linux/kernel/module.c
<<
>>
Prefs
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/trace_events.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/sysfs.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/vmalloc.h>
  30#include <linux/elf.h>
  31#include <linux/proc_fs.h>
  32#include <linux/security.h>
  33#include <linux/seq_file.h>
  34#include <linux/syscalls.h>
  35#include <linux/fcntl.h>
  36#include <linux/rcupdate.h>
  37#include <linux/capability.h>
  38#include <linux/cpu.h>
  39#include <linux/moduleparam.h>
  40#include <linux/errno.h>
  41#include <linux/err.h>
  42#include <linux/vermagic.h>
  43#include <linux/notifier.h>
  44#include <linux/sched.h>
  45#include <linux/device.h>
  46#include <linux/string.h>
  47#include <linux/mutex.h>
  48#include <linux/rculist.h>
  49#include <asm/uaccess.h>
  50#include <asm/cacheflush.h>
  51#include <asm/mmu_context.h>
  52#include <linux/license.h>
  53#include <asm/sections.h>
  54#include <linux/tracepoint.h>
  55#include <linux/ftrace.h>
  56#include <linux/async.h>
  57#include <linux/percpu.h>
  58#include <linux/kmemleak.h>
  59#include <linux/jump_label.h>
  60#include <linux/pfn.h>
  61#include <linux/bsearch.h>
  62#include <uapi/linux/module.h>
  63#include "module-internal.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/module.h>
  67
  68#ifndef ARCH_SHF_SMALL
  69#define ARCH_SHF_SMALL 0
  70#endif
  71
  72/*
  73 * Modules' sections will be aligned on page boundaries
  74 * to ensure complete separation of code and data, but
  75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  76 */
  77#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  78# define debug_align(X) ALIGN(X, PAGE_SIZE)
  79#else
  80# define debug_align(X) (X)
  81#endif
  82
  83/*
  84 * Given BASE and SIZE this macro calculates the number of pages the
  85 * memory regions occupies
  86 */
  87#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?         \
  88                (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
  89                         PFN_DOWN((unsigned long)BASE) + 1)     \
  90                : (0UL))
  91
  92/* If this is set, the section belongs in the init part of the module */
  93#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  94
  95/*
  96 * Mutex protects:
  97 * 1) List of modules (also safely readable with preempt_disable),
  98 * 2) module_use links,
  99 * 3) module_addr_min/module_addr_max.
 100 * (delete and add uses RCU list operations). */
 101DEFINE_MUTEX(module_mutex);
 102EXPORT_SYMBOL_GPL(module_mutex);
 103static LIST_HEAD(modules);
 104
 105#ifdef CONFIG_MODULES_TREE_LOOKUP
 106
 107/*
 108 * Use a latched RB-tree for __module_address(); this allows us to use
 109 * RCU-sched lookups of the address from any context.
 110 *
 111 * Because modules have two address ranges: init and core, we need two
 112 * latch_tree_nodes entries. Therefore we need the back-pointer from
 113 * mod_tree_node.
 114 *
 115 * Because init ranges are short lived we mark them unlikely and have placed
 116 * them outside the critical cacheline in struct module.
 117 *
 118 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 119 * __module_address() hard by doing a lot of stack unwinding; potentially from
 120 * NMI context.
 121 */
 122
 123static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 124{
 125        struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
 126        struct module *mod = mtn->mod;
 127
 128        if (unlikely(mtn == &mod->mtn_init))
 129                return (unsigned long)mod->module_init;
 130
 131        return (unsigned long)mod->module_core;
 132}
 133
 134static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 135{
 136        struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
 137        struct module *mod = mtn->mod;
 138
 139        if (unlikely(mtn == &mod->mtn_init))
 140                return (unsigned long)mod->init_size;
 141
 142        return (unsigned long)mod->core_size;
 143}
 144
 145static __always_inline bool
 146mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 147{
 148        return __mod_tree_val(a) < __mod_tree_val(b);
 149}
 150
 151static __always_inline int
 152mod_tree_comp(void *key, struct latch_tree_node *n)
 153{
 154        unsigned long val = (unsigned long)key;
 155        unsigned long start, end;
 156
 157        start = __mod_tree_val(n);
 158        if (val < start)
 159                return -1;
 160
 161        end = start + __mod_tree_size(n);
 162        if (val >= end)
 163                return 1;
 164
 165        return 0;
 166}
 167
 168static const struct latch_tree_ops mod_tree_ops = {
 169        .less = mod_tree_less,
 170        .comp = mod_tree_comp,
 171};
 172
 173static struct mod_tree_root {
 174        struct latch_tree_root root;
 175        unsigned long addr_min;
 176        unsigned long addr_max;
 177} mod_tree __cacheline_aligned = {
 178        .addr_min = -1UL,
 179};
 180
 181#define module_addr_min mod_tree.addr_min
 182#define module_addr_max mod_tree.addr_max
 183
 184static noinline void __mod_tree_insert(struct mod_tree_node *node)
 185{
 186        latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 187}
 188
 189static void __mod_tree_remove(struct mod_tree_node *node)
 190{
 191        latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 192}
 193
 194/*
 195 * These modifications: insert, remove_init and remove; are serialized by the
 196 * module_mutex.
