linux/ipc/sem.c
<<
>>
Prefs
   1/*
   2 * linux/ipc/sem.c
   3 * Copyright (C) 1992 Krishna Balasubramanian
   4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
   5 *
   6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
   7 *
   8 * SMP-threaded, sysctl's added
   9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  10 * Enforced range limit on SEM_UNDO
  11 * (c) 2001 Red Hat Inc
  12 * Lockless wakeup
  13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
  14 * Further wakeup optimizations, documentation
  15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
  16 *
  17 * support for audit of ipc object properties and permission changes
  18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  19 *
  20 * namespaces support
  21 * OpenVZ, SWsoft Inc.
  22 * Pavel Emelianov <xemul@openvz.org>
  23 *
  24 * Implementation notes: (May 2010)
  25 * This file implements System V semaphores.
  26 *
  27 * User space visible behavior:
  28 * - FIFO ordering for semop() operations (just FIFO, not starvation
  29 *   protection)
  30 * - multiple semaphore operations that alter the same semaphore in
  31 *   one semop() are handled.
  32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
  33 *   SETALL calls.
  34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
  35 * - undo adjustments at process exit are limited to 0..SEMVMX.
  36 * - namespace are supported.
  37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
  38 *   to /proc/sys/kernel/sem.
  39 * - statistics about the usage are reported in /proc/sysvipc/sem.
  40 *
  41 * Internals:
  42 * - scalability:
  43 *   - all global variables are read-mostly.
  44 *   - semop() calls and semctl(RMID) are synchronized by RCU.
  45 *   - most operations do write operations (actually: spin_lock calls) to
  46 *     the per-semaphore array structure.
  47 *   Thus: Perfect SMP scaling between independent semaphore arrays.
  48 *         If multiple semaphores in one array are used, then cache line
  49 *         trashing on the semaphore array spinlock will limit the scaling.
  50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
  51 * - the task that performs a successful semop() scans the list of all
  52 *   sleeping tasks and completes any pending operations that can be fulfilled.
  53 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
  54 *   (see update_queue())
  55 * - To improve the scalability, the actual wake-up calls are performed after
  56 *   dropping all locks. (see wake_up_sem_queue_prepare(),
  57 *   wake_up_sem_queue_do())
  58 * - All work is done by the waker, the woken up task does not have to do
  59 *   anything - not even acquiring a lock or dropping a refcount.
  60 * - A woken up task may not even touch the semaphore array anymore, it may
  61 *   have been destroyed already by a semctl(RMID).
  62 * - The synchronizations between wake-ups due to a timeout/signal and a
  63 *   wake-up due to a completed semaphore operation is achieved by using an
  64 *   intermediate state (IN_WAKEUP).
  65 * - UNDO values are stored in an array (one per process and per
  66 *   semaphore array, lazily allocated). For backwards compatibility, multiple
  67 *   modes for the UNDO variables are supported (per process, per thread)
  68 *   (see copy_semundo, CLONE_SYSVSEM)
  69 * - There are two lists of the pending operations: a per-array list
  70 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
  71 *   ordering without always scanning all pending operations.
  72 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
  73 */
  74
  75#include <linux/slab.h>
  76#include <linux/spinlock.h>
  77#include <linux/init.h>
  78#include <linux/proc_fs.h>
  79#include <linux/time.h>
  80#include <linux/security.h>
  81#include <linux/syscalls.h>
  82#include <linux/audit.h>
  83#include <linux/capability.h>
  84#include <linux/seq_file.h>
  85#include <linux/rwsem.h>
  86#include <linux/nsproxy.h>
  87#include <linux/ipc_namespace.h>
  88
  89#include <linux/uaccess.h>
  90#include "util.h"
  91
  92/* One semaphore structure for each semaphore in the system. */
  93struct sem {
  94        int     semval;         /* current value */
  95        int     sempid;         /* pid of last operation */
  96        spinlock_t      lock;   /* spinlock for fine-grained semtimedop */
  97        struct list_head pending_alter; /* pending single-sop operations */
  98                                        /* that alter the semaphore */
  99        struct list_head pending_const; /* pending single-sop operations */
 100                                        /* that do not alter the semaphore*/
 101        time_t  sem_otime;      /* candidate for sem_otime */
 102} ____cacheline_aligned_in_smp;
 103
 104/* One queue for each sleeping process in the system. */
 105struct sem_queue {
 106        struct list_head        list;    /* queue of pending operations */
 107        struct task_struct      *sleeper; /* this process */
 108        struct sem_undo         *undo;   /* undo structure */
 109        int                     pid;     /* process id of requesting process */
 110        int                     status;  /* completion status of operation */
 111        struct sembuf           *sops;   /* array of pending operations */
 112        struct sembuf           *blocking; /* the operation that blocked */
 113        int                     nsops;   /* number of operations */
 114        int                     alter;   /* does *sops alter the array? */
 115};
 116
 117/* Each task has a list of undo requests. They are executed automatically
 118 * when the process exits.
 119 */
 120struct sem_undo {
 121        struct list_head        list_proc;      /* per-process list: *
 122                                                 * all undos from one process
 123                                                 * rcu protected */
 124        struct rcu_head         rcu;            /* rcu struct for sem_undo */
 125        struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
 126        struct list_head        list_id;        /* per semaphore array list:
 127                                                 * all undos for one array */
 128        int                     semid;          /* semaphore set identifier */
 129        short                   *semadj;        /* array of adjustments */
 130                                                /* one per semaphore */
 131};
 132
 133/* sem_undo_list controls shared access to the list of sem_undo structures
 134 * that may be shared among all a CLONE_SYSVSEM task group.
 135 */
 136struct sem_undo_list {
 137        atomic_t                refcnt;
 138        spinlock_t              lock;
 139        struct list_head        list_proc;
 140};
 141
 142
 143#define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
 144
 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
 146
 147static int newary(struct ipc_namespace *, struct ipc_params *);
 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 149#ifdef CONFIG_PROC_FS
 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 151#endif
 152
 153#define SEMMSL_FAST     256 /* 512 bytes on stack */
 154#define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
 155
 156/*
 157 * Locking:
 158 *      sem_undo.id_next,
 159 *      sem_array.complex_count,
 160 *      sem_array.pending{_alter,_cont},
 161 *      sem_array.sem_undo: global sem_lock() for read/write
 162 *      sem_undo.proc_next: only "current" is allowed to read/write that field.
 163 *
 164 *      sem_array.sem_base[i].pending_{const,alter}:
 165 *              global or semaphore sem_lock() for read/write
 166 */
 167
 168#define sc_semmsl       sem_ctls[0]
 169#define sc_semmns       sem_ctls[1]
 170#define sc_semopm       sem_ctls[2]
 171#define sc_semmni       sem_ctls[3]
 172
 173void sem_init_ns(struct ipc_namespace *ns)
 174{
 175        ns->sc_semmsl = SEMMSL;
 176        ns->sc_semmns = SEMMNS;
 177        ns->sc_semopm = SEMOPM;
 178        ns->sc_semmni = SEMMNI;
 179        ns->used_sems = 0;
 180        ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 181}
 182
 183#ifdef CONFIG_IPC_NS
 184void sem_exit_ns(struct ipc_namespace *ns)
 185{
 186        free_ipcs(ns, &sem_ids(ns), freeary);
 187        idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 188}
 189#endif
 190
 191void __init sem_init(void)
 192{
 193        sem_init_ns(&init_ipc_ns);
 194        ipc_init_proc_interface("sysvipc/sem",
 195                                "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 196                                IPC_SEM_IDS, sysvipc_sem_proc_show);
 197}
 198
 199/**
 200 * unmerge_queues - unmerge queues, if possible.
 201 * @sma: semaphore array
 202 *
 203 * The function unmerges the wait queues if complex_count is 0.
 204 * It must be called prior to dropping the global semaphore array lock.
 205 */
 206static void unmerge_queues(struct sem_array *sma)
 207{
 208        struct sem_queue *q, *tq;
 209
 210        /* complex operations still around? */
 211        if (sma->complex_count)
 212                return;
 213        /*
 214         * We will switch back to simple mode.
 215         * Move all pending operation back into the per-semaphore
 216         * queues.
 217         */
 218        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 219                struct sem *curr;
 220                curr = &sma->sem_base[q->sops[0].sem_num];
 221
 222                list_add_tail(&q->list, &curr->pending_alter);
 223        }
 224        INIT_LIST_HEAD(&sma->pending_alter);
 225}
 226
 227/**
 228 * merge_queues - merge single semop queues into global queue
 229 * @sma: semaphore array
 230 *
 231 * This function merges all per-semaphore queues into the global queue.
 232 * It is necessary to achieve FIFO ordering for the pending single-sop
 233 * operations when a multi-semop operation must sleep.
 234 * Only the alter operations must be moved, the const operations can stay.
