linux/kernel/exit.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/exit.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/mm.h>
   8#include <linux/slab.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/capability.h>
  12#include <linux/completion.h>
  13#include <linux/personality.h>
  14#include <linux/tty.h>
  15#include <linux/iocontext.h>
  16#include <linux/key.h>
  17#include <linux/security.h>
  18#include <linux/cpu.h>
  19#include <linux/acct.h>
  20#include <linux/tsacct_kern.h>
  21#include <linux/file.h>
  22#include <linux/fdtable.h>
  23#include <linux/freezer.h>
  24#include <linux/binfmts.h>
  25#include <linux/nsproxy.h>
  26#include <linux/pid_namespace.h>
  27#include <linux/ptrace.h>
  28#include <linux/profile.h>
  29#include <linux/mount.h>
  30#include <linux/proc_fs.h>
  31#include <linux/kthread.h>
  32#include <linux/mempolicy.h>
  33#include <linux/taskstats_kern.h>
  34#include <linux/delayacct.h>
  35#include <linux/cgroup.h>
  36#include <linux/syscalls.h>
  37#include <linux/signal.h>
  38#include <linux/posix-timers.h>
  39#include <linux/cn_proc.h>
  40#include <linux/mutex.h>
  41#include <linux/futex.h>
  42#include <linux/pipe_fs_i.h>
  43#include <linux/audit.h> /* for audit_free() */
  44#include <linux/resource.h>
  45#include <linux/blkdev.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/tracehook.h>
  48#include <linux/fs_struct.h>
  49#include <linux/init_task.h>
  50#include <linux/perf_event.h>
  51#include <trace/events/sched.h>
  52#include <linux/hw_breakpoint.h>
  53#include <linux/oom.h>
  54#include <linux/writeback.h>
  55#include <linux/shm.h>
  56
  57#include <asm/uaccess.h>
  58#include <asm/unistd.h>
  59#include <asm/pgtable.h>
  60#include <asm/mmu_context.h>
  61
  62static void exit_mm(struct task_struct *tsk);
  63
  64static void __unhash_process(struct task_struct *p, bool group_dead)
  65{
  66        nr_threads--;
  67        detach_pid(p, PIDTYPE_PID);
  68        if (group_dead) {
  69                detach_pid(p, PIDTYPE_PGID);
  70                detach_pid(p, PIDTYPE_SID);
  71
  72                list_del_rcu(&p->tasks);
  73                list_del_init(&p->sibling);
  74                __this_cpu_dec(process_counts);
  75        }
  76        list_del_rcu(&p->thread_group);
  77        list_del_rcu(&p->thread_node);
  78}
  79
  80/*
  81 * This function expects the tasklist_lock write-locked.
  82 */
  83static void __exit_signal(struct task_struct *tsk)
  84{
  85        struct signal_struct *sig = tsk->signal;
  86        bool group_dead = thread_group_leader(tsk);
  87        struct sighand_struct *sighand;
  88        struct tty_struct *uninitialized_var(tty);
  89        cputime_t utime, stime;
  90
  91        sighand = rcu_dereference_check(tsk->sighand,
  92                                        lockdep_tasklist_lock_is_held());
  93        spin_lock(&sighand->siglock);
  94
  95        posix_cpu_timers_exit(tsk);
  96        if (group_dead) {
  97                posix_cpu_timers_exit_group(tsk);
  98                tty = sig->tty;
  99                sig->tty = NULL;
 100        } else {
 101                /*
 102                 * This can only happen if the caller is de_thread().
 103                 * FIXME: this is the temporary hack, we should teach
 104                 * posix-cpu-timers to handle this case correctly.
 105                 */
 106                if (unlikely(has_group_leader_pid(tsk)))
 107                        posix_cpu_timers_exit_group(tsk);
 108
 109                /*
 110                 * If there is any task waiting for the group exit
 111                 * then notify it:
 112                 */
 113                if (sig->notify_count > 0 && !--sig->notify_count)
 114                        wake_up_process(sig->group_exit_task);
 115
 116                if (tsk == sig->curr_target)
 117                        sig->curr_target = next_thread(tsk);
 118        }
 119
 120        /*
 121         * Accumulate here the counters for all threads as they die. We could
 122         * skip the group leader because it is the last user of signal_struct,
 123         * but we want to avoid the race with thread_group_cputime() which can
 124         * see the empty ->thread_head list.
 125         */
 126        task_cputime(tsk, &utime, &stime);
 127        write_seqlock(&sig->stats_lock);
 128        sig->utime += utime;
 129        sig->stime += stime;
 130        sig->gtime += task_gtime(tsk);
 131        sig->min_flt += tsk->min_flt;
 132        sig->maj_flt += tsk->maj_flt;
 133        sig->nvcsw += tsk->nvcsw;
 134        sig->nivcsw += tsk->nivcsw;
 135        sig->inblock += task_io_get_inblock(tsk);
 136        sig->oublock += task_io_get_oublock(tsk);
 137        task_io_accounting_add(&sig->ioac, &tsk->ioac);
 138        sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
 139        sig->nr_threads--;
 140        __unhash_process(tsk, group_dead);
 141        write_sequnlock(&sig->stats_lock);
 142
 143        /*
 144         * Do this under ->siglock, we can race with another thread
 145         * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
 146         */
 147        flush_sigqueue(&tsk->pending);
 148        tsk->sighand = NULL;
 149        spin_unlock(&sighand->siglock);
 150
 151        __cleanup_sighand(sighand);
 152        clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
 153        if (group_dead) {
 154                flush_sigqueue(&sig->shared_pending);
 155                tty_kref_put(tty);
 156        }
 157}
 158
 159static void delayed_put_task_struct(struct rcu_head *rhp)
 160{
 161        struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
 162
 163        perf_event_delayed_put(tsk);
 164        trace_sched_process_free(tsk);
 165        put_task_struct(tsk);
 166}
 167
 168
 169void release_task(struct task_struct *p)
 170{
 171        struct task_struct *leader;
 172        int zap_leader;
 173repeat:
 174        /* don't need to get the RCU readlock here - the process is dead and
 175         * can't be modifying its own credentials. But shut RCU-lockdep up */
 176        rcu_read_lock();
 177        atomic_dec(&__task_cred(p)->user->processes);
 178        rcu_read_unlock();
 179
 180        proc_flush_task(p);
 181
 182        write_lock_irq(&tasklist_lock);
 183        ptrace_release_task(p);
 184        __exit_signal(p);
 185
 186        /*
 187         * If we are the last non-leader member of the thread
 188         * group, and the leader is zombie, then notify the
 189         * group leader's parent process. (if it wants notification.)