 197 */
 198static void mod_tree_insert(struct module *mod)
 199{
 200        mod->mtn_core.mod = mod;
 201        mod->mtn_init.mod = mod;
 202
 203        __mod_tree_insert(&mod->mtn_core);
 204        if (mod->init_size)
 205                __mod_tree_insert(&mod->mtn_init);
 206}
 207
 208static void mod_tree_remove_init(struct module *mod)
 209{
 210        if (mod->init_size)
 211                __mod_tree_remove(&mod->mtn_init);
 212}
 213
 214static void mod_tree_remove(struct module *mod)
 215{
 216        __mod_tree_remove(&mod->mtn_core);
 217        mod_tree_remove_init(mod);
 218}
 219
 220static struct module *mod_find(unsigned long addr)
 221{
 222        struct latch_tree_node *ltn;
 223
 224        ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 225        if (!ltn)
 226                return NULL;
 227
 228        return container_of(ltn, struct mod_tree_node, node)->mod;
 229}
 230
 231#else /* MODULES_TREE_LOOKUP */
 232
 233static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 234
 235static void mod_tree_insert(struct module *mod) { }
 236static void mod_tree_remove_init(struct module *mod) { }
 237static void mod_tree_remove(struct module *mod) { }
 238
 239static struct module *mod_find(unsigned long addr)
 240{
 241        struct module *mod;
 242
 243        list_for_each_entry_rcu(mod, &modules, list) {
 244                if (within_module(addr, mod))
 245                        return mod;
 246        }
 247
 248        return NULL;
 249}
 250
 251#endif /* MODULES_TREE_LOOKUP */
 252
 253/*
 254 * Bounds of module text, for speeding up __module_address.
 255 * Protected by module_mutex.
 256 */
 257static void __mod_update_bounds(void *base, unsigned int size)
 258{
 259        unsigned long min = (unsigned long)base;
 260        unsigned long max = min + size;
 261
 262        if (min < module_addr_min)
 263                module_addr_min = min;
 264        if (max > module_addr_max)
 265                module_addr_max = max;
 266}
 267
 268static void mod_update_bounds(struct module *mod)
 269{
 270        __mod_update_bounds(mod->module_core, mod->core_size);
 271        if (mod->init_size)
 272                __mod_update_bounds(mod->module_init, mod->init_size);
 273}
 274
 275#ifdef CONFIG_KGDB_KDB
 276struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 277#endif /* CONFIG_KGDB_KDB */
 278
 279static void module_assert_mutex(void)
 280{
 281        lockdep_assert_held(&module_mutex);
 282}
 283
 284static void module_assert_mutex_or_preempt(void)
 285{
 286#ifdef CONFIG_LOCKDEP
 287        if (unlikely(!debug_locks))
 288                return;
 289
 290        WARN_ON(!rcu_read_lock_sched_held() &&
 291                !lockdep_is_held(&module_mutex));
 292#endif
 293}
 294
 295static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 296#ifndef CONFIG_MODULE_SIG_FORCE
 297module_param(sig_enforce, bool_enable_only, 0644);
 298#endif /* !CONFIG_MODULE_SIG_FORCE */
 299
 300/* Block module loading/unloading? */
 301int modules_disabled = 0;
 302core_param(nomodule, modules_disabled, bint, 0);
 303
 304/* Waiting for a module to finish initializing? */
 305static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 306
 307static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 308
 309int register_module_notifier(struct notifier_block *nb)
 310{
 311        return blocking_notifier_chain_register(&module_notify_list, nb);
 312}
 313EXPORT_SYMBOL(register_module_notifier);
 314
 315int unregister_module_notifier(struct notifier_block *nb)
 316{
 317        return blocking_notifier_chain_unregister(&module_notify_list, nb);
 318}
 319EXPORT_SYMBOL(unregister_module_notifier);
 320
 321struct load_info {
 322        Elf_Ehdr *hdr;
 323        unsigned long len;
 324        Elf_Shdr *sechdrs;
 325        char *secstrings, *strtab;
 326        unsigned long symoffs, stroffs;
 327        struct _ddebug *debug;
 328        unsigned int num_debug;
 329        bool sig_ok;
 330        struct {
 331                unsigned int sym, str, mod, vers, info, pcpu;
 332        } index;
 333};
 334
 335/* We require a truly strong try_module_get(): 0 means failure due to
 336   ongoing or failed initialization etc. */
 337static inline int strong_try_module_get(struct module *mod)
 338{
 339        BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 340        if (mod && mod->state == MODULE_STATE_COMING)
 341                return -EBUSY;
 342        if (try_module_get(mod))
 343                return 0;
 344        else
 345                return -ENOENT;
 346}
 347
 348static inline void add_taint_module(struct module *mod, unsigned flag,
 349                                    enum lockdep_ok lockdep_ok)
 350{
 351        add_taint(flag, lockdep_ok);
 352        mod->taints |= (1U << flag);
 353}
 354
 355/*
 356 * A thread that wants to hold a reference to a module only while it
 357 * is running can call this to safely exit.  nfsd and lockd use this.