 235 */
 236static void merge_queues(struct sem_array *sma)
 237{
 238        int i;
 239        for (i = 0; i < sma->sem_nsems; i++) {
 240                struct sem *sem = sma->sem_base + i;
 241
 242                list_splice_init(&sem->pending_alter, &sma->pending_alter);
 243        }
 244}
 245
 246static void sem_rcu_free(struct rcu_head *head)
 247{
 248        struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
 249        struct sem_array *sma = ipc_rcu_to_struct(p);
 250
 251        security_sem_free(sma);
 252        ipc_rcu_free(head);
 253}
 254
 255/*
 256 * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they
 257 * are only control barriers.
 258 * The code must pair with spin_unlock(&sem->lock) or
 259 * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient.
 260 *
 261 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
 262 */
 263#define ipc_smp_acquire__after_spin_is_unlocked()       smp_rmb()
 264
 265/*
 266 * Wait until all currently ongoing simple ops have completed.
 267 * Caller must own sem_perm.lock.
 268 * New simple ops cannot start, because simple ops first check
 269 * that sem_perm.lock is free.
 270 * that a) sem_perm.lock is free and b) complex_count is 0.
 271 */
 272static void sem_wait_array(struct sem_array *sma)
 273{
 274        int i;
 275        struct sem *sem;
 276
 277        if (sma->complex_count)  {
 278                /* The thread that increased sma->complex_count waited on
 279                 * all sem->lock locks. Thus we don't need to wait again.
 280                 */
 281                return;
 282        }
 283
 284        for (i = 0; i < sma->sem_nsems; i++) {
 285                sem = sma->sem_base + i;
 286                spin_unlock_wait(&sem->lock);
 287        }
 288        ipc_smp_acquire__after_spin_is_unlocked();
 289}
 290
 291/*
 292 * If the request contains only one semaphore operation, and there are
 293 * no complex transactions pending, lock only the semaphore involved.
 294 * Otherwise, lock the entire semaphore array, since we either have
 295 * multiple semaphores in our own semops, or we need to look at
 296 * semaphores from other pending complex operations.
 297 */
 298static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 299                              int nsops)
 300{
 301        struct sem *sem;
 302
 303        if (nsops != 1) {
 304                /* Complex operation - acquire a full lock */
 305                ipc_lock_object(&sma->sem_perm);
 306
 307                /* And wait until all simple ops that are processed
 308                 * right now have dropped their locks.
 309                 */
 310                sem_wait_array(sma);
 311                return -1;
 312        }
 313
 314        /*
 315         * Only one semaphore affected - try to optimize locking.
 316         * The rules are:
 317         * - optimized locking is possible if no complex operation
 318         *   is either enqueued or processed right now.
 319         * - The test for enqueued complex ops is simple:
 320         *      sma->complex_count != 0
 321         * - Testing for complex ops that are processed right now is
 322         *   a bit more difficult. Complex ops acquire the full lock
 323         *   and first wait that the running simple ops have completed.
 324         *   (see above)
 325         *   Thus: If we own a simple lock and the global lock is free
 326         *      and complex_count is now 0, then it will stay 0 and
 327         *      thus just locking sem->lock is sufficient.
 328         */
 329        sem = sma->sem_base + sops->sem_num;
 330
 331        if (sma->complex_count == 0) {
 332                /*
 333                 * It appears that no complex operation is around.
 334                 * Acquire the per-semaphore lock.
 335                 */
 336                spin_lock(&sem->lock);
 337
 338                /* Then check that the global lock is free */
 339                if (!spin_is_locked(&sma->sem_perm.lock)) {
 340                        /*
 341                         * We need a memory barrier with acquire semantics,
 342                         * otherwise we can race with another thread that does:
 343                         *      complex_count++;
 344                         *      spin_unlock(sem_perm.lock);
 345                         */
 346                        ipc_smp_acquire__after_spin_is_unlocked();
 347
 348                        /*
 349                         * Now repeat the test of complex_count:
 350                         * It can't change anymore until we drop sem->lock.
 351                         * Thus: if is now 0, then it will stay 0.
 352                         */
 353                        if (sma->complex_count == 0) {
 354                                /* fast path successful! */
 355                                return sops->sem_num;
 356                        }
 357                }
 358                spin_unlock(&sem->lock);
 359        }
 360
 361        /* slow path: acquire the full lock */
 362        ipc_lock_object(&sma->sem_perm);
 363
 364        if (sma->complex_count == 0) {
 365                /* False alarm:
 366                 * There is no complex operation, thus we can switch
 367                 * back to the fast path.
 368                 */
 369                spin_lock(&sem->lock);
 370                ipc_unlock_object(&sma->sem_perm);
 371                return sops->sem_num;
 372        } else {
 373                /* Not a false alarm, thus complete the sequence for a
 374                 * full lock.
 375                 */
 376                sem_wait_array(sma);
 377                return -1;
 378        }
 379}
 380
 381static inline void sem_unlock(struct sem_array *sma, int locknum)
 382{
 383        if (locknum == -1) {
 384                unmerge_queues(sma);
 385                ipc_unlock_object(&sma->sem_perm);
 386        } else {
 387                struct sem *sem = sma->sem_base + locknum;
 388                spin_unlock(&sem->lock);
 389        }
 390}
 391
 392/*
 393 * sem_lock_(check_) routines are called in the paths where the rwsem
 394 * is not held.
 395 *
 396 * The caller holds the RCU read lock.
 397 */
 398static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
 399                        int id, struct sembuf *sops, int nsops, int *locknum)
 400{
 401        struct kern_ipc_perm *ipcp;
 402        struct sem_array *sma;
 403
 404        ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 405        if (IS_ERR(ipcp))
 406                return ERR_CAST(ipcp);
 407
 408        sma = container_of(ipcp, struct sem_array, sem_perm);
 409        *locknum = sem_lock(sma, sops, nsops);
 410
 411        /* ipc_rmid() may have already freed the ID while sem_lock
 412         * was spinning: verify that the structure is still valid
 413         */
 414        if (ipc_valid_object(ipcp))
 415                return container_of(ipcp, struct sem_array, sem_perm);
 416
 417        sem_unlock(sma, *locknum);
 418        return ERR_PTR(-EINVAL);
 419}
 420
 421static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 422{
 423        struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 424
 425        if (IS_ERR(ipcp))
 426                return ERR_CAST(ipcp);
 427
 428        return container_of(ipcp, struct sem_array, sem_perm);
 429}
 430
 431static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 432                                                        int id)
 433{
 434        struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 435
 436        if (IS_ERR(ipcp))
 437                return ERR_CAST(ipcp);
 438
 439        return container_of(ipcp, struct sem_array, sem_perm);
 440}
 441
 442static inline void sem_lock_and_putref(struct sem_array *sma)
 443{
 444        sem_lock(sma, NULL, -1);
 445        ipc_rcu_putref(sma, ipc_rcu_free);
 446}
 447
 448static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 449{
 450        ipc_rmid(&sem_ids(ns), &s->sem_perm);
 451}
 452
 453/*
 454 * Lockless wakeup algorithm:
 455 * Without the check/retry algorithm a lockless wakeup is possible:
 456 * - queue.status is initialized to -EINTR before blocking.
 457 * - wakeup is performed by
 458 *      * unlinking the queue entry from the pending list
 459 *      * setting queue.status to IN_WAKEUP
 460 *        This is the notification for the blocked thread that a
 461 *        result value is imminent.
 462 *      * call wake_up_process
 463 *      * set queue.status to the final value.
 464 * - the previously blocked thread checks queue.status:
 465 *      * if it's IN_WAKEUP, then it must wait until the value changes
 466 *      * if it's not -EINTR, then the operation was completed by
 467 *        update_queue. semtimedop can return queue.status without
 468 *        performing any operation on the sem array.
 469 *      * otherwise it must acquire the spinlock and check what's up.
 470 *
 471 * The two-stage algorithm is necessary to protect against the following
 472 * races:
 473 * - if queue.status is set after wake_up_process, then the woken up idle
 474 *   thread could race forward and try (and fail) to acquire sma->lock
 475 *   before update_queue had a chance to set queue.status
 476 * - if queue.status is written before wake_up_process and if the
 477 *   blocked process is woken up by a signal between writing
 478 *   queue.status and the wake_up_process, then the woken up
 479 *   process could return from semtimedop and die by calling
 480 *   sys_exit before wake_up_process is called. Then wake_up_process
 481 *   will oops, because the task structure is already invalid.
 482 *   (yes, this happened on s390 with sysv msg).