 190         */
 191        zap_leader = 0;
 192        leader = p->group_leader;
 193        if (leader != p && thread_group_empty(leader)
 194                        && leader->exit_state == EXIT_ZOMBIE) {
 195                /*
 196                 * If we were the last child thread and the leader has
 197                 * exited already, and the leader's parent ignores SIGCHLD,
 198                 * then we are the one who should release the leader.
 199                 */
 200                zap_leader = do_notify_parent(leader, leader->exit_signal);
 201                if (zap_leader)
 202                        leader->exit_state = EXIT_DEAD;
 203        }
 204
 205        write_unlock_irq(&tasklist_lock);
 206        release_thread(p);
 207        call_rcu(&p->rcu, delayed_put_task_struct);
 208
 209        p = leader;
 210        if (unlikely(zap_leader))
 211                goto repeat;
 212}
 213
 214/*
 215 * Determine if a process group is "orphaned", according to the POSIX
 216 * definition in 2.2.2.52.  Orphaned process groups are not to be affected
 217 * by terminal-generated stop signals.  Newly orphaned process groups are
 218 * to receive a SIGHUP and a SIGCONT.
 219 *
 220 * "I ask you, have you ever known what it is to be an orphan?"
 221 */
 222static int will_become_orphaned_pgrp(struct pid *pgrp,
 223                                        struct task_struct *ignored_task)
 224{
 225        struct task_struct *p;
 226
 227        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 228                if ((p == ignored_task) ||
 229                    (p->exit_state && thread_group_empty(p)) ||
 230                    is_global_init(p->real_parent))
 231                        continue;
 232
 233                if (task_pgrp(p->real_parent) != pgrp &&
 234                    task_session(p->real_parent) == task_session(p))
 235                        return 0;
 236        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 237
 238        return 1;
 239}
 240
 241int is_current_pgrp_orphaned(void)
 242{
 243        int retval;
 244
 245        read_lock(&tasklist_lock);
 246        retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
 247        read_unlock(&tasklist_lock);
 248
 249        return retval;
 250}
 251
 252static bool has_stopped_jobs(struct pid *pgrp)
 253{
 254        struct task_struct *p;
 255
 256        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
 257                if (p->signal->flags & SIGNAL_STOP_STOPPED)
 258                        return true;
 259        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
 260
 261        return false;
 262}
 263
 264/*
 265 * Check to see if any process groups have become orphaned as
 266 * a result of our exiting, and if they have any stopped jobs,
 267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
 268 */
 269static void
 270kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
 271{
 272        struct pid *pgrp = task_pgrp(tsk);
 273        struct task_struct *ignored_task = tsk;
 274
 275        if (!parent)
 276                /* exit: our father is in a different pgrp than
 277                 * we are and we were the only connection outside.
 278                 */
 279                parent = tsk->real_parent;
 280        else
 281                /* reparent: our child is in a different pgrp than
 282                 * we are, and it was the only connection outside.
 283                 */
 284                ignored_task = NULL;
 285
 286        if (task_pgrp(parent) != pgrp &&
 287            task_session(parent) == task_session(tsk) &&
 288            will_become_orphaned_pgrp(pgrp, ignored_task) &&
 289            has_stopped_jobs(pgrp)) {
 290                __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
 291                __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
 292        }
 293}
 294
 295#ifdef CONFIG_MEMCG
 296/*
 297 * A task is exiting.   If it owned this mm, find a new owner for the mm.
 298 */
 299void mm_update_next_owner(struct mm_struct *mm)
 300{
 301        struct task_struct *c, *g, *p = current;
 302
 303retry:
 304        /*
 305         * If the exiting or execing task is not the owner, it's
 306         * someone else's problem.
 307         */
 308        if (mm->owner != p)
 309                return;
 310        /*
 311         * The current owner is exiting/execing and there are no other
 312         * candidates.  Do not leave the mm pointing to a possibly
 313         * freed task structure.
 314         */
 315        if (atomic_read(&mm->mm_users) <= 1) {
 316                mm->owner = NULL;
 317                return;
 318        }
 319
 320        read_lock(&tasklist_lock);
 321        /*
 322         * Search in the children
 323         */
 324        list_for_each_entry(c, &p->children, sibling) {
 325                if (c->mm == mm)
 326                        goto assign_new_owner;
 327        }
 328
 329        /*
 330         * Search in the siblings
 331         */
 332        list_for_each_entry(c, &p->real_parent->children, sibling) {
 333                if (c->mm == mm)
 334                        goto assign_new_owner;
 335        }
 336
 337        /*
 338         * Search through everything else, we should not get here often.
 339         */
 340        for_each_process(g) {
 341                if (g->flags & PF_KTHREAD)
 342                        continue;
 343                for_each_thread(g, c) {
 344                        if (c->mm == mm)
 345                                goto assign_new_owner;
 346                        if (c->mm)
 347                                break;
 348                }
 349        }
 350        read_unlock(&tasklist_lock);
 351        /*
 352         * We found no owner yet mm_users > 1: this implies that we are
 353         * most likely racing with swapoff (try_to_unuse()) or /proc or
 354         * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
 355         */
 356        mm->owner = NULL;
 357        return;
 358
 359assign_new_owner:
 360        BUG_ON(c == p);
 361        get_task_struct(c);
 362        /*
 363         * The task_lock protects c->mm from changing.
 364         * We always want mm->owner->mm == mm
 365         */
 366        task_lock(c);
 367        /*
 368         * Delay read_unlock() till we have the task_lock()
 369         * to ensure that c does not slip away underneath us
 370         */
 371        read_unlock(&tasklist_lock);
 372        if (c->mm != mm) {
 373                task_unlock(c);
 374                put_task_struct(c);
 375                goto retry;
 376        }
 377        mm->owner = c;
 378        task_unlock(c);
 379        put_task_struct(c);
 380}
 381#endif /* CONFIG_MEMCG */
 382
 383/*
 384 * Turn us into a lazy TLB process if we
 385 * aren't already..
 386 */
 387static void exit_mm(struct task_struct *tsk)
 388{
 389        struct mm_struct *mm = tsk->mm;
 390        struct core_state *core_state;
 391
 392        mm_release(tsk, mm);
 393        if (!mm)
 394                return;
 395        sync_mm_rss(mm);
 396        /*
 397         * Serialize with any possible pending coredump.
 398         * We must hold mmap_sem around checking core_state
 399         * and clearing tsk->mm.  The core-inducing thread
 400         * will increment ->nr_threads for each thread in the
 401         * group with ->mm != NULL.
 402         */
 403        down_read(&mm->mmap_sem);
 404        core_state = mm->core_state;
 405        if (core_state) {
 406                struct core_thread self;
 407
 408                up_read(&mm->mmap_sem);
 409
 410                self.task = tsk;
 411                self.next = xchg(&core_state->dumper.next, &self);
 412                /*
 413                 * Implies mb(), the result of xchg() must be visible
 414                 * to core_state->dumper.
