linux/kernel/futex.c
<<
>>
Prefs
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
  67#include <linux/fault-inject.h>
  68
  69#include <asm/futex.h>
  70
  71#include "locking/rtmutex_common.h"
  72
  73/*
  74 * READ this before attempting to hack on futexes!
  75 *
  76 * Basic futex operation and ordering guarantees
  77 * =============================================
  78 *
  79 * The waiter reads the futex value in user space and calls
  80 * futex_wait(). This function computes the hash bucket and acquires
  81 * the hash bucket lock. After that it reads the futex user space value
  82 * again and verifies that the data has not changed. If it has not changed
  83 * it enqueues itself into the hash bucket, releases the hash bucket lock
  84 * and schedules.
  85 *
  86 * The waker side modifies the user space value of the futex and calls
  87 * futex_wake(). This function computes the hash bucket and acquires the
  88 * hash bucket lock. Then it looks for waiters on that futex in the hash
  89 * bucket and wakes them.
  90 *
  91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  92 * the hb spinlock can be avoided and simply return. In order for this
  93 * optimization to work, ordering guarantees must exist so that the waiter
  94 * being added to the list is acknowledged when the list is concurrently being
  95 * checked by the waker, avoiding scenarios like the following:
  96 *
  97 * CPU 0                               CPU 1
  98 * val = *futex;
  99 * sys_futex(WAIT, futex, val);
 100 *   futex_wait(futex, val);
 101 *   uval = *futex;
 102 *                                     *futex = newval;
 103 *                                     sys_futex(WAKE, futex);
 104 *                                       futex_wake(futex);
 105 *                                       if (queue_empty())
 106 *                                         return;
 107 *   if (uval == val)
 108 *      lock(hash_bucket(futex));
 109 *      queue();
 110 *     unlock(hash_bucket(futex));
 111 *     schedule();
 112 *
 113 * This would cause the waiter on CPU 0 to wait forever because it
 114 * missed the transition of the user space value from val to newval
 115 * and the waker did not find the waiter in the hash bucket queue.
 116 *
 117 * The correct serialization ensures that a waiter either observes
 118 * the changed user space value before blocking or is woken by a
 119 * concurrent waker:
 120 *
 121 * CPU 0                                 CPU 1
 122 * val = *futex;
 123 * sys_futex(WAIT, futex, val);
 124 *   futex_wait(futex, val);
 125 *
 126 *   waiters++; (a)
 127 *   mb(); (A) <-- paired with -.
 128 *                              |
 129 *   lock(hash_bucket(futex));  |
 130 *                              |
 131 *   uval = *futex;             |
 132 *                              |        *futex = newval;
 133 *                              |        sys_futex(WAKE, futex);
 134 *                              |          futex_wake(futex);
 135 *                              |
 136 *                              `------->  mb(); (B)
 137 *   if (uval == val)
 138 *     queue();
 139 *     unlock(hash_bucket(futex));
 140 *     schedule();                         if (waiters)
 141 *                                           lock(hash_bucket(futex));
 142 *   else                                    wake_waiters(futex);
 143 *     waiters--; (b)                        unlock(hash_bucket(futex));
 144 *
 145 * Where (A) orders the waiters increment and the futex value read through
 146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 147 * to futex and the waiters read -- this is done by the barriers for both
 148 * shared and private futexes in get_futex_key_refs().
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *      X = Y = 0
 153 *
 154 *      w[X]=1          w[Y]=1
 155 *      MB              MB
 156 *      r[Y]=y          r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#define FLAGS_SHARED            0x01
 183#define FLAGS_CLOCKRT           0x02
 184#define FLAGS_HAS_TIMEOUT       0x04
 185
 186/*
 187 * Priority Inheritance state:
 188 */
 189struct futex_pi_state {
 190        /*
 191         * list of 'owned' pi_state instances - these have to be
 192         * cleaned up in do_exit() if the task exits prematurely:
 193         */
 194        struct list_head list;
 195
 196        /*
 197         * The PI object:
 198         */
 199        struct rt_mutex pi_mutex;
 200
 201        struct task_struct *owner;
 202        atomic_t refcount;
 203
 204        union futex_key key;
 205};
 206
 207/**
 208 * struct futex_q - The hashed futex queue entry, one per waiting task
 209 * @list:               priority-sorted list of tasks waiting on this futex
 210 * @task:               the task waiting on the futex
 211 * @lock_ptr:           the hash bucket lock
 212 * @key:                the key the futex is hashed on
 213 * @pi_state:           optional priority inheritance state
 214 * @rt_waiter:          rt_waiter storage for use with requeue_pi
 215 * @requeue_pi_key:     the requeue_pi target futex key
 216 * @bitset:             bitset for the optional bitmasked wakeup
 217 *
 218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 219 * we can wake only the relevant ones (hashed queues may be shared).
 220 *
 221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 223 * The order of wakeup is always to make the first condition true, then
 224 * the second.
 225 *
 226 * PI futexes are typically woken before they are removed from the hash list via
 227 * the rt_mutex code. See unqueue_me_pi().
 228 */
 229struct futex_q {
 230        struct plist_node list;
 231
 232        struct task_struct *task;
 233        spinlock_t *lock_ptr;
 234        union futex_key key;
 235        struct futex_pi_state *pi_state;
 236        struct rt_mutex_waiter *rt_waiter;
 237        union futex_key *requeue_pi_key;
 238        u32 bitset;
 239};
 240
 241static const struct futex_q futex_q_init = {
 242        /* list gets initialized in queue_me()*/
 243        .key = FUTEX_KEY_INIT,
 244        .bitset = FUTEX_BITSET_MATCH_ANY
 245};
 246
 247/*
 248 * Hash buckets are shared by all the futex_keys that hash to the same
 249 * location.  Each key may have multiple futex_q structures, one for each task
 250 * waiting on a futex.
 251 */
 252struct futex_hash_bucket {
 253        atomic_t waiters;
 254        spinlock_t lock;
 255        struct plist_head chain;
 256} ____cacheline_aligned_in_smp;
 257
 258static unsigned long __read_mostly futex_hashsize;
 259
 260static struct futex_hash_bucket *futex_queues;
 261
 262/*
 263 * Fault injections for futexes.
 264 */
 265#ifdef CONFIG_FAIL_FUTEX
 266
 267static struct {
 268        struct fault_attr attr;
 269
 270        u32 ignore_private;
 271} fail_futex = {
 272        .attr = FAULT_ATTR_INITIALIZER,
 273        .ignore_private = 0,
 274};
 275
 276static int __init setup_fail_futex(char *str)
 277{
 278        return setup_fault_attr(&fail_futex.attr, str);
 279}
 280__setup("fail_futex=", setup_fail_futex);
 281
 282static bool should_fail_futex(bool fshared)
 283{
 284        if (fail_futex.ignore_private && !fshared)
 285                return false;
 286
 287        return should_fail(&fail_futex.attr, 1);
 288}
 289
 290#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 291
 292static int __init fail_futex_debugfs(void)
 293{
 294        umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 295        struct dentry *dir;
 296
 297        dir = fault_create_debugfs_attr("fail_futex", NULL,
 298                                        &fail_futex.attr);
 299        if (IS_ERR(dir))
 300                return PTR_ERR(dir);
 301
 302        if (!debugfs_create_bool("ignore-private", mode, dir,
 303                                 &fail_futex.ignore_private)) {
 304                debugfs_remove_recursive(dir);
 305                return -ENOMEM;
 306        }
 307
 308        return 0;
 309}
 310
 311late_initcall(fail_futex_debugfs);
 312
 313#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 314
 315#else
 316static inline bool should_fail_futex(bool fshared)
 317{
 318        return false;
 319}
 320#endif /* CONFIG_FAIL_FUTEX */
 321
 322static inline void futex_get_mm(union futex_key *key)
 323{
 324        atomic_inc(&key->private.mm->mm_count);
 325        /*
 326         * Ensure futex_get_mm() implies a full barrier such that
 327         * get_futex_key() implies a full barrier. This is relied upon
 328         * as full barrier (B), see the ordering comment above.
 329         */
 330        smp_mb__after_atomic();
 331}
 332
 333/*
 334 * Reflects a new waiter being added to the waitqueue.
 335 */
 336static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 337{
 338#ifdef CONFIG_SMP
 339        atomic_inc(&hb->waiters);
 340        /*
 341         * Full barrier (A), see the ordering comment above.
 342         */
 343        smp_mb__after_atomic();
 344#endif
 345}
 346
 347/*
 348 * Reflects a waiter being removed from the waitqueue by wakeup
 349 * paths.
 350 */
 351static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 352{
 353#ifdef CONFIG_SMP
 354        atomic_dec(&hb->waiters);
 355#endif
 356}
 357
 358static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 359{
 360#ifdef CONFIG_SMP
 361        return atomic_read(&hb->waiters);
 362#else
 363        return 1;
 364#endif
 365}
 366
 367/*
 368 * We hash on the keys returned from get_futex_key (see below).
 369 */
 370static struct futex_hash_bucket *hash_futex(union futex_key *key)
 371{
 372        u32 hash = jhash2((u32*)&key->both.word,
 373                          (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 374                          key->both.offset);
 375        return &futex_queues[hash & (futex_hashsize - 1)];
 376}
 377
 378/*
 379 * Return 1 if two futex_keys are equal, 0 otherwise.
 380 */
 381static inline int match_futex(union futex_key *key1, union futex_key *key2)
 382{
 383        return (key1 && key2
 384                && key1->both.word == key2->both.word
 385                && key1->both.ptr == key2->both.ptr
 386                && key1->both.offset == key2->both.offset);
 387}
 388
 389/*
 390 * Take a reference to the resource addressed by a key.
 391 * Can be called while holding spinlocks.
 392 *
 393 */
 394static void get_futex_key_refs(union futex_key *key)
 395{
 396        if (!key->both.ptr)
 397                return;
 398
 399        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 400        case FUT_OFF_INODE:
 401                ihold(key->shared.inode); /* implies MB (B) */
 402                break;
 403        case FUT_OFF_MMSHARED:
 404                futex_get_mm(key); /* implies MB (B) */
 405                break;
 406        default:
 407                /*
 408                 * Private futexes do not hold reference on an inode or
 409                 * mm, therefore the only purpose of calling get_futex_key_refs
 410                 * is because we need the barrier for the lockless waiter check.
 411                 */
 412                smp_mb(); /* explicit MB (B) */
 413        }
 414}
 415
 416/*
 417 * Drop a reference to the resource addressed by a key.
 418 * The hash bucket spinlock must not be held. This is
 419 * a no-op for private futexes, see comment in the get
 420 * counterpart.
 421 */
 422static void drop_futex_key_refs(union futex_key *key)
 423{
 424        if (!key->both.ptr) {
 425                /* If we're here then we tried to put a key we failed to get */
 426                WARN_ON_ONCE(1);
 427                return;
 428        }
 429
 430        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 431        case FUT_OFF_INODE:
 432                iput(key->shared.inode);
 433                break;
 434        case FUT_OFF_MMSHARED:
 435                mmdrop(key->private.mm);
 436                break;
 437        }
 438}
 439
 440/**
 441 * get_futex_key() - Get parameters which are the keys for a futex
 442 * @uaddr:      virtual address of the futex
 443 * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 444 * @key:        address where result is stored.
 445 * @rw:         mapping needs to be read/write (values: VERIFY_READ,
 446 *              VERIFY_WRITE)
 447 *
 448 * Return: a negative error code or 0
 449 *
 450 * The key words are stored in *key on success.
 451 *
 452 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 453 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 454 * We can usually work out the index without swapping in the page.
 455 *
 456 * lock_page() might sleep, the caller should not hold a spinlock.
 457 */
 458static int
 459get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 460{
 461        unsigned long address = (unsigned long)uaddr;
 462        struct mm_struct *mm = current->mm;
 463        struct page *page, *page_head;
 464        int err, ro = 0;
 465
 466        /*
 467         * The futex address must be "naturally" aligned.