 358 */
 359void __module_put_and_exit(struct module *mod, long code)
 360{
 361        module_put(mod);
 362        do_exit(code);
 363}
 364EXPORT_SYMBOL(__module_put_and_exit);
 365
 366/* Find a module section: 0 means not found. */
 367static unsigned int find_sec(const struct load_info *info, const char *name)
 368{
 369        unsigned int i;
 370
 371        for (i = 1; i < info->hdr->e_shnum; i++) {
 372                Elf_Shdr *shdr = &info->sechdrs[i];
 373                /* Alloc bit cleared means "ignore it." */
 374                if ((shdr->sh_flags & SHF_ALLOC)
 375                    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 376                        return i;
 377        }
 378        return 0;
 379}
 380
 381/* Find a module section, or NULL. */
 382static void *section_addr(const struct load_info *info, const char *name)
 383{
 384        /* Section 0 has sh_addr 0. */
 385        return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 386}
 387
 388/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 389static void *section_objs(const struct load_info *info,
 390                          const char *name,
 391                          size_t object_size,
 392                          unsigned int *num)
 393{
 394        unsigned int sec = find_sec(info, name);
 395
 396        /* Section 0 has sh_addr 0 and sh_size 0. */
 397        *num = info->sechdrs[sec].sh_size / object_size;
 398        return (void *)info->sechdrs[sec].sh_addr;
 399}
 400
 401/* Provided by the linker */
 402extern const struct kernel_symbol __start___ksymtab[];
 403extern const struct kernel_symbol __stop___ksymtab[];
 404extern const struct kernel_symbol __start___ksymtab_gpl[];
 405extern const struct kernel_symbol __stop___ksymtab_gpl[];
 406extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 407extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 408extern const unsigned long __start___kcrctab[];
 409extern const unsigned long __start___kcrctab_gpl[];
 410extern const unsigned long __start___kcrctab_gpl_future[];
 411#ifdef CONFIG_UNUSED_SYMBOLS
 412extern const struct kernel_symbol __start___ksymtab_unused[];
 413extern const struct kernel_symbol __stop___ksymtab_unused[];
 414extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 415extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 416extern const unsigned long __start___kcrctab_unused[];
 417extern const unsigned long __start___kcrctab_unused_gpl[];
 418#endif
 419
 420#ifndef CONFIG_MODVERSIONS
 421#define symversion(base, idx) NULL
 422#else
 423#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 424#endif
 425
 426static bool each_symbol_in_section(const struct symsearch *arr,
 427                                   unsigned int arrsize,
 428                                   struct module *owner,
 429                                   bool (*fn)(const struct symsearch *syms,
 430                                              struct module *owner,
 431                                              void *data),
 432                                   void *data)
 433{
 434        unsigned int j;
 435
 436        for (j = 0; j < arrsize; j++) {
 437                if (fn(&arr[j], owner, data))
 438                        return true;
 439        }
 440
 441        return false;
 442}
 443
 444/* Returns true as soon as fn returns true, otherwise false. */
 445bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 446                                    struct module *owner,
 447                                    void *data),
 448                         void *data)
 449{
 450        struct module *mod;
 451        static const struct symsearch arr[] = {
 452                { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 453                  NOT_GPL_ONLY, false },
 454                { __start___ksymtab_gpl, __stop___ksymtab_gpl,
 455                  __start___kcrctab_gpl,
 456                  GPL_ONLY, false },
 457                { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 458                  __start___kcrctab_gpl_future,
 459                  WILL_BE_GPL_ONLY, false },
 460#ifdef CONFIG_UNUSED_SYMBOLS
 461                { __start___ksymtab_unused, __stop___ksymtab_unused,
 462                  __start___kcrctab_unused,
 463                  NOT_GPL_ONLY, true },
 464                { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 465                  __start___kcrctab_unused_gpl,
 466                  GPL_ONLY, true },
 467#endif
 468        };
 469
 470        module_assert_mutex_or_preempt();
 471
 472        if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 473                return true;
 474
 475        list_for_each_entry_rcu(mod, &modules, list) {
 476                struct symsearch arr[] = {
 477                        { mod->syms, mod->syms + mod->num_syms, mod->crcs,
 478                          NOT_GPL_ONLY, false },