 415                 */
 416                if (atomic_dec_and_test(&core_state->nr_threads))
 417                        complete(&core_state->startup);
 418
 419                for (;;) {
 420                        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 421                        if (!self.task) /* see coredump_finish() */
 422                                break;
 423                        freezable_schedule();
 424                }
 425                __set_task_state(tsk, TASK_RUNNING);
 426                down_read(&mm->mmap_sem);
 427        }
 428        atomic_inc(&mm->mm_count);
 429        BUG_ON(mm != tsk->active_mm);
 430        /* more a memory barrier than a real lock */
 431        task_lock(tsk);
 432        tsk->mm = NULL;
 433        up_read(&mm->mmap_sem);
 434        enter_lazy_tlb(mm, current);
 435        task_unlock(tsk);
 436        mm_update_next_owner(mm);
 437        mmput(mm);
 438        if (test_thread_flag(TIF_MEMDIE))
 439                exit_oom_victim();
 440}
 441
 442static struct task_struct *find_alive_thread(struct task_struct *p)
 443{
 444        struct task_struct *t;
 445
 446        for_each_thread(p, t) {
 447                if (!(t->flags & PF_EXITING))
 448                        return t;
 449        }
 450        return NULL;
 451}
 452
 453static struct task_struct *find_child_reaper(struct task_struct *father)
 454        __releases(&tasklist_lock)
 455        __acquires(&tasklist_lock)
 456{
 457        struct pid_namespace *pid_ns = task_active_pid_ns(father);
 458        struct task_struct *reaper = pid_ns->child_reaper;
 459
 460        if (likely(reaper != father))
 461                return reaper;
 462
 463        reaper = find_alive_thread(father);
 464        if (reaper) {
 465                pid_ns->child_reaper = reaper;
 466                return reaper;
 467        }
 468
 469        write_unlock_irq(&tasklist_lock);
 470        if (unlikely(pid_ns == &init_pid_ns)) {
 471                panic("Attempted to kill init! exitcode=0x%08x\n",
 472                        father->signal->group_exit_code ?: father->exit_code);
 473        }
 474        zap_pid_ns_processes(pid_ns);
 475        write_lock_irq(&tasklist_lock);
 476
 477        return father;
 478}
 479
 480/*
 481 * When we die, we re-parent all our children, and try to:
 482 * 1. give them to another thread in our thread group, if such a member exists
 483 * 2. give it to the first ancestor process which prctl'd itself as a
 484 *    child_subreaper for its children (like a service manager)
 485 * 3. give it to the init process (PID 1) in our pid namespace
 486 */
 487static struct task_struct *find_new_reaper(struct task_struct *father,
 488                                           struct task_struct *child_reaper)
 489{
 490        struct task_struct *thread, *reaper;
 491
 492        thread = find_alive_thread(father);
 493        if (thread)
 494                return thread;
 495
 496        if (father->signal->has_child_subreaper) {
 497                /*
 498                 * Find the first ->is_child_subreaper ancestor in our pid_ns.
 499                 * We start from father to ensure we can not look into another
 500                 * namespace, this is safe because all its threads are dead.
 501                 */
 502                for (reaper = father;
 503                     !same_thread_group(reaper, child_reaper);
 504                     reaper = reaper->real_parent) {
 505                        /* call_usermodehelper() descendants need this check */
 506                        if (reaper == &init_task)
 507                                break;
 508                        if (!reaper->signal->is_child_subreaper)
 509                                continue;
 510                        thread = find_alive_thread(reaper);
 511                        if (thread)
 512                                return thread;
 513                }
 514        }
 515
 516        return child_reaper;
 517}
 518
 519/*
 520* Any that need to be release_task'd are put on the @dead list.
 521 */
 522static void reparent_leader(struct task_struct *father, struct task_struct *p,
 523                                struct list_head *dead)
 524{
 525        if (unlikely(p->exit_state == EXIT_DEAD))
 526                return;
 527
 528        /* We don't want people slaying init. */
 529        p->exit_signal = SIGCHLD;
 530
 531        /* If it has exited notify the new parent about this child's death. */
 532        if (!p->ptrace &&
 533            p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
 534                if (do_notify_parent(p, p->exit_signal)) {
 535                        p->exit_state = EXIT_DEAD;
 536                        list_add(&p->ptrace_entry, dead);
 537                }
 538        }
 539
 540        kill_orphaned_pgrp(p, father);
 541}
 542
 543/*
 544 * This does two things:
 545 *
 546 * A.  Make init inherit all the child processes
 547 * B.  Check to see if any process groups have become orphaned
 548 *      as a result of our exiting, and if they have any stopped
 549 *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
 550 */
 551static void forget_original_parent(struct task_struct *father,
 552                                        struct list_head *dead)
 553{
 554        struct task_struct *p, *t, *reaper;
 555
 556        if (unlikely(!list_empty(&father->ptraced)))
 557                exit_ptrace(father, dead);
 558
 559        /* Can drop and reacquire tasklist_lock */
 560        reaper = find_child_reaper(father);
 561        if (list_empty(&father->children))
 562                return;
 563
 564        reaper = find_new_reaper(father, reaper);
 565        list_for_each_entry(p, &father->children, sibling) {
 566                for_each_thread(p, t) {
 567                        t->real_parent = reaper;
 568                        BUG_ON((!t->ptrace) != (t->parent == father));
 569                        if (likely(!t->ptrace))
 570                                t->parent = t->real_parent;
 571                        if (t->pdeath_signal)
 572                                group_send_sig_info(t->pdeath_signal,
 573                                                    SEND_SIG_NOINFO, t);
 574                }
 575                /*
 576                 * If this is a threaded reparent there is no need to
 577                 * notify anyone anything has happened.
 578                 */
 579                if (!same_thread_group(reaper, father))
 580                        reparent_leader(father, p, dead);
 581        }
 582        list_splice_tail_init(&father->children, &reaper->children);
 583}
 584
 585/*
 586 * Send signals to all our closest relatives so that they know
 587 * to properly mourn us..
 588 */
 589static void exit_notify(struct task_struct *tsk, int group_dead)
 590{
 591        bool autoreap;
 592        struct task_struct *p, *n;
 593        LIST_HEAD(dead);
 594
 595        write_lock_irq(&tasklist_lock);
 596        forget_original_parent(tsk, &dead);
 597
 598        if (group_dead)
 599                kill_orphaned_pgrp(tsk->group_leader, NULL);
 600
 601        if (unlikely(tsk->ptrace)) {
 602                int sig = thread_group_leader(tsk) &&
 603                                thread_group_empty(tsk) &&
 604                                !ptrace_reparented(tsk) ?