 483 *
 484 */
 485#define IN_WAKEUP       1
 486
 487/**
 488 * newary - Create a new semaphore set
 489 * @ns: namespace
 490 * @params: ptr to the structure that contains key, semflg and nsems
 491 *
 492 * Called with sem_ids.rwsem held (as a writer)
 493 */
 494static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 495{
 496        int id;
 497        int retval;
 498        struct sem_array *sma;
 499        int size;
 500        key_t key = params->key;
 501        int nsems = params->u.nsems;
 502        int semflg = params->flg;
 503        int i;
 504
 505        if (!nsems)
 506                return -EINVAL;
 507        if (ns->used_sems + nsems > ns->sc_semmns)
 508                return -ENOSPC;
 509
 510        size = sizeof(*sma) + nsems * sizeof(struct sem);
 511        sma = ipc_rcu_alloc(size);
 512        if (!sma)
 513                return -ENOMEM;
 514
 515        memset(sma, 0, size);
 516
 517        sma->sem_perm.mode = (semflg & S_IRWXUGO);
 518        sma->sem_perm.key = key;
 519
 520        sma->sem_perm.security = NULL;
 521        retval = security_sem_alloc(sma);
 522        if (retval) {
 523                ipc_rcu_putref(sma, ipc_rcu_free);
 524                return retval;
 525        }
 526
 527        sma->sem_base = (struct sem *) &sma[1];
 528
 529        for (i = 0; i < nsems; i++) {
 530                INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
 531                INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
 532                spin_lock_init(&sma->sem_base[i].lock);
 533        }
 534
 535        sma->complex_count = 0;
 536        INIT_LIST_HEAD(&sma->pending_alter);
 537        INIT_LIST_HEAD(&sma->pending_const);
 538        INIT_LIST_HEAD(&sma->list_id);
 539        sma->sem_nsems = nsems;
 540        sma->sem_ctime = get_seconds();
 541
 542        id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 543        if (id < 0) {
 544                ipc_rcu_putref(sma, sem_rcu_free);
 545                return id;
 546        }
 547        ns->used_sems += nsems;
 548
 549        sem_unlock(sma, -1);
 550        rcu_read_unlock();
 551
 552        return sma->sem_perm.id;
 553}
 554
 555
 556/*
 557 * Called with sem_ids.rwsem and ipcp locked.
 558 */
 559static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
 560{
 561        struct sem_array *sma;
 562
 563        sma = container_of(ipcp, struct sem_array, sem_perm);
 564        return security_sem_associate(sma, semflg);
 565}
 566
 567/*
 568 * Called with sem_ids.rwsem and ipcp locked.
 569 */
 570static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
 571                                struct ipc_params *params)
 572{
 573        struct sem_array *sma;
 574
 575        sma = container_of(ipcp, struct sem_array, sem_perm);
 576        if (params->u.nsems > sma->sem_nsems)
 577                return -EINVAL;
 578
 579        return 0;
 580}
 581
 582SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 583{
 584        struct ipc_namespace *ns;
 585        static const struct ipc_ops sem_ops = {
 586                .getnew = newary,
 587                .associate = sem_security,
 588                .more_checks = sem_more_checks,
 589        };
 590        struct ipc_params sem_params;
 591
 592        ns = current->nsproxy->ipc_ns;
 593
 594        if (nsems < 0 || nsems > ns->sc_semmsl)
 595                return -EINVAL;
 596
 597        sem_params.key = key;
 598        sem_params.flg = semflg;
 599        sem_params.u.nsems = nsems;
 600
 601        return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 602}
 603
 604/**
 605 * perform_atomic_semop - Perform (if possible) a semaphore operation
 606 * @sma: semaphore array
 607 * @q: struct sem_queue that describes the operation
 608 *
 609 * Returns 0 if the operation was possible.
 610 * Returns 1 if the operation is impossible, the caller must sleep.
 611 * Negative values are error codes.
 612 */
 613static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
 614{
 615        int result, sem_op, nsops, pid;
 616        struct sembuf *sop;
 617        struct sem *curr;
 618        struct sembuf *sops;
 619        struct sem_undo *un;
 620
 621        sops = q->sops;
 622        nsops = q->nsops;
 623        un = q->undo;
 624
 625        for (sop = sops; sop < sops + nsops; sop++) {
 626                curr = sma->sem_base + sop->sem_num;
 627                sem_op = sop->sem_op;
 628                result = curr->semval;
 629
 630                if (!sem_op && result)
 631                        goto would_block;
 632
 633                result += sem_op;
 634                if (result < 0)
 635                        goto would_block;
 636                if (result > SEMVMX)
 637                        goto out_of_range;
 638
 639                if (sop->sem_flg & SEM_UNDO) {
 640                        int undo = un->semadj[sop->sem_num] - sem_op;
 641                        /* Exceeding the undo range is an error. */
 642                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 643                                goto out_of_range;
 644                        un->semadj[sop->sem_num] = undo;
 645                }
 646
 647                curr->semval = result;
 648        }
 649
 650        sop--;
 651        pid = q->pid;
 652        while (sop >= sops) {
 653                sma->sem_base[sop->sem_num].sempid = pid;
 654                sop--;
 655        }
 656
 657        return 0;
 658
 659out_of_range:
 660        result = -ERANGE;
 661        goto undo;
 662
 663would_block:
 664        q->blocking = sop;
 665
 666        if (sop->sem_flg & IPC_NOWAIT)
 667                result = -EAGAIN;
 668        else
 669                result = 1;
 670
 671undo:
 672        sop--;
 673        while (sop >= sops) {
 674                sem_op = sop->sem_op;
 675                sma->sem_base[sop->sem_num].semval -= sem_op;
 676                if (sop->sem_flg & SEM_UNDO)
 677                        un->semadj[sop->sem_num] += sem_op;
 678                sop--;
 679        }
 680
 681        return result;
 682}
 683
 684/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
 685 * @q: queue entry that must be signaled
 686 * @error: Error value for the signal
 687 *
 688 * Prepare the wake-up of the queue entry q.
 689 */
 690static void wake_up_sem_queue_prepare(struct list_head *pt,
 691                                struct sem_queue *q, int error)
 692{
 693        if (list_empty(pt)) {
 694                /*
 695                 * Hold preempt off so that we don't get preempted and have the
 696                 * wakee busy-wait until we're scheduled back on.
 697                 */
 698                preempt_disable();
 699        }
 700        q->status = IN_WAKEUP;
 701        q->pid = error;
 702
 703        list_add_tail(&q->list, pt);
 704}
 705
 706/**
 707 * wake_up_sem_queue_do - do the actual wake-up
 708 * @pt: list of tasks to be woken up
 709 *
 710 * Do the actual wake-up.
 711 * The function is called without any locks held, thus the semaphore array
 712 * could be destroyed already and the tasks can disappear as soon as the
 713 * status is set to the actual return code.
 714 */
 715static void wake_up_sem_queue_do(struct list_head *pt)
 716{
 717        struct sem_queue *q, *t;
 718        int did_something;
 719
 720        did_something = !list_empty(pt);
 721        list_for_each_entry_safe(q, t, pt, list) {
 722                wake_up_process(q->sleeper);
 723                /* q can disappear immediately after writing q->status. */
 724                smp_wmb();
 725                q->status = q->pid;
 726        }
 727        if (did_something)
 728                preempt_enable();
 729}
 730
 731static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 732{
 733        list_del(&q->list);
 734        if (q->nsops > 1)
 735                sma->complex_count--;
 736}
 737
 738/** check_restart(sma, q)
 739 * @sma: semaphore array
 740 * @q: the operation that just completed
 741 *
 742 * update_queue is O(N^2) when it restarts scanning the whole queue of
 743 * waiting operations. Therefore this function checks if the restart is
 744 * really necessary. It is called after a previously waiting operation
 745 * modified the array.
 746 * Note that wait-for-zero operations are handled without restart.
 747 */
 748static int check_restart(struct sem_array *sma, struct sem_queue *q)
 749{
 750        /* pending complex alter operations are too difficult to analyse */
 751        if (!list_empty(&sma->pending_alter))
 752                return 1;
 753
 754        /* we were a sleeping complex operation. Too difficult */
 755        if (q->nsops > 1)
 756                return 1;
 757
 758        /* It is impossible that someone waits for the new value:
 759         * - complex operations always restart.
 760         * - wait-for-zero are handled seperately.
 761         * - q is a previously sleeping simple operation that
 762         *   altered the array. It must be a decrement, because
 763         *   simple increments never sleep.
 764         * - If there are older (higher priority) decrements
 765         *   in the queue, then they have observed the original
 766         *   semval value and couldn't proceed. The operation
 767         *   decremented to value - thus they won't proceed either.
 768         */
 769        return 0;
 770}
 771
 772/**
 773 * wake_const_ops - wake up non-alter tasks
 774 * @sma: semaphore array.
 775 * @semnum: semaphore that was modified.
 776 * @pt: list head for the tasks that must be woken up.
 777 *
 778 * wake_const_ops must be called after a semaphore in a semaphore array
 779 * was set to 0. If complex const operations are pending, wake_const_ops must
 780 * be called with semnum = -1, as well as with the number of each modified
 781 * semaphore.
 782 * The tasks that must be woken up are added to @pt. The return code
 783 * is stored in q->pid.
 784 * The function returns 1 if at least one operation was completed successfully.
