the slock as a lock variant (in addition to
 119         * the slock itself):
 120         */
 121#ifdef CONFIG_DEBUG_LOCK_ALLOC
 122        struct lockdep_map dep_map;
 123#endif
 124} socket_lock_t;
 125
 126struct sock;
 127struct proto;
 128struct net;
 129
 130typedef __u32 __bitwise __portpair;
 131typedef __u64 __bitwise __addrpair;
 132
 133/**
 134 *      struct sock_common - minimal network layer representation of sockets
 135 *      @skc_daddr: Foreign IPv4 addr
 136 *      @skc_rcv_saddr: Bound local IPv4 addr
 137 *      @skc_hash: hash value used with various protocol lookup tables
 138 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 139 *      @skc_dport: placeholder for inet_dport/tw_dport
 140 *      @skc_num: placeholder for inet_num/tw_num
 141 *      @skc_family: network address family
 142 *      @skc_state: Connection state
 143 *      @skc_reuse: %SO_REUSEADDR setting
 144 *      @skc_reuseport: %SO_REUSEPORT setting
 145 *      @skc_bound_dev_if: bound device index if != 0
 146 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 147 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 148 *      @skc_prot: protocol handlers inside a network family
 149 *      @skc_net: reference to the network namespace of this socket
 150 *      @skc_node: main hash linkage for various protocol lookup tables
 151 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 152 *      @skc_tx_queue_mapping: tx queue number for this connection
 153 *      @skc_refcnt: reference count
 154 *
 155 *      This is the minimal network layer representation of sockets, the header
 156 *      for struct sock and struct inet_timewait_sock.
 157 */
 158struct sock_common {
 159        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 160         * address on 64bit arches : cf INET_MATCH()
 161         */
 162        union {
 163                __addrpair      skc_addrpair;
 164                struct {
 165                        __be32  skc_daddr;
 166                        __be32  skc_rcv_saddr;
 167                };
 168        };
 169        union  {
 170                unsigned int    skc_hash;
 171                __u16           skc_u16hashes[2];
 172        };
 173        /* skc_dport && skc_num must be grouped as well */
 174        union {
 175                __portpair      skc_portpair;
 176                struct {
 177                        __be16  skc_dport;
 178                        __u16   skc_num;
 179                };
 180        };
 181
 182        unsigned short          skc_family;
 183        volatile unsigned char  skc_state;
 184        unsigned char           skc_reuse:4;
 185        unsigned char           skc_reuseport:1;
 186        unsigned char           skc_ipv6only:1;
 187        unsigned char           skc_net_refcnt:1;
 188        int                     skc_bound_dev_if;
 189        union {
 190                struct hlist_node       skc_bind_node;
 191                struct hlist_nulls_node skc_portaddr_node;
 192        };
 193        struct proto            *skc_prot;
 194        possible_net_t          skc_net;
 195
 196#if IS_ENABLED(CONFIG_IPV6)
 197        struct in6_addr         skc_v6_daddr;
 198        struct in6_addr         skc_v6_rcv_saddr;
 199#endif
 200
 201        atomic64_t              skc_cookie;
 202
 203        /*
 204         * fields between dontcopy_begin/dontcopy_end
 205         * are not copied in sock_copy()
 206         */
 207        /* private: */
 208        int                     skc_dontcopy_begin[0];
 209        /* public: */
 210        union {
 211                struct hlist_node       skc_node;
 212                struct hlist_nulls_node skc_nulls_node;
 213        };
 214        int                     skc_tx_queue_mapping;
 215        atomic_t                skc_refcnt;
 216        /* private: */
 217        int                     skc_dontcopy_end[0];
 218        /* public: */
 219};
 220
 221struct cg_proto;
 222/**
 223  *     struct sock - network layer representation of sockets
 224  *     @__sk_common: shared layout with inet_timewait_sock
 225  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 226  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 227  *     @sk_lock:       synchronizer
 228  *     @sk_rcvbuf: size of receive buffer in bytes
 229  *     @sk_wq: sock wait queue and async head
 230  *     @sk_rx_dst: receive input route used by early demux
 231  *     @sk_dst_cache: destination cache
 232  *     @sk_dst_lock: destination cache lock
 233  *     @sk_policy: flow policy
 234  *     @sk_receive_queue: incoming packets
 235  *     @sk_wmem_alloc: transmit queue bytes committed
 236  *     @sk_write_queue: Packet sending queue
 237  *     @sk_omem_alloc: "o" is "option" or "other"
 238  *     @sk_wmem_queued: persistent queue size
 239  *     @sk_forward_alloc: space allocated forward
 240  *     @sk_napi_id: id of the last napi context to receive data for sk
 241  *     @sk_ll_usec: usecs to busypoll when there is no data
 242  *     @sk_allocation: allocation mode
 243  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 244  *     @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
 245  *     @sk_sndbuf: size of send buffer in bytes
 246  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 247  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 248  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 249  *     @sk_no_check_rx: allow zero checksum in RX packets
 250  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 251  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 252  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 253  *     @sk_gso_max_size: Maximum GSO segment size to build
 254  *     @sk_gso_max_segs: Maximum number of GSO segments
 255  *     @sk_lingertime: %SO_LINGER l_linger setting
 256  *     @sk_backlog: always used with the per-socket spinlock held
 257  *     @sk_callback_lock: used with the callbacks in the end of this struct
 258  *     @sk_error_queue: rarely used
 259  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 260  *                       IPV6_ADDRFORM for instance)
 261  *     @sk_err: last error
 262  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 263  *                   persistent failure not just 'timed out'
 264  *     @sk_drops: raw/udp drops counter
 265  *     @sk_ack_backlog: current listen backlog
 266  *     @sk_max_ack_backlog: listen backlog set in listen()
 267  *     @sk_priority: %SO_PRIORITY setting
 268  *     @sk_cgrp_prioidx: socket group's priority map index
 269  *     @sk_type: socket type (%SOCK_STREAM, etc)
 270  *     @sk_protocol: which protocol this socket belongs in this network family
 271  *     @sk_peer_pid: &struct pid for this socket's peer
 272  *     @sk_peer_cred: %SO_PEERCRED setting
 273  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 274  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 275  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 276  *     @sk_rxhash: flow hash received from netif layer
 277  *     @sk_incoming_cpu: record cpu processing incoming packets
 278  *     @sk_txhash: computed flow hash for use on transmit
 279  *     @sk_filter: socket filtering instructions
 280  *     @sk_timer: sock cleanup timer
 281  *     @sk_stamp: time stamp of last packet received
 282  *     @sk_tsflags: SO_TIMESTAMPING socket options
 283  *     @sk_tskey: counter to disambiguate concurrent tstamp requests
 284  *     @sk_socket: Identd and reporting IO signals
 285  *     @sk_user_data: RPC layer private data
 286  *     @sk_frag: cached page frag
 287  *     @sk_peek_off: current peek_offset value
 288  *     @sk_send_head: front of stuff to transmit
 289  *     @sk_security: used by security modules
 290  *     @sk_mark: generic packet mark
 291  *     @sk_classid: this socket's cgroup classid
 292  *     @sk_cgrp: this socket's cgroup-specific proto data
 293  *     @sk_write_pending: a write to stream socket waits to start
 294  *     @sk_state_change: callback to indicate change in the state of the sock
 295  *     @sk_data_ready: callback to indicate there is data to be processed
 296  *     @sk_write_space: callback to indicate there is bf sending space available
 297  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 298  *     @sk_backlog_rcv: callback to process the backlog
 299  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 300 */
 301struct sock {
 302        /*
 303         * Now struct inet_timewait_sock also uses sock_common, so please just
 304         * don't add nothing before this first member (__sk_common) --acme
 305         */
 306        struct sock_common      __sk_common;
 307#define sk_node                 __sk_common.skc_node
 308#define sk_nulls_node           __sk_common.skc_nulls_node
 309#define sk_refcnt               __sk_common.skc_refcnt
 310#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 311
 312#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 313#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 314#define sk_hash                 __sk_common.skc_hash
 315#define sk_portpair             __sk_common.skc_portpair
 316#define sk_num                  __sk_common.skc_num
 317#define sk_dport                __sk_common.skc_dport
 318#define sk_addrpair             __sk_common.skc_addrpair
 319#define sk_daddr                __sk_common.skc_daddr
 320#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 321#define sk_family               __sk_common.skc_family
 322#define sk_state                __sk_common.skc_state
 323#define sk_reuse                __sk_common.skc_reuse
 324#define sk_reuseport            __sk_common.skc_reuseport
 325#define sk_ipv6only             __sk_common.skc_ipv6only
 326#define sk_net_refcnt           __sk_common.skc_net_refcnt
 327#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 328#define sk_bind_node            __sk_common.skc_bind_node
 329#define sk_prot                 __sk_common.skc_prot
 330#define sk_net                  __sk_common.skc_net
 331#define sk_v6_daddr             __sk_common.skc_v6_daddr
 332#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 333#define sk_cookie               __sk_common.skc_cookie
 334
 335        socket_lock_t           sk_lock;
 336        struct sk_buff_head     sk_receive_queue;
 337        /*
 338         * The backlog queue is special, it is always used with
 339         * the per-socket spinlock held and requires low latency
 340         * access. Therefore we special case it's implementation.
