linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78
  79#include <asm/pgtable.h>
  80#include <asm/pgalloc.h>
  81#include <asm/uaccess.h>
  82#include <asm/mmu_context.h>
  83#include <asm/cacheflush.h>
  84#include <asm/tlbflush.h>
  85
  86#include <trace/events/sched.h>
  87
  88#define CREATE_TRACE_POINTS
  89#include <trace/events/task.h>
  90
  91/*
  92 * Minimum number of threads to boot the kernel
  93 */
  94#define MIN_THREADS 20
  95
  96/*
  97 * Maximum number of threads
  98 */
  99#define MAX_THREADS FUTEX_TID_MASK
 100
 101/*
 102 * Protected counters by write_lock_irq(&tasklist_lock)
 103 */
 104unsigned long total_forks;      /* Handle normal Linux uptimes. */
 105int nr_threads;                 /* The idle threads do not count.. */
 106
 107int max_threads;                /* tunable limit on nr_threads */
 108
 109DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 110
 111__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 112
 113#ifdef CONFIG_PROVE_RCU
 114int lockdep_tasklist_lock_is_held(void)
 115{
 116        return lockdep_is_held(&tasklist_lock);
 117}
 118EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 119#endif /* #ifdef CONFIG_PROVE_RCU */
 120
 121int nr_processes(void)
 122{
 123        int cpu;
 124        int total = 0;
 125
 126        for_each_possible_cpu(cpu)
 127                total += per_cpu(process_counts, cpu);
 128
 129        return total;
 130}
 131
 132void __weak arch_release_task_struct(struct task_struct *tsk)
 133{
 134}
 135
 136#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 137static struct kmem_cache *task_struct_cachep;
 138
 139static inline struct task_struct *alloc_task_struct_node(int node)
 140{
 141        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 142}
 143
 144static inline void free_task_struct(struct task_struct *tsk)
 145{
 146        kmem_cache_free(task_struct_cachep, tsk);
 147}
 148#endif
 149
 150void __weak arch_release_thread_info(struct thread_info *ti)
 151{
 152}
 153
 154#ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
 155
 156/*
 157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 158 * kmemcache based allocator.
 159 */
 160# if THREAD_SIZE >= PAGE_SIZE
 161static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 162                                                  int node)
 163{
 164        struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
 165                                                  THREAD_SIZE_ORDER);
 166
 167        return page ? page_address(page) : NULL;
 168}
 169
 170static inline void free_thread_info(struct thread_info *ti)
 171{
 172        free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
 173}
 174# else
 175static struct kmem_cache *thread_info_cache;
 176
 177static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
 178                                                  int node)
 179{
 180        return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
 181}
 182
 183static void free_thread_info(struct thread_info *ti)
 184{
 185        kmem_cache_free(thread_info_cache, ti);
 186}
 187
 188void thread_info_cache_init(void)
 189{
 190        thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
 191                                              THREAD_SIZE, 0, NULL);
 192        BUG_ON(thread_info_cache == NULL);
 193}
 194# endif
 195#endif
 196
 197/* SLAB cache for signal_struct structures (tsk->signal) */
 198static struct kmem_cache *signal_cachep;
 199
 200/* SLAB cache for sighand_struct structures (tsk->sighand) */
 201struct kmem_cache *sighand_cachep;
 202
 203/* SLAB cache for files_struct structures (tsk->files) */
 204struct kmem_cache *files_cachep;
 205
 206/* SLAB cache for fs_struct structures (tsk->fs) */
 207struct kmem_cache *fs_cachep;
 208
 209/* SLAB cache for vm_area_struct structures */
 210struct kmem_cache *vm_area_cachep;
 211
 212/* SLAB cache for mm_struct structures (tsk->mm) */
 213static struct kmem_cache *mm_cachep;
 214
 215static void account_kernel_stack(struct thread_info *ti, int account)
 216{
 217        struct zone *zone = page_zone(virt_to_page(ti));
 218
 219        mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 220}
 221
 222void free_task(struct task_struct *tsk)
 223{
 224        account_kernel_stack(tsk->stack, -1);
 225        arch_release_thread_info(tsk->stack);
 226        free_thread_info(tsk->stack);
 227        rt_mutex_debug_task_free(tsk);
 228        ftrace_graph_exit_task(tsk);
 229        put_seccomp_filter(tsk);
 230        arch_release_task_struct(tsk);
 231        free_task_struct(tsk);
 232}
 233EXPORT_SYMBOL(free_task);
 234
 235static inline void free_signal_struct(struct signal_struct *sig)
 236{
 237        taskstats_tgid_free(sig);
 238        sched_autogroup_exit(sig);
 239        kmem_cache_free(signal_cachep, sig);
 240}
 241
 242static inline void put_signal_struct(struct signal_struct *sig)
 243{
 244        if (atomic_dec_and_test(&sig->sigcnt))
 245                free_signal_struct(sig);
 246}
 247
 248void __put_task_struct(struct task_struct *tsk)
 249{
 250        WARN_ON(!tsk->exit_state);
 251        WARN_ON(atomic_read(&tsk->usage));
 252        WARN_ON(tsk == current);
 253
 254        task_numa_free(tsk);
 255        security_task_free(tsk);
 256        exit_creds(tsk);
 257        delayacct_tsk_free(tsk);
 258        put_signal_struct(tsk->signal);
 259
 260        if (!profile_handoff_task(tsk))
 261                free_task(tsk);
 262}
 263EXPORT_SYMBOL_GPL(__put_task_struct);
 264
 265void __init __weak arch_task_cache_init(void) { }
 266
 267/*
 268 * set_max_threads
 269 */
 270static void set_max_threads(unsigned int max_threads_suggested)
 271{
 272        u64 threads;
 273
 274        /*
 275         * The number of threads shall be limited such that the thread
 276         * structures may only consume a small part of the available memory.
 277         */
 278        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 279                threads = MAX_THREADS;
 280        else
 281                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 282                                    (u64) THREAD_SIZE * 8UL);
 283
 284        if (threads > max_threads_suggested)
 285                threads = max_threads_suggested;
 286
 287        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 288}
 289
 290#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 291/* Initialized by the architecture: */
 292int arch_task_struct_size __read_mostly;
 293#endif
 294
 295void __init fork_init(void)
 296{
 297#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 298#ifndef ARCH_MIN_TASKALIGN
 299#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
 300#endif
 301        /* create a slab on which task_structs can be allocated */
 302        task_struct_cachep =
 303                kmem_cache_create("task_struct", arch_task_struct_size,
 304                        ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
 305#endif
 306
 307        /* do the arch specific task caches init */
 308        arch_task_cache_init();
 309
 310        set_max_threads(MAX_THREADS);
 311
 312        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 313        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 314        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 315                init_task.signal->rlim[RLIMIT_NPROC];
 316}
 317
 318int __weak arch_dup_task_struct(struct task_struct *dst,
 319                                               struct task_struct *src)
 320{
 321        *dst = *src;
 322        return 0;
 323}
 324
 325void set_task_stack_end_magic(struct task_struct *tsk)
 326{
 327        unsigned long *stackend;
 328
 329        stackend = end_of_stack(tsk);
 330        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 331}
 332
 333static struct task_struct *dup_task_struct(struct task_struct *orig)
 334{
 335        struct task_struct *tsk;
 336        struct thread_info *ti;
 337        int node = tsk_fork_get_node(orig);
 338        int err;
 339
 340        tsk = alloc_task_struct_node(node);
 341        if (!tsk)
 342                return NULL;
 343
 344        ti = alloc_thread_info_node(tsk, node);
 345        if (!ti)
 346                goto free_tsk;
 347
 348        err = arch_dup_task_struct(tsk, orig);
 349        if (err)
 350                goto free_ti;
 351
 352        tsk->stack = ti;
 353#ifdef CONFIG_SECCOMP
 354        /*
 355         * We must handle setting up seccomp filters once we're under
 356         * the sighand lock in case orig has changed between now and
 357         * then. Until then, filter must be NULL to avoid messing up
 358         * the usage counts on the error path calling free_task.