 605                        tsk->exit_signal : SIGCHLD;
 606                autoreap = do_notify_parent(tsk, sig);
 607        } else if (thread_group_leader(tsk)) {
 608                autoreap = thread_group_empty(tsk) &&
 609                        do_notify_parent(tsk, tsk->exit_signal);
 610        } else {
 611                autoreap = true;
 612        }
 613
 614        tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
 615        if (tsk->exit_state == EXIT_DEAD)
 616                list_add(&tsk->ptrace_entry, &dead);
 617
 618        /* mt-exec, de_thread() is waiting for group leader */
 619        if (unlikely(tsk->signal->notify_count < 0))
 620                wake_up_process(tsk->signal->group_exit_task);
 621        write_unlock_irq(&tasklist_lock);
 622
 623        list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
 624                list_del_init(&p->ptrace_entry);
 625                release_task(p);
 626        }
 627}
 628
 629#ifdef CONFIG_DEBUG_STACK_USAGE
 630static void check_stack_usage(void)
 631{
 632        static DEFINE_SPINLOCK(low_water_lock);
 633        static int lowest_to_date = THREAD_SIZE;
 634        unsigned long free;
 635
 636        free = stack_not_used(current);
 637
 638        if (free >= lowest_to_date)
 639                return;
 640
 641        spin_lock(&low_water_lock);
 642        if (free < lowest_to_date) {
 643                pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
 644                        current->comm, task_pid_nr(current), free);
 645                lowest_to_date = free;
 646        }
 647        spin_unlock(&low_water_lock);
 648}
 649#else
 650static inline void check_stack_usage(void) {}
 651#endif
 652
 653void do_exit(long code)
 654{
 655        struct task_struct *tsk = current;
 656        int group_dead;
 657        TASKS_RCU(int tasks_rcu_i);
 658
 659        profile_task_exit(tsk);
 660
 661        WARN_ON(blk_needs_flush_plug(tsk));
 662
 663        if (unlikely(in_interrupt()))
 664                panic("Aiee, killing interrupt handler!");
 665        if (unlikely(!tsk->pid))
 666                panic("Attempted to kill the idle task!");
 667
 668        /*
 669         * If do_exit is called because this processes oopsed, it's possible
 670         * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
 671         * continuing. Amongst other possible reasons, this is to prevent
 672         * mm_release()->clear_child_tid() from writing to a user-controlled
 673         * kernel address.
 674         */
 675        set_fs(USER_DS);
 676
 677        ptrace_event(PTRACE_EVENT_EXIT, code);
 678
 679        validate_creds_for_do_exit(tsk);
 680
 681        /*
 682         * We're taking recursive faults here in do_exit. Safest is to just
 683         * leave this task alone and wait for reboot.
 684         */
 685        if (unlikely(tsk->flags & PF_EXITING)) {
 686                pr_alert("Fixing recursive fault but reboot is needed!\n");
 687                /*
 688                 * We can do this unlocked here. The futex code uses
 689                 * this flag just to verify whether the pi state
 690                 * cleanup has been done or not. In the worst case it
 691                 * loops once more. We pretend that the cleanup was
 692                 * done as there is no way to return. Either the
 693                 * OWNER_DIED bit is set by now or we push the blocked
 694                 * task into the wait for ever nirwana as well.
 695                 */
 696                tsk->flags |= PF_EXITPIDONE;
 697                set_current_state(TASK_UNINTERRUPTIBLE);
 698                schedule();
 699        }
 700
 701        exit_signals(tsk);  /* sets PF_EXITING */
 702        /*
 703         * tsk->flags are checked in the futex code to protect against
 704         * an exiting task cleaning up the robust pi futexes.
 705         */
 706        smp_mb();
 707        raw_spin_unlock_wait(&tsk->pi_lock);
 708
 709        if (unlikely(in_atomic()))
 710                pr_info("note: %s[%d] exited with preempt_count %d\n",
 711                        current->comm, task_pid_nr(current),
 712                        preempt_count());
 713
 714        /* sync mm's RSS info before statistics gathering */
 715        if (tsk->mm)
 716                sync_mm_rss(tsk->mm);
 717        acct_update_integrals(tsk);
 718        group_dead = atomic_dec_and_test(&tsk->signal->live);
 719        if (group_dead) {
 720                hrtimer_cancel(&tsk->signal->real_timer);
 721                exit_itimers(tsk->signal);
 722                if (tsk->mm)
 723                        setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
 724        }
 725        acct_collect(code, group_dead);
 726        if (group_dead)
 727                tty_audit_exit();
 728        audit_free(tsk);
 729
 730        tsk->exit_code = code;
 731        taskstats_exit(tsk, group_dead);
 732
 733        exit_mm(tsk);
 734
 735        if (group_dead)
 736                acct_process();
 737        trace_sched_process_exit(tsk);
 738
 739        exit_sem(tsk);
 740        exit_shm(tsk);
 741        exit_files(tsk);
 742        exit_fs(tsk);
 743        if (group_dead)
 744                disassociate_ctty(1);
 745        exit_task_namespaces(tsk);
 746        exit_task_work(tsk);
 747        exit_thread();
 748
 749        /*
 750         * Flush inherited counters to the parent - before the parent
 751         * gets woken up by child-exit notifications.
 752         *
 753         * because of cgroup mode, must be called before cgroup_exit()
 754         */
 755        perf_event_exit_task(tsk);
 756
 757        cgroup_exit(tsk);
 758
 759        /*
 760         * FIXME: do that only when needed, using sched_exit tracepoint
 761         */
 762        flush_ptrace_hw_breakpoint(tsk);
 763
 764        TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
 765        exit_notify(tsk, group_dead);
 766        proc_exit_connector(tsk);
 767#ifdef CONFIG_NUMA
 768        task_lock(tsk);
 769        mpol_put(tsk->mempolicy);
 770        tsk->mempolicy = NULL;
 771        task_unlock(tsk);
 772#endif
 773#ifdef CONFIG_FUTEX
 774        if (unlikely(current->pi_state_cache))
 775                kfree(current->pi_state_cache);
 776#endif
 777        /*
 778         * Make sure we are holding no locks:
 779         */
 780        debug_check_no_locks_held();
 781        /*
 782         * We can do this unlocked here. The futex code uses this flag
 783         * just to verify whether the pi state cleanup has been done
 784         * or not. In the worst case it loops once more.
 785         */
 786        tsk->flags |= PF_EXITPIDONE;
 787
 788        if (tsk->io_context)
 789                exit_io_context(tsk);
 790
 791        if (tsk->splice_pipe)
 792                free_pipe_info(tsk->splice_pipe);
 793
 794        if (tsk->task_frag.page)
 795                put_page(tsk->task_frag.page);
 796
 797        validate_creds_for_do_exit(tsk);
 798
 799        check_stack_usage();
 800        preempt_disable();
 801        if (tsk->nr_dirtied)
 802                __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
 803        exit_rcu();
 804        TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
 805
 806        /*
 807         * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
 808         * when the following two conditions become true.