 785 */
 786static int wake_const_ops(struct sem_array *sma, int semnum,
 787                                struct list_head *pt)
 788{
 789        struct sem_queue *q;
 790        struct list_head *walk;
 791        struct list_head *pending_list;
 792        int semop_completed = 0;
 793
 794        if (semnum == -1)
 795                pending_list = &sma->pending_const;
 796        else
 797                pending_list = &sma->sem_base[semnum].pending_const;
 798
 799        walk = pending_list->next;
 800        while (walk != pending_list) {
 801                int error;
 802
 803                q = container_of(walk, struct sem_queue, list);
 804                walk = walk->next;
 805
 806                error = perform_atomic_semop(sma, q);
 807
 808                if (error <= 0) {
 809                        /* operation completed, remove from queue & wakeup */
 810
 811                        unlink_queue(sma, q);
 812
 813                        wake_up_sem_queue_prepare(pt, q, error);
 814                        if (error == 0)
 815                                semop_completed = 1;
 816                }
 817        }
 818        return semop_completed;
 819}
 820
 821/**
 822 * do_smart_wakeup_zero - wakeup all wait for zero tasks
 823 * @sma: semaphore array
 824 * @sops: operations that were performed
 825 * @nsops: number of operations
 826 * @pt: list head of the tasks that must be woken up.
 827 *
 828 * Checks all required queue for wait-for-zero operations, based
 829 * on the actual changes that were performed on the semaphore array.
 830 * The function returns 1 if at least one operation was completed successfully.
 831 */
 832static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 833                                        int nsops, struct list_head *pt)
 834{
 835        int i;
 836        int semop_completed = 0;
 837        int got_zero = 0;
 838
 839        /* first: the per-semaphore queues, if known */
 840        if (sops) {
 841                for (i = 0; i < nsops; i++) {
 842                        int num = sops[i].sem_num;
 843
 844                        if (sma->sem_base[num].semval == 0) {
 845                                got_zero = 1;
 846                                semop_completed |= wake_const_ops(sma, num, pt);
 847                        }
 848                }
 849        } else {
 850                /*
 851                 * No sops means modified semaphores not known.
 852                 * Assume all were changed.
 853                 */
 854                for (i = 0; i < sma->sem_nsems; i++) {
 855                        if (sma->sem_base[i].semval == 0) {
 856                                got_zero = 1;
 857                                semop_completed |= wake_const_ops(sma, i, pt);
 858                        }
 859                }
 860        }
 861        /*
 862         * If one of the modified semaphores got 0,
 863         * then check the global queue, too.
 864         */
 865        if (got_zero)
 866                semop_completed |= wake_const_ops(sma, -1, pt);
 867
 868        return semop_completed;
 869}
 870
 871
 872/**
 873 * update_queue - look for tasks that can be completed.
 874 * @sma: semaphore array.
 875 * @semnum: semaphore that was modified.
 876 * @pt: list head for the tasks that must be woken up.
 877 *
 878 * update_queue must be called after a semaphore in a semaphore array
 879 * was modified. If multiple semaphores were modified, update_queue must
 880 * be called with semnum = -1, as well as with the number of each modified
 881 * semaphore.
 882 * The tasks that must be woken up are added to @pt. The return code
 883 * is stored in q->pid.
 884 * The function internally checks if const operations can now succeed.
 885 *
 886 * The function return 1 if at least one semop was completed successfully.
 887 */
 888static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
 889{
 890        struct sem_queue *q;
 891        struct list_head *walk;
 892        struct list_head *pending_list;
 893        int semop_completed = 0;
 894
 895        if (semnum == -1)
 896                pending_list = &sma->pending_alter;
 897        else
 898                pending_list = &sma->sem_base[semnum].pending_alter;
 899
 900again:
 901        walk = pending_list->next;
 902        while (walk != pending_list) {
 903                int error, restart;
 904
 905                q = container_of(walk, struct sem_queue, list);
 906                walk = walk->next;
 907
 908                /* If we are scanning the single sop, per-semaphore list of
 909                 * one semaphore and that semaphore is 0, then it is not
 910                 * necessary to scan further: simple increments
 911                 * that affect only one entry succeed immediately and cannot
 912                 * be in the  per semaphore pending queue, and decrements
 913                 * cannot be successful if the value is already 0.
 914                 */
 915                if (semnum != -1 && sma->sem_base[semnum].semval == 0)
 916                        break;
 917
 918                error = perform_atomic_semop(sma, q);
 919
 920                /* Does q->sleeper still need to sleep? */
 921                if (error > 0)
 922                        continue;
 923
 924                unlink_queue(sma, q);
 925
 926                if (error) {
 927                        restart = 0;
 928                } else {
 929                        semop_completed = 1;
 930                        do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
 931                        restart = check_restart(sma, q);
 932                }
 933
 934                wake_up_sem_queue_prepare(pt, q, error);
 935                if (restart)
 936                        goto again;
 937        }
 938        return semop_completed;
 939}
 940
 941/**
 942 * set_semotime - set sem_otime
 943 * @sma: semaphore array
 944 * @sops: operations that modified the array, may be NULL
 945 *
 946 * sem_otime is replicated to avoid cache line trashing.
 947 * This function sets one instance to the current time.
 948 */
 949static void set_semotime(struct sem_array *sma, struct sembuf *sops)
 950{
 951        if (sops == NULL) {
 952                sma->sem_base[0].sem_otime = get_seconds();
 953        } else {
 954                sma->sem_base[sops[0].sem_num].sem_otime =
 955                                                        get_seconds();
 956        }
 957}
 958
 959/**
 960 * do_smart_update - optimized update_queue
 961 * @sma: semaphore array
 962 * @sops: operations that were performed
 963 * @nsops: number of operations
 964 * @otime: force setting otime
 965 * @pt: list head of the tasks that must be woken up.
 966 *
 967 * do_smart_update() does the required calls to update_queue and wakeup_zero,
 968 * based on the actual changes that were performed on the semaphore array.
 969 * Note that the function does not do the actual wake-up: the caller is
 970 * responsible for calling wake_up_sem_queue_do(@pt).
 971 * It is safe to perform this call after dropping all locks.
 972 */
 973static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
 974                        int otime, struct list_head *pt)
 975{
 976        int i;
 977
 978        otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
 979
 980        if (!list_empty(&sma->pending_alter)) {
 981                /* semaphore array uses the global queue - just process it. */
 982                otime |= update_queue(sma, -1, pt);
 983        } else {
 984                if (!sops) {
 985                        /*
 986                         * No sops, thus the modified semaphores are not
 987                         * known. Check all.
 988                         */
 989                        for (i = 0; i < sma->sem_nsems; i++)
 990                                otime |= update_queue(sma, i, pt);
 991                } else {
 992                        /*
 993                         * Check the semaphores that were increased:
 994                         * - No complex ops, thus all sleeping ops are
 995                         *   decrease.
 996                         * - if we decreased the value, then any sleeping
 997                         *   semaphore ops wont be able to run: If the
 998                         *   previous value was too small, then the new
 999                         *   value will be too small, too.
1000                         */
1001                        for (i = 0; i < nsops; i++) {
1002                                if (sops[i].sem_op > 0) {
1003                                        otime |= update_queue(sma,
1004                                                        sops[i].sem_num, pt);
1005                                }
1006                        }
1007                }
1008        }
1009        if (otime)
1010                set_semotime(sma, sops);
1011}
1012
1013/*
1014 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1015 */
1016static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1017                        bool count_zero)
1018{
1019        struct sembuf *sop = q->blocking;
1020
1021        /*
1022         * Linux always (since 0.99.10) reported a task as sleeping on all
1023         * semaphores. This violates SUS, therefore it was changed to the
1024         * standard compliant behavior.
1025         * Give the administrators a chance to notice that an application
1026         * might misbehave because it relies on the Linux behavior.
1027         */
1028        pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1029                        "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1030                        current->comm, task_pid_nr(current));
1031
1032        if (sop->sem_num != semnum)
1033                return 0;
1034
1035        if (count_zero && sop->sem_op == 0)
1036                return 1;
1037        if (!count_zero && sop->sem_op < 0)
1038                return 1;
1039
1040        return 0;
1041}
1042
1043/* The following counts are associated to each semaphore:
1044 *   semncnt        number of tasks waiting on semval being nonzero
1045 *   semzcnt        number of tasks waiting on semval being zero
1046 *
1047 * Per definition, a task waits only on the semaphore of the first semop
1048 * that cannot proceed, even if additional operation would block, too.
1049 */
1050static int count_semcnt(struct sem_array *sma, ushort semnum,
1051                        bool count_zero)
1052{
1053        struct list_head *l;
1054        struct sem_queue *q;
1055        int semcnt;
1056
1057        semcnt = 0;
1058        /* First: check the simple operations. They are easy to evaluate */
1059        if (count_zero)
1060                l = &sma->sem_base[semnum].pending_const;
1061        else
1062                l = &sma->sem_base[semnum].pending_alter;
1063
1064        list_for_each_entry(q, l, list) {
1065                /* all task on a per-semaphore list sleep on exactly
1066                 * that semaphore
1067                 */
1068                semcnt++;
1069        }
1070
1071        /* Then: check the complex operations. */
1072        list_for_each_entry(q, &sma->pending_alter, list) {
1073                semcnt += check_qop(sma, semnum, q, count_zero);
1074        }
1075        if (count_zero) {
1076                list_for_each_entry(q, &sma->pending_const, list) {
1077                        semcnt += check_qop(sma, semnum, q, count_zero);
1078                }
1079        }
1080        return semcnt;
1081}
1082
1083/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1084 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1085 * remains locked on exit.