 359         */
 360        tsk->seccomp.filter = NULL;
 361#endif
 362
 363        setup_thread_stack(tsk, orig);
 364        clear_user_return_notifier(tsk);
 365        clear_tsk_need_resched(tsk);
 366        set_task_stack_end_magic(tsk);
 367
 368#ifdef CONFIG_CC_STACKPROTECTOR
 369        tsk->stack_canary = get_random_int();
 370#endif
 371
 372        /*
 373         * One for us, one for whoever does the "release_task()" (usually
 374         * parent)
 375         */
 376        atomic_set(&tsk->usage, 2);
 377#ifdef CONFIG_BLK_DEV_IO_TRACE
 378        tsk->btrace_seq = 0;
 379#endif
 380        tsk->splice_pipe = NULL;
 381        tsk->task_frag.page = NULL;
 382
 383        account_kernel_stack(ti, 1);
 384
 385        return tsk;
 386
 387free_ti:
 388        free_thread_info(ti);
 389free_tsk:
 390        free_task_struct(tsk);
 391        return NULL;
 392}
 393
 394#ifdef CONFIG_MMU
 395static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 396{
 397        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 398        struct rb_node **rb_link, *rb_parent;
 399        int retval;
 400        unsigned long charge;
 401
 402        uprobe_start_dup_mmap();
 403        down_write(&oldmm->mmap_sem);
 404        flush_cache_dup_mm(oldmm);
 405        uprobe_dup_mmap(oldmm, mm);
 406        /*
 407         * Not linked in yet - no deadlock potential:
 408         */
 409        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 410
 411        /* No ordering required: file already has been exposed. */
 412        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 413
 414        mm->total_vm = oldmm->total_vm;
 415        mm->shared_vm = oldmm->shared_vm;
 416        mm->exec_vm = oldmm->exec_vm;
 417        mm->stack_vm = oldmm->stack_vm;
 418
 419        rb_link = &mm->mm_rb.rb_node;
 420        rb_parent = NULL;
 421        pprev = &mm->mmap;
 422        retval = ksm_fork(mm, oldmm);
 423        if (retval)
 424                goto out;
 425        retval = khugepaged_fork(mm, oldmm);
 426        if (retval)
 427                goto out;
 428
 429        prev = NULL;
 430        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 431                struct file *file;
 432
 433                if (mpnt->vm_flags & VM_DONTCOPY) {
 434                        vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 435                                                        -vma_pages(mpnt));
 436                        continue;
 437                }
 438                charge = 0;
 439                if (mpnt->vm_flags & VM_ACCOUNT) {
 440                        unsigned long len = vma_pages(mpnt);
 441
 442                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 443                                goto fail_nomem;
 444                        charge = len;
 445                }
 446                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 447                if (!tmp)
 448                        goto fail_nomem;
 449                *tmp = *mpnt;
 450                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 451                retval = vma_dup_policy(mpnt, tmp);
 452                if (retval)
 453                        goto fail_nomem_policy;
 454                tmp->vm_mm = mm;
 455                if (anon_vma_fork(tmp, mpnt))
 456                        goto fail_nomem_anon_vma_fork;
 457                tmp->vm_flags &= ~(VM_LOCKED|VM_UFFD_MISSING|VM_UFFD_WP);
 458                tmp->vm_next = tmp->vm_prev = NULL;
 459                tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 460                file = tmp->vm_file;
 461                if (file) {
 462                        struct inode *inode = file_inode(file);
 463                        struct address_space *mapping = file->f_mapping;
 464
 465                        get_file(file);
 466                        if (tmp->vm_flags & VM_DENYWRITE)
 467                                atomic_dec(&inode->i_writecount);
 468                        i_mmap_lock_write(mapping);
 469                        if (tmp->vm_flags & VM_SHARED)
 470                                atomic_inc(&mapping->i_mmap_writable);
 471                        flush_dcache_mmap_lock(mapping);
 472                        /* insert tmp into the share list, just after mpnt */
 473                        vma_interval_tree_insert_after(tmp, mpnt,
 474                                        &mapping->i_mmap);
 475                        flush_dcache_mmap_unlock(mapping);
 476                        i_mmap_unlock_write(mapping);
 477                }
 478
 479                /*
 480                 * Clear hugetlb-related page reserves for children. This only
 481                 * affects MAP_PRIVATE mappings. Faults generated by the child
 482                 * are not guaranteed to succeed, even if read-only
 483                 */
 484                if (is_vm_hugetlb_page(tmp))
 485                        reset_vma_resv_huge_pages(tmp);
 486
 487                /*
 488                 * Link in the new vma and copy the page table entries.
 489                 */
 490                *pprev = tmp;
 491                pprev = &tmp->vm_next;
 492                tmp->vm_prev = prev;
 493                prev = tmp;
 494
 495                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 496                rb_link = &tmp->vm_rb.rb_right;
 497                rb_parent = &tmp->vm_rb;
 498
 499                mm->map_count++;
 500                retval = copy_page_range(mm, oldmm, mpnt);
 501
 502                if (tmp->vm_ops && tmp->vm_ops->open)
 503                        tmp->vm_ops->open(tmp);
 504
 505                if (retval)
 506                        goto out;
 507        }
 508        /* a new mm has just been created */
 509        arch_dup_mmap(oldmm, mm);
 510        retval = 0;
 511out:
 512        up_write(&mm->mmap_sem);
 513        flush_tlb_mm(oldmm);
 514        up_write(&oldmm->mmap_sem);
 515        uprobe_end_dup_mmap();
 516        return retval;
 517fail_nomem_anon_vma_fork:
 518        mpol_put(vma_policy(tmp));
 519fail_nomem_policy:
 520        kmem_cache_free(vm_area_cachep, tmp);
 521fail_nomem:
 522        retval = -ENOMEM;
 523        vm_unacct_memory(charge);
 524        goto out;
 525}
 526
 527static inline int mm_alloc_pgd(struct mm_struct *mm)
 528{
 529        mm->pgd = pgd_alloc(mm);
 530        if (unlikely(!mm->pgd))
 531                return -ENOMEM;
 532        return 0;
 533}
 534
 535static inline void mm_free_pgd(struct mm_struct *mm)
 536{
 537        pgd_free(mm, mm->pgd);
 538}
 539#else
 540static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 541{
 542        down_write(&oldmm->mmap_sem);
 543        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 544        up_write(&oldmm->mmap_sem);
 545        return 0;
 546}
 547#define mm_alloc_pgd(mm)        (0)
 548#define mm_free_pgd(mm)
 549#endif /* CONFIG_MMU */
 550
 551__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 552
 553#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 554#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 555
 556static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 557
 558static int __init coredump_filter_setup(char *s)
 559{
 560        default_dump_filter =
 561                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 562                MMF_DUMP_FILTER_MASK;
 563        return 1;
 564}
 565
 566__setup("coredump_filter=", coredump_filter_setup);
 567
 568#include <linux/init_task.h>
 569
 570static void mm_init_aio(struct mm_struct *mm)
 571{
 572#ifdef CONFIG_AIO
 573        spin_lock_init(&mm->ioctx_lock);
 574        mm->ioctx_table = NULL;
 575#endif
 576}
 577
 578static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 579{
 580#ifdef CONFIG_MEMCG
 581        mm->owner = p;
 582#endif
 583}
 584
 585static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 586{
 587        mm->mmap = NULL;
 588        mm->mm_rb = RB_ROOT;
 589        mm->vmacache_seqnum = 0;
 590        atomic_set(&mm->mm_users, 1);
 591        atomic_set(&mm->mm_count, 1);
 592        init_rwsem(&mm->mmap_sem);
 593        INIT_LIST_HEAD(&mm->mmlist);
 594        mm->core_state = NULL;
 595        atomic_long_set(&mm->nr_ptes, 0);
 596        mm_nr_pmds_init(mm);
 597        mm->map_count = 0;
 598        mm->locked_vm = 0;
 599        mm->pinned_vm = 0;
 600        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 601        spin_lock_init(&mm->page_table_lock);
 602        mm_init_cpumask(mm);
 603        mm_init_aio(mm);
 604        mm_init_owner(mm, p);
 605        mmu_notifier_mm_init(mm);
 606        clear_tlb_flush_pending(mm);
 607#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 608        mm->pmd_huge_pte = NULL;
 609#endif
 610
 611        if (current->mm) {
 612                mm->flags = current->mm->flags & MMF_INIT_MASK;
 613                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 614        } else {
 615                mm->flags = default_dump_filter;
 616                mm->def_flags = 0;
 617        }
 618
 619        if (mm_alloc_pgd(mm))
 620                goto fail_nopgd;
 621
 622        if (init_new_context(p, mm))
 623                goto fail_nocontext;
 624
 625        return mm;
 626
 627fail_nocontext:
 628        mm_free_pgd(mm);
 629fail_nopgd:
 630        free_mm(mm);
 631        return NULL;
 632}
 633
 634static void check_mm(struct mm_struct *mm)
 635{
 636        int i;
 637
 638        for (i = 0; i < NR_MM_COUNTERS; i++) {
 639                long x = atomic_long_read(&mm->rss_stat.count[i]);
 640
 641                if (unlikely(x))
 642                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 643                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 644        }
 645
 646        if (atomic_long_read(&mm->nr_ptes))
 647                pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 648                                atomic_long_read(&mm->nr_ptes));
 649        if (mm_nr_pmds(mm))
 650                pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 651                                mm_nr_pmds(mm));
 652
 653#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 654        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 655#endif
 656}
 657
 658/*
 659 * Allocate and initialize an mm_struct.