 809         *   - There is race condition of mmap_sem (It is acquired by
 810         *     exit_mm()), and
 811         *   - SMI occurs before setting TASK_RUNINNG.
 812         *     (or hypervisor of virtual machine switches to other guest)
 813         *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
 814         *
 815         * To avoid it, we have to wait for releasing tsk->pi_lock which
 816         * is held by try_to_wake_up()
 817         */
 818        smp_mb();
 819        raw_spin_unlock_wait(&tsk->pi_lock);
 820
 821        /* causes final put_task_struct in finish_task_switch(). */
 822        tsk->state = TASK_DEAD;
 823        tsk->flags |= PF_NOFREEZE;      /* tell freezer to ignore us */
 824        schedule();
 825        BUG();
 826        /* Avoid "noreturn function does return".  */
 827        for (;;)
 828                cpu_relax();    /* For when BUG is null */
 829}
 830EXPORT_SYMBOL_GPL(do_exit);
 831
 832void complete_and_exit(struct completion *comp, long code)
 833{
 834        if (comp)
 835                complete(comp);
 836
 837        do_exit(code);
 838}
 839EXPORT_SYMBOL(complete_and_exit);
 840
 841SYSCALL_DEFINE1(exit, int, error_code)
 842{
 843        do_exit((error_code&0xff)<<8);
 844}
 845
 846/*
 847 * Take down every thread in the group.  This is called by fatal signals
 848 * as well as by sys_exit_group (below).
 849 */
 850void
 851do_group_exit(int exit_code)
 852{
 853        struct signal_struct *sig = current->signal;
 854
 855        BUG_ON(exit_code & 0x80); /* core dumps don't get here */
 856
 857        if (signal_group_exit(sig))
 858                exit_code = sig->group_exit_code;
 859        else if (!thread_group_empty(current)) {
 860                struct sighand_struct *const sighand = current->sighand;
 861
 862                spin_lock_irq(&sighand->siglock);
 863                if (signal_group_exit(sig))
 864                        /* Another thread got here before we took the lock.  */
 865                        exit_code = sig->group_exit_code;
 866                else {
 867                        sig->group_exit_code = exit_code;
 868                        sig->flags = SIGNAL_GROUP_EXIT;
 869                        zap_other_threads(current);
 870                }
 871                spin_unlock_irq(&sighand->siglock);
 872        }
 873
 874        do_exit(exit_code);
 875        /* NOTREACHED */
 876}
 877
 878/*
 879 * this kills every thread in the thread group. Note that any externally
 880 * wait4()-ing process will get the correct exit code - even if this
 881 * thread is not the thread group leader.
 882 */
 883SYSCALL_DEFINE1(exit_group, int, error_code)
 884{
 885        do_group_exit((error_code & 0xff) << 8);
 886        /* NOTREACHED */
 887        return 0;
 888}
 889
 890struct wait_opts {
 891        enum pid_type           wo_type;
 892        int                     wo_flags;
 893        struct pid              *wo_pid;
 894
 895        struct siginfo __user   *wo_info;
 896        int __user              *wo_stat;
 897        struct rusage __user    *wo_rusage;
 898
 899        wait_queue_t            child_wait;
 900        int                     notask_error;
 901};
 902
 903static inline
 904struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 905{
 906        if (type != PIDTYPE_PID)
 907                task = task->group_leader;
 908        return task->pids[type].pid;
 909}
 910
 911static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
 912{
 913        return  wo->wo_type == PIDTYPE_MAX ||
 914                task_pid_type(p, wo->wo_type) == wo->wo_pid;
 915}
 916
 917static int eligible_child(struct wait_opts *wo, struct task_struct *p)
 918{
 919        if (!eligible_pid(wo, p))
 920                return 0;
 921        /* Wait for all children (clone and not) if __WALL is set;
 922         * otherwise, wait for clone children *only* if __WCLONE is
 923         * set; otherwise, wait for non-clone children *only*.  (Note:
 924         * A "clone" child here is one that reports to its parent
 925         * using a signal other than SIGCHLD.) */
 926        if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
 927            && !(wo->wo_flags & __WALL))
 928                return 0;
 929
 930        return 1;
 931}
 932
 933static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
 934                                pid_t pid, uid_t uid, int why, int status)
 935{
 936        struct siginfo __user *infop;
 937        int retval = wo->wo_rusage
 938                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
 939
 940        put_task_struct(p);
 941        infop = wo->wo_info;
 942        if (infop) {
 943                if (!retval)
 944                        retval = put_user(SIGCHLD, &infop->si_signo);
 945                if (!retval)
 946                        retval = put_user(0, &infop->si_errno);
 947                if (!retval)
 948                        retval = put_user((short)why, &infop->si_code);
 949                if (!retval)
 950                        retval = put_user(pid, &infop->si_pid);
 951                if (!retval)
 952                        retval = put_user(uid, &infop->si_uid);
 953                if (!retval)
 954                        retval = put_user(status, &infop->si_status);
 955        }
 956        if (!retval)
 957                retval = pid;
 958        return retval;
 959}
 960
 961/*
 962 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
 963 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
 964 * the lock and this task is uninteresting.  If we return nonzero, we have
 965 * released the lock and the system call should return.
 966 */
 967static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
 968{
 969        int state, retval, status;
 970        pid_t pid = task_pid_vnr(p);
 971        uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
 972        struct siginfo __user *infop;
 973
 974        if (!likely(wo->wo_flags & WEXITED))
 975                return 0;
 976
 977        if (unlikely(wo->wo_flags & WNOWAIT)) {
 978                int exit_code = p->exit_code;
 979                int why;
 980
 981                get_task_struct(p);
 982                read_unlock(&tasklist_lock);
 983                sched_annotate_sleep();
 984
 985                if ((exit_code & 0x7f) == 0) {
 986                        why = CLD_EXITED;
 987                        status = exit_code >> 8;
 988                } else {
 989                        why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
 990                        status = exit_code & 0x7f;
 991                }
 992                return wait_noreap_copyout(wo, p, pid, uid, why, status);
 993        }
 994        /*
 995         * Move the task's state to DEAD/TRACE, only one thread can do this.
 996         */
 997        state = (ptrace_reparented(p) && thread_group_leader(p)) ?
 998                EXIT_TRACE : EXIT_DEAD;
 999        if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1000                return 0;
1001        /*
1002         * We own this thread, nobody else can reap it.
1003         */
1004        read_unlock(&tasklist_lock);
1005        sched_annotate_sleep();
1006
1007        /*
1008         * Check thread_group_leader() to exclude the traced sub-threads.