1086 */
1087static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1088{
1089        struct sem_undo *un, *tu;
1090        struct sem_queue *q, *tq;
1091        struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1092        struct list_head tasks;
1093        int i;
1094
1095        /* Free the existing undo structures for this semaphore set.  */
1096        ipc_assert_locked_object(&sma->sem_perm);
1097        list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1098                list_del(&un->list_id);
1099                spin_lock(&un->ulp->lock);
1100                un->semid = -1;
1101                list_del_rcu(&un->list_proc);
1102                spin_unlock(&un->ulp->lock);
1103                kfree_rcu(un, rcu);
1104        }
1105
1106        /* Wake up all pending processes and let them fail with EIDRM. */
1107        INIT_LIST_HEAD(&tasks);
1108        list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1109                unlink_queue(sma, q);
1110                wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1111        }
1112
1113        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1114                unlink_queue(sma, q);
1115                wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1116        }
1117        for (i = 0; i < sma->sem_nsems; i++) {
1118                struct sem *sem = sma->sem_base + i;
1119                list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1120                        unlink_queue(sma, q);
1121                        wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1122                }
1123                list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1124                        unlink_queue(sma, q);
1125                        wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1126                }
1127        }
1128
1129        /* Remove the semaphore set from the IDR */
1130        sem_rmid(ns, sma);
1131        sem_unlock(sma, -1);
1132        rcu_read_unlock();
1133
1134        wake_up_sem_queue_do(&tasks);
1135        ns->used_sems -= sma->sem_nsems;
1136        ipc_rcu_putref(sma, sem_rcu_free);
1137}
1138
1139static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1140{
1141        switch (version) {
1142        case IPC_64:
1143                return copy_to_user(buf, in, sizeof(*in));
1144        case IPC_OLD:
1145            {
1146                struct semid_ds out;
1147
1148                memset(&out, 0, sizeof(out));
1149
1150                ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1151
1152                out.sem_otime   = in->sem_otime;
1153                out.sem_ctime   = in->sem_ctime;
1154                out.sem_nsems   = in->sem_nsems;
1155
1156                return copy_to_user(buf, &out, sizeof(out));
1157            }
1158        default:
1159                return -EINVAL;
1160        }
1161}
1162
1163static time_t get_semotime(struct sem_array *sma)
1164{
1165        int i;
1166        time_t res;
1167
1168        res = sma->sem_base[0].sem_otime;
1169        for (i = 1; i < sma->sem_nsems; i++) {
1170                time_t to = sma->sem_base[i].sem_otime;
1171
1172                if (to > res)
1173                        res = to;
1174        }
1175        return res;
1176}
1177
1178static int semctl_nolock(struct ipc_namespace *ns, int semid,
1179                         int cmd, int version, void __user *p)
1180{
1181        int err;
1182        struct sem_array *sma;
1183
1184        switch (cmd) {
1185        case IPC_INFO:
1186        case SEM_INFO:
1187        {
1188                struct seminfo seminfo;
1189                int max_id;
1190
1191                err = security_sem_semctl(NULL, cmd);
1192                if (err)
1193                        return err;
1194
1195                memset(&seminfo, 0, sizeof(seminfo));
1196                seminfo.semmni = ns->sc_semmni;
1197                seminfo.semmns = ns->sc_semmns;
1198                seminfo.semmsl = ns->sc_semmsl;
1199                seminfo.semopm = ns->sc_semopm;
1200                seminfo.semvmx = SEMVMX;
1201                seminfo.semmnu = SEMMNU;
1202                seminfo.semmap = SEMMAP;
1203                seminfo.semume = SEMUME;
1204                down_read(&sem_ids(ns).rwsem);
1205                if (cmd == SEM_INFO) {
1206                        seminfo.semusz = sem_ids(ns).in_use;
1207                        seminfo.semaem = ns->used_sems;
1208                } else {
1209                        seminfo.semusz = SEMUSZ;
1210                        seminfo.semaem = SEMAEM;
1211                }
1212                max_id = ipc_get_maxid(&sem_ids(ns));
1213                up_read(&sem_ids(ns).rwsem);
1214                if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1215                        return -EFAULT;
1216                return (max_id < 0) ? 0 : max_id;
1217        }
1218        case IPC_STAT:
1219        case SEM_STAT:
1220        {
1221                struct semid64_ds tbuf;
1222                int id = 0;
1223
1224                memset(&tbuf, 0, sizeof(tbuf));
1225
1226                rcu_read_lock();
1227                if (cmd == SEM_STAT) {
1228                        sma = sem_obtain_object(ns, semid);
1229                        if (IS_ERR(sma)) {
1230                                err = PTR_ERR(sma);
1231                                goto out_unlock;
1232                        }
1233                        id = sma->sem_perm.id;
1234                } else {
1235                        sma = sem_obtain_object_check(ns, semid);
1236                        if (IS_ERR(sma)) {
1237                                err = PTR_ERR(sma);
1238                                goto out_unlock;
1239                        }
1240                }
1241
1242                err = -EACCES;
1243                if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244                        goto out_unlock;
1245
1246                err = security_sem_semctl(sma, cmd);
1247                if (err)
1248                        goto out_unlock;
1249
1250                kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1251                tbuf.sem_otime = get_semotime(sma);
1252                tbuf.sem_ctime = sma->sem_ctime;
1253                tbuf.sem_nsems = sma->sem_nsems;
1254                rcu_read_unlock();
1255                if (copy_semid_to_user(p, &tbuf, version))
1256                        return -EFAULT;
1257                return id;
1258        }
1259        default:
1260                return -EINVAL;
1261        }
1262out_unlock:
1263        rcu_read_unlock();
1264        return err;
1265}
1266
1267static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1268                unsigned long arg)
1269{
1270        struct sem_undo *un;
1271        struct sem_array *sma;
1272        struct sem *curr;
1273        int err;
1274        struct list_head tasks;
1275        int val;
1276#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1277        /* big-endian 64bit */
1278        val = arg >> 32;
1279#else
1280        /* 32bit or little-endian 64bit */
1281        val = arg;
1282#endif
1283
1284        if (val > SEMVMX || val < 0)
1285                return -ERANGE;
1286
1287        INIT_LIST_HEAD(&tasks);
1288
1289        rcu_read_lock();
1290        sma = sem_obtain_object_check(ns, semid);
1291        if (IS_ERR(sma)) {
1292                rcu_read_unlock();
1293                return PTR_ERR(sma);
1294        }
1295
1296        if (semnum < 0 || semnum >= sma->sem_nsems) {
1297                rcu_read_unlock();
1298                return -EINVAL;
1299        }
1300
1301
1302        if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1303                rcu_read_unlock();
1304                return -EACCES;
1305        }
1306
1307        err = security_sem_semctl(sma, SETVAL);
1308        if (err) {
1309                rcu_read_unlock();
1310                return -EACCES;
1311        }
1312
1313        sem_lock(sma, NULL, -1);
1314
1315        if (!ipc_valid_object(&sma->sem_perm)) {
1316                sem_unlock(sma, -1);
1317                rcu_read_unlock();
1318                return -EIDRM;
1319        }
1320
1321        curr = &sma->sem_base[semnum];
1322
1323        ipc_assert_locked_object(&sma->sem_perm);
1324        list_for_each_entry(un, &sma->list_id, list_id)
1325                un->semadj[semnum] = 0;
1326
1327        curr->semval = val;
1328        curr->sempid = task_tgid_vnr(current);
1329        sma->sem_ctime = get_seconds();
1330        /* maybe some queued-up processes were waiting for this */
1331        do_smart_update(sma, NULL, 0, 0, &tasks);
1332        sem_unlock(sma, -1);
1333        rcu_read_unlock();
1334        wake_up_sem_queue_do(&tasks);
1335        return 0;
1336}
1337
1338static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1339                int cmd, void __user *p)
1340{
1341        struct sem_array *sma;
1342        struct sem *curr;
1343        int err, nsems;
1344        ushort fast_sem_io[SEMMSL_FAST];
1345        ushort *sem_io = fast_sem_io;
1346        struct list_head tasks;
1347
1348        INIT_LIST_HEAD(&tasks);
1349
1350        rcu_read_lock();
1351        sma = sem_obtain_object_check(ns, semid);
1352        if (IS_ERR(sma)) {
1353                rcu_read_unlock();
1354                return PTR_ERR(sma);
1355        }
1356
1357        nsems = sma->sem_nsems;
1358
1359        err = -EACCES;
1360        if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1361                goto out_rcu_wakeup;
1362
1363        err = security_sem_semctl(sma, cmd);
1364        if (err)
1365                goto out_rcu_wakeup;
1366
1367        err = -EACCES;
1368        switch (cmd) {
1369        case GETALL:
1370        {
1371                ushort __user *array = p;
1372                int i;
1373
1374                sem_lock(sma, NULL, -1);
1375                if (!ipc_valid_object(&sma->sem_perm)) {
1376                        err = -EIDRM;
1377                        goto out_unlock;
1378                }
1379                if (nsems > SEMMSL_FAST) {
1380                        if (!ipc_rcu_getref(sma)) {
1381                                err = -EIDRM;
1382                                goto out_unlock;
1383                        }
1384                        sem_unlock(sma, -1);