 341         * Note : rmem_alloc is in this structure to fill a hole
 342         * on 64bit arches, not because its logically part of
 343         * backlog.
 344         */
 345        struct {
 346                atomic_t        rmem_alloc;
 347                int             len;
 348                struct sk_buff  *head;
 349                struct sk_buff  *tail;
 350        } sk_backlog;
 351#define sk_rmem_alloc sk_backlog.rmem_alloc
 352        int                     sk_forward_alloc;
 353#ifdef CONFIG_RPS
 354        __u32                   sk_rxhash;
 355#endif
 356        u16                     sk_incoming_cpu;
 357        /* 16bit hole
 358         * Warned : sk_incoming_cpu can be set from softirq,
 359         * Do not use this hole without fully understanding possible issues.
 360         */
 361
 362        __u32                   sk_txhash;
 363#ifdef CONFIG_NET_RX_BUSY_POLL
 364        unsigned int            sk_napi_id;
 365        unsigned int            sk_ll_usec;
 366#endif
 367        atomic_t                sk_drops;
 368        int                     sk_rcvbuf;
 369
 370        struct sk_filter __rcu  *sk_filter;
 371        struct socket_wq __rcu  *sk_wq;
 372
 373#ifdef CONFIG_XFRM
 374        struct xfrm_policy      *sk_policy[2];
 375#endif
 376        unsigned long           sk_flags;
 377        struct dst_entry        *sk_rx_dst;
 378        struct dst_entry __rcu  *sk_dst_cache;
 379        spinlock_t              sk_dst_lock;
 380        atomic_t                sk_wmem_alloc;
 381        atomic_t                sk_omem_alloc;
 382        int                     sk_sndbuf;
 383        struct sk_buff_head     sk_write_queue;
 384        kmemcheck_bitfield_begin(flags);
 385        unsigned int            sk_shutdown  : 2,
 386                                sk_no_check_tx : 1,
 387                                sk_no_check_rx : 1,
 388                                sk_userlocks : 4,
 389                                sk_protocol  : 8,
 390                                sk_type      : 16;
 391        kmemcheck_bitfield_end(flags);
 392        int                     sk_wmem_queued;
 393        gfp_t                   sk_allocation;
 394        u32                     sk_pacing_rate; /* bytes per second */
 395        u32                     sk_max_pacing_rate;
 396        netdev_features_t       sk_route_caps;
 397        netdev_features_t       sk_route_nocaps;
 398        int                     sk_gso_type;
 399        unsigned int            sk_gso_max_size;
 400        u16                     sk_gso_max_segs;
 401        int                     sk_rcvlowat;
 402        unsigned long           sk_lingertime;
 403        struct sk_buff_head     sk_error_queue;
 404        struct proto            *sk_prot_creator;
 405        rwlock_t                sk_callback_lock;
 406        int                     sk_err,
 407                                sk_err_soft;
 408        u32                     sk_ack_backlog;
 409        u32                     sk_max_ack_backlog;
 410        __u32                   sk_priority;
 411#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 412        __u32                   sk_cgrp_prioidx;
 413#endif
 414        struct pid              *sk_peer_pid;
 415        const struct cred       *sk_peer_cred;
 416        long                    sk_rcvtimeo;
 417        long                    sk_sndtimeo;
 418        struct timer_list       sk_timer;
 419        ktime_t                 sk_stamp;
 420        u16                     sk_tsflags;
 421        u32                     sk_tskey;
 422        struct socket           *sk_socket;
 423        void                    *sk_user_data;
 424        struct page_frag        sk_frag;
 425        struct sk_buff          *sk_send_head;
 426        __s32                   sk_peek_off;
 427        int                     sk_write_pending;
 428#ifdef CONFIG_SECURITY
 429        void                    *sk_security;
 430#endif
 431        __u32                   sk_mark;
 432#ifdef CONFIG_CGROUP_NET_CLASSID
 433        u32                     sk_classid;
 434#endif
 435        struct cg_proto         *sk_cgrp;
 436        void                    (*sk_state_change)(struct sock *sk);
 437        void                    (*sk_data_ready)(struct sock *sk);
 438        void                    (*sk_write_space)(struct sock *sk);
 439        void                    (*sk_error_report)(struct sock *sk);
 440        int                     (*sk_backlog_rcv)(struct sock *sk,
 441                                                  struct sk_buff *skb);
 442        void                    (*sk_destruct)(struct sock *sk);
 443};
 444
 445#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 446
 447#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 448#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 449
 450/*
 451 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 452 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 453 * on a socket means that the socket will reuse everybody else's port
 454 * without looking at the other's sk_reuse value.
 455 */
 456
 457#define SK_NO_REUSE     0
 458#define SK_CAN_REUSE    1
 459#define SK_FORCE_REUSE  2
 460
 461static inline int sk_peek_offset(struct sock *sk, int flags)
 462{
 463        if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
 464                return sk->sk_peek_off;
 465        else
 466                return 0;
 467}
 468
 469static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 470{
 471        if (sk->sk_peek_off >= 0) {
 472                if (sk->sk_peek_off >= val)
 473                        sk->sk_peek_off -= val;
 474                else
 475                        sk->sk_peek_off = 0;
 476        }
 477}
 478
 479static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 480{
 481        if (sk->sk_peek_off >= 0)
 482                sk->sk_peek_off += val;
 483}
 484
 485/*
 486 * Hashed lists helper routines
 487 */
 488static inline struct sock *sk_entry(const struct hlist_node *node)
 489{
 490        return hlist_entry(node, struct sock, sk_node);
 491}
 492
 493static inline struct sock *__sk_head(const struct hlist_head *head)
 494{
 495        return hlist_entry(head->first, struct sock, sk_node);
 496}
 497
 498static inline struct sock *sk_head(const struct hlist_head *head)
 499{
 500        return hlist_empty(head) ? NULL : __sk_head(head);
 501}
 502
 503static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 504{
 505        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 506}
 507
 508static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 509{
 510        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 511}
 512
 513static inline struct sock *sk_next(const struct sock *sk)
 514{
 515        return sk->sk_node.next ?
 516                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 517}
 518
 519static inline struct sock *sk_nulls_next(const struct sock *sk)
 520{
 521        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 522                hlist_nulls_entry(sk->sk_nulls_node.next,
 523                                  struct sock, sk_nulls_node) :
 524                NULL;
 525}
 526
 527static inline bool sk_unhashed(const struct sock *sk)
 528{
 529        return hlist_unhashed(&sk->sk_node);
 530}
 531
 532static inline bool sk_hashed(const struct sock *sk)
 533{
 534        return !sk_unhashed(sk);
 535}
 536
 537static inline void sk_node_init(struct hlist_node *node)
 538{
 539        node->pprev = NULL;
 540}
 541
 542static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 543{
 544        node->pprev = NULL;
 545}
 546
 547static inline void __sk_del_node(struct sock *sk)
 548{
 549        __hlist_del(&sk->sk_node);
 550}
 551
 552/* NB: equivalent to hlist_del_init_rcu */
 553static inline bool __sk_del_node_init(struct sock *sk)
 554{
 555        if (sk_hashed(sk)) {
 556                __sk_del_node(sk);
 557                sk_node_init(&sk->sk_node);
 558                return true;
 559        }
 560        return false;
 561}
 562
 563/* Grab socket reference count. This operation is valid only
 564   when sk is ALREADY grabbed f.e. it is found in hash table
 565   or a list and the lookup is made under lock preventing hash table
 566   modifications.