1009         */
1010        if (state == EXIT_DEAD && thread_group_leader(p)) {
1011                struct signal_struct *sig = p->signal;
1012                struct signal_struct *psig = current->signal;
1013                unsigned long maxrss;
1014                cputime_t tgutime, tgstime;
1015
1016                /*
1017                 * The resource counters for the group leader are in its
1018                 * own task_struct.  Those for dead threads in the group
1019                 * are in its signal_struct, as are those for the child
1020                 * processes it has previously reaped.  All these
1021                 * accumulate in the parent's signal_struct c* fields.
1022                 *
1023                 * We don't bother to take a lock here to protect these
1024                 * p->signal fields because the whole thread group is dead
1025                 * and nobody can change them.
1026                 *
1027                 * psig->stats_lock also protects us from our sub-theads
1028                 * which can reap other children at the same time. Until
1029                 * we change k_getrusage()-like users to rely on this lock
1030                 * we have to take ->siglock as well.
1031                 *
1032                 * We use thread_group_cputime_adjusted() to get times for
1033                 * the thread group, which consolidates times for all threads
1034                 * in the group including the group leader.
1035                 */
1036                thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1037                spin_lock_irq(&current->sighand->siglock);
1038                write_seqlock(&psig->stats_lock);
1039                psig->cutime += tgutime + sig->cutime;
1040                psig->cstime += tgstime + sig->cstime;
1041                psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1042                psig->cmin_flt +=
1043                        p->min_flt + sig->min_flt + sig->cmin_flt;
1044                psig->cmaj_flt +=
1045                        p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1046                psig->cnvcsw +=
1047                        p->nvcsw + sig->nvcsw + sig->cnvcsw;
1048                psig->cnivcsw +=
1049                        p->nivcsw + sig->nivcsw + sig->cnivcsw;
1050                psig->cinblock +=
1051                        task_io_get_inblock(p) +
1052                        sig->inblock + sig->cinblock;
1053                psig->coublock +=
1054                        task_io_get_oublock(p) +
1055                        sig->oublock + sig->coublock;
1056                maxrss = max(sig->maxrss, sig->cmaxrss);
1057                if (psig->cmaxrss < maxrss)
1058                        psig->cmaxrss = maxrss;
1059                task_io_accounting_add(&psig->ioac, &p->ioac);
1060                task_io_accounting_add(&psig->ioac, &sig->ioac);
1061                write_sequnlock(&psig->stats_lock);
1062                spin_unlock_irq(&current->sighand->siglock);
1063        }
1064
1065        retval = wo->wo_rusage
1066                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1067        status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1068                ? p->signal->group_exit_code : p->exit_code;
1069        if (!retval && wo->wo_stat)
1070                retval = put_user(status, wo->wo_stat);
1071
1072        infop = wo->wo_info;
1073        if (!retval && infop)
1074                retval = put_user(SIGCHLD, &infop->si_signo);
1075        if (!retval && infop)
1076                retval = put_user(0, &infop->si_errno);
1077        if (!retval && infop) {
1078                int why;
1079
1080                if ((status & 0x7f) == 0) {
1081                        why = CLD_EXITED;
1082                        status >>= 8;
1083                } else {
1084                        why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1085                        status &= 0x7f;
1086                }
1087                retval = put_user((short)why, &infop->si_code);
1088                if (!retval)
1089                        retval = put_user(status, &infop->si_status);
1090        }
1091        if (!retval && infop)
1092                retval = put_user(pid, &infop->si_pid);
1093        if (!retval && infop)
1094                retval = put_user(uid, &infop->si_uid);
1095        if (!retval)
1096                retval = pid;
1097
1098        if (state == EXIT_TRACE) {
1099                write_lock_irq(&tasklist_lock);
1100                /* We dropped tasklist, ptracer could die and untrace */
1101                ptrace_unlink(p);
1102
1103                /* If parent wants a zombie, don't release it now */
1104                state = EXIT_ZOMBIE;
1105                if (do_notify_parent(p, p->exit_signal))
1106                        state = EXIT_DEAD;
1107                p->exit_state = state;
1108                write_unlock_irq(&tasklist_lock);
1109        }
1110        if (state == EXIT_DEAD)
1111                release_task(p);
1112
1113        return retval;
1114}
1115
1116static int *task_stopped_code(struct task_struct *p, bool ptrace)
1117{
1118        if (ptrace) {
1119                if (task_is_stopped_or_traced(p) &&
1120                    !(p->jobctl & JOBCTL_LISTENING))
1121                        return &p->exit_code;
1122        } else {
1123                if (p->signal->flags & SIGNAL_STOP_STOPPED)
1124                        return &p->signal->group_exit_code;
1125        }
1126        return NULL;
1127}
1128
1129/**
1130 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1131 * @wo: wait options
1132 * @ptrace: is the wait for ptrace
1133 * @p: task to wait for
1134 *
1135 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1136 *
1137 * CONTEXT:
1138 * read_lock(&tasklist_lock), which is released if return value is
1139 * non-zero.  Also, grabs and releases @p->sighand->siglock.
1140 *
1141 * RETURNS:
1142 * 0 if wait condition didn't exist and search for other wait conditions
1143 * should continue.  Non-zero return, -errno on failure and @p's pid on
1144 * success, implies that tasklist_lock is released and wait condition
1145 * search should terminate.
1146 */
1147static int wait_task_stopped(struct wait_opts *wo,
1148                                int ptrace, struct task_struct *p)
1149{
1150        struct siginfo __user *infop;
1151        int retval, exit_code, *p_code, why;
1152        uid_t uid = 0; /* unneeded, required by compiler */
1153        pid_t pid;
1154
1155        /*
1156         * Traditionally we see ptrace'd stopped tasks regardless of options.
1157         */
1158        if (!ptrace && !(wo->wo_flags & WUNTRACED))
1159                return 0;
1160
1161        if (!task_stopped_code(p, ptrace))
1162                return 0;
1163
1164        exit_code = 0;
1165        spin_lock_irq(&p->sighand->siglock);
1166
1167        p_code = task_stopped_code(p, ptrace);
1168        if (unlikely(!p_code))
1169                goto unlock_sig;
1170
1171        exit_code = *p_code;
1172        if (!exit_code)
1173                goto unlock_sig;
1174
1175        if (!unlikely(wo->wo_flags & WNOWAIT))
1176                *p_code = 0;
1177
1178        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1179unlock_sig:
1180        spin_unlock_irq(&p->sighand->siglock);
1181        if (!exit_code)
1182                return 0;
1183
1184        /*
1185         * Now we are pretty sure this task is interesting.
1186         * Make sure it doesn't get reaped out from under us while we
1187         * give up the lock and then examine it below.  We don't want to
1188         * keep holding onto the tasklist_lock while we call getrusage and
1189         * possibly take page faults for user memory.