 660 */
 661struct mm_struct *mm_alloc(void)
 662{
 663        struct mm_struct *mm;
 664
 665        mm = allocate_mm();
 666        if (!mm)
 667                return NULL;
 668
 669        memset(mm, 0, sizeof(*mm));
 670        return mm_init(mm, current);
 671}
 672
 673/*
 674 * Called when the last reference to the mm
 675 * is dropped: either by a lazy thread or by
 676 * mmput. Free the page directory and the mm.
 677 */
 678void __mmdrop(struct mm_struct *mm)
 679{
 680        BUG_ON(mm == &init_mm);
 681        mm_free_pgd(mm);
 682        destroy_context(mm);
 683        mmu_notifier_mm_destroy(mm);
 684        check_mm(mm);
 685        free_mm(mm);
 686}
 687EXPORT_SYMBOL_GPL(__mmdrop);
 688
 689/*
 690 * Decrement the use count and release all resources for an mm.
 691 */
 692void mmput(struct mm_struct *mm)
 693{
 694        might_sleep();
 695
 696        if (atomic_dec_and_test(&mm->mm_users)) {
 697                uprobe_clear_state(mm);
 698                exit_aio(mm);
 699                ksm_exit(mm);
 700                khugepaged_exit(mm); /* must run before exit_mmap */
 701                exit_mmap(mm);
 702                set_mm_exe_file(mm, NULL);
 703                if (!list_empty(&mm->mmlist)) {
 704                        spin_lock(&mmlist_lock);
 705                        list_del(&mm->mmlist);
 706                        spin_unlock(&mmlist_lock);
 707                }
 708                if (mm->binfmt)
 709                        module_put(mm->binfmt->module);
 710                mmdrop(mm);
 711        }
 712}
 713EXPORT_SYMBOL_GPL(mmput);
 714
 715/**
 716 * set_mm_exe_file - change a reference to the mm's executable file
 717 *
 718 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 719 *
 720 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 721 * invocations: in mmput() nobody alive left, in execve task is single
 722 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 723 * mm->exe_file, but does so without using set_mm_exe_file() in order
 724 * to do avoid the need for any locks.
 725 */
 726void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 727{
 728        struct file *old_exe_file;
 729
 730        /*
 731         * It is safe to dereference the exe_file without RCU as
 732         * this function is only called if nobody else can access
 733         * this mm -- see comment above for justification.
 734         */
 735        old_exe_file = rcu_dereference_raw(mm->exe_file);
 736
 737        if (new_exe_file)
 738                get_file(new_exe_file);
 739        rcu_assign_pointer(mm->exe_file, new_exe_file);
 740        if (old_exe_file)
 741                fput(old_exe_file);
 742}
 743
 744/**
 745 * get_mm_exe_file - acquire a reference to the mm's executable file
 746 *
 747 * Returns %NULL if mm has no associated executable file.
 748 * User must release file via fput().
 749 */
 750struct file *get_mm_exe_file(struct mm_struct *mm)
 751{
 752        struct file *exe_file;
 753
 754        rcu_read_lock();
 755        exe_file = rcu_dereference(mm->exe_file);
 756        if (exe_file && !get_file_rcu(exe_file))
 757                exe_file = NULL;
 758        rcu_read_unlock();
 759        return exe_file;
 760}
 761EXPORT_SYMBOL(get_mm_exe_file);
 762
 763/**
 764 * get_task_mm - acquire a reference to the task's mm
 765 *
 766 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 767 * this kernel workthread has transiently adopted a user mm with use_mm,
 768 * to do its AIO) is not set and if so returns a reference to it, after
 769 * bumping up the use count.  User must release the mm via mmput()
 770 * after use.  Typically used by /proc and ptrace.
 771 */
 772struct mm_struct *get_task_mm(struct task_struct *task)
 773{
 774        struct mm_struct *mm;
 775
 776        task_lock(task);
 777        mm = task->mm;
 778        if (mm) {
 779                if (task->flags & PF_KTHREAD)
 780                        mm = NULL;
 781                else
 782                        atomic_inc(&mm->mm_users);
 783        }
 784        task_unlock(task);
 785        return mm;
 786}
 787EXPORT_SYMBOL_GPL(get_task_mm);
 788
 789struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 790{
 791        struct mm_struct *mm;
 792        int err;
 793
 794        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 795        if (err)
 796                return ERR_PTR(err);
 797
 798        mm = get_task_mm(task);
 799        if (mm && mm != current->mm &&
 800                        !ptrace_may_access(task, mode)) {
 801                mmput(mm);
 802                mm = ERR_PTR(-EACCES);
 803        }
 804        mutex_unlock(&task->signal->cred_guard_mutex);
 805
 806        return mm;
 807}
 808
 809static void complete_vfork_done(struct task_struct *tsk)
 810{
 811        struct completion *vfork;
 812
 813        task_lock(tsk);
 814        vfork = tsk->vfork_done;
 815        if (likely(vfork)) {
 816                tsk->vfork_done = NULL;
 817                complete(vfork);
 818        }
 819        task_unlock(tsk);
 820}
 821
 822static int wait_for_vfork_done(struct task_struct *child,
 823                                struct completion *vfork)
 824{
 825        int killed;
 826
 827        freezer_do_not_count();
 828        killed = wait_for_completion_killable(vfork);
 829        freezer_count();
 830
 831        if (killed) {
 832                task_lock(child);
 833                child->vfork_done = NULL;
 834                task_unlock(child);
 835        }
 836
 837        put_task_struct(child);
 838        return killed;
 839}
 840
 841/* Please note the differences between mmput and mm_release.
 842 * mmput is called whenever we stop holding onto a mm_struct,
 843 * error success whatever.
 844 *
 845 * mm_release is called after a mm_struct has been removed
 846 * from the current process.
 847 *
 848 * This difference is important for error handling, when we
 849 * only half set up a mm_struct for a new process and need to restore
 850 * the old one.  Because we mmput the new mm_struct before
 851 * restoring the old one. . .