 567 */
 568
 569static inline void sock_hold(struct sock *sk)
 570{
 571        atomic_inc(&sk->sk_refcnt);
 572}
 573
 574/* Ungrab socket in the context, which assumes that socket refcnt
 575   cannot hit zero, f.e. it is true in context of any socketcall.
 576 */
 577static inline void __sock_put(struct sock *sk)
 578{
 579        atomic_dec(&sk->sk_refcnt);
 580}
 581
 582static inline bool sk_del_node_init(struct sock *sk)
 583{
 584        bool rc = __sk_del_node_init(sk);
 585
 586        if (rc) {
 587                /* paranoid for a while -acme */
 588                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 589                __sock_put(sk);
 590        }
 591        return rc;
 592}
 593#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 594
 595static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 596{
 597        if (sk_hashed(sk)) {
 598                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 599                return true;
 600        }
 601        return false;
 602}
 603
 604static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 605{
 606        bool rc = __sk_nulls_del_node_init_rcu(sk);
 607
 608        if (rc) {
 609                /* paranoid for a while -acme */
 610                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 611                __sock_put(sk);
 612        }
 613        return rc;
 614}
 615
 616static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 617{
 618        hlist_add_head(&sk->sk_node, list);
 619}
 620
 621static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 622{
 623        sock_hold(sk);
 624        __sk_add_node(sk, list);
 625}
 626
 627static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 628{
 629        sock_hold(sk);
 630        hlist_add_head_rcu(&sk->sk_node, list);
 631}
 632
 633static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 634{
 635        hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 636}
 637
 638static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 639{
 640        sock_hold(sk);
 641        __sk_nulls_add_node_rcu(sk, list);
 642}
 643
 644static inline void __sk_del_bind_node(struct sock *sk)
 645{
 646        __hlist_del(&sk->sk_bind_node);
 647}
 648
 649static inline void sk_add_bind_node(struct sock *sk,
 650                                        struct hlist_head *list)
 651{
 652        hlist_add_head(&sk->sk_bind_node, list);
 653}
 654
 655#define sk_for_each(__sk, list) \
 656        hlist_for_each_entry(__sk, list, sk_node)
 657#define sk_for_each_rcu(__sk, list) \
 658        hlist_for_each_entry_rcu(__sk, list, sk_node)
 659#define sk_nulls_for_each(__sk, node, list) \
 660        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 661#define sk_nulls_for_each_rcu(__sk, node, list) \
 662        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 663#define sk_for_each_from(__sk) \
 664        hlist_for_each_entry_from(__sk, sk_node)
 665#define sk_nulls_for_each_from(__sk, node) \
 666        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 667                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 668#define sk_for_each_safe(__sk, tmp, list) \
 669        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 670#define sk_for_each_bound(__sk, list) \
 671        hlist_for_each_entry(__sk, list, sk_bind_node)
 672
 673/**
 674 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
 675 * @tpos:       the type * to use as a loop cursor.
 676 * @pos:        the &struct hlist_node to use as a loop cursor.
 677 * @head:       the head for your list.
 678 * @offset:     offset of hlist_node within the struct.
 679 *
 680 */
 681#define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)                \
 682        for (pos = (head)->first;                                              \
 683             (!is_a_nulls(pos)) &&                                             \
 684                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 685             pos = pos->next)
 686
 687static inline struct user_namespace *sk_user_ns(struct sock *sk)
 688{
 689        /* Careful only use this in a context where these parameters
 690         * can not change and must all be valid, such as recvmsg from
 691         * userspace.
 692         */
 693        return sk->sk_socket->file->f_cred->user_ns;
 694}
 695
 696/* Sock flags */
 697enum sock_flags {
 698        SOCK_DEAD,
 699        SOCK_DONE,
 700        SOCK_URGINLINE,
 701        SOCK_KEEPOPEN,
 702        SOCK_LINGER,
 703        SOCK_DESTROY,
 704        SOCK_BROADCAST,
 705        SOCK_TIMESTAMP,
 706        SOCK_ZAPPED,
 707        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 708        SOCK_DBG, /* %SO_DEBUG setting */
 709        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 710        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 711        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 712        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 713        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 714        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 715        SOCK_FASYNC, /* fasync() active */
 716        SOCK_RXQ_OVFL,
 717        SOCK_ZEROCOPY, /* buffers from userspace */
 718        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 719        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 720                     * Will use last 4 bytes of packet sent from
 721                     * user-space instead.
 722                     */
 723        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 724        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 725};
 726
 727static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 728{
 729        nsk->sk_flags = osk->sk_flags;
 730}
 731
 732static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 733{
 734        __set_bit(flag, &sk->sk_flags);
 735}
 736
 737static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 738{
 739        __clear_bit(flag, &sk->sk_flags);
 740}
 741
 742static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 743{
 744        return test_bit(flag, &sk->sk_flags);
 745}
 746
 747#ifdef CONFIG_NET
 748extern struct static_key memalloc_socks;
 749static inline int sk_memalloc_socks(void)
 750{
 751        return static_key_false(&memalloc_socks);
 752}
 753#else
 754
 755static inline int sk_memalloc_socks(void)
 756{
 757        return 0;
 758}
 759
 760#endif
 761
 762static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
 763{
 764        return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
 765}
 766
 767static inline void sk_acceptq_removed(struct sock *sk)
 768{
 769        sk->sk_ack_backlog--;
 770}
 771
 772static inline void sk_acceptq_added(struct sock *sk)
 773{
 774        sk->sk_ack_backlog++;
 775}
 776
 777static inline bool sk_acceptq_is_full(const struct sock *sk)
 778{
 779        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 780}
 781
 782/*
 783 * Compute minimal free write space needed to queue new packets.
 784 */
 785static inline int sk_stream_min_wspace(const struct sock *sk)
 786{
 787        return sk->sk_wmem_queued >> 1;
 788}
 789
 790static inline int sk_stream_wspace(const struct sock *sk)
 791{
 792        return sk->sk_sndbuf - sk->sk_wmem_queued;
 793}
 794
 795void sk_stream_write_space(struct sock *sk);
 796
 797/* OOB backlog add */
 798static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 799{
 800        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 801        skb_dst_force(skb);
 802
 803        if (!sk->sk_backlog.tail)
 804                sk->sk_backlog.head = skb;
 805        else
 806                sk->sk_backlog.tail->next = skb;
 807
 808        sk->sk_backlog.tail = skb;
 809        skb->next = NULL;
 810}
 811
 812/*
 813 * Take into account size of receive queue and backlog queue
 814 * Do not take into account this skb truesize,
 815 * to allow even a single big packet to come.