1190         */
1191        get_task_struct(p);
1192        pid = task_pid_vnr(p);
1193        why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1194        read_unlock(&tasklist_lock);
1195        sched_annotate_sleep();
1196
1197        if (unlikely(wo->wo_flags & WNOWAIT))
1198                return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1199
1200        retval = wo->wo_rusage
1201                ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1202        if (!retval && wo->wo_stat)
1203                retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1204
1205        infop = wo->wo_info;
1206        if (!retval && infop)
1207                retval = put_user(SIGCHLD, &infop->si_signo);
1208        if (!retval && infop)
1209                retval = put_user(0, &infop->si_errno);
1210        if (!retval && infop)
1211                retval = put_user((short)why, &infop->si_code);
1212        if (!retval && infop)
1213                retval = put_user(exit_code, &infop->si_status);
1214        if (!retval && infop)
1215                retval = put_user(pid, &infop->si_pid);
1216        if (!retval && infop)
1217                retval = put_user(uid, &infop->si_uid);
1218        if (!retval)
1219                retval = pid;
1220        put_task_struct(p);
1221
1222        BUG_ON(!retval);
1223        return retval;
1224}
1225
1226/*
1227 * Handle do_wait work for one task in a live, non-stopped state.
1228 * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1229 * the lock and this task is uninteresting.  If we return nonzero, we have
1230 * released the lock and the system call should return.
1231 */
1232static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1233{
1234        int retval;
1235        pid_t pid;
1236        uid_t uid;
1237
1238        if (!unlikely(wo->wo_flags & WCONTINUED))
1239                return 0;
1240
1241        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1242                return 0;
1243
1244        spin_lock_irq(&p->sighand->siglock);
1245        /* Re-check with the lock held.  */
1246        if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1247                spin_unlock_irq(&p->sighand->siglock);
1248                return 0;
1249        }
1250        if (!unlikely(wo->wo_flags & WNOWAIT))
1251                p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1252        uid = from_kuid_munged(current_user_ns(), task_uid(p));
1253        spin_unlock_irq(&p->sighand->siglock);
1254
1255        pid = task_pid_vnr(p);
1256        get_task_struct(p);
1257        read_unlock(&tasklist_lock);
1258        sched_annotate_sleep();
1259
1260        if (!wo->wo_info) {
1261                retval = wo->wo_rusage
1262                        ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1263                put_task_struct(p);
1264                if (!retval && wo->wo_stat)
1265                        retval = put_user(0xffff, wo->wo_stat);
1266                if (!retval)
1267                        retval = pid;
1268        } else {
1269                retval = wait_noreap_copyout(wo, p, pid, uid,
1270                                             CLD_CONTINUED, SIGCONT);
1271                BUG_ON(retval == 0);
1272        }
1273
1274        return retval;
1275}
1276
1277/*
1278 * Consider @p for a wait by @parent.
1279 *
1280 * -ECHILD should be in ->notask_error before the first call.
1281 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1282 * Returns zero if the search for a child should continue;
1283 * then ->notask_error is 0 if @p is an eligible child,
1284 * or another error from security_task_wait(), or still -ECHILD.
1285 */
1286static int wait_consider_task(struct wait_opts *wo, int ptrace,
1287                                struct task_struct *p)
1288{
1289        /*
1290         * We can race with wait_task_zombie() from another thread.
1291         * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1292         * can't confuse the checks below.
1293         */
1294        int exit_state = ACCESS_ONCE(p->exit_state);
1295        int ret;
1296
1297        if (unlikely(exit_state == EXIT_DEAD))
1298                return 0;
1299
1300        ret = eligible_child(wo, p);
1301        if (!ret)
1302                return ret;
1303
1304        ret = security_task_wait(p);
1305        if (unlikely(ret < 0)) {
1306                /*
1307                 * If we have not yet seen any eligible child,
1308                 * then let this error code replace -ECHILD.
1309                 * A permission error will give the user a clue
1310                 * to look for security policy problems, rather
1311                 * than for mysterious wait bugs.
1312                 */
1313                if (wo->notask_error)
1314                        wo->notask_error = ret;
1315                return 0;
1316        }
1317
1318        if (unlikely(exit_state == EXIT_TRACE)) {
1319                /*
1320                 * ptrace == 0 means we are the natural parent. In this case
1321                 * we should clear notask_error, debugger will notify us.
1322                 */
1323                if (likely(!ptrace))
1324                        wo->notask_error = 0;
1325                return 0;
1326        }
1327
1328        if (likely(!ptrace) && unlikely(p->ptrace)) {
1329                /*
1330                 * If it is traced by its real parent's group, just pretend
1331                 * the caller is ptrace_do_wait() and reap this child if it
1332                 * is zombie.
1333                 *
1334                 * This also hides group stop state from real parent; otherwise
1335                 * a single stop can be reported twice as group and ptrace stop.
1336                 * If a ptracer wants to distinguish these two events for its
1337                 * own children it should create a separate process which takes
1338                 * the role of real parent.
1339                 */
1340                if (!ptrace_reparented(p))
1341                        ptrace = 1;
1342        }
1343
1344        /* slay zombie? */
1345        if (exit_state == EXIT_ZOMBIE) {
1346                /* we don't reap group leaders with subthreads */
1347                if (!delay_group_leader(p)) {
1348                        /*
1349                         * A zombie ptracee is only visible to its ptracer.
1350                         * Notification and reaping will be cascaded to the
1351                         * real parent when the ptracer detaches.
1352                         */
1353                        if (unlikely(ptrace) || likely(!p->ptrace))
1354                                return wait_task_zombie(wo, p);
1355                }
1356
1357                /*
1358                 * Allow access to stopped/continued state via zombie by
1359                 * falling through.  Clearing of notask_error is complex.
1360                 *
1361                 * When !@ptrace:
1362                 *
1363                 * If WEXITED is set, notask_error should naturally be
1364                 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1365                 * so, if there are live subthreads, there are events to
1366                 * wait for.  If all subthreads are dead, it's still safe
1367                 * to clear - this function will be called again in finite
1368                 * amount time once all the subthreads are released and
1369                 * will then return without clearing.
1370                 *
1371                 * When @ptrace:
1372                 *
1373                 * Stopped state is per-task and thus can't change once the
1374                 * target task dies.  Only continued and exited can happen.
1375                 * Clear notask_error if WCONTINUED | WEXITED.
1376                 */
1377                if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1378                        wo->notask_error = 0;
1379        } else {
1380                /*
1381                 * @p is alive and it's gonna stop, continue or exit, so
1382                 * there always is something to wait for.
1383                 */
1384                wo->notask_error = 0;
1385        }
1386
1387        /*
1388         * Wait for stopped.  Depending on @ptrace, different stopped state
1389         * is used and the two don't interact with each other.
1390         */
1391        ret = wait_task_stopped(wo, ptrace, p);
1392        if (ret)
1393                return ret;
1394
1395        /*
1396         * Wait for continued.  There's only one continued state and the
1397         * ptracer can consume it which can confuse the real parent.  Don't
1398         * use WCONTINUED from ptracer.  You don't need or want it.