 468         */
 469        key->both.offset = address % PAGE_SIZE;
 470        if (unlikely((address % sizeof(u32)) != 0))
 471                return -EINVAL;
 472        address -= key->both.offset;
 473
 474        if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 475                return -EFAULT;
 476
 477        if (unlikely(should_fail_futex(fshared)))
 478                return -EFAULT;
 479
 480        /*
 481         * PROCESS_PRIVATE futexes are fast.
 482         * As the mm cannot disappear under us and the 'key' only needs
 483         * virtual address, we dont even have to find the underlying vma.
 484         * Note : We do have to check 'uaddr' is a valid user address,
 485         *        but access_ok() should be faster than find_vma()
 486         */
 487        if (!fshared) {
 488                key->private.mm = mm;
 489                key->private.address = address;
 490                get_futex_key_refs(key);  /* implies MB (B) */
 491                return 0;
 492        }
 493
 494again:
 495        /* Ignore any VERIFY_READ mapping (futex common case) */
 496        if (unlikely(should_fail_futex(fshared)))
 497                return -EFAULT;
 498
 499        err = get_user_pages_fast(address, 1, 1, &page);
 500        /*
 501         * If write access is not required (eg. FUTEX_WAIT), try
 502         * and get read-only access.
 503         */
 504        if (err == -EFAULT && rw == VERIFY_READ) {
 505                err = get_user_pages_fast(address, 1, 0, &page);
 506                ro = 1;
 507        }
 508        if (err < 0)
 509                return err;
 510        else
 511                err = 0;
 512
 513#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 514        page_head = page;
 515        if (unlikely(PageTail(page))) {
 516                put_page(page);
 517                /* serialize against __split_huge_page_splitting() */
 518                local_irq_disable();
 519                if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
 520                        page_head = compound_head(page);
 521                        /*
 522                         * page_head is valid pointer but we must pin
 523                         * it before taking the PG_lock and/or
 524                         * PG_compound_lock. The moment we re-enable
 525                         * irqs __split_huge_page_splitting() can
 526                         * return and the head page can be freed from
 527                         * under us. We can't take the PG_lock and/or
 528                         * PG_compound_lock on a page that could be
 529                         * freed from under us.
 530                         */
 531                        if (page != page_head) {
 532                                get_page(page_head);
 533                                put_page(page);
 534                        }
 535                        local_irq_enable();
 536                } else {
 537                        local_irq_enable();
 538                        goto again;
 539                }
 540        }
 541#else
 542        page_head = compound_head(page);
 543        if (page != page_head) {
 544                get_page(page_head);
 545                put_page(page);
 546        }
 547#endif
 548
 549        lock_page(page_head);
 550
 551        /*
 552         * If page_head->mapping is NULL, then it cannot be a PageAnon
 553         * page; but it might be the ZERO_PAGE or in the gate area or
 554         * in a special mapping (all cases which we are happy to fail);
 555         * or it may have been a good file page when get_user_pages_fast
 556         * found it, but truncated or holepunched or subjected to
 557         * invalidate_complete_page2 before we got the page lock (also
 558         * cases which we are happy to fail).  And we hold a reference,
 559         * so refcount care in invalidate_complete_page's remove_mapping
 560         * prevents drop_caches from setting mapping to NULL beneath us.
 561         *
 562         * The case we do have to guard against is when memory pressure made
 563         * shmem_writepage move it from filecache to swapcache beneath us:
 564         * an unlikely race, but we do need to retry for page_head->mapping.
 565         */
 566        if (!page_head->mapping) {
 567                int shmem_swizzled = PageSwapCache(page_head);
 568                unlock_page(page_head);
 569                put_page(page_head);
 570                if (shmem_swizzled)
 571                        goto again;
 572                return -EFAULT;
 573        }
 574
 575        /*
 576         * Private mappings are handled in a simple way.
 577         *
 578         * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 579         * it's a read-only handle, it's expected that futexes attach to
 580         * the object not the particular process.
 581         */
 582        if (PageAnon(page_head)) {
 583                /*
 584                 * A RO anonymous page will never change and thus doesn't make
 585                 * sense for futex operations.
 586                 */
 587                if (unlikely(should_fail_futex(fshared)) || ro) {
 588                        err = -EFAULT;
 589                        goto out;
 590                }
 591
 592                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 593                key->private.mm = mm;
 594                key->private.address = address;
 595        } else {
 596                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 597                key->shared.inode = page_head->mapping->host;
 598                key->shared.pgoff = basepage_index(page);
 599        }
 600
 601        get_futex_key_refs(key); /* implies MB (B) */
 602
 603out:
 604        unlock_page(page_head);
 605        put_page(page_head);
 606        return err;
 607}
 608
 609static inline void put_futex_key(union futex_key *key)
 610{
 611        drop_futex_key_refs(key);
 612}
 613
 614/**
 615 * fault_in_user_writeable() - Fault in user address and verify RW access
 616 * @uaddr:      pointer to faulting user space address
 617 *
 618 * Slow path to fixup the fault we just took in the atomic write
 619 * access to @uaddr.
 620 *
 621 * We have no generic implementation of a non-destructive write to the
 622 * user address. We know that we faulted in the atomic pagefault
 623 * disabled section so we can as well avoid the #PF overhead by
 624 * calling get_user_pages() right away.
 625 */
 626static int fault_in_user_writeable(u32 __user *uaddr)
 627{
 628        struct mm_struct *mm = current->mm;
 629        int ret;
 630
 631        down_read(&mm->mmap_sem);
 632        ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 633                               FAULT_FLAG_WRITE);
 634        up_read(&mm->mmap_sem);
 635
 636        return ret < 0 ? ret : 0;
 637}
 638
 639/**
 640 * futex_top_waiter() - Return the highest priority waiter on a futex
 641 * @hb:         the hash bucket the futex_q's reside in
 642 * @key:        the futex key (to distinguish it from other futex futex_q's)
 643 *
 644 * Must be called with the hb lock held.
 645 */
 646static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 647                                        union futex_key *key)
 648{
 649        struct futex_q *this;
 650
 651        plist_for_each_entry(this, &hb->chain, list) {
 652                if (match_futex(&this->key, key))
 653                        return this;
 654        }
 655        return NULL;
 656}
 657
 658static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 659                                      u32 uval, u32 newval)
 660{
 661        int ret;
 662
 663        pagefault_disable();
 664        ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 665        pagefault_enable();
 666
 667        return ret;
 668}
 669
 670static int get_futex_value_locked(u32 *dest, u32 __user *from)
 671{
 672        int ret;
 673
 674        pagefault_disable();
 675        ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 676        pagefault_enable();
 677
 678        return ret ? -EFAULT : 0;
 679}
 680
 681
 682/*
 683 * PI code:
 684 */
 685static int refill_pi_state_cache(void)
 686{
 687        struct futex_pi_state *pi_state;
 688
 689        if (likely(current->pi_state_cache))
 690                return 0;
 691
 692        pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 693
 694        if (!pi_state)
 695                return -ENOMEM;
 696
 697        INIT_LIST_HEAD(&pi_state->list);
 698        /* pi_mutex gets initialized later */
 699        pi_state->owner = NULL;
 700        atomic_set(&pi_state->refcount, 1);
 701        pi_state->key = FUTEX_KEY_INIT;
 702
 703        current->pi_state_cache = pi_state;
 704
 705        return 0;
 706}
 707
 708static struct futex_pi_state * alloc_pi_state(void)
 709{
 710        struct futex_pi_state *pi_state = current->pi_state_cache;
 711
 712        WARN_ON(!pi_state);
 713        current->pi_state_cache = NULL;
 714
 715        return pi_state;
 716}
 717
 718/*
 719 * Must be called with the hb lock held.
 720 */
 721static void free_pi_state(struct futex_pi_state *pi_state)
 722{
 723        if (!pi_state)
 724                return;
 725
 726        if (!atomic_dec_and_test(&pi_state->refcount))
 727                return;
 728
 729        /*
 730         * If pi_state->owner is NULL, the owner is most probably dying
 731         * and has cleaned up the pi_state already
 732         */
 733        if (pi_state->owner) {
 734                raw_spin_lock_irq(&pi_state->owner->pi_lock);
 735                list_del_init(&pi_state->list);
 736                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 737
 738                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 739        }
 740
 741        if (current->pi_state_cache)
 742                kfree(pi_state);
 743        else {
 744                /*
 745                 * pi_state->list is already empty.
 746                 * clear pi_state->owner.
 747                 * refcount is at 0 - put it back to 1.
 748                 */
 749                pi_state->owner = NULL;
 750                atomic_set(&pi_state->refcount, 1);
 751                current->pi_state_cache = pi_state;
 752        }
 753}
 754
 755/*
 756 * Look up the task based on what TID userspace gave us.
 757 * We dont trust it.
 758 */
 759static struct task_struct * futex_find_get_task(pid_t pid)
 760{
 761        struct task_struct *p;
 762
 763        rcu_read_lock();
 764        p = find_task_by_vpid(pid);
 765        if (p)
 766                get_task_struct(p);
 767
 768        rcu_read_unlock();
 769
 770        return p;
 771}
 772
 773/*
 774 * This task is holding PI mutexes at exit time => bad.
 775 * Kernel cleans up PI-state, but userspace is likely hosed.
 776 * (Robust-futex cleanup is separate and might save the day for userspace.)
 777 */
 778void exit_pi_state_list(struct task_struct *curr)
 779{
 780        struct list_head *next, *head = &curr->pi_state_list;
 781        struct futex_pi_state *pi_state;
 782        struct futex_hash_bucket *hb;
 783        union futex_key key = FUTEX_KEY_INIT;
 784
 785        if (!futex_cmpxchg_enabled)
 786                return;
 787        /*
 788         * We are a ZOMBIE and nobody can enqueue itself on
 789         * pi_state_list anymore, but we have to be careful
 790         * versus waiters unqueueing themselves:
 791         */
 792        raw_spin_lock_irq(&curr->pi_lock);
 793        while (!list_empty(head)) {
 794
 795                next = head->next;
 796                pi_state = list_entry(next, struct futex_pi_state, list);
 797                key = pi_state->key;
 798                hb = hash_futex(&key);
 799                raw_spin_unlock_irq(&curr->pi_lock);
 800
 801                spin_lock(&hb->lock);
 802
 803                raw_spin_lock_irq(&curr->pi_lock);
 804                /*
 805                 * We dropped the pi-lock, so re-check whether this
 806                 * task still owns the PI-state:
 807                 */
 808                if (head->next != next) {
 809                        spin_unlock(&hb->lock);
 810                        continue;
 811                }
 812
 813                WARN_ON(pi_state->owner != curr);
 814                WARN_ON(list_empty(&pi_state->list));
 815                list_del_init(&pi_state->list);
 816                pi_state->owner = NULL;
 817                raw_spin_unlock_irq(&curr->pi_lock);
 818
 819                rt_mutex_unlock(&pi_state->pi_mutex);
 820
 821                spin_unlock(&hb->lock);
 822
 823                raw_spin_lock_irq(&curr->pi_lock);
 824        }
 825        raw_spin_unlock_irq(&curr->pi_lock);
 826}
 827
 828/*
 829 * We need to check the following states:
 830 *
 831 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 832 *
 833 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 834 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 835 *
 836 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 837 *
 838 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 839 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 840 *
 841 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 842 *
 843 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 844 *
 845 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 846 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 847 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 848 *
 849 * [1]  Indicates that the kernel can acquire the futex atomically. We
 850 *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 851 *
 852 * [2]  Valid, if TID does not belong to a kernel thread. If no matching
 853 *      thread is found then it indicates that the owner TID has died.
 854 *
 855 * [3]  Invalid. The waiter is queued on a non PI futex
 856 *
 857 * [4]  Valid state after exit_robust_list(), which sets the user space
 858 *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 859 *
 860 * [5]  The user space value got manipulated between exit_robust_list()
 861 *      and exit_pi_state_list()
 862 *
 863 * [6]  Valid state after exit_pi_state_list() which sets the new owner in
 864 *      the pi_state but cannot access the user space value.