 852 * Eric Biederman 10 January 1998
 853 */
 854void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 855{
 856        /* Get rid of any futexes when releasing the mm */
 857#ifdef CONFIG_FUTEX
 858        if (unlikely(tsk->robust_list)) {
 859                exit_robust_list(tsk);
 860                tsk->robust_list = NULL;
 861        }
 862#ifdef CONFIG_COMPAT
 863        if (unlikely(tsk->compat_robust_list)) {
 864                compat_exit_robust_list(tsk);
 865                tsk->compat_robust_list = NULL;
 866        }
 867#endif
 868        if (unlikely(!list_empty(&tsk->pi_state_list)))
 869                exit_pi_state_list(tsk);
 870#endif
 871
 872        uprobe_free_utask(tsk);
 873
 874        /* Get rid of any cached register state */
 875        deactivate_mm(tsk, mm);
 876
 877        /*
 878         * If we're exiting normally, clear a user-space tid field if
 879         * requested.  We leave this alone when dying by signal, to leave
 880         * the value intact in a core dump, and to save the unnecessary
 881         * trouble, say, a killed vfork parent shouldn't touch this mm.
 882         * Userland only wants this done for a sys_exit.
 883         */
 884        if (tsk->clear_child_tid) {
 885                if (!(tsk->flags & PF_SIGNALED) &&
 886                    atomic_read(&mm->mm_users) > 1) {
 887                        /*
 888                         * We don't check the error code - if userspace has
 889                         * not set up a proper pointer then tough luck.
 890                         */
 891                        put_user(0, tsk->clear_child_tid);
 892                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 893                                        1, NULL, NULL, 0);
 894                }
 895                tsk->clear_child_tid = NULL;
 896        }
 897
 898        /*
 899         * All done, finally we can wake up parent and return this mm to him.
 900         * Also kthread_stop() uses this completion for synchronization.
 901         */
 902        if (tsk->vfork_done)
 903                complete_vfork_done(tsk);
 904}
 905
 906/*
 907 * Allocate a new mm structure and copy contents from the
 908 * mm structure of the passed in task structure.
 909 */
 910static struct mm_struct *dup_mm(struct task_struct *tsk)
 911{
 912        struct mm_struct *mm, *oldmm = current->mm;
 913        int err;
 914
 915        mm = allocate_mm();
 916        if (!mm)
 917                goto fail_nomem;
 918
 919        memcpy(mm, oldmm, sizeof(*mm));
 920
 921        if (!mm_init(mm, tsk))
 922                goto fail_nomem;
 923
 924        err = dup_mmap(mm, oldmm);
 925        if (err)
 926                goto free_pt;
 927
 928        mm->hiwater_rss = get_mm_rss(mm);
 929        mm->hiwater_vm = mm->total_vm;
 930
 931        if (mm->binfmt && !try_module_get(mm->binfmt->module))
 932                goto free_pt;
 933
 934        return mm;
 935
 936free_pt:
 937        /* don't put binfmt in mmput, we haven't got module yet */
 938        mm->binfmt = NULL;
 939        mmput(mm);
 940
 941fail_nomem:
 942        return NULL;
 943}
 944
 945static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 946{
 947        struct mm_struct *mm, *oldmm;
 948        int retval;
 949
 950        tsk->min_flt = tsk->maj_flt = 0;
 951        tsk->nvcsw = tsk->nivcsw = 0;
 952#ifdef CONFIG_DETECT_HUNG_TASK
 953        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 954#endif
 955
 956        tsk->mm = NULL;
 957        tsk->active_mm = NULL;
 958
 959        /*
 960         * Are we cloning a kernel thread?
 961         *
 962         * We need to steal a active VM for that..
 963         */
 964        oldmm = current->mm;
 965        if (!oldmm)
 966                return 0;
 967
 968        /* initialize the new vmacache entries */
 969        vmacache_flush(tsk);
 970
 971        if (clone_flags & CLONE_VM) {
 972                atomic_inc(&oldmm->mm_users);
 973                mm = oldmm;
 974                goto good_mm;
 975        }
 976
 977        retval = -ENOMEM;
 978        mm = dup_mm(tsk);
 979        if (!mm)
 980                goto fail_nomem;
 981
 982good_mm:
 983        tsk->mm = mm;
 984        tsk->active_mm = mm;
 985        return 0;
 986
 987fail_nomem:
 988        return retval;
 989}
 990
 991static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 992{
 993        struct fs_struct *fs = current->fs;
 994        if (clone_flags & CLONE_FS) {
 995                /* tsk->fs is already what we want */
 996                spin_lock(&fs->lock);
 997                if (fs->in_exec) {
 998                        spin_unlock(&fs->lock);
 999                        return -EAGAIN;
1000                }
1001                fs->users++;
1002                spin_unlock(&fs->lock);
1003                return 0;
1004        }
1005        tsk->fs = copy_fs_struct(fs);
1006        if (!tsk->fs)
1007                return -ENOMEM;
1008        return 0;
1009}
1010
1011static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1012{
1013        struct files_struct *oldf, *newf;
1014        int error = 0;
1015
1016        /*
1017         * A background process may not have any files ...
1018         */
1019        oldf = current->files;
1020        if (!oldf)
1021                goto out;
1022
1023        if (clone_flags & CLONE_FILES) {
1024                atomic_inc(&oldf->count);
1025                goto out;
1026        }
1027
1028        newf = dup_fd(oldf, &error);
1029        if (!newf)
1030                goto out;
1031
1032        tsk->files = newf;
1033        error = 0;
1034out:
1035        return error;
1036}
1037
1038static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1039{
1040#ifdef CONFIG_BLOCK
1041        struct io_context *ioc = current->io_context;
1042        struct io_context *new_ioc;
1043
1044        if (!ioc)
1045                return 0;
1046        /*
1047         * Share io context with parent, if CLONE_IO is set
1048         */
1049        if (clone_flags & CLONE_IO) {
1050                ioc_task_link(ioc);
1051                tsk->io_context = ioc;
1052        } else if (ioprio_valid(ioc->ioprio)) {
1053                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1054                if (unlikely(!new_ioc))
1055                        return -ENOMEM;
1056
1057                new_ioc->ioprio = ioc->ioprio;
1058                put_io_context(new_ioc);
1059        }
1060#endif
1061        return 0;
1062}
1063
1064static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1065{
1066        struct sighand_struct *sig;
1067
1068        if (clone_flags & CLONE_SIGHAND) {
1069                atomic_inc(&current->sighand->count);
1070                return 0;
1071        }
1072        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1073        rcu_assign_pointer(tsk->sighand, sig);
1074        if (!sig)
1075                return -ENOMEM;
1076
1077        atomic_set(&sig->count, 1);
1078        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1079        return 0;
1080}
1081
1082void __cleanup_sighand(struct sighand_struct *sighand)
1083{
1084        if (atomic_dec_and_test(&sighand->count)) {
1085                signalfd_cleanup(sighand);
1086                /*
1087                 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1088                 * without an RCU grace period, see __lock_task_sighand().
1089                 */
1090                kmem_cache_free(sighand_cachep, sighand);
1091        }
1092}
1093
1094/*
1095 * Initialize POSIX timer handling for a thread group.
1096 */
1097static void posix_cpu_timers_init_group(struct signal_struct *sig)
1098{
1099        unsigned long cpu_limit;
1100
1101        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1102        if (cpu_limit != RLIM_INFINITY) {
1103                sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1104                sig->cputimer.running = 1;
1105        }
1106
1107        /* The timer lists. */
1108        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1109        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1110        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1111}
1112
1113static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1114{
1115        struct signal_struct *sig;
1116
1117        if (clone_flags & CLONE_THREAD)
1118                return 0;
1119
1120        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1121        tsk->signal = sig;
1122        if (!sig)
1123                return -ENOMEM;
1124
1125        sig->nr_threads = 1;
1126        atomic_set(&sig->live, 1);
1127        atomic_set(&sig->sigcnt, 1);
1128
1129        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1130        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1131        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1132
1133        init_waitqueue_head(&sig->wait_chldexit);
1134        sig->curr_target = tsk;
1135        init_sigpending(&sig->shared_pending);
1136        INIT_LIST_HEAD(&sig->posix_timers);
1137        seqlock_init(&sig->stats_lock);
1138        prev_cputime_init(&sig->prev_cputime);
1139
1140        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141        sig->real_timer.function = it_real_fn;
1142
1143        task_lock(current->group_leader);
1144        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1145        task_unlock(current->group_leader);
1146
1147        posix_cpu_timers_init_group(sig);
1148
1149        tty_audit_fork(sig);
1150        sched_autogroup_fork(sig);
1151
1152#ifdef CONFIG_CGROUPS
1153        init_rwsem(&sig->group_rwsem);
1154#endif
1155
1156        sig->oom_score_adj = current->signal->oom_score_adj;
1157        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1158
1159        sig->has_child_subreaper = current->signal->has_child_subreaper ||
1160                                   current->signal->is_child_subreaper;
1161
1162        mutex_init(&sig->cred_guard_mutex);
1163
1164        return 0;
1165}
1166
1167static void copy_seccomp(struct task_struct *p)
1168{
1169#ifdef CONFIG_SECCOMP
1170        /*
1171         * Must be called with sighand->lock held, which is common to
1172         * all threads in the group. Holding cred_guard_mutex is not
1173         * needed because this new task is not yet running and cannot
1174         * be racing exec.