1399         */
1400        return wait_task_continued(wo, p);
1401}
1402
1403/*
1404 * Do the work of do_wait() for one thread in the group, @tsk.
1405 *
1406 * -ECHILD should be in ->notask_error before the first call.
1407 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1408 * Returns zero if the search for a child should continue; then
1409 * ->notask_error is 0 if there were any eligible children,
1410 * or another error from security_task_wait(), or still -ECHILD.
1411 */
1412static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1413{
1414        struct task_struct *p;
1415
1416        list_for_each_entry(p, &tsk->children, sibling) {
1417                int ret = wait_consider_task(wo, 0, p);
1418
1419                if (ret)
1420                        return ret;
1421        }
1422
1423        return 0;
1424}
1425
1426static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1427{
1428        struct task_struct *p;
1429
1430        list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1431                int ret = wait_consider_task(wo, 1, p);
1432
1433                if (ret)
1434                        return ret;
1435        }
1436
1437        return 0;
1438}
1439
1440static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1441                                int sync, void *key)
1442{
1443        struct wait_opts *wo = container_of(wait, struct wait_opts,
1444                                                child_wait);
1445        struct task_struct *p = key;
1446
1447        if (!eligible_pid(wo, p))
1448                return 0;
1449
1450        if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1451                return 0;
1452
1453        return default_wake_function(wait, mode, sync, key);
1454}
1455
1456void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1457{
1458        __wake_up_sync_key(&parent->signal->wait_chldexit,
1459                                TASK_INTERRUPTIBLE, 1, p);
1460}
1461
1462static long do_wait(struct wait_opts *wo)
1463{
1464        struct task_struct *tsk;
1465        int retval;
1466
1467        trace_sched_process_wait(wo->wo_pid);
1468
1469        init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1470        wo->child_wait.private = current;
1471        add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1472repeat:
1473        /*
1474         * If there is nothing that can match our criteria, just get out.
1475         * We will clear ->notask_error to zero if we see any child that
1476         * might later match our criteria, even if we are not able to reap
1477         * it yet.
1478         */
1479        wo->notask_error = -ECHILD;
1480        if ((wo->wo_type < PIDTYPE_MAX) &&
1481           (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1482                goto notask;
1483
1484        set_current_state(TASK_INTERRUPTIBLE);
1485        read_lock(&tasklist_lock);
1486        tsk = current;
1487        do {
1488                retval = do_wait_thread(wo, tsk);
1489                if (retval)
1490                        goto end;
1491
1492                retval = ptrace_do_wait(wo, tsk);
1493                if (retval)
1494                        goto end;
1495
1496                if (wo->wo_flags & __WNOTHREAD)
1497                        break;
1498        } while_each_thread(current, tsk);
1499        read_unlock(&tasklist_lock);
1500
1501notask:
1502        retval = wo->notask_error;
1503        if (!retval && !(wo->wo_flags & WNOHANG)) {
1504                retval = -ERESTARTSYS;
1505                if (!signal_pending(current)) {
1506                        schedule();
1507                        goto repeat;
1508                }
1509        }
1510end:
1511        __set_current_state(TASK_RUNNING);
1512        remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513        return retval;
1514}
1515
1516SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1517                infop, int, options, struct rusage __user *, ru)
1518{
1519        struct wait_opts wo;
1520        struct pid *pid = NULL;
1521        enum pid_type type;
1522        long ret;
1523
1524        if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1525                return -EINVAL;
1526        if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1527                return -EINVAL;
1528
1529        switch (which) {
1530        case P_ALL:
1531                type = PIDTYPE_MAX;
1532                break;
1533        case P_PID:
1534                type = PIDTYPE_PID;
1535                if (upid <= 0)
1536                        return -EINVAL;
1537                break;
1538        case P_PGID:
1539                type = PIDTYPE_PGID;
1540                if (upid <= 0)
1541                        return -EINVAL;
1542                break;
1543        default:
1544                return -EINVAL;
1545        }
1546
1547        if (type < PIDTYPE_MAX)
1548                pid = find_get_pid(upid);
1549
1550        wo.wo_type      = type;
1551        wo.wo_pid       = pid;
1552        wo.wo_flags     = options;
1553        wo.wo_info      = infop;
1554        wo.wo_stat      = NULL;
1555        wo.wo_rusage    = ru;
1556        ret = do_wait(&wo);
1557
1558        if (ret > 0) {
1559                ret = 0;
1560        } else if (infop) {
1561                /*
1562                 * For a WNOHANG return, clear out all the fields
1563                 * we would set so the user can easily tell the
1564                 * difference.
1565                 */
1566                if (!ret)
1567                        ret = put_user(0, &infop->si_signo);
1568                if (!ret)
1569                        ret = put_user(0, &infop->si_errno);
1570                if (!ret)
1571                        ret = put_user(0, &infop->si_code);
1572                if (!ret)
1573                        ret = put_user(0, &infop->si_pid);
1574                if (!ret)
1575                        ret = put_user(0, &infop->si_uid);
1576                if (!ret)
1577                        ret = put_user(0, &infop->si_status);
1578        }
1579
1580        put_pid(pid);
1581        return ret;
1582}
1583
1584SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1585                int, options, struct rusage __user *, ru)
1586{
1587        struct wait_opts wo;
1588        struct pid *pid = NULL;
1589        enum pid_type type;
1590        long ret;
1591
1592        if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1593                        __WNOTHREAD|__WCLONE|__WALL))
1594                return -EINVAL;
1595
1596        if (upid == -1)
1597                type = PIDTYPE_MAX;
1598        else if (upid < 0) {
1599                type = PIDTYPE_PGID;
1600                pid = find_get_pid(-upid);
1601        } else if (upid == 0) {
1602                type = PIDTYPE_PGID;
1603                pid = get_task_pid(current, PIDTYPE_PGID);
1604        } else /* upid > 0 */ {
1605                type = PIDTYPE_PID;
1606                pid = find_get_pid(upid);
1607        }
1608
1609        wo.wo_type      = type;
1610        wo.wo_pid       = pid;
1611        wo.wo_flags     = options | WEXITED;
1612        wo.wo_info      = NULL;
1613        wo.wo_stat      = stat_addr;
1614        wo.wo_rusage    = ru;
1615        ret = do_wait(&wo);
1616        put_pid(pid);
1617
1618        return ret;
1619}
1620
1621#ifdef __ARCH_WANT_SYS_WAITPID
1622
1623/*
1624 * sys_waitpid() remains for compatibility. waitpid() should be
1625 * implemented by calling sys_wait4() from libc.a.
1626 */
1627SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1628{
1629        return sys_wait4(pid, stat_addr, options, NULL);
1630}
1631
1632#endif
1633