 865 *
 866 * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 867 *
 868 * [8]  Owner and user space value match
 869 *
 870 * [9]  There is no transient state which sets the user space TID to 0
 871 *      except exit_robust_list(), but this is indicated by the
 872 *      FUTEX_OWNER_DIED bit. See [4]
 873 *
 874 * [10] There is no transient state which leaves owner and user space
 875 *      TID out of sync.
 876 */
 877
 878/*
 879 * Validate that the existing waiter has a pi_state and sanity check
 880 * the pi_state against the user space value. If correct, attach to
 881 * it.
 882 */
 883static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
 884                              struct futex_pi_state **ps)
 885{
 886        pid_t pid = uval & FUTEX_TID_MASK;
 887
 888        /*
 889         * Userspace might have messed up non-PI and PI futexes [3]
 890         */
 891        if (unlikely(!pi_state))
 892                return -EINVAL;
 893
 894        WARN_ON(!atomic_read(&pi_state->refcount));
 895
 896        /*
 897         * Handle the owner died case:
 898         */
 899        if (uval & FUTEX_OWNER_DIED) {
 900                /*
 901                 * exit_pi_state_list sets owner to NULL and wakes the
 902                 * topmost waiter. The task which acquires the
 903                 * pi_state->rt_mutex will fixup owner.
 904                 */
 905                if (!pi_state->owner) {
 906                        /*
 907                         * No pi state owner, but the user space TID
 908                         * is not 0. Inconsistent state. [5]
 909                         */
 910                        if (pid)
 911                                return -EINVAL;
 912                        /*
 913                         * Take a ref on the state and return success. [4]
 914                         */
 915                        goto out_state;
 916                }
 917
 918                /*
 919                 * If TID is 0, then either the dying owner has not
 920                 * yet executed exit_pi_state_list() or some waiter
 921                 * acquired the rtmutex in the pi state, but did not
 922                 * yet fixup the TID in user space.
 923                 *
 924                 * Take a ref on the state and return success. [6]
 925                 */
 926                if (!pid)
 927                        goto out_state;
 928        } else {
 929                /*
 930                 * If the owner died bit is not set, then the pi_state
 931                 * must have an owner. [7]
 932                 */
 933                if (!pi_state->owner)
 934                        return -EINVAL;
 935        }
 936
 937        /*
 938         * Bail out if user space manipulated the futex value. If pi
 939         * state exists then the owner TID must be the same as the
 940         * user space TID. [9/10]
 941         */
 942        if (pid != task_pid_vnr(pi_state->owner))
 943                return -EINVAL;
 944out_state:
 945        atomic_inc(&pi_state->refcount);
 946        *ps = pi_state;
 947        return 0;
 948}
 949
 950/*
 951 * Lookup the task for the TID provided from user space and attach to
 952 * it after doing proper sanity checks.
 953 */
 954static int attach_to_pi_owner(u32 uval, union futex_key *key,
 955                              struct futex_pi_state **ps)
 956{
 957        pid_t pid = uval & FUTEX_TID_MASK;
 958        struct futex_pi_state *pi_state;
 959        struct task_struct *p;
 960
 961        /*
 962         * We are the first waiter - try to look up the real owner and attach
 963         * the new pi_state to it, but bail out when TID = 0 [1]
 964         */
 965        if (!pid)
 966                return -ESRCH;
 967        p = futex_find_get_task(pid);
 968        if (!p)
 969                return -ESRCH;
 970
 971        if (unlikely(p->flags & PF_KTHREAD)) {
 972                put_task_struct(p);
 973                return -EPERM;
 974        }
 975
 976        /*
 977         * We need to look at the task state flags to figure out,
 978         * whether the task is exiting. To protect against the do_exit
 979         * change of the task flags, we do this protected by
 980         * p->pi_lock:
 981         */
 982        raw_spin_lock_irq(&p->pi_lock);
 983        if (unlikely(p->flags & PF_EXITING)) {
 984                /*
 985                 * The task is on the way out. When PF_EXITPIDONE is
 986                 * set, we know that the task has finished the
 987                 * cleanup:
 988                 */
 989                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 990
 991                raw_spin_unlock_irq(&p->pi_lock);
 992                put_task_struct(p);
 993                return ret;
 994        }
 995
 996        /*
 997         * No existing pi state. First waiter. [2]
 998         */
 999        pi_state = alloc_pi_state();
1000
1001        /*
1002         * Initialize the pi_mutex in locked state and make @p
1003         * the owner of it:
1004         */
1005        rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1006
1007        /* Store the key for possible exit cleanups: */
1008        pi_state->key = *key;
1009
1010        WARN_ON(!list_empty(&pi_state->list));
1011        list_add(&pi_state->list, &p->pi_state_list);
1012        pi_state->owner = p;
1013        raw_spin_unlock_irq(&p->pi_lock);
1014
1015        put_task_struct(p);
1016
1017        *ps = pi_state;
1018
1019        return 0;
1020}
1021
1022static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1023                           union futex_key *key, struct futex_pi_state **ps)
1024{
1025        struct futex_q *match = futex_top_waiter(hb, key);
1026
1027        /*
1028         * If there is a waiter on that futex, validate it and
1029         * attach to the pi_state when the validation succeeds.
1030         */
1031        if (match)
1032                return attach_to_pi_state(uval, match->pi_state, ps);
1033
1034        /*
1035         * We are the first waiter - try to look up the owner based on
1036         * @uval and attach to it.
1037         */
1038        return attach_to_pi_owner(uval, key, ps);
1039}
1040
1041static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1042{
1043        u32 uninitialized_var(curval);
1044
1045        if (unlikely(should_fail_futex(true)))
1046                return -EFAULT;
1047
1048        if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1049                return -EFAULT;
1050
1051        /*If user space value changed, let the caller retry */
1052        return curval != uval ? -EAGAIN : 0;
1053}
1054
1055/**
1056 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1057 * @uaddr:              the pi futex user address
1058 * @hb:                 the pi futex hash bucket
1059 * @key:                the futex key associated with uaddr and hb
1060 * @ps:                 the pi_state pointer where we store the result of the
1061 *                      lookup
1062 * @task:               the task to perform the atomic lock work for.  This will
1063 *                      be "current" except in the case of requeue pi.
1064 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1065 *
1066 * Return:
1067 *  0 - ready to wait;
1068 *  1 - acquired the lock;
1069 * <0 - error
1070 *
1071 * The hb->lock and futex_key refs shall be held by the caller.
1072 */
1073static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1074                                union futex_key *key,
1075                                struct futex_pi_state **ps,
1076                                struct task_struct *task, int set_waiters)
1077{
1078        u32 uval, newval, vpid = task_pid_vnr(task);
1079        struct futex_q *match;
1080        int ret;
1081
1082        /*
1083         * Read the user space value first so we can validate a few
1084         * things before proceeding further.
1085         */
1086        if (get_futex_value_locked(&uval, uaddr))
1087                return -EFAULT;
1088
1089        if (unlikely(should_fail_futex(true)))
1090                return -EFAULT;
1091
1092        /*
1093         * Detect deadlocks.
1094         */
1095        if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1096                return -EDEADLK;
1097
1098        if ((unlikely(should_fail_futex(true))))
1099                return -EDEADLK;
1100
1101        /*
1102         * Lookup existing state first. If it exists, try to attach to
1103         * its pi_state.
1104         */
1105        match = futex_top_waiter(hb, key);
1106        if (match)
1107                return attach_to_pi_state(uval, match->pi_state, ps);
1108
1109        /*
1110         * No waiter and user TID is 0. We are here because the
1111         * waiters or the owner died bit is set or called from
1112         * requeue_cmp_pi or for whatever reason something took the
1113         * syscall.
1114         */
1115        if (!(uval & FUTEX_TID_MASK)) {
1116                /*
1117                 * We take over the futex. No other waiters and the user space
1118                 * TID is 0. We preserve the owner died bit.
1119                 */
1120                newval = uval & FUTEX_OWNER_DIED;
1121                newval |= vpid;
1122
1123                /* The futex requeue_pi code can enforce the waiters bit */
1124                if (set_waiters)
1125                        newval |= FUTEX_WAITERS;
1126
1127                ret = lock_pi_update_atomic(uaddr, uval, newval);
1128                /* If the take over worked, return 1 */
1129                return ret < 0 ? ret : 1;
1130        }
1131
1132        /*
1133         * First waiter. Set the waiters bit before attaching ourself to
1134         * the owner. If owner tries to unlock, it will be forced into
1135         * the kernel and blocked on hb->lock.
1136         */
1137        newval = uval | FUTEX_WAITERS;
1138        ret = lock_pi_update_atomic(uaddr, uval, newval);
1139        if (ret)
1140                return ret;
1141        /*
1142         * If the update of the user space value succeeded, we try to
1143         * attach to the owner. If that fails, no harm done, we only
1144         * set the FUTEX_WAITERS bit in the user space variable.
1145         */
1146        return attach_to_pi_owner(uval, key, ps);
1147}
1148
1149/**
1150 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1151 * @q:  The futex_q to unqueue
1152 *
1153 * The q->lock_ptr must not be NULL and must be held by the caller.
1154 */
1155static void __unqueue_futex(struct futex_q *q)
1156{
1157        struct futex_hash_bucket *hb;
1158
1159        if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1160            || WARN_ON(plist_node_empty(&q->list)))
1161                return;
1162
1163        hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1164        plist_del(&q->list, &hb->chain);
1165        hb_waiters_dec(hb);
1166}
1167
1168/*
1169 * The hash bucket lock must be held when this is called.
1170 * Afterwards, the futex_q must not be accessed. Callers
1171 * must ensure to later call wake_up_q() for the actual
1172 * wakeups to occur.
1173 */
1174static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1175{
1176        struct task_struct *p = q->task;
1177
1178        if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1179                return;
1180
1181        /*
1182         * Queue the task for later wakeup for after we've released
1183         * the hb->lock. wake_q_add() grabs reference to p.
1184         */
1185        wake_q_add(wake_q, p);
1186        __unqueue_futex(q);
1187        /*
1188         * The waiting task can free the futex_q as soon as
1189         * q->lock_ptr = NULL is written, without taking any locks. A
1190         * memory barrier is required here to prevent the following
1191         * store to lock_ptr from getting ahead of the plist_del.
1192         */
1193        smp_wmb();
1194        q->lock_ptr = NULL;
1195}
1196
1197static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1198                         struct futex_hash_bucket *hb)
1199{
1200        struct task_struct *new_owner;
1201        struct futex_pi_state *pi_state = this->pi_state;
1202        u32 uninitialized_var(curval), newval;
1203        WAKE_Q(wake_q);
1204        bool deboost;
1205        int ret = 0;
1206
1207        if (!pi_state)
1208                return -EINVAL;
1209
1210        /*
1211         * If current does not own the pi_state then the futex is
1212         * inconsistent and user space fiddled with the futex value.
1213         */
1214        if (pi_state->owner != current)
1215                return -EINVAL;
1216
1217        raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1218        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1219
1220        /*
1221         * It is possible that the next waiter (the one that brought
1222         * this owner to the kernel) timed out and is no longer
1223         * waiting on the lock.
1224         */
1225        if (!new_owner)
1226                new_owner = this->task;
1227
1228        /*
1229         * We pass it to the next owner. The WAITERS bit is always
1230         * kept enabled while there is PI state around. We cleanup the
1231         * owner died bit, because we are the owner.
1232         */
1233        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1234
1235        if (unlikely(should_fail_futex(true)))
1236                ret = -EFAULT;
1237
1238        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1239                ret = -EFAULT;
1240        else if (curval != uval)
1241                ret = -EINVAL;
1242        if (ret) {
1243                raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1244                return ret;
1245        }
1246
1247        raw_spin_lock_irq(&pi_state->owner->pi_lock);
1248        WARN_ON(list_empty(&pi_state->list));
1249        list_del_init(&pi_state->list);
1250        raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1251
1252        raw_spin_lock_irq(&new_owner->pi_lock);
1253        WARN_ON(!list_empty(&pi_state->list));
1254        list_add(&pi_state->list, &new_owner->pi_state_list);
1255        pi_state->owner = new_owner;
1256        raw_spin_unlock_irq(&new_owner->pi_lock);
1257
1258        raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1259
1260        deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1261
1262        /*
1263         * First unlock HB so the waiter does not spin on it once he got woken
1264         * up. Second wake up the waiter before the priority is adjusted. If we
1265         * deboost first (and lose our higher priority), then the task might get
1266         * scheduled away before the wake up can take place.