1175         */
1176        assert_spin_locked(&current->sighand->siglock);
1177
1178        /* Ref-count the new filter user, and assign it. */
1179        get_seccomp_filter(current);
1180        p->seccomp = current->seccomp;
1181
1182        /*
1183         * Explicitly enable no_new_privs here in case it got set
1184         * between the task_struct being duplicated and holding the
1185         * sighand lock. The seccomp state and nnp must be in sync.
1186         */
1187        if (task_no_new_privs(current))
1188                task_set_no_new_privs(p);
1189
1190        /*
1191         * If the parent gained a seccomp mode after copying thread
1192         * flags and between before we held the sighand lock, we have
1193         * to manually enable the seccomp thread flag here.
1194         */
1195        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1196                set_tsk_thread_flag(p, TIF_SECCOMP);
1197#endif
1198}
1199
1200SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1201{
1202        current->clear_child_tid = tidptr;
1203
1204        return task_pid_vnr(current);
1205}
1206
1207static void rt_mutex_init_task(struct task_struct *p)
1208{
1209        raw_spin_lock_init(&p->pi_lock);
1210#ifdef CONFIG_RT_MUTEXES
1211        p->pi_waiters = RB_ROOT;
1212        p->pi_waiters_leftmost = NULL;
1213        p->pi_blocked_on = NULL;
1214#endif
1215}
1216
1217/*
1218 * Initialize POSIX timer handling for a single task.
1219 */
1220static void posix_cpu_timers_init(struct task_struct *tsk)
1221{
1222        tsk->cputime_expires.prof_exp = 0;
1223        tsk->cputime_expires.virt_exp = 0;
1224        tsk->cputime_expires.sched_exp = 0;
1225        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1226        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1227        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1228}
1229
1230static inline void
1231init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1232{
1233         task->pids[type].pid = pid;
1234}
1235
1236/*
1237 * This creates a new process as a copy of the old one,
1238 * but does not actually start it yet.
1239 *
1240 * It copies the registers, and all the appropriate
1241 * parts of the process environment (as per the clone
1242 * flags). The actual kick-off is left to the caller.
1243 */
1244static struct task_struct *copy_process(unsigned long clone_flags,
1245                                        unsigned long stack_start,
1246                                        unsigned long stack_size,
1247                                        int __user *child_tidptr,
1248                                        struct pid *pid,
1249                                        int trace,
1250                                        unsigned long tls)
1251{
1252        int retval;
1253        struct task_struct *p;
1254        void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1255
1256        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1257                return ERR_PTR(-EINVAL);
1258
1259        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1260                return ERR_PTR(-EINVAL);
1261
1262        /*
1263         * Thread groups must share signals as well, and detached threads
1264         * can only be started up within the thread group.
1265         */
1266        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1267                return ERR_PTR(-EINVAL);
1268
1269        /*
1270         * Shared signal handlers imply shared VM. By way of the above,
1271         * thread groups also imply shared VM. Blocking this case allows
1272         * for various simplifications in other code.
1273         */
1274        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1275                return ERR_PTR(-EINVAL);
1276
1277        /*
1278         * Siblings of global init remain as zombies on exit since they are
1279         * not reaped by their parent (swapper). To solve this and to avoid
1280         * multi-rooted process trees, prevent global and container-inits
1281         * from creating siblings.
1282         */
1283        if ((clone_flags & CLONE_PARENT) &&
1284                                current->signal->flags & SIGNAL_UNKILLABLE)
1285                return ERR_PTR(-EINVAL);
1286
1287        /*
1288         * If the new process will be in a different pid or user namespace
1289         * do not allow it to share a thread group with the forking task.
1290         */
1291        if (clone_flags & CLONE_THREAD) {
1292                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1293                    (task_active_pid_ns(current) !=
1294                                current->nsproxy->pid_ns_for_children))
1295                        return ERR_PTR(-EINVAL);
1296        }
1297
1298        retval = security_task_create(clone_flags);
1299        if (retval)
1300                goto fork_out;
1301
1302        retval = -ENOMEM;
1303        p = dup_task_struct(current);
1304        if (!p)
1305                goto fork_out;
1306
1307        ftrace_graph_init_task(p);
1308
1309        rt_mutex_init_task(p);
1310
1311#ifdef CONFIG_PROVE_LOCKING
1312        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1313        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1314#endif
1315        retval = -EAGAIN;
1316        if (atomic_read(&p->real_cred->user->processes) >=
1317                        task_rlimit(p, RLIMIT_NPROC)) {
1318                if (p->real_cred->user != INIT_USER &&
1319                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1320                        goto bad_fork_free;
1321        }
1322        current->flags &= ~PF_NPROC_EXCEEDED;
1323
1324        retval = copy_creds(p, clone_flags);
1325        if (retval < 0)
1326                goto bad_fork_free;
1327
1328        /*
1329         * If multiple threads are within copy_process(), then this check
1330         * triggers too late. This doesn't hurt, the check is only there
1331         * to stop root fork bombs.