 816 */
 817static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
 818{
 819        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 820
 821        return qsize > limit;
 822}
 823
 824/* The per-socket spinlock must be held here. */
 825static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 826                                              unsigned int limit)
 827{
 828        if (sk_rcvqueues_full(sk, limit))
 829                return -ENOBUFS;
 830
 831        /*
 832         * If the skb was allocated from pfmemalloc reserves, only
 833         * allow SOCK_MEMALLOC sockets to use it as this socket is
 834         * helping free memory
 835         */
 836        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 837                return -ENOMEM;
 838
 839        __sk_add_backlog(sk, skb);
 840        sk->sk_backlog.len += skb->truesize;
 841        return 0;
 842}
 843
 844int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 845
 846static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 847{
 848        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 849                return __sk_backlog_rcv(sk, skb);
 850
 851        return sk->sk_backlog_rcv(sk, skb);
 852}
 853
 854static inline void sk_incoming_cpu_update(struct sock *sk)
 855{
 856        sk->sk_incoming_cpu = raw_smp_processor_id();
 857}
 858
 859static inline void sock_rps_record_flow_hash(__u32 hash)
 860{
 861#ifdef CONFIG_RPS
 862        struct rps_sock_flow_table *sock_flow_table;
 863
 864        rcu_read_lock();
 865        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 866        rps_record_sock_flow(sock_flow_table, hash);
 867        rcu_read_unlock();
 868#endif
 869}
 870
 871static inline void sock_rps_record_flow(const struct sock *sk)
 872{
 873#ifdef CONFIG_RPS
 874        sock_rps_record_flow_hash(sk->sk_rxhash);
 875#endif
 876}
 877
 878static inline void sock_rps_save_rxhash(struct sock *sk,
 879                                        const struct sk_buff *skb)
 880{
 881#ifdef CONFIG_RPS
 882        if (unlikely(sk->sk_rxhash != skb->hash))
 883                sk->sk_rxhash = skb->hash;
 884#endif
 885}
 886
 887static inline void sock_rps_reset_rxhash(struct sock *sk)
 888{
 889#ifdef CONFIG_RPS
 890        sk->sk_rxhash = 0;
 891#endif
 892}
 893
 894#define sk_wait_event(__sk, __timeo, __condition)                       \
 895        ({      int __rc;                                               \
 896                release_sock(__sk);                                     \
 897                __rc = __condition;                                     \
 898                if (!__rc) {                                            \
 899                        *(__timeo) = schedule_timeout(*(__timeo));      \
 900                }                                                       \
 901                sched_annotate_sleep();                                         \
 902                lock_sock(__sk);                                        \
 903                __rc = __condition;                                     \
 904                __rc;                                                   \
 905        })
 906
 907int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 908int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 909void sk_stream_wait_close(struct sock *sk, long timeo_p);
 910int sk_stream_error(struct sock *sk, int flags, int err);
 911void sk_stream_kill_queues(struct sock *sk);
 912void sk_set_memalloc(struct sock *sk);
 913void sk_clear_memalloc(struct sock *sk);
 914
 915int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 916
 917struct request_sock_ops;
 918struct timewait_sock_ops;
 919struct inet_hashinfo;
 920struct raw_hashinfo;
 921struct module;
 922
 923/*
 924 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 925 * un-modified. Special care is taken when initializing object to zero.
 926 */
 927static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 928{
 929        if (offsetof(struct sock, sk_node.next) != 0)
 930                memset(sk, 0, offsetof(struct sock, sk_node.next));
 931        memset(&sk->sk_node.pprev, 0,
 932               size - offsetof(struct sock, sk_node.pprev));
 933}
 934
 935/* Networking protocol blocks we attach to sockets.
 936 * socket layer -> transport layer interface
 937 */
 938struct proto {
 939        void                    (*close)(struct sock *sk,
 940                                        long timeout);
 941        int                     (*connect)(struct sock *sk,
 942                                        struct sockaddr *uaddr,
 943                                        int addr_len);
 944        int                     (*disconnect)(struct sock *sk, int flags);
 945
 946        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 947
 948        int                     (*ioctl)(struct sock *sk, int cmd,
 949                                         unsigned long arg);
 950        int                     (*init)(struct sock *sk);
 951        void                    (*destroy)(struct sock *sk);
 952        void                    (*shutdown)(struct sock *sk, int how);
 953        int                     (*setsockopt)(struct sock *sk, int level,
 954                                        int optname, char __user *optval,
 955                                        unsigned int optlen);
 956        int                     (*getsockopt)(struct sock *sk, int level,
 957                                        int optname, char __user *optval,
 958                                        int __user *option);
 959#ifdef CONFIG_COMPAT
 960        int                     (*compat_setsockopt)(struct sock *sk,
 961                                        int level,
 962                                        int optname, char __user *optval,
 963                                        unsigned int optlen);
 964        int                     (*compat_getsockopt)(struct sock *sk,
 965                                        int level,
 966                                        int optname, char __user *optval,
 967                                        int __user *option);
 968        int                     (*compat_ioctl)(struct sock *sk,
 969                                        unsigned int cmd, unsigned long arg);
 970#endif
 971        int                     (*sendmsg)(struct sock *sk, struct msghdr *msg,
 972                                           size_t len);
 973        int                     (*recvmsg)(struct sock *sk, struct msghdr *msg,
 974                                           size_t len, int noblock, int flags,
 975                                           int *addr_len);
 976        int                     (*sendpage)(struct sock *sk, struct page *page,
 977                                        int offset, size_t size, int flags);
 978        int                     (*bind)(struct sock *sk,
 979                                        struct sockaddr *uaddr, int addr_len);
 980
 981        int                     (*backlog_rcv) (struct sock *sk,
 982                                                struct sk_buff *skb);
 983
 984        void            (*release_cb)(struct sock *sk);
 985
 986        /* Keeping track of sk's, looking them up, and port selection methods. */
 987        void                    (*hash)(struct sock *sk);
 988        void                    (*unhash)(struct sock *sk);
 989        void                    (*rehash)(struct sock *sk);
 990        int                     (*get_port)(struct sock *sk, unsigned short snum);
 991        void                    (*clear_sk)(struct sock *sk, int size);
 992
 993        /* Keeping track of sockets in use */
 994#ifdef CONFIG_PROC_FS
 995        unsigned int            inuse_idx;
 996#endif
 997
 998        bool                    (*stream_memory_free)(const struct sock *sk);
 999        /* Memory pressure */
1000        void                    (*enter_memory_pressure)(struct sock *sk);
1001        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1002        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1003        /*
1004         * Pressure flag: try to collapse.
1005         * Technical note: it is used by multiple contexts non atomically.
1006         * All the __sk_mem_schedule() is of this nature: accounting
1007         * is strict, actions are advisory and have some latency.
1008         */
1009        int                     *memory_pressure;
1010        long                    *sysctl_mem;
1011        int                     *sysctl_wmem;
1012        int                     *sysctl_rmem;
1013        int                     max_header;
1014        bool                    no_autobind;
1015
1016        struct kmem_cache       *slab;
1017        unsigned int            obj_size;
1018        int                     slab_flags;
1019
1020        struct percpu_counter   *orphan_count;
1021
1022        struct request_sock_ops *rsk_prot;
1023        struct timewait_sock_ops *twsk_prot;
1024
1025        union {
1026                struct inet_hashinfo    *hashinfo;
1027                struct udp_table        *udp_table;
1028                struct raw_hashinfo     *raw_hash;
1029        } h;
1030
1031        struct module           *owner;
1032
1033        char                    name[32];
1034
1035        struct list_head        node;
1036#ifdef SOCK_REFCNT_DEBUG
1037        atomic_t                socks;
1038#endif
1039#ifdef CONFIG_MEMCG_KMEM
1040        /*
1041         * cgroup specific init/deinit functions. Called once for all
1042         * protocols that implement it, from cgroups populate function.
1043         * This function has to setup any files the protocol want to
1044         * appear in the kmem cgroup filesystem.
1045         */
1046        int                     (*init_cgroup)(struct mem_cgroup *memcg,
1047                                               struct cgroup_subsys *ss);
1048        void                    (*destroy_cgroup)(struct mem_cgroup *memcg);
1049        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
1050#endif
1051};
1052
1053int proto_register(struct proto *prot, int alloc_slab);
1054void proto_unregister(struct proto *prot);
1055
1056#ifdef SOCK_REFCNT_DEBUG
1057static inline void sk_refcnt_debug_inc(struct sock *sk)
1058{
1059        atomic_inc(&sk->sk_prot->socks);
1060}
1061
1062static inline void sk_refcnt_debug_dec(struct sock *sk)
1063{
1064        atomic_dec(&sk->sk_prot->socks);
1065        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1066               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1067}
1068
1069static inline void sk_refcnt_debug_release(const struct sock *sk)
1070{
1071        if (atomic_read(&sk->sk_refcnt) != 1)
1072                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1073                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1074}
1075#else /* SOCK_REFCNT_DEBUG */
1076#define sk_refcnt_debug_inc(sk) do { } while (0)
1077#define sk_refcnt_debug_dec(sk) do { } while (0)
1078#define sk_refcnt_debug_release(sk) do { } while (0)
1079#endif /* SOCK_REFCNT_DEBUG */
1080
1081#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1082extern struct static_key memcg_socket_limit_enabled;
1083static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1084                                               struct cg_proto *cg_proto)
1085{
1086        return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1087}
1088#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1089#else
1090#define mem_cgroup_sockets_enabled 0
1091static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1092                                               struct cg_proto *cg_proto)
1093{
1094        return NULL;
1095}
1096#endif
1097
1098static inline bool sk_stream_memory_free(const struct sock *sk)
1099{
1100        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1101                return false;
1102
1103        return sk->sk_prot->stream_memory_free ?