1267         */
1268        spin_unlock(&hb->lock);
1269        wake_up_q(&wake_q);
1270        if (deboost)
1271                rt_mutex_adjust_prio(current);
1272
1273        return 0;
1274}
1275
1276/*
1277 * Express the locking dependencies for lockdep:
1278 */
1279static inline void
1280double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1281{
1282        if (hb1 <= hb2) {
1283                spin_lock(&hb1->lock);
1284                if (hb1 < hb2)
1285                        spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1286        } else { /* hb1 > hb2 */
1287                spin_lock(&hb2->lock);
1288                spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1289        }
1290}
1291
1292static inline void
1293double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1294{
1295        spin_unlock(&hb1->lock);
1296        if (hb1 != hb2)
1297                spin_unlock(&hb2->lock);
1298}
1299
1300/*
1301 * Wake up waiters matching bitset queued on this futex (uaddr).
1302 */
1303static int
1304futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1305{
1306        struct futex_hash_bucket *hb;
1307        struct futex_q *this, *next;
1308        union futex_key key = FUTEX_KEY_INIT;
1309        int ret;
1310        WAKE_Q(wake_q);
1311
1312        if (!bitset)
1313                return -EINVAL;
1314
1315        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1316        if (unlikely(ret != 0))
1317                goto out;
1318
1319        hb = hash_futex(&key);
1320
1321        /* Make sure we really have tasks to wakeup */
1322        if (!hb_waiters_pending(hb))
1323                goto out_put_key;
1324
1325        spin_lock(&hb->lock);
1326
1327        plist_for_each_entry_safe(this, next, &hb->chain, list) {
1328                if (match_futex (&this->key, &key)) {
1329                        if (this->pi_state || this->rt_waiter) {
1330                                ret = -EINVAL;
1331                                break;
1332                        }
1333
1334                        /* Check if one of the bits is set in both bitsets */
1335                        if (!(this->bitset & bitset))
1336                                continue;
1337
1338                        mark_wake_futex(&wake_q, this);
1339                        if (++ret >= nr_wake)
1340                                break;
1341                }
1342        }
1343
1344        spin_unlock(&hb->lock);
1345        wake_up_q(&wake_q);
1346out_put_key:
1347        put_futex_key(&key);
1348out:
1349        return ret;
1350}
1351
1352/*
1353 * Wake up all waiters hashed on the physical page that is mapped
1354 * to this virtual address:
1355 */
1356static int
1357futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1358              int nr_wake, int nr_wake2, int op)
1359{
1360        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1361        struct futex_hash_bucket *hb1, *hb2;
1362        struct futex_q *this, *next;
1363        int ret, op_ret;
1364        WAKE_Q(wake_q);
1365
1366retry:
1367        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1368        if (unlikely(ret != 0))
1369                goto out;
1370        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1371        if (unlikely(ret != 0))
1372                goto out_put_key1;
1373
1374        hb1 = hash_futex(&key1);
1375        hb2 = hash_futex(&key2);
1376
1377retry_private:
1378        double_lock_hb(hb1, hb2);
1379        op_ret = futex_atomic_op_inuser(op, uaddr2);
1380        if (unlikely(op_ret < 0)) {
1381
1382                double_unlock_hb(hb1, hb2);
1383
1384#ifndef CONFIG_MMU
1385                /*
1386                 * we don't get EFAULT from MMU faults if we don't have an MMU,
1387                 * but we might get them from range checking
1388                 */
1389                ret = op_ret;
1390                goto out_put_keys;
1391#endif
1392
1393                if (unlikely(op_ret != -EFAULT)) {
1394                        ret = op_ret;
1395                        goto out_put_keys;
1396                }
1397
1398                ret = fault_in_user_writeable(uaddr2);
1399                if (ret)
1400                        goto out_put_keys;
1401
1402                if (!(flags & FLAGS_SHARED))
1403                        goto retry_private;
1404
1405                put_futex_key(&key2);
1406                put_futex_key(&key1);
1407                goto retry;
1408        }
1409
1410        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1411                if (match_futex (&this->key, &key1)) {
1412                        if (this->pi_state || this->rt_waiter) {
1413                                ret = -EINVAL;
1414                                goto out_unlock;
1415                        }
1416                        mark_wake_futex(&wake_q, this);
1417                        if (++ret >= nr_wake)
1418                                break;
1419                }
1420        }
1421
1422        if (op_ret > 0) {
1423                op_ret = 0;
1424                plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1425                        if (match_futex (&this->key, &key2)) {
1426                                if (this->pi_state || this->rt_waiter) {
1427                                        ret = -EINVAL;
1428                                        goto out_unlock;
1429                                }
1430                                mark_wake_futex(&wake_q, this);
1431                                if (++op_ret >= nr_wake2)
1432                                        break;
1433                        }
1434                }
1435                ret += op_ret;
1436        }
1437
1438out_unlock:
1439        double_unlock_hb(hb1, hb2);
1440        wake_up_q(&wake_q);
1441out_put_keys:
1442        put_futex_key(&key2);
1443out_put_key1:
1444        put_futex_key(&key1);
1445out:
1446        return ret;
1447}
1448
1449/**
1450 * requeue_futex() - Requeue a futex_q from one hb to another
1451 * @q:          the futex_q to requeue
1452 * @hb1:        the source hash_bucket
1453 * @hb2:        the target hash_bucket
1454 * @key2:       the new key for the requeued futex_q
1455 */
1456static inline
1457void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1458                   struct futex_hash_bucket *hb2, union futex_key *key2)
1459{
1460
1461        /*
1462         * If key1 and key2 hash to the same bucket, no need to
1463         * requeue.
1464         */
1465        if (likely(&hb1->chain != &hb2->chain)) {
1466                plist_del(&q->list, &hb1->chain);
1467                hb_waiters_dec(hb1);
1468                plist_add(&q->list, &hb2->chain);
1469                hb_waiters_inc(hb2);
1470                q->lock_ptr = &hb2->lock;
1471        }
1472        get_futex_key_refs(key2);
1473        q->key = *key2;
1474}
1475
1476/**
1477 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1478 * @q:          the futex_q
1479 * @key:        the key of the requeue target futex
1480 * @hb:         the hash_bucket of the requeue target futex
1481 *
1482 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1483 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1484 * to the requeue target futex so the waiter can detect the wakeup on the right
1485 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1486 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1487 * to protect access to the pi_state to fixup the owner later.  Must be called
1488 * with both q->lock_ptr and hb->lock held.
1489 */
1490static inline
1491void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1492                           struct futex_hash_bucket *hb)
1493{
1494        get_futex_key_refs(key);
1495        q->key = *key;
1496
1497        __unqueue_futex(q);
1498
1499        WARN_ON(!q->rt_waiter);
1500        q->rt_waiter = NULL;
1501
1502        q->lock_ptr = &hb->lock;
1503
1504        wake_up_state(q->task, TASK_NORMAL);
1505}
1506
1507/**
1508 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1509 * @pifutex:            the user address of the to futex
1510 * @hb1:                the from futex hash bucket, must be locked by the caller
1511 * @hb2:                the to futex hash bucket, must be locked by the caller
1512 * @key1:               the from futex key
1513 * @key2:               the to futex key
1514 * @ps:                 address to store the pi_state pointer
1515 * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1516 *
1517 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1518 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1519 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1520 * hb1 and hb2 must be held by the caller.
1521 *
1522 * Return:
1523 *  0 - failed to acquire the lock atomically;
1524 * >0 - acquired the lock, return value is vpid of the top_waiter
1525 * <0 - error
1526 */
1527static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1528                                 struct futex_hash_bucket *hb1,
1529                                 struct futex_hash_bucket *hb2,
1530                                 union futex_key *key1, union futex_key *key2,
1531                                 struct futex_pi_state **ps, int set_waiters)
1532{
1533        struct futex_q *top_waiter = NULL;
1534        u32 curval;
1535        int ret, vpid;
1536
1537        if (get_futex_value_locked(&curval, pifutex))
1538                return -EFAULT;
1539
1540        if (unlikely(should_fail_futex(true)))
1541                return -EFAULT;
1542
1543        /*
1544         * Find the top_waiter and determine if there are additional waiters.
1545         * If the caller intends to requeue more than 1 waiter to pifutex,
1546         * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1547         * as we have means to handle the possible fault.  If not, don't set
1548         * the bit unecessarily as it will force the subsequent unlock to enter
1549         * the kernel.
1550         */
1551        top_waiter = futex_top_waiter(hb1, key1);
1552
1553        /* There are no waiters, nothing for us to do. */
1554        if (!top_waiter)
1555                return 0;
1556
1557        /* Ensure we requeue to the expected futex. */
1558        if (!match_futex(top_waiter->requeue_pi_key, key2))
1559                return -EINVAL;
1560
1561        /*
1562         * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1563         * the contended case or if set_waiters is 1.  The pi_state is returned
1564         * in ps in contended cases.
1565         */
1566        vpid = task_pid_vnr(top_waiter->task);
1567        ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1568                                   set_waiters);
1569        if (ret == 1) {
1570                requeue_pi_wake_futex(top_waiter, key2, hb2);
1571                return vpid;
1572        }
1573        return ret;
1574}
1575
1576/**
1577 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1578 * @uaddr1:     source futex user address
1579 * @flags:      futex flags (FLAGS_SHARED, etc.)
1580 * @uaddr2:     target futex user address
1581 * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1582 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1583 * @cmpval:     @uaddr1 expected value (or %NULL)
1584 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1585 *              pi futex (pi to pi requeue is not supported)
1586 *
1587 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1588 * uaddr2 atomically on behalf of the top waiter.
1589 *
1590 * Return:
1591 * >=0 - on success, the number of tasks requeued or woken;
1592 *  <0 - on error
1593 */
1594static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1595                         u32 __user *uaddr2, int nr_wake, int nr_requeue,
1596                         u32 *cmpval, int requeue_pi)
1597{
1598        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1599        int drop_count = 0, task_count = 0, ret;
1600        struct futex_pi_state *pi_state = NULL;
1601        struct futex_hash_bucket *hb1, *hb2;
1602        struct futex_q *this, *next;
1603        WAKE_Q(wake_q);
1604
1605        if (requeue_pi) {
1606                /*
1607                 * Requeue PI only works on two distinct uaddrs. This
1608                 * check is only valid for private futexes. See below.
1609                 */
1610                if (uaddr1 == uaddr2)
1611                        return -EINVAL;
1612
1613                /*
1614                 * requeue_pi requires a pi_state, try to allocate it now
1615                 * without any locks in case it fails.
1616                 */
1617                if (refill_pi_state_cache())
1618                        return -ENOMEM;
1619                /*
1620                 * requeue_pi must wake as many tasks as it can, up to nr_wake
1621                 * + nr_requeue, since it acquires the rt_mutex prior to
1622                 * returning to userspace, so as to not leave the rt_mutex with
1623                 * waiters and no owner.  However, second and third wake-ups
1624                 * cannot be predicted as they involve race conditions with the
1625                 * first wake and a fault while looking up the pi_state.  Both
1626                 * pthread_cond_signal() and pthread_cond_broadcast() should
1627                 * use nr_wake=1.