1385                        rcu_read_unlock();
1386                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
1387                        if (sem_io == NULL) {
1388                                ipc_rcu_putref(sma, ipc_rcu_free);
1389                                return -ENOMEM;
1390                        }
1391
1392                        rcu_read_lock();
1393                        sem_lock_and_putref(sma);
1394                        if (!ipc_valid_object(&sma->sem_perm)) {
1395                                err = -EIDRM;
1396                                goto out_unlock;
1397                        }
1398                }
1399                for (i = 0; i < sma->sem_nsems; i++)
1400                        sem_io[i] = sma->sem_base[i].semval;
1401                sem_unlock(sma, -1);
1402                rcu_read_unlock();
1403                err = 0;
1404                if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1405                        err = -EFAULT;
1406                goto out_free;
1407        }
1408        case SETALL:
1409        {
1410                int i;
1411                struct sem_undo *un;
1412
1413                if (!ipc_rcu_getref(sma)) {
1414                        err = -EIDRM;
1415                        goto out_rcu_wakeup;
1416                }
1417                rcu_read_unlock();
1418
1419                if (nsems > SEMMSL_FAST) {
1420                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
1421                        if (sem_io == NULL) {
1422                                ipc_rcu_putref(sma, ipc_rcu_free);
1423                                return -ENOMEM;
1424                        }
1425                }
1426
1427                if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1428                        ipc_rcu_putref(sma, ipc_rcu_free);
1429                        err = -EFAULT;
1430                        goto out_free;
1431                }
1432
1433                for (i = 0; i < nsems; i++) {
1434                        if (sem_io[i] > SEMVMX) {
1435                                ipc_rcu_putref(sma, ipc_rcu_free);
1436                                err = -ERANGE;
1437                                goto out_free;
1438                        }
1439                }
1440                rcu_read_lock();
1441                sem_lock_and_putref(sma);
1442                if (!ipc_valid_object(&sma->sem_perm)) {
1443                        err = -EIDRM;
1444                        goto out_unlock;
1445                }
1446
1447                for (i = 0; i < nsems; i++)
1448                        sma->sem_base[i].semval = sem_io[i];
1449
1450                ipc_assert_locked_object(&sma->sem_perm);
1451                list_for_each_entry(un, &sma->list_id, list_id) {
1452                        for (i = 0; i < nsems; i++)
1453                                un->semadj[i] = 0;
1454                }
1455                sma->sem_ctime = get_seconds();
1456                /* maybe some queued-up processes were waiting for this */
1457                do_smart_update(sma, NULL, 0, 0, &tasks);
1458                err = 0;
1459                goto out_unlock;
1460        }
1461        /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1462        }
1463        err = -EINVAL;
1464        if (semnum < 0 || semnum >= nsems)
1465                goto out_rcu_wakeup;
1466
1467        sem_lock(sma, NULL, -1);
1468        if (!ipc_valid_object(&sma->sem_perm)) {
1469                err = -EIDRM;
1470                goto out_unlock;
1471        }
1472        curr = &sma->sem_base[semnum];
1473
1474        switch (cmd) {
1475        case GETVAL:
1476                err = curr->semval;
1477                goto out_unlock;
1478        case GETPID:
1479                err = curr->sempid;
1480                goto out_unlock;
1481        case GETNCNT:
1482                err = count_semcnt(sma, semnum, 0);
1483                goto out_unlock;
1484        case GETZCNT:
1485                err = count_semcnt(sma, semnum, 1);
1486                goto out_unlock;
1487        }
1488
1489out_unlock:
1490        sem_unlock(sma, -1);
1491out_rcu_wakeup:
1492        rcu_read_unlock();
1493        wake_up_sem_queue_do(&tasks);
1494out_free:
1495        if (sem_io != fast_sem_io)
1496                ipc_free(sem_io, sizeof(ushort)*nsems);
1497        return err;
1498}
1499
1500static inline unsigned long
1501copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1502{
1503        switch (version) {
1504        case IPC_64:
1505                if (copy_from_user(out, buf, sizeof(*out)))
1506                        return -EFAULT;
1507                return 0;
1508        case IPC_OLD:
1509            {
1510                struct semid_ds tbuf_old;
1511
1512                if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1513                        return -EFAULT;
1514
1515                out->sem_perm.uid       = tbuf_old.sem_perm.uid;
1516                out->sem_perm.gid       = tbuf_old.sem_perm.gid;
1517                out->sem_perm.mode      = tbuf_old.sem_perm.mode;
1518
1519                return 0;
1520            }
1521        default:
1522                return -EINVAL;
1523        }
1524}
1525
1526/*
1527 * This function handles some semctl commands which require the rwsem
1528 * to be held in write mode.
1529 * NOTE: no locks must be held, the rwsem is taken inside this function.
1530 */
1531static int semctl_down(struct ipc_namespace *ns, int semid,
1532                       int cmd, int version, void __user *p)
1533{
1534        struct sem_array *sma;
1535        int err;
1536        struct semid64_ds semid64;
1537        struct kern_ipc_perm *ipcp;
1538
1539        if (cmd == IPC_SET) {
1540                if (copy_semid_from_user(&semid64, p, version))
1541                        return -EFAULT;
1542        }
1543
1544        down_write(&sem_ids(ns).rwsem);
1545        rcu_read_lock();
1546
1547        ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1548                                      &semid64.sem_perm, 0);
1549        if (IS_ERR(ipcp)) {
1550                err = PTR_ERR(ipcp);
1551                goto out_unlock1;
1552        }
1553
1554        sma = container_of(ipcp, struct sem_array, sem_perm);
1555
1556        err = security_sem_semctl(sma, cmd);
1557        if (err)
1558                goto out_unlock1;
1559
1560        switch (cmd) {
1561        case IPC_RMID:
1562                sem_lock(sma, NULL, -1);
1563                /* freeary unlocks the ipc object and rcu */
1564                freeary(ns, ipcp);
1565                goto out_up;
1566        case IPC_SET:
1567                sem_lock(sma, NULL, -1);
1568                err = ipc_update_perm(&semid64.sem_perm, ipcp);
1569                if (err)
1570                        goto out_unlock0;
1571                sma->sem_ctime = get_seconds();
1572                break;
1573        default:
1574                err = -EINVAL;
1575                goto out_unlock1;
1576        }
1577
1578out_unlock0:
1579        sem_unlock(sma, -1);
1580out_unlock1:
1581        rcu_read_unlock();
1582out_up:
1583        up_write(&sem_ids(ns).rwsem);
1584        return err;
1585}
1586
1587SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1588{
1589        int version;
1590        struct ipc_namespace *ns;
1591        void __user *p = (void __user *)arg;
1592
1593        if (semid < 0)
1594                return -EINVAL;
1595
1596        version = ipc_parse_version(&cmd);
1597        ns = current->nsproxy->ipc_ns;
1598
1599        switch (cmd) {
1600        case IPC_INFO:
1601        case SEM_INFO:
1602        case IPC_STAT:
1603        case SEM_STAT:
1604                return semctl_nolock(ns, semid, cmd, version, p);
1605        case GETALL:
1606        case GETVAL:
1607        case GETPID:
1608        case GETNCNT:
1609        case GETZCNT:
1610        case SETALL:
1611                return semctl_main(ns, semid, semnum, cmd, p);
1612        case SETVAL:
1613                return semctl_setval(ns, semid, semnum, arg);
1614        case IPC_RMID:
1615        case IPC_SET:
1616                return semctl_down(ns, semid, cmd, version, p);
1617        default:
1618                return -EINVAL;
1619        }
1620}
1621
1622/* If the task doesn't already have a undo_list, then allocate one
1623 * here.  We guarantee there is only one thread using this undo list,
1624 * and current is THE ONE
1625 *
1626 * If this allocation and assignment succeeds, but later
1627 * portions of this code fail, there is no need to free the sem_undo_list.
1628 * Just let it stay associated with the task, and it'll be freed later
1629 * at exit time.
1630 *
1631 * This can block, so callers must hold no locks.
1632 */
1633static inline int get_undo_list(struct sem_undo_list **undo_listp)
1634{
1635        struct sem_undo_list *undo_list;
1636
1637        undo_list = current->sysvsem.undo_list;
1638        if (!undo_list) {
1639                undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1640                if (undo_list == NULL)
1641                        return -ENOMEM;
1642                spin_lock_init(&undo_list->lock);
1643                atomic_set(&undo_list->refcnt, 1);
1644                INIT_LIST_HEAD(&undo_list->list_proc);
1645
1646                current->sysvsem.undo_list = undo_list;
1647        }
1648        *undo_listp = undo_list;
1649        return 0;
1650}
1651
1652static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1653{
1654        struct sem_undo *un;
1655
1656        list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1657                if (un->semid == semid)
1658                        return un;
1659        }
1660        return NULL;
1661}
1662
1663static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1664{
1665        struct sem_undo *un;
1666
1667        assert_spin_locked(&ulp->lock);
1668
1669        un = __lookup_undo(ulp, semid);
1670        if (un) {
1671                list_del_rcu(&un->list_proc);
1672                list_add_rcu(&un->list_proc, &ulp->list_proc);
1673        }
1674        return un;
1675}
1676
1677/**
1678 * find_alloc_undo - lookup (and if not present create) undo array
1679 * @ns: namespace
1680 * @semid: semaphore array id
1681 *
1682 * The function looks up (and if not present creates) the undo structure.