1104                sk->sk_prot->stream_memory_free(sk) : true;
1105}
1106
1107static inline bool sk_stream_is_writeable(const struct sock *sk)
1108{
1109        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1110               sk_stream_memory_free(sk);
1111}
1112
1113
1114static inline bool sk_has_memory_pressure(const struct sock *sk)
1115{
1116        return sk->sk_prot->memory_pressure != NULL;
1117}
1118
1119static inline bool sk_under_memory_pressure(const struct sock *sk)
1120{
1121        if (!sk->sk_prot->memory_pressure)
1122                return false;
1123
1124        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1125                return !!sk->sk_cgrp->memory_pressure;
1126
1127        return !!*sk->sk_prot->memory_pressure;
1128}
1129
1130static inline void sk_leave_memory_pressure(struct sock *sk)
1131{
1132        int *memory_pressure = sk->sk_prot->memory_pressure;
1133
1134        if (!memory_pressure)
1135                return;
1136
1137        if (*memory_pressure)
1138                *memory_pressure = 0;
1139
1140        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1141                struct cg_proto *cg_proto = sk->sk_cgrp;
1142                struct proto *prot = sk->sk_prot;
1143
1144                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1145                        cg_proto->memory_pressure = 0;
1146        }
1147
1148}
1149
1150static inline void sk_enter_memory_pressure(struct sock *sk)
1151{
1152        if (!sk->sk_prot->enter_memory_pressure)
1153                return;
1154
1155        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1156                struct cg_proto *cg_proto = sk->sk_cgrp;
1157                struct proto *prot = sk->sk_prot;
1158
1159                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1160                        cg_proto->memory_pressure = 1;
1161        }
1162
1163        sk->sk_prot->enter_memory_pressure(sk);
1164}
1165
1166static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1167{
1168        long *prot = sk->sk_prot->sysctl_mem;
1169        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1170                prot = sk->sk_cgrp->sysctl_mem;
1171        return prot[index];
1172}
1173
1174static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1175                                              unsigned long amt,
1176                                              int *parent_status)
1177{
1178        page_counter_charge(&prot->memory_allocated, amt);
1179
1180        if (page_counter_read(&prot->memory_allocated) >
1181            prot->memory_allocated.limit)
1182                *parent_status = OVER_LIMIT;
1183}
1184
1185static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1186                                              unsigned long amt)
1187{
1188        page_counter_uncharge(&prot->memory_allocated, amt);
1189}
1190
1191static inline long
1192sk_memory_allocated(const struct sock *sk)
1193{
1194        struct proto *prot = sk->sk_prot;
1195
1196        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1197                return page_counter_read(&sk->sk_cgrp->memory_allocated);
1198
1199        return atomic_long_read(prot->memory_allocated);
1200}
1201
1202static inline long
1203sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1204{
1205        struct proto *prot = sk->sk_prot;
1206
1207        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1208                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1209                /* update the root cgroup regardless */
1210                atomic_long_add_return(amt, prot->memory_allocated);
1211                return page_counter_read(&sk->sk_cgrp->memory_allocated);
1212        }
1213
1214        return atomic_long_add_return(amt, prot->memory_allocated);
1215}
1216
1217static inline void
1218sk_memory_allocated_sub(struct sock *sk, int amt)
1219{
1220        struct proto *prot = sk->sk_prot;
1221
1222        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1223                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1224
1225        atomic_long_sub(amt, prot->memory_allocated);
1226}
1227
1228static inline void sk_sockets_allocated_dec(struct sock *sk)
1229{
1230        struct proto *prot = sk->sk_prot;
1231
1232        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1233                struct cg_proto *cg_proto = sk->sk_cgrp;
1234
1235                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1236                        percpu_counter_dec(&cg_proto->sockets_allocated);
1237        }
1238
1239        percpu_counter_dec(prot->sockets_allocated);
1240}
1241
1242static inline void sk_sockets_allocated_inc(struct sock *sk)
1243{
1244        struct proto *prot = sk->sk_prot;
1245
1246        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1247                struct cg_proto *cg_proto = sk->sk_cgrp;
1248
1249                for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1250                        percpu_counter_inc(&cg_proto->sockets_allocated);
1251        }
1252
1253        percpu_counter_inc(prot->sockets_allocated);
1254}
1255
1256static inline int
1257sk_sockets_allocated_read_positive(struct sock *sk)
1258{
1259        struct proto *prot = sk->sk_prot;
1260
1261        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1262                return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1263
1264        return percpu_counter_read_positive(prot->sockets_allocated);
1265}
1266
1267static inline int
1268proto_sockets_allocated_sum_positive(struct proto *prot)
1269{
1270        return percpu_counter_sum_positive(prot->sockets_allocated);
1271}
1272
1273static inline long
1274proto_memory_allocated(struct proto *prot)
1275{
1276        return atomic_long_read(prot->memory_allocated);
1277}
1278
1279static inline bool
1280proto_memory_pressure(struct proto *prot)
1281{
1282        if (!prot->memory_pressure)
1283                return false;
1284        return !!*prot->memory_pressure;
1285}
1286
1287
1288#ifdef CONFIG_PROC_FS
1289/* Called with local bh disabled */
1290void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1291int sock_prot_inuse_get(struct net *net, struct proto *proto);
1292#else
1293static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1294                int inc)
1295{
1296}
1297#endif
1298
1299
1300/* With per-bucket locks this operation is not-atomic, so that
1301 * this version is not worse.
1302 */
1303static inline void __sk_prot_rehash(struct sock *sk)
1304{
1305        sk->sk_prot->unhash(sk);
1306        sk->sk_prot->hash(sk);
1307}
1308
1309void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1310
1311/* About 10 seconds */
1312#define SOCK_DESTROY_TIME (10*HZ)
1313
1314/* Sockets 0-1023 can't be bound to unless you are superuser */
1315#define PROT_SOCK       1024
1316
1317#define SHUTDOWN_MASK   3
1318#define RCV_SHUTDOWN    1
1319#define SEND_SHUTDOWN   2
1320
1321#define SOCK_SNDBUF_LOCK        1
1322#define SOCK_RCVBUF_LOCK        2
1323#define SOCK_BINDADDR_LOCK      4
1324#define SOCK_BINDPORT_LOCK      8
1325
1326struct socket_alloc {
1327        struct socket socket;
1328        struct inode vfs_inode;
1329};
1330
1331static inline struct socket *SOCKET_I(struct inode *inode)
1332{
1333        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1334}
1335
1336static inline struct inode *SOCK_INODE(struct socket *socket)
1337{
1338        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1339}
1340
1341/*
1342 * Functions for memory accounting
1343 */
1344int __sk_mem_schedule(struct sock *sk, int size, int kind);
1345void __sk_mem_reclaim(struct sock *sk, int amount);
1346
1347#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1348#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1349#define SK_MEM_SEND     0
1350#define SK_MEM_RECV     1
1351
1352static inline int sk_mem_pages(int amt)
1353{
1354        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1355}
1356
1357static inline bool sk_has_account(struct sock *sk)
1358{
1359        /* return true if protocol supports memory accounting */
1360        return !!sk->sk_prot->memory_allocated;
1361}
1362
1363static inline bool sk_wmem_schedule(struct sock *sk, int size)
1364{
1365        if (!sk_has_account(sk))
1366                return true;
1367        return size <= sk->sk_forward_alloc ||
1368                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1369}
1370
1371static inline bool
1372sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1373{
1374        if (!sk_has_account(sk))
1375                return true;
1376        return size<= sk->sk_forward_alloc ||
1377                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1378                skb_pfmemalloc(skb);
1379}
1380
1381static inline void sk_mem_reclaim(struct sock *sk)
1382{
1383        if (!sk_has_account(sk))
1384                return;
1385        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1386                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1387}
1388
1389static inline void sk_mem_reclaim_partial(struct sock *sk)
1390{
1391        if (!sk_has_account(sk))
1392                return;
1393        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1394                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1395}
1396
1397static inline void sk_mem_charge(struct sock *sk, int size)
1398{
1399        if (!sk_has_account(sk))
1400                return;
1401        sk->sk_forward_alloc -= size;
1402}
1403
1404static inline void sk_mem_uncharge(struct sock *sk, int size)
1405{
1406        if (!sk_has_account(sk))
1407                return;
1408        sk->sk_forward_alloc += size;
1409}
1410
1411static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1412{
1413        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1414        sk->sk_wmem_queued -= skb->truesize;
1415        sk_mem_uncharge(sk, skb->truesize);
1416        __kfree_skb(skb);
1417}
1418
1419/* Used by processes to "lock" a socket state, so that
1420 * interrupts and bottom half handlers won't change it
1421 * from under us. It essentially blocks any incoming
1422 * packets, so that we won't get any new data or any
1423 * packets that change the state of the socket.