1628                 */
1629                if (nr_wake != 1)
1630                        return -EINVAL;
1631        }
1632
1633retry:
1634        ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1635        if (unlikely(ret != 0))
1636                goto out;
1637        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1638                            requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1639        if (unlikely(ret != 0))
1640                goto out_put_key1;
1641
1642        /*
1643         * The check above which compares uaddrs is not sufficient for
1644         * shared futexes. We need to compare the keys:
1645         */
1646        if (requeue_pi && match_futex(&key1, &key2)) {
1647                ret = -EINVAL;
1648                goto out_put_keys;
1649        }
1650
1651        hb1 = hash_futex(&key1);
1652        hb2 = hash_futex(&key2);
1653
1654retry_private:
1655        hb_waiters_inc(hb2);
1656        double_lock_hb(hb1, hb2);
1657
1658        if (likely(cmpval != NULL)) {
1659                u32 curval;
1660
1661                ret = get_futex_value_locked(&curval, uaddr1);
1662
1663                if (unlikely(ret)) {
1664                        double_unlock_hb(hb1, hb2);
1665                        hb_waiters_dec(hb2);
1666
1667                        ret = get_user(curval, uaddr1);
1668                        if (ret)
1669                                goto out_put_keys;
1670
1671                        if (!(flags & FLAGS_SHARED))
1672                                goto retry_private;
1673
1674                        put_futex_key(&key2);
1675                        put_futex_key(&key1);
1676                        goto retry;
1677                }
1678                if (curval != *cmpval) {
1679                        ret = -EAGAIN;
1680                        goto out_unlock;
1681                }
1682        }
1683
1684        if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1685                /*
1686                 * Attempt to acquire uaddr2 and wake the top waiter. If we
1687                 * intend to requeue waiters, force setting the FUTEX_WAITERS
1688                 * bit.  We force this here where we are able to easily handle
1689                 * faults rather in the requeue loop below.
1690                 */
1691                ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1692                                                 &key2, &pi_state, nr_requeue);
1693
1694                /*
1695                 * At this point the top_waiter has either taken uaddr2 or is
1696                 * waiting on it.  If the former, then the pi_state will not
1697                 * exist yet, look it up one more time to ensure we have a
1698                 * reference to it. If the lock was taken, ret contains the
1699                 * vpid of the top waiter task.
1700                 */
1701                if (ret > 0) {
1702                        WARN_ON(pi_state);
1703                        drop_count++;
1704                        task_count++;
1705                        /*
1706                         * If we acquired the lock, then the user
1707                         * space value of uaddr2 should be vpid. It
1708                         * cannot be changed by the top waiter as it
1709                         * is blocked on hb2 lock if it tries to do
1710                         * so. If something fiddled with it behind our
1711                         * back the pi state lookup might unearth
1712                         * it. So we rather use the known value than
1713                         * rereading and handing potential crap to
1714                         * lookup_pi_state.
1715                         */
1716                        ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1717                }
1718
1719                switch (ret) {
1720                case 0:
1721                        break;
1722                case -EFAULT:
1723                        free_pi_state(pi_state);
1724                        pi_state = NULL;
1725                        double_unlock_hb(hb1, hb2);
1726                        hb_waiters_dec(hb2);
1727                        put_futex_key(&key2);
1728                        put_futex_key(&key1);
1729                        ret = fault_in_user_writeable(uaddr2);
1730                        if (!ret)
1731                                goto retry;
1732                        goto out;
1733                case -EAGAIN:
1734                        /*
1735                         * Two reasons for this:
1736                         * - Owner is exiting and we just wait for the
1737                         *   exit to complete.
1738                         * - The user space value changed.
1739                         */
1740                        free_pi_state(pi_state);
1741                        pi_state = NULL;
1742                        double_unlock_hb(hb1, hb2);
1743                        hb_waiters_dec(hb2);
1744                        put_futex_key(&key2);
1745                        put_futex_key(&key1);
1746                        cond_resched();
1747                        goto retry;
1748                default:
1749                        goto out_unlock;
1750                }
1751        }
1752
1753        plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1754                if (task_count - nr_wake >= nr_requeue)
1755                        break;
1756
1757                if (!match_futex(&this->key, &key1))
1758                        continue;
1759
1760                /*
1761                 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1762                 * be paired with each other and no other futex ops.
1763                 *
1764                 * We should never be requeueing a futex_q with a pi_state,
1765                 * which is awaiting a futex_unlock_pi().
1766                 */
1767                if ((requeue_pi && !this->rt_waiter) ||
1768                    (!requeue_pi && this->rt_waiter) ||
1769                    this->pi_state) {
1770                        ret = -EINVAL;
1771                        break;
1772                }
1773
1774                /*
1775                 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1776                 * lock, we already woke the top_waiter.  If not, it will be
1777                 * woken by futex_unlock_pi().
1778                 */
1779                if (++task_count <= nr_wake && !requeue_pi) {
1780                        mark_wake_futex(&wake_q, this);
1781                        continue;
1782                }
1783
1784                /* Ensure we requeue to the expected futex for requeue_pi. */
1785                if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1786                        ret = -EINVAL;
1787                        break;
1788                }
1789
1790                /*
1791                 * Requeue nr_requeue waiters and possibly one more in the case
1792                 * of requeue_pi if we couldn't acquire the lock atomically.
1793                 */
1794                if (requeue_pi) {
1795                        /* Prepare the waiter to take the rt_mutex. */
1796                        atomic_inc(&pi_state->refcount);
1797                        this->pi_state = pi_state;
1798                        ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1799                                                        this->rt_waiter,
1800                                                        this->task);
1801                        if (ret == 1) {
1802                                /* We got the lock. */
1803                                requeue_pi_wake_futex(this, &key2, hb2);
1804                                drop_count++;
1805                                continue;
1806                        } else if (ret) {
1807                                /* -EDEADLK */
1808                                this->pi_state = NULL;
1809                                free_pi_state(pi_state);
1810                                goto out_unlock;
1811                        }
1812                }
1813                requeue_futex(this, hb1, hb2, &key2);
1814                drop_count++;
1815        }
1816
1817out_unlock:
1818        free_pi_state(pi_state);
1819        double_unlock_hb(hb1, hb2);
1820        wake_up_q(&wake_q);
1821        hb_waiters_dec(hb2);
1822
1823        /*
1824         * drop_futex_key_refs() must be called outside the spinlocks. During
1825         * the requeue we moved futex_q's from the hash bucket at key1 to the
1826         * one at key2 and updated their key pointer.  We no longer need to
1827         * hold the references to key1.
1828         */
1829        while (--drop_count >= 0)
1830                drop_futex_key_refs(&key1);
1831
1832out_put_keys:
1833        put_futex_key(&key2);
1834out_put_key1:
1835        put_futex_key(&key1);
1836out:
1837        return ret ? ret : task_count;
1838}
1839
1840/* The key must be already stored in q->key. */
1841static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1842        __acquires(&hb->lock)
1843{
1844        struct futex_hash_bucket *hb;
1845
1846        hb = hash_futex(&q->key);
1847
1848        /*
1849         * Increment the counter before taking the lock so that
1850         * a potential waker won't miss a to-be-slept task that is
1851         * waiting for the spinlock. This is safe as all queue_lock()
1852         * users end up calling queue_me(). Similarly, for housekeeping,
1853         * decrement the counter at queue_unlock() when some error has
1854         * occurred and we don't end up adding the task to the list.
1855         */
1856        hb_waiters_inc(hb);
1857
1858        q->lock_ptr = &hb->lock;
1859
1860        spin_lock(&hb->lock); /* implies MB (A) */
1861        return hb;
1862}
1863
1864static inline void
1865queue_unlock(struct futex_hash_bucket *hb)
1866        __releases(&hb->lock)
1867{
1868        spin_unlock(&hb->lock);
1869        hb_waiters_dec(hb);
1870}
1871
1872/**
1873 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1874 * @q:  The futex_q to enqueue
1875 * @hb: The destination hash bucket
1876 *
1877 * The hb->lock must be held by the caller, and is released here. A call to
1878 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1879 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1880 * or nothing if the unqueue is done as part of the wake process and the unqueue
1881 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1882 * an example).
1883 */
1884static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1885        __releases(&hb->lock)
1886{
1887        int prio;
1888
1889        /*
1890         * The priority used to register this element is
1891         * - either the real thread-priority for the real-time threads
1892         * (i.e. threads with a priority lower than MAX_RT_PRIO)
1893         * - or MAX_RT_PRIO for non-RT threads.
1894         * Thus, all RT-threads are woken first in priority order, and
1895         * the others are woken last, in FIFO order.
1896         */
1897        prio = min(current->normal_prio, MAX_RT_PRIO);
1898
1899        plist_node_init(&q->list, prio);
1900        plist_add(&q->list, &hb->chain);
1901        q->task = current;
1902        spin_unlock(&hb->lock);
1903}
1904
1905/**
1906 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1907 * @q:  The futex_q to unqueue
1908 *
1909 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1910 * be paired with exactly one earlier call to queue_me().
1911 *
1912 * Return:
1913 *   1 - if the futex_q was still queued (and we removed unqueued it);
1914 *   0 - if the futex_q was already removed by the waking thread
1915 */
1916static int unqueue_me(struct futex_q *q)
1917{
1918        spinlock_t *lock_ptr;
1919        int ret = 0;
1920
1921        /* In the common case we don't take the spinlock, which is nice. */
1922retry:
1923        lock_ptr = q->lock_ptr;
1924        barrier();
1925        if (lock_ptr != NULL) {
1926                spin_lock(lock_ptr);
1927                /*
1928                 * q->lock_ptr can change between reading it and
1929                 * spin_lock(), causing us to take the wrong lock.  This
1930                 * corrects the race condition.
1931                 *
1932                 * Reasoning goes like this: if we have the wrong lock,
1933                 * q->lock_ptr must have changed (maybe several times)
1934                 * between reading it and the spin_lock().  It can
1935                 * change again after the spin_lock() but only if it was
1936                 * already changed before the spin_lock().  It cannot,
1937                 * however, change back to the original value.  Therefore
1938                 * we can detect whether we acquired the correct lock.
1939                 */
1940                if (unlikely(lock_ptr != q->lock_ptr)) {
1941                        spin_unlock(lock_ptr);
1942                        goto retry;
1943                }
1944                __unqueue_futex(q);
1945
1946                BUG_ON(q->pi_state);
1947
1948                spin_unlock(lock_ptr);
1949                ret = 1;
1950        }
1951
1952        drop_futex_key_refs(&q->key);
1953        return ret;
1954}
1955
1956/*
1957 * PI futexes can not be requeued and must remove themself from the
1958 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1959 * and dropped here.
1960 */
1961static void unqueue_me_pi(struct futex_q *q)
1962        __releases(q->lock_ptr)
1963{
1964        __unqueue_futex(q);
1965
1966        BUG_ON(!q->pi_state);
1967        free_pi_state(q->pi_state);
1968        q->pi_state = NULL;
1969
1970        spin_unlock(q->lock_ptr);
1971}
1972
1973/*
1974 * Fixup the pi_state owner with the new owner.
1975 *
1976 * Must be called with hash bucket lock held and mm->sem held for non
1977 * private futexes.
1978 */
1979static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1980                                struct task_struct *newowner)
1981{
1982        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1983        struct futex_pi_state *pi_state = q->pi_state;
1984        struct task_struct *oldowner = pi_state->owner;
1985        u32 uval, uninitialized_var(curval), newval;
1986        int ret;
1987
1988        /* Owner died? */
1989        if (!pi_state->owner)
1990                newtid |= FUTEX_OWNER_DIED;
1991
1992        /*
1993         * We are here either because we stole the rtmutex from the
1994         * previous highest priority waiter or we are the highest priority
1995         * waiter but failed to get the rtmutex the first time.
1996         * We have to replace the newowner TID in the user space variable.
1997         * This must be atomic as we have to preserve the owner died bit here.
1998         *
1999         * Note: We write the user space value _before_ changing the pi_state
2000         * because we can fault here. Imagine swapped out pages or a fork
2001         * that marked all the anonymous memory readonly for cow.
2002         *
2003         * Modifying pi_state _before_ the user space value would
2004         * leave the pi_state in an inconsistent state when we fault
2005         * here, because we need to drop the hash bucket lock to
2006         * handle the fault. This might be observed in the PID check
2007         * in lookup_pi_state.