1683 * The size of the undo structure depends on the size of the semaphore
1684 * array, thus the alloc path is not that straightforward.
1685 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1686 * performs a rcu_read_lock().
1687 */
1688static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1689{
1690        struct sem_array *sma;
1691        struct sem_undo_list *ulp;
1692        struct sem_undo *un, *new;
1693        int nsems, error;
1694
1695        error = get_undo_list(&ulp);
1696        if (error)
1697                return ERR_PTR(error);
1698
1699        rcu_read_lock();
1700        spin_lock(&ulp->lock);
1701        un = lookup_undo(ulp, semid);
1702        spin_unlock(&ulp->lock);
1703        if (likely(un != NULL))
1704                goto out;
1705
1706        /* no undo structure around - allocate one. */
1707        /* step 1: figure out the size of the semaphore array */
1708        sma = sem_obtain_object_check(ns, semid);
1709        if (IS_ERR(sma)) {
1710                rcu_read_unlock();
1711                return ERR_CAST(sma);
1712        }
1713
1714        nsems = sma->sem_nsems;
1715        if (!ipc_rcu_getref(sma)) {
1716                rcu_read_unlock();
1717                un = ERR_PTR(-EIDRM);
1718                goto out;
1719        }
1720        rcu_read_unlock();
1721
1722        /* step 2: allocate new undo structure */
1723        new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1724        if (!new) {
1725                ipc_rcu_putref(sma, ipc_rcu_free);
1726                return ERR_PTR(-ENOMEM);
1727        }
1728
1729        /* step 3: Acquire the lock on semaphore array */
1730        rcu_read_lock();
1731        sem_lock_and_putref(sma);
1732        if (!ipc_valid_object(&sma->sem_perm)) {
1733                sem_unlock(sma, -1);
1734                rcu_read_unlock();
1735                kfree(new);
1736                un = ERR_PTR(-EIDRM);
1737                goto out;
1738        }
1739        spin_lock(&ulp->lock);
1740
1741        /*
1742         * step 4: check for races: did someone else allocate the undo struct?
1743         */
1744        un = lookup_undo(ulp, semid);
1745        if (un) {
1746                kfree(new);
1747                goto success;
1748        }
1749        /* step 5: initialize & link new undo structure */
1750        new->semadj = (short *) &new[1];
1751        new->ulp = ulp;
1752        new->semid = semid;
1753        assert_spin_locked(&ulp->lock);
1754        list_add_rcu(&new->list_proc, &ulp->list_proc);
1755        ipc_assert_locked_object(&sma->sem_perm);
1756        list_add(&new->list_id, &sma->list_id);
1757        un = new;
1758
1759success:
1760        spin_unlock(&ulp->lock);
1761        sem_unlock(sma, -1);
1762out:
1763        return un;
1764}
1765
1766
1767/**
1768 * get_queue_result - retrieve the result code from sem_queue
1769 * @q: Pointer to queue structure
1770 *
1771 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1772 * q->status, then we must loop until the value is replaced with the final
1773 * value: This may happen if a task is woken up by an unrelated event (e.g.
1774 * signal) and in parallel the task is woken up by another task because it got
1775 * the requested semaphores.
1776 *
1777 * The function can be called with or without holding the semaphore spinlock.
1778 */
1779static int get_queue_result(struct sem_queue *q)
1780{
1781        int error;
1782
1783        error = q->status;
1784        while (unlikely(error == IN_WAKEUP)) {
1785                cpu_relax();
1786                error = q->status;
1787        }
1788
1789        return error;
1790}
1791
1792SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1793                unsigned, nsops, const struct timespec __user *, timeout)
1794{
1795        int error = -EINVAL;
1796        struct sem_array *sma;
1797        struct sembuf fast_sops[SEMOPM_FAST];
1798        struct sembuf *sops = fast_sops, *sop;
1799        struct sem_undo *un;
1800        int undos = 0, alter = 0, max, locknum;
1801        struct sem_queue queue;
1802        unsigned long jiffies_left = 0;
1803        struct ipc_namespace *ns;
1804        struct list_head tasks;
1805
1806        ns = current->nsproxy->ipc_ns;
1807
1808        if (nsops < 1 || semid < 0)
1809                return -EINVAL;
1810        if (nsops > ns->sc_semopm)
1811                return -E2BIG;
1812        if (nsops > SEMOPM_FAST) {
1813                sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1814                if (sops == NULL)
1815                        return -ENOMEM;
1816        }
1817        if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1818                error =  -EFAULT;
1819                goto out_free;
1820        }
1821        if (timeout) {
1822                struct timespec _timeout;
1823                if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1824                        error = -EFAULT;
1825                        goto out_free;
1826                }
1827                if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1828                        _timeout.tv_nsec >= 1000000000L) {
1829                        error = -EINVAL;
1830                        goto out_free;
1831                }
1832                jiffies_left = timespec_to_jiffies(&_timeout);
1833        }
1834        max = 0;
1835        for (sop = sops; sop < sops + nsops; sop++) {
1836                if (sop->sem_num >= max)
1837                        max = sop->sem_num;
1838                if (sop->sem_flg & SEM_UNDO)
1839                        undos = 1;
1840                if (sop->sem_op != 0)
1841                        alter = 1;
1842        }
1843
1844        INIT_LIST_HEAD(&tasks);
1845
1846        if (undos) {
1847                /* On success, find_alloc_undo takes the rcu_read_lock */
1848                un = find_alloc_undo(ns, semid);
1849                if (IS_ERR(un)) {
1850                        error = PTR_ERR(un);
1851                        goto out_free;
1852                }
1853        } else {
1854                un = NULL;
1855                rcu_read_lock();
1856        }
1857
1858        sma = sem_obtain_object_check(ns, semid);
1859        if (IS_ERR(sma)) {
1860                rcu_read_unlock();
1861                error = PTR_ERR(sma);
1862                goto out_free;
1863        }
1864
1865        error = -EFBIG;
1866        if (max >= sma->sem_nsems)
1867                goto out_rcu_wakeup;
1868
1869        error = -EACCES;
1870        if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1871                goto out_rcu_wakeup;
1872
1873        error = security_sem_semop(sma, sops, nsops, alter);
1874        if (error)
1875                goto out_rcu_wakeup;
1876
1877        error = -EIDRM;
1878        locknum = sem_lock(sma, sops, nsops);
1879        /*
1880         * We eventually might perform the following check in a lockless
1881         * fashion, considering ipc_valid_object() locking constraints.
1882         * If nsops == 1 and there is no contention for sem_perm.lock, then
1883         * only a per-semaphore lock is held and it's OK to proceed with the
1884         * check below. More details on the fine grained locking scheme
1885         * entangled here and why it's RMID race safe on comments at sem_lock()
1886         */
1887        if (!ipc_valid_object(&sma->sem_perm))
1888                goto out_unlock_free;
1889        /*
1890         * semid identifiers are not unique - find_alloc_undo may have
1891         * allocated an undo structure, it was invalidated by an RMID
1892         * and now a new array with received the same id. Check and fail.
1893         * This case can be detected checking un->semid. The existence of
1894         * "un" itself is guaranteed by rcu.
1895         */
1896        if (un && un->semid == -1)
1897                goto out_unlock_free;
1898
1899        queue.sops = sops;
1900        queue.nsops = nsops;
1901        queue.undo = un;
1902        queue.pid = task_tgid_vnr(current);
1903        queue.alter = alter;
1904
1905        error = perform_atomic_semop(sma, &queue);
1906        if (error == 0) {
1907                /* If the operation was successful, then do
1908                 * the required updates.
1909                 */
1910                if (alter)
1911                        do_smart_update(sma, sops, nsops, 1, &tasks);
1912                else
1913                        set_semotime(sma, sops);
1914        }
1915        if (error <= 0)
1916                goto out_unlock_free;
1917
1918        /* We need to sleep on this operation, so we put the current
1919         * task into the pending queue and go to sleep.