1424 *
1425 * While locked, BH processing will add new packets to
1426 * the backlog queue.  This queue is processed by the
1427 * owner of the socket lock right before it is released.
1428 *
1429 * Since ~2.3.5 it is also exclusive sleep lock serializing
1430 * accesses from user process context.
1431 */
1432#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1433
1434static inline void sock_release_ownership(struct sock *sk)
1435{
1436        sk->sk_lock.owned = 0;
1437}
1438
1439/*
1440 * Macro so as to not evaluate some arguments when
1441 * lockdep is not enabled.
1442 *
1443 * Mark both the sk_lock and the sk_lock.slock as a
1444 * per-address-family lock class.
1445 */
1446#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1447do {                                                                    \
1448        sk->sk_lock.owned = 0;                                          \
1449        init_waitqueue_head(&sk->sk_lock.wq);                           \
1450        spin_lock_init(&(sk)->sk_lock.slock);                           \
1451        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1452                        sizeof((sk)->sk_lock));                         \
1453        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1454                                (skey), (sname));                               \
1455        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1456} while (0)
1457
1458void lock_sock_nested(struct sock *sk, int subclass);
1459
1460static inline void lock_sock(struct sock *sk)
1461{
1462        lock_sock_nested(sk, 0);
1463}
1464
1465void release_sock(struct sock *sk);
1466
1467/* BH context may only use the following locking interface. */
1468#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1469#define bh_lock_sock_nested(__sk) \
1470                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1471                                SINGLE_DEPTH_NESTING)
1472#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1473
1474bool lock_sock_fast(struct sock *sk);
1475/**
1476 * unlock_sock_fast - complement of lock_sock_fast
1477 * @sk: socket
1478 * @slow: slow mode
1479 *
1480 * fast unlock socket for user context.
1481 * If slow mode is on, we call regular release_sock()
1482 */
1483static inline void unlock_sock_fast(struct sock *sk, bool slow)
1484{
1485        if (slow)
1486                release_sock(sk);
1487        else
1488                spin_unlock_bh(&sk->sk_lock.slock);
1489}
1490
1491
1492struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1493                      struct proto *prot, int kern);
1494void sk_free(struct sock *sk);
1495void sk_destruct(struct sock *sk);
1496struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1497
1498struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1499                             gfp_t priority);
1500void sock_wfree(struct sk_buff *skb);
1501void skb_orphan_partial(struct sk_buff *skb);
1502void sock_rfree(struct sk_buff *skb);
1503void sock_efree(struct sk_buff *skb);
1504#ifdef CONFIG_INET
1505void sock_edemux(struct sk_buff *skb);
1506#else
1507#define sock_edemux(skb) sock_efree(skb)
1508#endif
1509
1510int sock_setsockopt(struct socket *sock, int level, int op,
1511                    char __user *optval, unsigned int optlen);
1512
1513int sock_getsockopt(struct socket *sock, int level, int op,
1514                    char __user *optval, int __user *optlen);
1515struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1516                                    int noblock, int *errcode);
1517struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1518                                     unsigned long data_len, int noblock,
1519                                     int *errcode, int max_page_order);
1520void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1521void sock_kfree_s(struct sock *sk, void *mem, int size);
1522void sock_kzfree_s(struct sock *sk, void *mem, int size);
1523void sk_send_sigurg(struct sock *sk);
1524
1525/*
1526 * Functions to fill in entries in struct proto_ops when a protocol
1527 * does not implement a particular function.
1528 */
1529int sock_no_bind(struct socket *, struct sockaddr *, int);
1530int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1531int sock_no_socketpair(struct socket *, struct socket *);
1532int sock_no_accept(struct socket *, struct socket *, int);
1533int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1534unsigned int sock_no_poll(struct file *, struct socket *,
1535                          struct poll_table_struct *);
1536int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1537int sock_no_listen(struct socket *, int);
1538int sock_no_shutdown(struct socket *, int);
1539int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1540int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1541int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1542int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1543int sock_no_mmap(struct file *file, struct socket *sock,
1544                 struct vm_area_struct *vma);
1545ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1546                         size_t size, int flags);
1547
1548/*
1549 * Functions to fill in entries in struct proto_ops when a protocol
1550 * uses the inet style.
1551 */
1552int sock_common_getsockopt(struct socket *sock, int level, int optname,
1553                                  char __user *optval, int __user *optlen);
1554int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1555                        int flags);
1556int sock_common_setsockopt(struct socket *sock, int level, int optname,
1557                                  char __user *optval, unsigned int optlen);
1558int compat_sock_common_getsockopt(struct socket *sock, int level,
1559                int optname, char __user *optval, int __user *optlen);
1560int compat_sock_common_setsockopt(struct socket *sock, int level,
1561                int optname, char __user *optval, unsigned int optlen);
1562
1563void sk_common_release(struct sock *sk);
1564
1565/*
1566 *      Default socket callbacks and setup code
1567 */
1568
1569/* Initialise core socket variables */
1570void sock_init_data(struct socket *sock, struct sock *sk);
1571
1572/*
1573 * Socket reference counting postulates.
1574 *
1575 * * Each user of socket SHOULD hold a reference count.
1576 * * Each access point to socket (an hash table bucket, reference from a list,
1577 *   running timer, skb in flight MUST hold a reference count.
1578 * * When reference count hits 0, it means it will never increase back.
1579 * * When reference count hits 0, it means that no references from
1580 *   outside exist to this socket and current process on current CPU
1581 *   is last user and may/should destroy this socket.
1582 * * sk_free is called from any context: process, BH, IRQ. When
1583 *   it is called, socket has no references from outside -> sk_free
1584 *   may release descendant resources allocated by the socket, but
1585 *   to the time when it is called, socket is NOT referenced by any
1586 *   hash tables, lists etc.
1587 * * Packets, delivered from outside (from network or from another process)
1588 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1589 *   when they sit in queue. Otherwise, packets will leak to hole, when
1590 *   socket is looked up by one cpu and unhasing is made by another CPU.
1591 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1592 *   (leak to backlog). Packet socket does all the processing inside
1593 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1594 *   use separate SMP lock, so that they are prone too.
1595 */
1596
1597/* Ungrab socket and destroy it, if it was the last reference. */
1598static inline void sock_put(struct sock *sk)
1599{
1600        if (atomic_dec_and_test(&sk->sk_refcnt))
1601                sk_free(sk);
1602}
1603/* Generic version of sock_put(), dealing with all sockets
1604 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1605 */
1606void sock_gen_put(struct sock *sk);
1607
1608int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1609
1610static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1611{
1612        sk->sk_tx_queue_mapping = tx_queue;
1613}
1614
1615static inline void sk_tx_queue_clear(struct sock *sk)
1616{
1617        sk->sk_tx_queue_mapping = -1;
1618}
1619
1620static inline int sk_tx_queue_get(const struct sock *sk)
1621{
1622        return sk ? sk->sk_tx_queue_mapping : -1;
1623}
1624
1625static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1626{
1627        sk_tx_queue_clear(sk);
1628        sk->sk_socket = sock;
1629}
1630
1631static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1632{
1633        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1634        return &rcu_dereference_raw(sk->sk_wq)->wait;
1635}
1636/* Detach socket from process context.