2008         */
2009retry:
2010        if (get_futex_value_locked(&uval, uaddr))
2011                goto handle_fault;
2012
2013        while (1) {
2014                newval = (uval & FUTEX_OWNER_DIED) | newtid;
2015
2016                if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2017                        goto handle_fault;
2018                if (curval == uval)
2019                        break;
2020                uval = curval;
2021        }
2022
2023        /*
2024         * We fixed up user space. Now we need to fix the pi_state
2025         * itself.
2026         */
2027        if (pi_state->owner != NULL) {
2028                raw_spin_lock_irq(&pi_state->owner->pi_lock);
2029                WARN_ON(list_empty(&pi_state->list));
2030                list_del_init(&pi_state->list);
2031                raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2032        }
2033
2034        pi_state->owner = newowner;
2035
2036        raw_spin_lock_irq(&newowner->pi_lock);
2037        WARN_ON(!list_empty(&pi_state->list));
2038        list_add(&pi_state->list, &newowner->pi_state_list);
2039        raw_spin_unlock_irq(&newowner->pi_lock);
2040        return 0;
2041
2042        /*
2043         * To handle the page fault we need to drop the hash bucket
2044         * lock here. That gives the other task (either the highest priority
2045         * waiter itself or the task which stole the rtmutex) the
2046         * chance to try the fixup of the pi_state. So once we are
2047         * back from handling the fault we need to check the pi_state
2048         * after reacquiring the hash bucket lock and before trying to
2049         * do another fixup. When the fixup has been done already we
2050         * simply return.
2051         */
2052handle_fault:
2053        spin_unlock(q->lock_ptr);
2054
2055        ret = fault_in_user_writeable(uaddr);
2056
2057        spin_lock(q->lock_ptr);
2058
2059        /*
2060         * Check if someone else fixed it for us:
2061         */
2062        if (pi_state->owner != oldowner)
2063                return 0;
2064
2065        if (ret)
2066                return ret;
2067
2068        goto retry;
2069}
2070
2071static long futex_wait_restart(struct restart_block *restart);
2072
2073/**
2074 * fixup_owner() - Post lock pi_state and corner case management
2075 * @uaddr:      user address of the futex
2076 * @q:          futex_q (contains pi_state and access to the rt_mutex)
2077 * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2078 *
2079 * After attempting to lock an rt_mutex, this function is called to cleanup
2080 * the pi_state owner as well as handle race conditions that may allow us to
2081 * acquire the lock. Must be called with the hb lock held.
2082 *
2083 * Return:
2084 *  1 - success, lock taken;
2085 *  0 - success, lock not taken;
2086 * <0 - on error (-EFAULT)
2087 */
2088static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2089{
2090        struct task_struct *owner;
2091        int ret = 0;
2092
2093        if (locked) {
2094                /*
2095                 * Got the lock. We might not be the anticipated owner if we
2096                 * did a lock-steal - fix up the PI-state in that case:
2097                 */
2098                if (q->pi_state->owner != current)
2099                        ret = fixup_pi_state_owner(uaddr, q, current);
2100                goto out;
2101        }
2102
2103        /*
2104         * Catch the rare case, where the lock was released when we were on the
2105         * way back before we locked the hash bucket.
2106         */
2107        if (q->pi_state->owner == current) {
2108                /*
2109                 * Try to get the rt_mutex now. This might fail as some other
2110                 * task acquired the rt_mutex after we removed ourself from the
2111                 * rt_mutex waiters list.
2112                 */
2113                if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2114                        locked = 1;
2115                        goto out;
2116                }
2117
2118                /*
2119                 * pi_state is incorrect, some other task did a lock steal and
2120                 * we returned due to timeout or signal without taking the
2121                 * rt_mutex. Too late.
2122                 */
2123                raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2124                owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2125                if (!owner)
2126                        owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2127                raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2128                ret = fixup_pi_state_owner(uaddr, q, owner);
2129                goto out;
2130        }
2131
2132        /*
2133         * Paranoia check. If we did not take the lock, then we should not be
2134         * the owner of the rt_mutex.
2135         */
2136        if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2137                printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2138                                "pi-state %p\n", ret,
2139                                q->pi_state->pi_mutex.owner,
2140                                q->pi_state->owner);
2141
2142out:
2143        return ret ? ret : locked;
2144}
2145
2146/**
2147 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2148 * @hb:         the futex hash bucket, must be locked by the caller
2149 * @q:          the futex_q to queue up on
2150 * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2151 */
2152static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2153                                struct hrtimer_sleeper *timeout)
2154{
2155        /*
2156         * The task state is guaranteed to be set before another task can
2157         * wake it. set_current_state() is implemented using smp_store_mb() and
2158         * queue_me() calls spin_unlock() upon completion, both serializing
2159         * access to the hash list and forcing another memory barrier.
2160         */
2161        set_current_state(TASK_INTERRUPTIBLE);
2162        queue_me(q, hb);
2163
2164        /* Arm the timer */
2165        if (timeout)
2166                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2167
2168        /*
2169         * If we have been removed from the hash list, then another task
2170         * has tried to wake us, and we can skip the call to schedule().
2171         */
2172        if (likely(!plist_node_empty(&q->list))) {
2173                /*
2174                 * If the timer has already expired, current will already be
2175                 * flagged for rescheduling. Only call schedule if there
2176                 * is no timeout, or if it has yet to expire.
2177                 */
2178                if (!timeout || timeout->task)
2179                        freezable_schedule();
2180        }
2181        __set_current_state(TASK_RUNNING);
2182}
2183
2184/**
2185 * futex_wait_setup() - Prepare to wait on a futex
2186 * @uaddr:      the futex userspace address
2187 * @val:        the expected value
2188 * @flags:      futex flags (FLAGS_SHARED, etc.)
2189 * @q:          the associated futex_q
2190 * @hb:         storage for hash_bucket pointer to be returned to caller
2191 *
2192 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2193 * compare it with the expected value.  Handle atomic faults internally.
2194 * Return with the hb lock held and a q.key reference on success, and unlocked
2195 * with no q.key reference on failure.
2196 *
2197 * Return:
2198 *  0 - uaddr contains val and hb has been locked;
2199 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2200 */
2201static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2202                           struct futex_q *q, struct futex_hash_bucket **hb)
2203{
2204        u32 uval;
2205        int ret;
2206
2207        /*
2208         * Access the page AFTER the hash-bucket is locked.
2209         * Order is important:
2210         *
2211         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2212         *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2213         *
2214         * The basic logical guarantee of a futex is that it blocks ONLY
2215         * if cond(var) is known to be true at the time of blocking, for
2216         * any cond.  If we locked the hash-bucket after testing *uaddr, that
2217         * would open a race condition where we could block indefinitely with
2218         * cond(var) false, which would violate the guarantee.
2219         *
2220         * On the other hand, we insert q and release the hash-bucket only
2221         * after testing *uaddr.  This guarantees that futex_wait() will NOT
2222         * absorb a wakeup if *uaddr does not match the desired values
2223         * while the syscall executes.
2224         */
2225retry:
2226        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2227        if (unlikely(ret != 0))
2228                return ret;
2229
2230retry_private:
2231        *hb = queue_lock(q);
2232
2233        ret = get_futex_value_locked(&uval, uaddr);
2234
2235        if (ret) {
2236                queue_unlock(*hb);
2237
2238                ret = get_user(uval, uaddr);
2239                if (ret)
2240                        goto out;
2241
2242                if (!(flags & FLAGS_SHARED))
2243                        goto retry_private;
2244
2245                put_futex_key(&q->key);
2246                goto retry;
2247        }
2248
2249        if (uval != val) {
2250                queue_unlock(*hb);
2251                ret = -EWOULDBLOCK;
2252        }
2253
2254out:
2255        if (ret)
2256                put_futex_key(&q->key);
2257        return ret;
2258}
2259
2260static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2261                      ktime_t *abs_time, u32 bitset)
2262{
2263        struct hrtimer_sleeper timeout, *to = NULL;
2264        struct restart_block *restart;
2265        struct futex_hash_bucket *hb;
2266        struct futex_q q = futex_q_init;
2267        int ret;
2268
2269        if (!bitset)
2270                return -EINVAL;
2271        q.bitset = bitset;
2272
2273        if (abs_time) {
2274                to = &timeout;
2275
2276                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2277                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2278                                      HRTIMER_MODE_ABS);
2279                hrtimer_init_sleeper(to, current);
2280                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2281                                             current->timer_slack_ns);
2282        }
2283
2284retry:
2285        /*
2286         * Prepare to wait on uaddr. On success, holds hb lock and increments
2287         * q.key refs.
2288         */
2289        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2290        if (ret)
2291                goto out;
2292
2293        /* queue_me and wait for wakeup, timeout, or a signal. */
2294        futex_wait_queue_me(hb, &q, to);
2295
2296        /* If we were woken (and unqueued), we succeeded, whatever. */
2297        ret = 0;
2298        /* unqueue_me() drops q.key ref */
2299        if (!unqueue_me(&q))
2300                goto out;
2301        ret = -ETIMEDOUT;
2302        if (to && !to->task)
2303                goto out;
2304
2305        /*
2306         * We expect signal_pending(current), but we might be the
2307         * victim of a spurious wakeup as well.
2308         */
2309        if (!signal_pending(current))
2310                goto retry;
2311
2312        ret = -ERESTARTSYS;
2313        if (!abs_time)
2314                goto out;
2315
2316        restart = &current->restart_block;
2317        restart->fn = futex_wait_restart;
2318        restart->futex.uaddr = uaddr;
2319        restart->futex.val = val;
2320        restart->futex.time = abs_time->tv64;
2321        restart->futex.bitset = bitset;
2322        restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2323
2324        ret = -ERESTART_RESTARTBLOCK;
2325
2326out:
2327        if (to) {
2328                hrtimer_cancel(&to->timer);
2329                destroy_hrtimer_on_stack(&to->timer);
2330        }
2331        return ret;
2332}
2333
2334
2335static long futex_wait_restart(struct restart_block *restart)
2336{
2337        u32 __user *uaddr = restart->futex.uaddr;
2338        ktime_t t, *tp = NULL;
2339
2340        if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2341                t.tv64 = restart->futex.time;
2342                tp = &t;
2343        }
2344        restart->fn = do_no_restart_syscall;
2345
2346        return (long)futex_wait(uaddr, restart->futex.flags,
2347                                restart->futex.val, tp, restart->futex.bitset);
2348}
2349
2350
2351/*
2352 * Userspace tried a 0 -> TID atomic transition of the futex value
2353 * and failed. The kernel side here does the whole locking operation:
2354 * if there are waiters then it will block as a consequence of relying
2355 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2356 * a 0 value of the futex too.).
2357 *
2358 * Also serves as futex trylock_pi()'ing, and due semantics.
2359 */
2360static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2361                         ktime_t *time, int trylock)
2362{
2363        struct hrtimer_sleeper timeout, *to = NULL;
2364        struct futex_hash_bucket *hb;
2365        struct futex_q q = futex_q_init;
2366        int res, ret;
2367
2368        if (refill_pi_state_cache())
2369                return -ENOMEM;
2370
2371        if (time) {
2372                to = &timeout;
2373                hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2374                                      HRTIMER_MODE_ABS);
2375                hrtimer_init_sleeper(to, current);
2376                hrtimer_set_expires(&to->timer, *time);
2377        }
2378
2379retry:
2380        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2381        if (unlikely(ret != 0))
2382                goto out;
2383
2384retry_private:
2385        hb = queue_lock(&q);
2386
2387        ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2388        if (unlikely(ret)) {
2389                /*
2390                 * Atomic work succeeded and we got the lock,
2391                 * or failed. Either way, we do _not_ block.
2392                 */
2393                switch (ret) {
2394                case 1:
2395                        /* We got the lock. */
2396                        ret = 0;
2397                        goto out_unlock_put_key;
2398                case -EFAULT:
2399                        goto uaddr_faulted;
2400                case -EAGAIN:
2401                        /*
2402                         * Two reasons for this:
2403                         * - Task is exiting and we just wait for the
2404                         *   exit to complete.