 479                        { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 480                          mod->gpl_crcs,
 481                          GPL_ONLY, false },
 482                        { mod->gpl_future_syms,
 483                          mod->gpl_future_syms + mod->num_gpl_future_syms,
 484                          mod->gpl_future_crcs,
 485                          WILL_BE_GPL_ONLY, false },
 486#ifdef CONFIG_UNUSED_SYMBOLS
 487                        { mod->unused_syms,
 488                          mod->unused_syms + mod->num_unused_syms,
 489                          mod->unused_crcs,
 490                          NOT_GPL_ONLY, true },
 491                        { mod->unused_gpl_syms,
 492                          mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 493                          mod->unused_gpl_crcs,
 494                          GPL_ONLY, true },
 495#endif
 496                };
 497
 498                if (mod->state == MODULE_STATE_UNFORMED)
 499                        continue;
 500
 501                if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 502                        return true;
 503        }
 504        return false;
 505}
 506EXPORT_SYMBOL_GPL(each_symbol_section);
 507
 508struct find_symbol_arg {
 509        /* Input */
 510        const char *name;
 511        bool gplok;
 512        bool warn;
 513
 514        /* Output */
 515        struct module *owner;
 516        const unsigned long *crc;
 517        const struct kernel_symbol *sym;
 518};
 519
 520static bool check_symbol(const struct symsearch *syms,
 521                                 struct module *owner,
 522                                 unsigned int symnum, void *data)
 523{
 524        struct find_symbol_arg *fsa = data;
 525
 526        if (!fsa->gplok) {
 527                if (syms->licence == GPL_ONLY)
 528                        return false;
 529                if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 530                        pr_warn("Symbol %s is being used by a non-GPL module, "
 531                                "which will not be allowed in the future\n",
 532                                fsa->name);
 533                }
 534        }
 535
 536#ifdef CONFIG_UNUSED_SYMBOLS
 537        if (syms->unused && fsa->warn) {
 538                pr_warn("Symbol %s is marked as UNUSED, however this module is "
 539                        "using it.\n", fsa->name);
 540                pr_warn("This symbol will go away in the future.\n");
 541                pr_warn("Please evaluate if this is the right api to use and "
 542                        "if it really is, submit a report to the linux kernel "
 543                        "mailing list together with submitting your code for "
 544                        "inclusion.\n");
 545        }
 546#endif
 547
 548        fsa->owner = owner;
 549        fsa->crc = symversion(syms->crcs, symnum);
 550        fsa->sym = &syms->start[symnum];
 551        return true;
 552}
 553
 554static int cmp_name(const void *va, const void *vb)
 555{
 556        const char *a;
 557        const struct kernel_symbol *b;
 558        a = va; b = vb;
 559        return strcmp(a, b->name);
 560}
 561
 562static bool find_symbol_in_section(const struct symsearch *syms,
 563                                   struct module *owner,
 564                                   void *data)
 565{
 566        struct find_symbol_arg *fsa = data;
 567        struct kernel_symbol *sym;
 568
 569        sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 570                        sizeof(struct kernel_symbol), cmp_name);
 571
 572        if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 573                return true;
 574
 575        return false;
 576}
 577
 578/* Find a symbol and return it, along with, (optional) crc and
 579 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 580const struct kernel_symbol *find_symbol(const char *name,
 581                                        struct module **owner,
 582                                        const unsigned long **crc,
 583                                        bool gplok,
 584                                        bool warn)
 585{
 586        struct find_symbol_arg fsa;
 587
 588        fsa.name = name;
 589        fsa.gplok = gplok;
 590        fsa.warn = warn;
 591
 592        if (each_symbol_section(find_symbol_in_section, &fsa)) {
 593                if (owner)
 594                        *owner = fsa.owner;
 595                if (crc)
 596                        *crc = fsa.crc;
 597                return fsa.sym;
 598        }
 599
 600        pr_debug("Failed to find symbol %s\n", name);
 601        return NULL;
 602}
 603EXPORT_SYMBOL_GPL(find_symbol);
 604
 605/*
 606 * Search for module by name: must hold module_mutex (or preempt disabled
 607 * for read-only access).