1332         */
1333        retval = -EAGAIN;
1334        if (nr_threads >= max_threads)
1335                goto bad_fork_cleanup_count;
1336
1337        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1338        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1339        p->flags |= PF_FORKNOEXEC;
1340        INIT_LIST_HEAD(&p->children);
1341        INIT_LIST_HEAD(&p->sibling);
1342        rcu_copy_process(p);
1343        p->vfork_done = NULL;
1344        spin_lock_init(&p->alloc_lock);
1345
1346        init_sigpending(&p->pending);
1347
1348        p->utime = p->stime = p->gtime = 0;
1349        p->utimescaled = p->stimescaled = 0;
1350        prev_cputime_init(&p->prev_cputime);
1351
1352#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1353        seqlock_init(&p->vtime_seqlock);
1354        p->vtime_snap = 0;
1355        p->vtime_snap_whence = VTIME_SLEEPING;
1356#endif
1357
1358#if defined(SPLIT_RSS_COUNTING)
1359        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1360#endif
1361
1362        p->default_timer_slack_ns = current->timer_slack_ns;
1363
1364        task_io_accounting_init(&p->ioac);
1365        acct_clear_integrals(p);
1366
1367        posix_cpu_timers_init(p);
1368
1369        p->start_time = ktime_get_ns();
1370        p->real_start_time = ktime_get_boot_ns();
1371        p->io_context = NULL;
1372        p->audit_context = NULL;
1373        if (clone_flags & CLONE_THREAD)
1374                threadgroup_change_begin(current);
1375        cgroup_fork(p);
1376#ifdef CONFIG_NUMA
1377        p->mempolicy = mpol_dup(p->mempolicy);
1378        if (IS_ERR(p->mempolicy)) {
1379                retval = PTR_ERR(p->mempolicy);
1380                p->mempolicy = NULL;
1381                goto bad_fork_cleanup_threadgroup_lock;
1382        }
1383#endif
1384#ifdef CONFIG_CPUSETS
1385        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1386        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1387        seqcount_init(&p->mems_allowed_seq);
1388#endif
1389#ifdef CONFIG_TRACE_IRQFLAGS
1390        p->irq_events = 0;
1391        p->hardirqs_enabled = 0;
1392        p->hardirq_enable_ip = 0;
1393        p->hardirq_enable_event = 0;
1394        p->hardirq_disable_ip = _THIS_IP_;
1395        p->hardirq_disable_event = 0;
1396        p->softirqs_enabled = 1;
1397        p->softirq_enable_ip = _THIS_IP_;
1398        p->softirq_enable_event = 0;
1399        p->softirq_disable_ip = 0;
1400        p->softirq_disable_event = 0;
1401        p->hardirq_context = 0;
1402        p->softirq_context = 0;
1403#endif
1404
1405        p->pagefault_disabled = 0;
1406
1407#ifdef CONFIG_LOCKDEP
1408        p->lockdep_depth = 0; /* no locks held yet */
1409        p->curr_chain_key = 0;
1410        p->lockdep_recursion = 0;
1411#endif
1412
1413#ifdef CONFIG_DEBUG_MUTEXES
1414        p->blocked_on = NULL; /* not blocked yet */
1415#endif
1416#ifdef CONFIG_BCACHE
1417        p->sequential_io        = 0;
1418        p->sequential_io_avg    = 0;
1419#endif
1420
1421        /* Perform scheduler related setup. Assign this task to a CPU. */
1422        retval = sched_fork(clone_flags, p);
1423        if (retval)
1424                goto bad_fork_cleanup_policy;
1425
1426        retval = perf_event_init_task(p);
1427        if (retval)
1428                goto bad_fork_cleanup_policy;
1429        retval = audit_alloc(p);
1430        if (retval)
1431                goto bad_fork_cleanup_perf;
1432        /* copy all the process information */
1433        shm_init_task(p);
1434        retval = copy_semundo(clone_flags, p);
1435        if (retval)
1436                goto bad_fork_cleanup_audit;
1437        retval = copy_files(clone_flags, p);
1438        if (retval)
1439                goto bad_fork_cleanup_semundo;
1440        retval = copy_fs(clone_flags, p);
1441        if (retval)
1442                goto bad_fork_cleanup_files;
1443        retval = copy_sighand(clone_flags, p);
1444        if (retval)
1445                goto bad_fork_cleanup_fs;
1446        retval = copy_signal(clone_flags, p);
1447        if (retval)
1448                goto bad_fork_cleanup_sighand;
1449        retval = copy_mm(clone_flags, p);
1450        if (retval)
1451                goto bad_fork_cleanup_signal;
1452        retval = copy_namespaces(clone_flags, p);
1453        if (retval)
1454                goto bad_fork_cleanup_mm;
1455        retval = copy_io(clone_flags, p);
1456        if (retval)
1457                goto bad_fork_cleanup_namespaces;
1458        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1459        if (retval)
1460                goto bad_fork_cleanup_io;
1461
1462        if (pid != &init_struct_pid) {
1463                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1464                if (IS_ERR(pid)) {
1465                        retval = PTR_ERR(pid);
1466                        goto bad_fork_cleanup_io;
1467                }
1468        }
1469
1470        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1471        /*
1472         * Clear TID on mm_release()?
1473         */
1474        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1475#ifdef CONFIG_BLOCK
1476        p->plug = NULL;
1477#endif
1478#ifdef CONFIG_FUTEX
1479        p->robust_list = NULL;
1480#ifdef CONFIG_COMPAT
1481        p->compat_robust_list = NULL;
1482#endif
1483        INIT_LIST_HEAD(&p->pi_state_list);
1484        p->pi_state_cache = NULL;
1485#endif
1486        /*
1487         * sigaltstack should be cleared when sharing the same VM
1488         */
1489        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1490                p->sas_ss_sp = p->sas_ss_size = 0;
1491
1492        /*
1493         * Syscall tracing and stepping should be turned off in the
1494         * child regardless of CLONE_PTRACE.
1495         */
1496        user_disable_single_step(p);
1497        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1498#ifdef TIF_SYSCALL_EMU
1499        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1500#endif
1501        clear_all_latency_tracing(p);
1502
1503        /* ok, now we should be set up.. */
1504        p->pid = pid_nr(pid);
1505        if (clone_flags & CLONE_THREAD) {
1506                p->exit_signal = -1;
1507                p->group_leader = current->group_leader;
1508                p->tgid = current->tgid;
1509        } else {
1510                if (clone_flags & CLONE_PARENT)
1511                        p->exit_signal = current->group_leader->exit_signal;
1512                else
1513                        p->exit_signal = (clone_flags & CSIGNAL);
1514                p->group_leader = p;
1515                p->tgid = p->pid;
1516        }
1517
1518        p->nr_dirtied = 0;
1519        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1520        p->dirty_paused_when = 0;
1521
1522        p->pdeath_signal = 0;
1523        INIT_LIST_HEAD(&p->thread_group);
1524        p->task_works = NULL;
1525
1526        /*
1527         * Ensure that the cgroup subsystem policies allow the new process to be
1528         * forked. It should be noted the the new process's css_set can be changed
1529         * between here and cgroup_post_fork() if an organisation operation is in
1530         * progress.
1531         */
1532        retval = cgroup_can_fork(p, cgrp_ss_priv);
1533        if (retval)
1534                goto bad_fork_free_pid;
1535
1536        /*
1537         * Make it visible to the rest of the system, but dont wake it up yet.
1538         * Need tasklist lock for parent etc handling!
1539         */
1540        write_lock_irq(&tasklist_lock);
1541
1542        /* CLONE_PARENT re-uses the old parent */
1543        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1544                p->real_parent = current->real_parent;
1545                p->parent_exec_id = current->parent_exec_id;
1546        } else {
1547                p->real_parent = current;
1548                p->parent_exec_id = current->self_exec_id;
1549        }
1550
1551        spin_lock(&current->sighand->siglock);
1552
1553        /*
1554         * Copy seccomp details explicitly here, in case they were changed
1555         * before holding sighand lock.
1556         */
1557        copy_seccomp(p);
1558
1559        /*
1560         * Process group and session signals need to be delivered to just the
1561         * parent before the fork or both the parent and the child after the
1562         * fork. Restart if a signal comes in before we add the new process to
1563         * it's process group.
1564         * A fatal signal pending means that current will exit, so the new
1565         * thread can't slip out of an OOM kill (or normal SIGKILL).