1920         */
1921
1922        if (nsops == 1) {
1923                struct sem *curr;
1924                curr = &sma->sem_base[sops->sem_num];
1925
1926                if (alter) {
1927                        if (sma->complex_count) {
1928                                list_add_tail(&queue.list,
1929                                                &sma->pending_alter);
1930                        } else {
1931
1932                                list_add_tail(&queue.list,
1933                                                &curr->pending_alter);
1934                        }
1935                } else {
1936                        list_add_tail(&queue.list, &curr->pending_const);
1937                }
1938        } else {
1939                if (!sma->complex_count)
1940                        merge_queues(sma);
1941
1942                if (alter)
1943                        list_add_tail(&queue.list, &sma->pending_alter);
1944                else
1945                        list_add_tail(&queue.list, &sma->pending_const);
1946
1947                sma->complex_count++;
1948        }
1949
1950        queue.status = -EINTR;
1951        queue.sleeper = current;
1952
1953sleep_again:
1954        __set_current_state(TASK_INTERRUPTIBLE);
1955        sem_unlock(sma, locknum);
1956        rcu_read_unlock();
1957
1958        if (timeout)
1959                jiffies_left = schedule_timeout(jiffies_left);
1960        else
1961                schedule();
1962
1963        error = get_queue_result(&queue);
1964
1965        if (error != -EINTR) {
1966                /* fast path: update_queue already obtained all requested
1967                 * resources.
1968                 * Perform a smp_mb(): User space could assume that semop()
1969                 * is a memory barrier: Without the mb(), the cpu could
1970                 * speculatively read in user space stale data that was
1971                 * overwritten by the previous owner of the semaphore.
1972                 */
1973                smp_mb();
1974
1975                goto out_free;
1976        }
1977
1978        rcu_read_lock();
1979        sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1980
1981        /*
1982         * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1983         */
1984        error = get_queue_result(&queue);
1985
1986        /*
1987         * Array removed? If yes, leave without sem_unlock().
1988         */
1989        if (IS_ERR(sma)) {
1990                rcu_read_unlock();
1991                goto out_free;
1992        }
1993
1994
1995        /*
1996         * If queue.status != -EINTR we are woken up by another process.
1997         * Leave without unlink_queue(), but with sem_unlock().
1998         */
1999        if (error != -EINTR)
2000                goto out_unlock_free;
2001
2002        /*
2003         * If an interrupt occurred we have to clean up the queue
2004         */
2005        if (timeout && jiffies_left == 0)
2006                error = -EAGAIN;
2007
2008        /*
2009         * If the wakeup was spurious, just retry
2010         */
2011        if (error == -EINTR && !signal_pending(current))
2012                goto sleep_again;
2013
2014        unlink_queue(sma, &queue);
2015
2016out_unlock_free:
2017        sem_unlock(sma, locknum);
2018out_rcu_wakeup:
2019        rcu_read_unlock();
2020        wake_up_sem_queue_do(&tasks);
2021out_free:
2022        if (sops != fast_sops)
2023                kfree(sops);
2024        return error;
2025}
2026
2027SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2028                unsigned, nsops)
2029{
2030        return sys_semtimedop(semid, tsops, nsops, NULL);
2031}
2032
2033/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2034 * parent and child tasks.
2035 */
2036
2037int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2038{
2039        struct sem_undo_list *undo_list;
2040        int error;
2041
2042        if (clone_flags & CLONE_SYSVSEM) {
2043                error = get_undo_list(&undo_list);
2044                if (error)
2045                        return error;
2046                atomic_inc(&undo_list->refcnt);
2047                tsk->sysvsem.undo_list = undo_list;
2048        } else
2049                tsk->sysvsem.undo_list = NULL;
2050
2051        return 0;
2052}
2053
2054/*
2055 * add semadj values to semaphores, free undo structures.
2056 * undo structures are not freed when semaphore arrays are destroyed
2057 * so some of them may be out of date.
2058 * IMPLEMENTATION NOTE: There is some confusion over whether the
2059 * set of adjustments that needs to be done should be done in an atomic
2060 * manner or not. That is, if we are attempting to decrement the semval
2061 * should we queue up and wait until we can do so legally?
2062 * The original implementation attempted to do this (queue and wait).
2063 * The current implementation does not do so. The POSIX standard
2064 * and SVID should be consulted to determine what behavior is mandated.
2065 */
2066void exit_sem(struct task_struct *tsk)
2067{
2068        struct sem_undo_list *ulp;
2069
2070        ulp = tsk->sysvsem.undo_list;
2071        if (!ulp)
2072                return;
2073        tsk->sysvsem.undo_list = NULL;
2074
2075        if (!atomic_dec_and_test(&ulp->refcnt))
2076                return;
2077
2078        for (;;) {
2079                struct sem_array *sma;
2080                struct sem_undo *un;
2081                struct list_head tasks;
2082                int semid, i;
2083
2084                rcu_read_lock();
2085                un = list_entry_rcu(ulp->list_proc.next,
2086                                    struct sem_undo, list_proc);
2087                if (&un->list_proc == &ulp->list_proc) {
2088                        /*
2089                         * We must wait for freeary() before freeing this ulp,
2090                         * in case we raced with last sem_undo. There is a small
2091                         * possibility where we exit while freeary() didn't
2092                         * finish unlocking sem_undo_list.
2093                         */
2094                        spin_unlock_wait(&ulp->lock);
2095                        rcu_read_unlock();
2096                        break;
2097                }
2098                spin_lock(&ulp->lock);
2099                semid = un->semid;
2100                spin_unlock(&ulp->lock);
2101
2102                /* exit_sem raced with IPC_RMID, nothing to do */
2103                if (semid == -1) {
2104                        rcu_read_unlock();
2105                        continue;
2106                }
2107
2108                sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2109                /* exit_sem raced with IPC_RMID, nothing to do */
2110                if (IS_ERR(sma)) {
2111                        rcu_read_unlock();
2112                        continue;
2113                }
2114
2115                sem_lock(sma, NULL, -1);
2116                /* exit_sem raced with IPC_RMID, nothing to do */
2117                if (!ipc_valid_object(&sma->sem_perm)) {
2118                        sem_unlock(sma, -1);
2119                        rcu_read_unlock();
2120                        continue;
2121                }
2122                un = __lookup_undo(ulp, semid);
2123                if (un == NULL) {
2124                        /* exit_sem raced with IPC_RMID+semget() that created
2125                         * exactly the same semid. Nothing to do.
2126                         */
2127                        sem_unlock(sma, -1);
2128                        rcu_read_unlock();
2129                        continue;
2130                }
2131
2132                /* remove un from the linked lists */
2133                ipc_assert_locked_object(&sma->sem_perm);
2134                list_del(&un->list_id);
2135
2136                /* we are the last process using this ulp, acquiring ulp->lock
2137                 * isn't required. Besides that, we are also protected against
2138                 * IPC_RMID as we hold sma->sem_perm lock now
2139                 */
2140                list_del_rcu(&un->list_proc);
2141
2142                /* perform adjustments registered in un */
2143                for (i = 0; i < sma->sem_nsems; i++) {
2144                        struct sem *semaphore = &sma->sem_base[i];
2145                        if (un->semadj[i]) {
2146                                semaphore->semval += un->semadj[i];
2147                                /*
2148                                 * Range checks of the new semaphore value,
2149                                 * not defined by sus:
2150                                 * - Some unices ignore the undo entirely
2151                                 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152                                 * - some cap the value (e.g. FreeBSD caps
2153                                 *   at 0, but doesn't enforce SEMVMX)
2154                                 *
2155                                 * Linux caps the semaphore value, both at 0
2156                                 * and at SEMVMX.
2157                                 *
2158                                 *      Manfred <manfred@colorfullife.com>
2159                                 */
2160                                if (semaphore->semval < 0)
2161                                        semaphore->semval = 0;
2162                                if (semaphore->semval > SEMVMX)
2163                                        semaphore->semval = SEMVMX;
2164                                semaphore->sempid = task_tgid_vnr(current);
2165                        }
2166                }
2167                /* maybe some queued-up processes were waiting for this */
2168                INIT_LIST_HEAD(&tasks);
2169                do_smart_update(sma, NULL, 0, 1, &tasks);
2170                sem_unlock(sma, -1);
2171                rcu_read_unlock();
2172                wake_up_sem_queue_do(&tasks);
2173
2174                kfree_rcu(un, rcu);
2175        }
2176        kfree(ulp);
2177}
2178
2179#ifdef CONFIG_PROC_FS
2180static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2181{
2182        struct user_namespace *user_ns = seq_user_ns(s);
2183        struct sem_array *sma = it;
2184        time_t sem_otime;
2185
2186        /*
2187         * The proc interface isn't aware of sem_lock(), it calls
2188         * ipc_lock_object() directly (in sysvipc_find_ipc).
2189         * In order to stay compatible with sem_lock(), we must wait until
2190         * all simple semop() calls have left their critical regions.
2191         */
2192        sem_wait_array(sma);
2193
2194        sem_otime = get_semotime(sma);
2195
2196        seq_printf(s,
2197                   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2198                   sma->sem_perm.key,
2199                   sma->sem_perm.id,
2200                   sma->sem_perm.mode,
2201                   sma->sem_nsems,
2202                   from_kuid_munged(user_ns, sma->sem_perm.uid),
2203                   from_kgid_munged(user_ns, sma->sem_perm.gid),
2204                   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2205                   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2206                   sem_otime,
2207                   sma->sem_ctime);
2208
2209        return 0;
2210}
2211#endif
2212