1637 * Announce socket dead, detach it from wait queue and inode.
1638 * Note that parent inode held reference count on this struct sock,
1639 * we do not release it in this function, because protocol
1640 * probably wants some additional cleanups or even continuing
1641 * to work with this socket (TCP).
1642 */
1643static inline void sock_orphan(struct sock *sk)
1644{
1645        write_lock_bh(&sk->sk_callback_lock);
1646        sock_set_flag(sk, SOCK_DEAD);
1647        sk_set_socket(sk, NULL);
1648        sk->sk_wq  = NULL;
1649        write_unlock_bh(&sk->sk_callback_lock);
1650}
1651
1652static inline void sock_graft(struct sock *sk, struct socket *parent)
1653{
1654        write_lock_bh(&sk->sk_callback_lock);
1655        sk->sk_wq = parent->wq;
1656        parent->sk = sk;
1657        sk_set_socket(sk, parent);
1658        security_sock_graft(sk, parent);
1659        write_unlock_bh(&sk->sk_callback_lock);
1660}
1661
1662kuid_t sock_i_uid(struct sock *sk);
1663unsigned long sock_i_ino(struct sock *sk);
1664
1665static inline void sk_set_txhash(struct sock *sk)
1666{
1667        sk->sk_txhash = prandom_u32();
1668
1669        if (unlikely(!sk->sk_txhash))
1670                sk->sk_txhash = 1;
1671}
1672
1673static inline void sk_rethink_txhash(struct sock *sk)
1674{
1675        if (sk->sk_txhash)
1676                sk_set_txhash(sk);
1677}
1678
1679static inline struct dst_entry *
1680__sk_dst_get(struct sock *sk)
1681{
1682        return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1683                                                       lockdep_is_held(&sk->sk_lock.slock));
1684}
1685
1686static inline struct dst_entry *
1687sk_dst_get(struct sock *sk)
1688{
1689        struct dst_entry *dst;
1690
1691        rcu_read_lock();
1692        dst = rcu_dereference(sk->sk_dst_cache);
1693        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1694                dst = NULL;
1695        rcu_read_unlock();
1696        return dst;
1697}
1698
1699static inline void dst_negative_advice(struct sock *sk)
1700{
1701        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1702
1703        sk_rethink_txhash(sk);
1704
1705        if (dst && dst->ops->negative_advice) {
1706                ndst = dst->ops->negative_advice(dst);
1707
1708                if (ndst != dst) {
1709                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1710                        sk_tx_queue_clear(sk);
1711                }
1712        }
1713}
1714
1715static inline void
1716__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1717{
1718        struct dst_entry *old_dst;
1719
1720        sk_tx_queue_clear(sk);
1721        /*
1722         * This can be called while sk is owned by the caller only,
1723         * with no state that can be checked in a rcu_dereference_check() cond
1724         */
1725        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1726        rcu_assign_pointer(sk->sk_dst_cache, dst);
1727        dst_release(old_dst);
1728}
1729
1730static inline void
1731sk_dst_set(struct sock *sk, struct dst_entry *dst)
1732{
1733        struct dst_entry *old_dst;
1734
1735        sk_tx_queue_clear(sk);
1736        old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1737        dst_release(old_dst);
1738}
1739
1740static inline void
1741__sk_dst_reset(struct sock *sk)
1742{
1743        __sk_dst_set(sk, NULL);
1744}
1745
1746static inline void
1747sk_dst_reset(struct sock *sk)
1748{
1749        sk_dst_set(sk, NULL);
1750}
1751
1752struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1753
1754struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1755
1756bool sk_mc_loop(struct sock *sk);
1757
1758static inline bool sk_can_gso(const struct sock *sk)
1759{
1760        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1761}
1762
1763void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1764
1765static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1766{
1767        sk->sk_route_nocaps |= flags;
1768        sk->sk_route_caps &= ~flags;
1769}
1770
1771static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1772                                           struct iov_iter *from, char *to,
1773                                           int copy, int offset)
1774{
1775        if (skb->ip_summed == CHECKSUM_NONE) {
1776                __wsum csum = 0;
1777                if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1778                        return -EFAULT;
1779                skb->csum = csum_block_add(skb->csum, csum, offset);
1780        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1781                if (copy_from_iter_nocache(to, copy, from) != copy)
1782                        return -EFAULT;
1783        } else if (copy_from_iter(to, copy, from) != copy)
1784                return -EFAULT;
1785
1786        return 0;
1787}
1788
1789static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1790                                       struct iov_iter *from, int copy)
1791{
1792        int err, offset = skb->len;
1793
1794        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1795                                       copy, offset);
1796        if (err)
1797                __skb_trim(skb, offset);
1798
1799        return err;
1800}
1801
1802static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1803                                           struct sk_buff *skb,
1804                                           struct page *page,
1805                                           int off, int copy)
1806{
1807        int err;
1808
1809        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1810                                       copy, skb->len);
1811        if (err)
1812                return err;
1813
1814        skb->len             += copy;
1815        skb->data_len        += copy;
1816        skb->truesize        += copy;
1817        sk->sk_wmem_queued   += copy;
1818        sk_mem_charge(sk, copy);
1819        return 0;
1820}
1821
1822/**
1823 * sk_wmem_alloc_get - returns write allocations
1824 * @sk: socket
1825 *
1826 * Returns sk_wmem_alloc minus initial offset of one
1827 */
1828static inline int sk_wmem_alloc_get(const struct sock *sk)
1829{
1830        return atomic_read(&sk->sk_wmem_alloc) - 1;
1831}
1832
1833/**
1834 * sk_rmem_alloc_get - returns read allocations
1835 * @sk: socket
1836 *
1837 * Returns sk_rmem_alloc
1838 */
1839static inline int sk_rmem_alloc_get(const struct sock *sk)
1840{
1841        return atomic_read(&sk->sk_rmem_alloc);
1842}
1843
1844/**
1845 * sk_has_allocations - check if allocations are outstanding
1846 * @sk: socket
1847 *
1848 * Returns true if socket has write or read allocations
1849 */
1850static inline bool sk_has_allocations(const struct sock *sk)
1851{
1852        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1853}
1854
1855/**
1856 * wq_has_sleeper - check if there are any waiting processes
1857 * @wq: struct socket_wq
1858 *
1859 * Returns true if socket_wq has waiting processes
1860 *
1861 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1862 * barrier call. They were added due to the race found within the tcp code.
1863 *
1864 * Consider following tcp code paths:
1865 *
1866 * CPU1                  CPU2
1867 *
1868 * sys_select            receive packet
1869 *   ...                 ...
1870 *   __add_wait_queue    update tp->rcv_nxt
1871 *   ...                 ...
1872 *   tp->rcv_nxt check   sock_def_readable
1873 *   ...                 {
1874 *   schedule               rcu_read_lock();
1875 *                          wq = rcu_dereference(sk->sk_wq);
1876 *                          if (wq && waitqueue_active(&wq->wait))
1877 *                              wake_up_interruptible(&wq->wait)
1878 *                          ...
1879 *                       }
1880 *
1881 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1882 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1883 * could then endup calling schedule and sleep forever if there are no more
1884 * data on the socket.
1885 *
1886 */
1887static inline bool wq_has_sleeper(struct socket_wq *wq)
1888{
1889        /* We need to be sure we are in sync with the
1890         * add_wait_queue modifications to the wait queue.
1891         *
1892         * This memory barrier is paired in the sock_poll_wait.
1893         */
1894        smp_mb();
1895        return wq && waitqueue_active(&wq->wait);
1896}
1897
1898/**
1899 * sock_poll_wait - place memory barrier behind the poll_wait call.
1900 * @filp:           file
1901 * @wait_address:   socket wait queue
1902 * @p:              poll_table
1903 *
1904 * See the comments in the wq_has_sleeper function.