1566        */
1567        recalc_sigpending();
1568        if (signal_pending(current)) {
1569                spin_unlock(&current->sighand->siglock);
1570                write_unlock_irq(&tasklist_lock);
1571                retval = -ERESTARTNOINTR;
1572                goto bad_fork_cancel_cgroup;
1573        }
1574
1575        if (likely(p->pid)) {
1576                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1577
1578                init_task_pid(p, PIDTYPE_PID, pid);
1579                if (thread_group_leader(p)) {
1580                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1581                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1582
1583                        if (is_child_reaper(pid)) {
1584                                ns_of_pid(pid)->child_reaper = p;
1585                                p->signal->flags |= SIGNAL_UNKILLABLE;
1586                        }
1587
1588                        p->signal->leader_pid = pid;
1589                        p->signal->tty = tty_kref_get(current->signal->tty);
1590                        list_add_tail(&p->sibling, &p->real_parent->children);
1591                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1592                        attach_pid(p, PIDTYPE_PGID);
1593                        attach_pid(p, PIDTYPE_SID);
1594                        __this_cpu_inc(process_counts);
1595                } else {
1596                        current->signal->nr_threads++;
1597                        atomic_inc(&current->signal->live);
1598                        atomic_inc(&current->signal->sigcnt);
1599                        list_add_tail_rcu(&p->thread_group,
1600                                          &p->group_leader->thread_group);
1601                        list_add_tail_rcu(&p->thread_node,
1602                                          &p->signal->thread_head);
1603                }
1604                attach_pid(p, PIDTYPE_PID);
1605                nr_threads++;
1606        }
1607
1608        total_forks++;
1609        spin_unlock(&current->sighand->siglock);
1610        syscall_tracepoint_update(p);
1611        write_unlock_irq(&tasklist_lock);
1612
1613        proc_fork_connector(p);
1614        cgroup_post_fork(p, cgrp_ss_priv);
1615        if (clone_flags & CLONE_THREAD)
1616                threadgroup_change_end(current);
1617        perf_event_fork(p);
1618
1619        trace_task_newtask(p, clone_flags);
1620        uprobe_copy_process(p, clone_flags);
1621
1622        return p;
1623
1624bad_fork_cancel_cgroup:
1625        cgroup_cancel_fork(p, cgrp_ss_priv);
1626bad_fork_free_pid:
1627        if (pid != &init_struct_pid)
1628                free_pid(pid);
1629bad_fork_cleanup_io:
1630        if (p->io_context)
1631                exit_io_context(p);
1632bad_fork_cleanup_namespaces:
1633        exit_task_namespaces(p);
1634bad_fork_cleanup_mm:
1635        if (p->mm)
1636                mmput(p->mm);
1637bad_fork_cleanup_signal:
1638        if (!(clone_flags & CLONE_THREAD))
1639                free_signal_struct(p->signal);
1640bad_fork_cleanup_sighand:
1641        __cleanup_sighand(p->sighand);
1642bad_fork_cleanup_fs:
1643        exit_fs(p); /* blocking */
1644bad_fork_cleanup_files:
1645        exit_files(p); /* blocking */
1646bad_fork_cleanup_semundo:
1647        exit_sem(p);
1648bad_fork_cleanup_audit:
1649        audit_free(p);
1650bad_fork_cleanup_perf:
1651        perf_event_free_task(p);
1652bad_fork_cleanup_policy:
1653#ifdef CONFIG_NUMA
1654        mpol_put(p->mempolicy);
1655bad_fork_cleanup_threadgroup_lock:
1656#endif
1657        if (clone_flags & CLONE_THREAD)
1658                threadgroup_change_end(current);
1659        delayacct_tsk_free(p);
1660bad_fork_cleanup_count:
1661        atomic_dec(&p->cred->user->processes);
1662        exit_creds(p);
1663bad_fork_free:
1664        free_task(p);
1665fork_out:
1666        return ERR_PTR(retval);
1667}
1668
1669static inline void init_idle_pids(struct pid_link *links)
1670{
1671        enum pid_type type;
1672
1673        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1674                INIT_HLIST_NODE(&links[type].node); /* not really needed */
1675                links[type].pid = &init_struct_pid;
1676        }
1677}
1678
1679struct task_struct *fork_idle(int cpu)
1680{
1681        struct task_struct *task;
1682        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1683        if (!IS_ERR(task)) {
1684                init_idle_pids(task->pids);
1685                init_idle(task, cpu);
1686        }
1687
1688        return task;
1689}
1690
1691/*
1692 *  Ok, this is the main fork-routine.
1693 *
1694 * It copies the process, and if successful kick-starts
1695 * it and waits for it to finish using the VM if required.
1696 */
1697long _do_fork(unsigned long clone_flags,
1698              unsigned long stack_start,
1699              unsigned long stack_size,
1700              int __user *parent_tidptr,
1701              int __user *child_tidptr,
1702              unsigned long tls)
1703{
1704        struct task_struct *p;
1705        int trace = 0;
1706        long nr;
1707
1708        /*
1709         * Determine whether and which event to report to ptracer.  When
1710         * called from kernel_thread or CLONE_UNTRACED is explicitly
1711         * requested, no event is reported; otherwise, report if the event
1712         * for the type of forking is enabled.
1713         */
1714        if (!(clone_flags & CLONE_UNTRACED)) {
1715                if (clone_flags & CLONE_VFORK)
1716                        trace = PTRACE_EVENT_VFORK;
1717                else if ((clone_flags & CSIGNAL) != SIGCHLD)
1718                        trace = PTRACE_EVENT_CLONE;
1719                else
1720                        trace = PTRACE_EVENT_FORK;
1721
1722                if (likely(!ptrace_event_enabled(current, trace)))
1723                        trace = 0;
1724        }
1725
1726        p = copy_process(clone_flags, stack_start, stack_size,
1727                         child_tidptr, NULL, trace, tls);
1728        /*
1729         * Do this prior waking up the new thread - the thread pointer
1730         * might get invalid after that point, if the thread exits quickly.
1731         */
1732        if (!IS_ERR(p)) {
1733                struct completion vfork;
1734                struct pid *pid;
1735
1736                trace_sched_process_fork(current, p);
1737
1738                pid = get_task_pid(p, PIDTYPE_PID);
1739                nr = pid_vnr(pid);
1740
1741                if (clone_flags & CLONE_PARENT_SETTID)
1742                        put_user(nr, parent_tidptr);
1743
1744                if (clone_flags & CLONE_VFORK) {
1745                        p->vfork_done = &vfork;
1746                        init_completion(&vfork);
1747                        get_task_struct(p);
1748                }
1749
1750                wake_up_new_task(p);
1751
1752                /* forking complete and child started to run, tell ptracer */
1753                if (unlikely(trace))
1754                        ptrace_event_pid(trace, pid);
1755
1756                if (clone_flags & CLONE_VFORK) {
1757                        if (!wait_for_vfork_done(p, &vfork))
1758                                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1759                }
1760
1761                put_pid(pid);
1762        } else {
1763                nr = PTR_ERR(p);
1764        }
1765        return nr;
1766}
1767
1768#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1769/* For compatibility with architectures that call do_fork directly rather than
1770 * using the syscall entry points below. */
1771long do_fork(unsigned long clone_flags,
1772              unsigned long stack_start,
1773              unsigned long stack_size,
1774              int __user *parent_tidptr,
1775              int __user *child_tidptr)
1776{
1777        return _do_fork(clone_flags, stack_start, stack_size,
1778                        parent_tidptr, child_tidptr, 0);
1779}
1780#endif
1781
1782/*
1783 * Create a kernel thread.
1784 */
1785pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1786{
1787        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1788                (unsigned long)arg, NULL, NULL, 0);
1789}
1790
1791#ifdef __ARCH_WANT_SYS_FORK
1792SYSCALL_DEFINE0(fork)
1793{
1794#ifdef CONFIG_MMU
1795        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1796#else
1797        /* can not support in nommu mode */
1798        return -EINVAL;
1799#endif
1800}
1801#endif
1802
1803#ifdef __ARCH_WANT_SYS_VFORK
1804SYSCALL_DEFINE0(vfork)
1805{
1806        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1807                        0, NULL, NULL, 0);
1808}
1809#endif
1810
1811#ifdef __ARCH_WANT_SYS_CLONE
1812#ifdef CONFIG_CLONE_BACKWARDS
1813SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1814                 int __user *, parent_tidptr,
1815                 unsigned long, tls,
1816                 int __user *, child_tidptr)
1817#elif defined(CONFIG_CLONE_BACKWARDS2)
1818SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1819                 int __user *, parent_tidptr,
1820                 int __user *, child_tidptr,
1821                 unsigned long, tls)
1822#elif defined(CONFIG_CLONE_BACKWARDS3)
1823SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1824                int, stack_size,
1825                int __user *, parent_tidptr,
1826                int __user *, child_tidptr,
1827                unsigned long, tls)
1828#else
1829SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1830                 int __user *, parent_tidptr,
1831                 int __user *, child_tidptr,
1832                 unsigned long, tls)
1833#endif
1834{
1835        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1836}
1837#endif
1838
1839#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1840#define ARCH_MIN_MMSTRUCT_ALIGN 0
1841#endif
1842
1843static void sighand_ctor(void *data)
1844{
1845        struct sighand_struct *sighand = data;
1846
1847        spin_lock_init(&sighand->siglock);
1848        init_waitqueue_head(&sighand->signalfd_wqh);
1849}
1850
1851void __init proc_caches_init(void)
1852{
1853        sighand_cachep = kmem_cache_create("sighand_cache",
1854                        sizeof(struct sighand_struct), 0,
1855                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1856                        SLAB_NOTRACK, sighand_ctor);
1857        signal_cachep = kmem_cache_create("signal_cache",
1858                        sizeof(struct signal_struct), 0,
1859                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1860        files_cachep = kmem_cache_create("files_cache",
1861                        sizeof(struct files_struct), 0,
1862                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1863        fs_cachep = kmem_cache_create("fs_cache",
1864                        sizeof(struct fs_struct), 0,
1865                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1866        /*
1867         * FIXME! The "sizeof(struct mm_struct)" currently includes the
1868         * whole struct cpumask for the OFFSTACK case. We could change
1869         * this to *only* allocate as much of it as required by the
1870         * maximum number of CPU's we can ever have.  The cpumask_allocation
1871         * is at the end of the structure, exactly for that reason.