2405                         * - The user space value changed.
2406                         */
2407                        queue_unlock(hb);
2408                        put_futex_key(&q.key);
2409                        cond_resched();
2410                        goto retry;
2411                default:
2412                        goto out_unlock_put_key;
2413                }
2414        }
2415
2416        /*
2417         * Only actually queue now that the atomic ops are done:
2418         */
2419        queue_me(&q, hb);
2420
2421        WARN_ON(!q.pi_state);
2422        /*
2423         * Block on the PI mutex:
2424         */
2425        if (!trylock) {
2426                ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2427        } else {
2428                ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2429                /* Fixup the trylock return value: */
2430                ret = ret ? 0 : -EWOULDBLOCK;
2431        }
2432
2433        spin_lock(q.lock_ptr);
2434        /*
2435         * Fixup the pi_state owner and possibly acquire the lock if we
2436         * haven't already.
2437         */
2438        res = fixup_owner(uaddr, &q, !ret);
2439        /*
2440         * If fixup_owner() returned an error, proprogate that.  If it acquired
2441         * the lock, clear our -ETIMEDOUT or -EINTR.
2442         */
2443        if (res)
2444                ret = (res < 0) ? res : 0;
2445
2446        /*
2447         * If fixup_owner() faulted and was unable to handle the fault, unlock
2448         * it and return the fault to userspace.
2449         */
2450        if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2451                rt_mutex_unlock(&q.pi_state->pi_mutex);
2452
2453        /* Unqueue and drop the lock */
2454        unqueue_me_pi(&q);
2455
2456        goto out_put_key;
2457
2458out_unlock_put_key:
2459        queue_unlock(hb);
2460
2461out_put_key:
2462        put_futex_key(&q.key);
2463out:
2464        if (to)
2465                destroy_hrtimer_on_stack(&to->timer);
2466        return ret != -EINTR ? ret : -ERESTARTNOINTR;
2467
2468uaddr_faulted:
2469        queue_unlock(hb);
2470
2471        ret = fault_in_user_writeable(uaddr);
2472        if (ret)
2473                goto out_put_key;
2474
2475        if (!(flags & FLAGS_SHARED))
2476                goto retry_private;
2477
2478        put_futex_key(&q.key);
2479        goto retry;
2480}
2481
2482/*
2483 * Userspace attempted a TID -> 0 atomic transition, and failed.
2484 * This is the in-kernel slowpath: we look up the PI state (if any),
2485 * and do the rt-mutex unlock.
2486 */
2487static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2488{
2489        u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2490        union futex_key key = FUTEX_KEY_INIT;
2491        struct futex_hash_bucket *hb;
2492        struct futex_q *match;
2493        int ret;
2494
2495retry:
2496        if (get_user(uval, uaddr))
2497                return -EFAULT;
2498        /*
2499         * We release only a lock we actually own:
2500         */
2501        if ((uval & FUTEX_TID_MASK) != vpid)
2502                return -EPERM;
2503
2504        ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2505        if (ret)
2506                return ret;
2507
2508        hb = hash_futex(&key);
2509        spin_lock(&hb->lock);
2510
2511        /*
2512         * Check waiters first. We do not trust user space values at
2513         * all and we at least want to know if user space fiddled
2514         * with the futex value instead of blindly unlocking.
2515         */
2516        match = futex_top_waiter(hb, &key);
2517        if (match) {
2518                ret = wake_futex_pi(uaddr, uval, match, hb);
2519                /*
2520                 * In case of success wake_futex_pi dropped the hash
2521                 * bucket lock.
2522                 */
2523                if (!ret)
2524                        goto out_putkey;
2525                /*
2526                 * The atomic access to the futex value generated a
2527                 * pagefault, so retry the user-access and the wakeup:
2528                 */
2529                if (ret == -EFAULT)
2530                        goto pi_faulted;
2531                /*
2532                 * wake_futex_pi has detected invalid state. Tell user
2533                 * space.
2534                 */
2535                goto out_unlock;
2536        }
2537
2538        /*
2539         * We have no kernel internal state, i.e. no waiters in the
2540         * kernel. Waiters which are about to queue themselves are stuck
2541         * on hb->lock. So we can safely ignore them. We do neither
2542         * preserve the WAITERS bit not the OWNER_DIED one. We are the
2543         * owner.
2544         */
2545        if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2546                goto pi_faulted;
2547
2548        /*
2549         * If uval has changed, let user space handle it.
2550         */
2551        ret = (curval == uval) ? 0 : -EAGAIN;
2552
2553out_unlock:
2554        spin_unlock(&hb->lock);
2555out_putkey:
2556        put_futex_key(&key);
2557        return ret;
2558
2559pi_faulted:
2560        spin_unlock(&hb->lock);
2561        put_futex_key(&key);
2562
2563        ret = fault_in_user_writeable(uaddr);
2564        if (!ret)
2565                goto retry;
2566
2567        return ret;
2568}
2569
2570/**
2571 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2572 * @hb:         the hash_bucket futex_q was original enqueued on
2573 * @q:          the futex_q woken while waiting to be requeued
2574 * @key2:       the futex_key of the requeue target futex
2575 * @timeout:    the timeout associated with the wait (NULL if none)
2576 *
2577 * Detect if the task was woken on the initial futex as opposed to the requeue
2578 * target futex.  If so, determine if it was a timeout or a signal that caused
2579 * the wakeup and return the appropriate error code to the caller.  Must be
2580 * called with the hb lock held.
2581 *
2582 * Return:
2583 *  0 = no early wakeup detected;
2584 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2585 */
2586static inline
2587int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2588                                   struct futex_q *q, union futex_key *key2,
2589                                   struct hrtimer_sleeper *timeout)
2590{
2591        int ret = 0;
2592
2593        /*
2594         * With the hb lock held, we avoid races while we process the wakeup.
2595         * We only need to hold hb (and not hb2) to ensure atomicity as the
2596         * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2597         * It can't be requeued from uaddr2 to something else since we don't
2598         * support a PI aware source futex for requeue.
2599         */
2600        if (!match_futex(&q->key, key2)) {
2601                WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2602                /*
2603                 * We were woken prior to requeue by a timeout or a signal.
2604                 * Unqueue the futex_q and determine which it was.
2605                 */
2606                plist_del(&q->list, &hb->chain);
2607                hb_waiters_dec(hb);
2608
2609                /* Handle spurious wakeups gracefully */
2610                ret = -EWOULDBLOCK;
2611                if (timeout && !timeout->task)
2612                        ret = -ETIMEDOUT;
2613                else if (signal_pending(current))
2614                        ret = -ERESTARTNOINTR;
2615        }
2616        return ret;
2617}
2618
2619/**
2620 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2621 * @uaddr:      the futex we initially wait on (non-pi)
2622 * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2623 *              the same type, no requeueing from private to shared, etc.
2624 * @val:        the expected value of uaddr
2625 * @abs_time:   absolute timeout
2626 * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2627 * @uaddr2:     the pi futex we will take prior to returning to user-space
2628 *
2629 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2630 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2631 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2632 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2633 * without one, the pi logic would not know which task to boost/deboost, if
2634 * there was a need to.
2635 *
2636 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2637 * via the following--
2638 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2639 * 2) wakeup on uaddr2 after a requeue
2640 * 3) signal
2641 * 4) timeout
2642 *
2643 * If 3, cleanup and return -ERESTARTNOINTR.
2644 *
2645 * If 2, we may then block on trying to take the rt_mutex and return via:
2646 * 5) successful lock
2647 * 6) signal
2648 * 7) timeout
2649 * 8) other lock acquisition failure
2650 *
2651 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2652 *
2653 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2654 *
2655 * Return:
2656 *  0 - On success;
2657 * <0 - On error
2658 */
2659static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2660                                 u32 val, ktime_t *abs_time, u32 bitset,
2661                                 u32 __user *uaddr2)
2662{
2663        struct hrtimer_sleeper timeout, *to = NULL;
2664        struct rt_mutex_waiter rt_waiter;
2665        struct rt_mutex *pi_mutex = NULL;
2666        struct futex_hash_bucket *hb;
2667        union futex_key key2 = FUTEX_KEY_INIT;
2668        struct futex_q q = futex_q_init;
2669        int res, ret;
2670
2671        if (uaddr == uaddr2)
2672                return -EINVAL;
2673
2674        if (!bitset)
2675                return -EINVAL;
2676
2677        if (abs_time) {
2678                to = &timeout;
2679                hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2680                                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2681                                      HRTIMER_MODE_ABS);
2682                hrtimer_init_sleeper(to, current);
2683                hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2684                                             current->timer_slack_ns);
2685        }
2686
2687        /*
2688         * The waiter is allocated on our stack, manipulated by the requeue
2689         * code while we sleep on uaddr.
2690         */
2691        debug_rt_mutex_init_waiter(&rt_waiter);
2692        RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2693        RB_CLEAR_NODE(&rt_waiter.tree_entry);
2694        rt_waiter.task = NULL;
2695
2696        ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2697        if (unlikely(ret != 0))
2698                goto out;
2699
2700        q.bitset = bitset;
2701        q.rt_waiter = &rt_waiter;
2702        q.requeue_pi_key = &key2;
2703
2704        /*
2705         * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2706         * count.
2707         */
2708        ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2709        if (ret)
2710                goto out_key2;
2711
2712        /*
2713         * The check above which compares uaddrs is not sufficient for
2714         * shared futexes. We need to compare the keys:
2715         */
2716        if (match_futex(&q.key, &key2)) {
2717                queue_unlock(hb);
2718                ret = -EINVAL;
2719                goto out_put_keys;
2720        }
2721
2722        /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2723        futex_wait_queue_me(hb, &q, to);
2724
2725        spin_lock(&hb->lock);
2726        ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2727        spin_unlock(&hb->lock);
2728        if (ret)
2729                goto out_put_keys;
2730
2731        /*
2732         * In order for us to be here, we know our q.key == key2, and since
2733         * we took the hb->lock above, we also know that futex_requeue() has
2734         * completed and we no longer have to concern ourselves with a wakeup
2735         * race with the atomic proxy lock acquisition by the requeue code. The
2736         * futex_requeue dropped our key1 reference and incremented our key2
2737         * reference count.
2738         */
2739
2740        /* Check if the requeue code acquired the second futex for us. */
2741        if (!q.rt_waiter) {
2742                /*
2743                 * Got the lock. We might not be the anticipated owner if we
2744                 * did a lock-steal - fix up the PI-state in that case.
2745                 */
2746                if (q.pi_state && (q.pi_state->owner != current)) {
2747                        spin_lock(q.lock_ptr);
2748                        ret = fixup_pi_state_owner(uaddr2, &q, current);
2749                        spin_unlock(q.lock_ptr);
2750                }
2751        } else {
2752                /*
2753                 * We have been woken up by futex_unlock_pi(), a timeout, or a
2754                 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2755                 * the pi_state.
2756                 */
2757                WARN_ON(!q.pi_state);
2758                pi_mutex = &q.pi_state->pi_mutex;
2759                ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2760                debug_rt_mutex_free_waiter(&rt_waiter);
2761
2762                spin_lock(q.lock_ptr);
2763                /*
2764                 * Fixup the pi_state owner and possibly acquire the lock if we
2765                 * haven't already.
2766                 */
2767                res = fixup_owner(uaddr2, &q, !ret);
2768                /*
2769                 * If fixup_owner() returned an error, proprogate that.  If it
2770                 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2771                 */
2772                if (res)
2773                        ret = (res < 0) ? res : 0;
2774
2775                /* Unqueue and drop the lock. */
2776                unqueue_me_pi(&q);
2777        }
2778
2779        /*
2780         * If fixup_pi_state_owner() faulted and was unable to handle the
2781         * fault, unlock the rt_mutex and return the fault to userspace.