1905 */
1906static inline void sock_poll_wait(struct file *filp,
1907                wait_queue_head_t *wait_address, poll_table *p)
1908{
1909        if (!poll_does_not_wait(p) && wait_address) {
1910                poll_wait(filp, wait_address, p);
1911                /* We need to be sure we are in sync with the
1912                 * socket flags modification.
1913                 *
1914                 * This memory barrier is paired in the wq_has_sleeper.
1915                 */
1916                smp_mb();
1917        }
1918}
1919
1920static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1921{
1922        if (sk->sk_txhash) {
1923                skb->l4_hash = 1;
1924                skb->hash = sk->sk_txhash;
1925        }
1926}
1927
1928/*
1929 *      Queue a received datagram if it will fit. Stream and sequenced
1930 *      protocols can't normally use this as they need to fit buffers in
1931 *      and play with them.
1932 *
1933 *      Inlined as it's very short and called for pretty much every
1934 *      packet ever received.
1935 */
1936
1937static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1938{
1939        skb_orphan(skb);
1940        skb->sk = sk;
1941        skb->destructor = sock_wfree;
1942        skb_set_hash_from_sk(skb, sk);
1943        /*
1944         * We used to take a refcount on sk, but following operation
1945         * is enough to guarantee sk_free() wont free this sock until
1946         * all in-flight packets are completed
1947         */
1948        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1949}
1950
1951static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1952{
1953        skb_orphan(skb);
1954        skb->sk = sk;
1955        skb->destructor = sock_rfree;
1956        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1957        sk_mem_charge(sk, skb->truesize);
1958}
1959
1960void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1961                    unsigned long expires);
1962
1963void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1964
1965int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1966
1967int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1968struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1969
1970/*
1971 *      Recover an error report and clear atomically
1972 */
1973
1974static inline int sock_error(struct sock *sk)
1975{
1976        int err;
1977        if (likely(!sk->sk_err))
1978                return 0;
1979        err = xchg(&sk->sk_err, 0);
1980        return -err;
1981}
1982
1983static inline unsigned long sock_wspace(struct sock *sk)
1984{
1985        int amt = 0;
1986
1987        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1988                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1989                if (amt < 0)
1990                        amt = 0;
1991        }
1992        return amt;
1993}
1994
1995static inline void sk_wake_async(struct sock *sk, int how, int band)
1996{
1997        if (sock_flag(sk, SOCK_FASYNC))
1998                sock_wake_async(sk->sk_socket, how, band);
1999}
2000
2001/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2002 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2003 * Note: for send buffers, TCP works better if we can build two skbs at
2004 * minimum.
2005 */
2006#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2007
2008#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2009#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2010
2011static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2012{
2013        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2014                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2015                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2016        }
2017}
2018
2019struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2020                                    bool force_schedule);
2021
2022/**
2023 * sk_page_frag - return an appropriate page_frag
2024 * @sk: socket
2025 *
2026 * If socket allocation mode allows current thread to sleep, it means its
2027 * safe to use the per task page_frag instead of the per socket one.
2028 */
2029static inline struct page_frag *sk_page_frag(struct sock *sk)
2030{
2031        if (sk->sk_allocation & __GFP_WAIT)
2032                return &current->task_frag;
2033
2034        return &sk->sk_frag;
2035}
2036
2037bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2038
2039/*
2040 *      Default write policy as shown to user space via poll/select/SIGIO
2041 */
2042static inline bool sock_writeable(const struct sock *sk)
2043{
2044        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2045}
2046
2047static inline gfp_t gfp_any(void)
2048{
2049        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2050}
2051
2052static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2053{
2054        return noblock ? 0 : sk->sk_rcvtimeo;
2055}
2056
2057static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2058{
2059        return noblock ? 0 : sk->sk_sndtimeo;
2060}
2061
2062static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2063{
2064        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2065}
2066
2067/* Alas, with timeout socket operations are not restartable.
2068 * Compare this to poll().
2069 */
2070static inline int sock_intr_errno(long timeo)
2071{
2072        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2073}
2074
2075struct sock_skb_cb {
2076        u32 dropcount;
2077};
2078
2079/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2080 * using skb->cb[] would keep using it directly and utilize its
2081 * alignement guarantee.
2082 */
2083#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2084                            sizeof(struct sock_skb_cb)))
2085
2086#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2087                            SOCK_SKB_CB_OFFSET))
2088
2089#define sock_skb_cb_check_size(size) \
2090        BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2091
2092static inline void
2093sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2094{
2095        SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2096}
2097
2098void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2099                           struct sk_buff *skb);
2100void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2101                             struct sk_buff *skb);
2102
2103static inline void
2104sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2105{
2106        ktime_t kt = skb->tstamp;
2107        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2108
2109        /*
2110         * generate control messages if
2111         * - receive time stamping in software requested
2112         * - software time stamp available and wanted
2113         * - hardware time stamps available and wanted
2114         */
2115        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2116            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2117            (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2118            (hwtstamps->hwtstamp.tv64 &&
2119             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2120                __sock_recv_timestamp(msg, sk, skb);
2121        else
2122                sk->sk_stamp = kt;
2123
2124        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2125                __sock_recv_wifi_status(msg, sk, skb);
2126}
2127
2128void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2129                              struct sk_buff *skb);
2130
2131static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2132                                          struct sk_buff *skb)
2133{
2134#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2135                           (1UL << SOCK_RCVTSTAMP))
2136#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2137                           SOF_TIMESTAMPING_RAW_HARDWARE)
2138
2139        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2140                __sock_recv_ts_and_drops(msg, sk, skb);
2141        else
2142                sk->sk_stamp = skb->tstamp;
2143}
2144
2145void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2146
2147/**
2148 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2149 * @sk:         socket sending this packet
2150 * @tx_flags:   completed with instructions for time stamping
2151 *
2152 * Note : callers should take care of initial *tx_flags value (usually 0)
2153 */
2154static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2155{
2156        if (unlikely(sk->sk_tsflags))
2157                __sock_tx_timestamp(sk, tx_flags);
2158        if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2159                *tx_flags |= SKBTX_WIFI_STATUS;
2160}
2161
2162/**
2163 * sk_eat_skb - Release a skb if it is no longer needed
2164 * @sk: socket to eat this skb from
2165 * @skb: socket buffer to eat
2166 *
2167 * This routine must be called with interrupts disabled or with the socket
2168 * locked so that the sk_buff queue operation is ok.
2169*/
2170static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2171{
2172        __skb_unlink(skb, &sk->sk_receive_queue);
2173        __kfree_skb(skb);
2174}
2175
2176static inline
2177struct net *sock_net(const struct sock *sk)
2178{
2179        return read_pnet(&sk->sk_net);
2180}
2181
2182static inline
2183void sock_net_set(struct sock *sk, struct net *net)
2184{
2185        write_pnet(&sk->sk_net, net);
2186}
2187
2188static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2189{
2190        if (skb->sk) {
2191                struct sock *sk = skb->sk;
2192
2193                skb->destructor = NULL;
2194                skb->sk = NULL;
2195                return sk;
2196        }
2197        return NULL;
2198}
2199
2200/* This helper checks if a socket is a full socket,
2201 * ie _not_ a timewait or request socket.
2202 */
2203static inline bool sk_fullsock(const struct sock *sk)
2204{
2205        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2206}
2207
2208void sock_enable_timestamp(struct sock *sk, int flag);
2209int sock_get_timestamp(struct sock *, struct timeval __user *);
2210int sock_get_timestampns(struct sock *, struct timespec __user *);
2211int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2212                       int type);
2213
2214bool sk_ns_capable(const struct sock *sk,
2215                   struct user_namespace *user_ns, int cap);
2216bool sk_capable(const struct sock *sk, int cap);
2217bool sk_net_capable(const struct sock *sk, int cap);
2218
2219extern __u32 sysctl_wmem_max;
2220extern __u32 sysctl_rmem_max;
2221
2222extern int sysctl_tstamp_allow_data;
2223extern int sysctl_optmem_max;
2224
2225extern __u32 sysctl_wmem_default;
2226extern __u32 sysctl_rmem_default;
2227
2228#endif  /* _SOCK_H */
2229