1872         */
1873        mm_cachep = kmem_cache_create("mm_struct",
1874                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1875                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1876        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1877        mmap_init();
1878        nsproxy_cache_init();
1879}
1880
1881/*
1882 * Check constraints on flags passed to the unshare system call.
1883 */
1884static int check_unshare_flags(unsigned long unshare_flags)
1885{
1886        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1887                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1888                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1889                                CLONE_NEWUSER|CLONE_NEWPID))
1890                return -EINVAL;
1891        /*
1892         * Not implemented, but pretend it works if there is nothing
1893         * to unshare.  Note that unsharing the address space or the
1894         * signal handlers also need to unshare the signal queues (aka
1895         * CLONE_THREAD).
1896         */
1897        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1898                if (!thread_group_empty(current))
1899                        return -EINVAL;
1900        }
1901        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1902                if (atomic_read(&current->sighand->count) > 1)
1903                        return -EINVAL;
1904        }
1905        if (unshare_flags & CLONE_VM) {
1906                if (!current_is_single_threaded())
1907                        return -EINVAL;
1908        }
1909
1910        return 0;
1911}
1912
1913/*
1914 * Unshare the filesystem structure if it is being shared
1915 */
1916static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1917{
1918        struct fs_struct *fs = current->fs;
1919
1920        if (!(unshare_flags & CLONE_FS) || !fs)
1921                return 0;
1922
1923        /* don't need lock here; in the worst case we'll do useless copy */
1924        if (fs->users == 1)
1925                return 0;
1926
1927        *new_fsp = copy_fs_struct(fs);
1928        if (!*new_fsp)
1929                return -ENOMEM;
1930
1931        return 0;
1932}
1933
1934/*
1935 * Unshare file descriptor table if it is being shared
1936 */
1937static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1938{
1939        struct files_struct *fd = current->files;
1940        int error = 0;
1941
1942        if ((unshare_flags & CLONE_FILES) &&
1943            (fd && atomic_read(&fd->count) > 1)) {
1944                *new_fdp = dup_fd(fd, &error);
1945                if (!*new_fdp)
1946                        return error;
1947        }
1948
1949        return 0;
1950}
1951
1952/*
1953 * unshare allows a process to 'unshare' part of the process
1954 * context which was originally shared using clone.  copy_*
1955 * functions used by do_fork() cannot be used here directly
1956 * because they modify an inactive task_struct that is being
1957 * constructed. Here we are modifying the current, active,
1958 * task_struct.
1959 */
1960SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1961{
1962        struct fs_struct *fs, *new_fs = NULL;
1963        struct files_struct *fd, *new_fd = NULL;
1964        struct cred *new_cred = NULL;
1965        struct nsproxy *new_nsproxy = NULL;
1966        int do_sysvsem = 0;
1967        int err;
1968
1969        /*
1970         * If unsharing a user namespace must also unshare the thread group
1971         * and unshare the filesystem root and working directories.
1972         */
1973        if (unshare_flags & CLONE_NEWUSER)
1974                unshare_flags |= CLONE_THREAD | CLONE_FS;
1975        /*
1976         * If unsharing vm, must also unshare signal handlers.
1977         */
1978        if (unshare_flags & CLONE_VM)
1979                unshare_flags |= CLONE_SIGHAND;
1980        /*
1981         * If unsharing a signal handlers, must also unshare the signal queues.
1982         */
1983        if (unshare_flags & CLONE_SIGHAND)
1984                unshare_flags |= CLONE_THREAD;
1985        /*
1986         * If unsharing namespace, must also unshare filesystem information.
1987         */
1988        if (unshare_flags & CLONE_NEWNS)
1989                unshare_flags |= CLONE_FS;
1990
1991        err = check_unshare_flags(unshare_flags);
1992        if (err)
1993                goto bad_unshare_out;
1994        /*
1995         * CLONE_NEWIPC must also detach from the undolist: after switching
1996         * to a new ipc namespace, the semaphore arrays from the old
1997         * namespace are unreachable.
1998         */
1999        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2000                do_sysvsem = 1;
2001        err = unshare_fs(unshare_flags, &new_fs);
2002        if (err)
2003                goto bad_unshare_out;
2004        err = unshare_fd(unshare_flags, &new_fd);
2005        if (err)
2006                goto bad_unshare_cleanup_fs;
2007        err = unshare_userns(unshare_flags, &new_cred);
2008        if (err)
2009                goto bad_unshare_cleanup_fd;
2010        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2011                                         new_cred, new_fs);
2012        if (err)
2013                goto bad_unshare_cleanup_cred;
2014
2015        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2016                if (do_sysvsem) {
2017                        /*
2018                         * CLONE_SYSVSEM is equivalent to sys_exit().
2019                         */
2020                        exit_sem(current);
2021                }
2022                if (unshare_flags & CLONE_NEWIPC) {
2023                        /* Orphan segments in old ns (see sem above). */
2024                        exit_shm(current);
2025                        shm_init_task(current);
2026                }
2027
2028                if (new_nsproxy)
2029                        switch_task_namespaces(current, new_nsproxy);
2030
2031                task_lock(current);
2032
2033                if (new_fs) {
2034                        fs = current->fs;
2035                        spin_lock(&fs->lock);
2036                        current->fs = new_fs;
2037                        if (--fs->users)
2038                                new_fs = NULL;
2039                        else
2040                                new_fs = fs;
2041                        spin_unlock(&fs->lock);
2042                }
2043
2044                if (new_fd) {
2045                        fd = current->files;
2046                        current->files = new_fd;
2047                        new_fd = fd;
2048                }
2049
2050                task_unlock(current);
2051
2052                if (new_cred) {
2053                        /* Install the new user namespace */
2054                        commit_creds(new_cred);
2055                        new_cred = NULL;
2056                }
2057        }
2058
2059bad_unshare_cleanup_cred:
2060        if (new_cred)
2061                put_cred(new_cred);
2062bad_unshare_cleanup_fd:
2063        if (new_fd)
2064                put_files_struct(new_fd);
2065
2066bad_unshare_cleanup_fs:
2067        if (new_fs)
2068                free_fs_struct(new_fs);
2069
2070bad_unshare_out:
2071        return err;
2072}
2073
2074/*
2075 *      Helper to unshare the files of the current task.
2076 *      We don't want to expose copy_files internals to
2077 *      the exec layer of the kernel.
2078 */
2079
2080int unshare_files(struct files_struct **displaced)
2081{
2082        struct task_struct *task = current;
2083        struct files_struct *copy = NULL;
2084        int error;
2085
2086        error = unshare_fd(CLONE_FILES, &copy);
2087        if (error || !copy) {
2088                *displaced = NULL;
2089                return error;
2090        }
2091        *displaced = task->files;
2092        task_lock(task);
2093        task->files = copy;
2094        task_unlock(task);
2095        return 0;
2096}
2097
2098int sysctl_max_threads(struct ctl_table *table, int write,
2099                       void __user *buffer, size_t *lenp, loff_t *ppos)
2100{
2101        struct ctl_table t;
2102        int ret;
2103        int threads = max_threads;
2104        int min = MIN_THREADS;
2105        int max = MAX_THREADS;
2106
2107        t = *table;
2108        t.data = &threads;
2109        t.extra1 = &min;
2110        t.extra2 = &max;
2111
2112        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2113        if (ret || !write)
2114                return ret;
2115
2116        set_max_threads(threads);
2117
2118        return 0;
2119}
2120