2782         */
2783        if (ret == -EFAULT) {
2784                if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2785                        rt_mutex_unlock(pi_mutex);
2786        } else if (ret == -EINTR) {
2787                /*
2788                 * We've already been requeued, but cannot restart by calling
2789                 * futex_lock_pi() directly. We could restart this syscall, but
2790                 * it would detect that the user space "val" changed and return
2791                 * -EWOULDBLOCK.  Save the overhead of the restart and return
2792                 * -EWOULDBLOCK directly.
2793                 */
2794                ret = -EWOULDBLOCK;
2795        }
2796
2797out_put_keys:
2798        put_futex_key(&q.key);
2799out_key2:
2800        put_futex_key(&key2);
2801
2802out:
2803        if (to) {
2804                hrtimer_cancel(&to->timer);
2805                destroy_hrtimer_on_stack(&to->timer);
2806        }
2807        return ret;
2808}
2809
2810/*
2811 * Support for robust futexes: the kernel cleans up held futexes at
2812 * thread exit time.
2813 *
2814 * Implementation: user-space maintains a per-thread list of locks it
2815 * is holding. Upon do_exit(), the kernel carefully walks this list,
2816 * and marks all locks that are owned by this thread with the
2817 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2818 * always manipulated with the lock held, so the list is private and
2819 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2820 * field, to allow the kernel to clean up if the thread dies after
2821 * acquiring the lock, but just before it could have added itself to
2822 * the list. There can only be one such pending lock.
2823 */
2824
2825/**
2826 * sys_set_robust_list() - Set the robust-futex list head of a task
2827 * @head:       pointer to the list-head
2828 * @len:        length of the list-head, as userspace expects
2829 */
2830SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2831                size_t, len)
2832{
2833        if (!futex_cmpxchg_enabled)
2834                return -ENOSYS;
2835        /*
2836         * The kernel knows only one size for now:
2837         */
2838        if (unlikely(len != sizeof(*head)))
2839                return -EINVAL;
2840
2841        current->robust_list = head;
2842
2843        return 0;
2844}
2845
2846/**
2847 * sys_get_robust_list() - Get the robust-futex list head of a task
2848 * @pid:        pid of the process [zero for current task]
2849 * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2850 * @len_ptr:    pointer to a length field, the kernel fills in the header size
2851 */
2852SYSCALL_DEFINE3(get_robust_list, int, pid,
2853                struct robust_list_head __user * __user *, head_ptr,
2854                size_t __user *, len_ptr)
2855{
2856        struct robust_list_head __user *head;
2857        unsigned long ret;
2858        struct task_struct *p;
2859
2860        if (!futex_cmpxchg_enabled)
2861                return -ENOSYS;
2862
2863        rcu_read_lock();
2864
2865        ret = -ESRCH;
2866        if (!pid)
2867                p = current;
2868        else {
2869                p = find_task_by_vpid(pid);
2870                if (!p)
2871                        goto err_unlock;
2872        }
2873
2874        ret = -EPERM;
2875        if (!ptrace_may_access(p, PTRACE_MODE_READ))
2876                goto err_unlock;
2877
2878        head = p->robust_list;
2879        rcu_read_unlock();
2880
2881        if (put_user(sizeof(*head), len_ptr))
2882                return -EFAULT;
2883        return put_user(head, head_ptr);
2884
2885err_unlock:
2886        rcu_read_unlock();
2887
2888        return ret;
2889}
2890
2891/*
2892 * Process a futex-list entry, check whether it's owned by the
2893 * dying task, and do notification if so:
2894 */
2895int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2896{
2897        u32 uval, uninitialized_var(nval), mval;
2898
2899retry:
2900        if (get_user(uval, uaddr))
2901                return -1;
2902
2903        if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2904                /*
2905                 * Ok, this dying thread is truly holding a futex
2906                 * of interest. Set the OWNER_DIED bit atomically
2907                 * via cmpxchg, and if the value had FUTEX_WAITERS
2908                 * set, wake up a waiter (if any). (We have to do a
2909                 * futex_wake() even if OWNER_DIED is already set -
2910                 * to handle the rare but possible case of recursive
2911                 * thread-death.) The rest of the cleanup is done in
2912                 * userspace.
2913                 */
2914                mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2915                /*
2916                 * We are not holding a lock here, but we want to have
2917                 * the pagefault_disable/enable() protection because
2918                 * we want to handle the fault gracefully. If the
2919                 * access fails we try to fault in the futex with R/W
2920                 * verification via get_user_pages. get_user() above
2921                 * does not guarantee R/W access. If that fails we
2922                 * give up and leave the futex locked.
2923                 */
2924                if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2925                        if (fault_in_user_writeable(uaddr))
2926                                return -1;
2927                        goto retry;
2928                }
2929                if (nval != uval)
2930                        goto retry;
2931
2932                /*
2933                 * Wake robust non-PI futexes here. The wakeup of
2934                 * PI futexes happens in exit_pi_state():
2935                 */
2936                if (!pi && (uval & FUTEX_WAITERS))
2937                        futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2938        }
2939        return 0;
2940}
2941
2942/*
2943 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2944 */
2945static inline int fetch_robust_entry(struct robust_list __user **entry,
2946                                     struct robust_list __user * __user *head,
2947                                     unsigned int *pi)
2948{
2949        unsigned long uentry;
2950
2951        if (get_user(uentry, (unsigned long __user *)head))
2952                return -EFAULT;
2953
2954        *entry = (void __user *)(uentry & ~1UL);
2955        *pi = uentry & 1;
2956
2957        return 0;
2958}
2959
2960/*
2961 * Walk curr->robust_list (very carefully, it's a userspace list!)
2962 * and mark any locks found there dead, and notify any waiters.
2963 *
2964 * We silently return on any sign of list-walking problem.
2965 */
2966void exit_robust_list(struct task_struct *curr)
2967{
2968        struct robust_list_head __user *head = curr->robust_list;
2969        struct robust_list __user *entry, *next_entry, *pending;
2970        unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2971        unsigned int uninitialized_var(next_pi);
2972        unsigned long futex_offset;
2973        int rc;
2974
2975        if (!futex_cmpxchg_enabled)
2976                return;
2977
2978        /*
2979         * Fetch the list head (which was registered earlier, via
2980         * sys_set_robust_list()):
2981         */
2982        if (fetch_robust_entry(&entry, &head->list.next, &pi))
2983                return;
2984        /*
2985         * Fetch the relative futex offset:
2986         */
2987        if (get_user(futex_offset, &head->futex_offset))
2988                return;
2989        /*
2990         * Fetch any possibly pending lock-add first, and handle it
2991         * if it exists:
2992         */
2993        if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2994                return;
2995
2996        next_entry = NULL;      /* avoid warning with gcc */
2997        while (entry != &head->list) {
2998                /*
2999                 * Fetch the next entry in the list before calling
3000                 * handle_futex_death:
3001                 */
3002                rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3003                /*
3004                 * A pending lock might already be on the list, so
3005                 * don't process it twice:
3006                 */
3007                if (entry != pending)
3008                        if (handle_futex_death((void __user *)entry + futex_offset,
3009                                                curr, pi))
3010                                return;
3011                if (rc)
3012                        return;
3013                entry = next_entry;
3014                pi = next_pi;
3015                /*
3016                 * Avoid excessively long or circular lists:
3017                 */
3018                if (!--limit)
3019                        break;
3020
3021                cond_resched();
3022        }
3023
3024        if (pending)
3025                handle_futex_death((void __user *)pending + futex_offset,
3026                                   curr, pip);
3027}
3028
3029long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3030                u32 __user *uaddr2, u32 val2, u32 val3)
3031{
3032        int cmd = op & FUTEX_CMD_MASK;
3033        unsigned int flags = 0;
3034
3035        if (!(op & FUTEX_PRIVATE_FLAG))
3036                flags |= FLAGS_SHARED;
3037
3038        if (op & FUTEX_CLOCK_REALTIME) {
3039                flags |= FLAGS_CLOCKRT;
3040                if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3041                        return -ENOSYS;
3042        }
3043
3044        switch (cmd) {
3045        case FUTEX_LOCK_PI:
3046        case FUTEX_UNLOCK_PI:
3047        case FUTEX_TRYLOCK_PI:
3048        case FUTEX_WAIT_REQUEUE_PI:
3049        case FUTEX_CMP_REQUEUE_PI:
3050                if (!futex_cmpxchg_enabled)
3051                        return -ENOSYS;
3052        }
3053
3054        switch (cmd) {
3055        case FUTEX_WAIT:
3056                val3 = FUTEX_BITSET_MATCH_ANY;
3057        case FUTEX_WAIT_BITSET:
3058                return futex_wait(uaddr, flags, val, timeout, val3);
3059        case FUTEX_WAKE:
3060                val3 = FUTEX_BITSET_MATCH_ANY;
3061        case FUTEX_WAKE_BITSET:
3062                return futex_wake(uaddr, flags, val, val3);
3063        case FUTEX_REQUEUE:
3064                return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3065        case FUTEX_CMP_REQUEUE:
3066                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3067        case FUTEX_WAKE_OP:
3068                return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3069        case FUTEX_LOCK_PI:
3070                return futex_lock_pi(uaddr, flags, timeout, 0);
3071        case FUTEX_UNLOCK_PI:
3072                return futex_unlock_pi(uaddr, flags);
3073        case FUTEX_TRYLOCK_PI:
3074                return futex_lock_pi(uaddr, flags, NULL, 1);
3075        case FUTEX_WAIT_REQUEUE_PI:
3076                val3 = FUTEX_BITSET_MATCH_ANY;
3077                return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3078                                             uaddr2);
3079        case FUTEX_CMP_REQUEUE_PI:
3080                return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3081        }
3082        return -ENOSYS;
3083}
3084
3085
3086SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3087                struct timespec __user *, utime, u32 __user *, uaddr2,
3088                u32, val3)
3089{
3090        struct timespec ts;
3091        ktime_t t, *tp = NULL;
3092        u32 val2 = 0;
3093        int cmd = op & FUTEX_CMD_MASK;
3094
3095        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3096                      cmd == FUTEX_WAIT_BITSET ||
3097                      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3098                if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3099                        return -EFAULT;
3100                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3101                        return -EFAULT;
3102                if (!timespec_valid(&ts))
3103                        return -EINVAL;
3104
3105                t = timespec_to_ktime(ts);
3106                if (cmd == FUTEX_WAIT)
3107                        t = ktime_add_safe(ktime_get(), t);
3108                tp = &t;
3109        }
3110        /*
3111         * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3112         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3113         */
3114        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3115            cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3116                val2 = (u32) (unsigned long) utime;
3117
3118        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3119}
3120
3121static void __init futex_detect_cmpxchg(void)
3122{
3123#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3124        u32 curval;
3125
3126        /*
3127         * This will fail and we want it. Some arch implementations do
3128         * runtime detection of the futex_atomic_cmpxchg_inatomic()
3129         * functionality. We want to know that before we call in any
3130         * of the complex code paths. Also we want to prevent
3131         * registration of robust lists in that case. NULL is
3132         * guaranteed to fault and we get -EFAULT on functional
3133         * implementation, the non-functional ones will return
3134         * -ENOSYS.
3135         */
3136        if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3137                futex_cmpxchg_enabled = 1;
3138#endif
3139}
3140
3141static int __init futex_init(void)
3142{
3143        unsigned int futex_shift;
3144        unsigned long i;
3145
3146#if CONFIG_BASE_SMALL
3147        futex_hashsize = 16;
3148#else
3149        futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3150#endif
3151
3152        futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3153                                               futex_hashsize, 0,
3154                                               futex_hashsize < 256 ? HASH_SMALL : 0,
3155                                               &futex_shift, NULL,
3156                                               futex_hashsize, futex_hashsize);
3157        futex_hashsize = 1UL << futex_shift;
3158
3159        futex_detect_cmpxchg();
3160
3161        for (i = 0; i < futex_hashsize; i++) {
3162                atomic_set(&futex_queues[i].waiters, 0);
3163                plist_head_init(&futex_queues[i].chain);
3164                spin_lock_init(&futex_queues[i].lock);
3165        }
3166
3167        return 0;
3168}
3169__initcall(futex_init);
3170