 608 */
 609static struct module *find_module_all(const char *name, size_t len,
 610                                      bool even_unformed)
 611{
 612        struct module *mod;
 613
 614        module_assert_mutex_or_preempt();
 615
 616        list_for_each_entry(mod, &modules, list) {
 617                if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 618                        continue;
 619                if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 620                        return mod;
 621        }
 622        return NULL;
 623}
 624
 625struct module *find_module(const char *name)
 626{
 627        module_assert_mutex();
 628        return find_module_all(name, strlen(name), false);
 629}
 630EXPORT_SYMBOL_GPL(find_module);
 631
 632#ifdef CONFIG_SMP
 633
 634static inline void __percpu *mod_percpu(struct module *mod)
 635{
 636        return mod->percpu;
 637}
 638
 639static int percpu_modalloc(struct module *mod, struct load_info *info)
 640{
 641        Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 642        unsigned long align = pcpusec->sh_addralign;
 643
 644        if (!pcpusec->sh_size)
 645                return 0;
 646
 647        if (align > PAGE_SIZE) {
 648                pr_warn("%s: per-cpu alignment %li > %li\n",
 649                        mod->name, align, PAGE_SIZE);
 650                align = PAGE_SIZE;
 651        }
 652
 653        mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 654        if (!mod->percpu) {
 655                pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 656                        mod->name, (unsigned long)pcpusec->sh_size);
 657                return -ENOMEM;
 658        }
 659        mod->percpu_size = pcpusec->sh_size;
 660        return 0;
 661}
 662
 663static void percpu_modfree(struct module *mod)
 664{
 665        free_percpu(mod->percpu);
 666}
 667
 668static unsigned int find_pcpusec(struct load_info *info)
 669{
 670        return find_sec(info, ".data..percpu");
 671}
 672
 673static void percpu_modcopy(struct module *mod,
 674                           const void *from, unsigned long size)
 675{
 676        int cpu;
 677
 678        for_each_possible_cpu(cpu)
 679                memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 680}
 681
 682/**
 683 * is_module_percpu_address - test whether address is from module static percpu
 684 * @addr: address to test
 685 *
 686 * Test whether @addr belongs to module static percpu area.
 687 *
 688 * RETURNS:
 689 * %true if @addr is from module static percpu area
 690 */
 691bool is_module_percpu_address(unsigned long addr)
 692{
 693        struct module *mod;
 694        unsigned int cpu;
 695
 696        preempt_disable();
 697
 698        list_for_each_entry_rcu(mod, &modules, list) {
 699                if (mod->state == MODULE_STATE_UNFORMED)
 700                        continue;
 701                if (!mod->percpu_size)
 702                        continue;
 703                for_each_possible_cpu(cpu) {
 704                        void *start = per_cpu_ptr(mod->percpu, cpu);
 705
 706                        if ((void *)addr >= start &&
 707                            (void *)addr < start + mod->percpu_size) {
 708                                preempt_enable();
 709                                return true;
 710                        }
 711                }
 712        }
 713
 714        preempt_enable();
 715        return false;
 716}
 717
 718#else /* ... !CONFIG_SMP */
 719
 720static inline void __percpu *mod_percpu(struct module *mod)
 721{
 722        return NULL;
 723}
 724static int percpu_modalloc(struct module *mod, struct load_info *info)
 725{
 726        /* UP modules shouldn't have this section: ENOMEM isn't quite right */
 727        if (info->sechdrs[info->index.pcpu].sh_size != 0)
 728                return -ENOMEM;
 729        return 0;
 730}
 731static inline void percpu_modfree(struct module *mod)
 732{
 733}
 734static unsigned int find_pcpusec(struct load_info *info)
 735{
 736        return 0;
 737}
 738static inline void percpu_modcopy(struct module *mod,
 739                                  const void *from, unsigned long size)
 740{
 741        /* pcpusec should be 0, and size of that section should be 0. */
 742        BUG_ON(size != 0);
 743}
 744bool is_module_percpu_address(unsigned long addr)
 745{
 746        return false;
 747}
 748
 749#endif /* CONFIG_SMP */
 750
 751#define MODINFO_ATTR(field)     \
 752static void setup_modinfo_##field(struct module *mod, const char *s)  \
 753{                                                                     \
 754        mod->field = kstrdup(s, GFP_KERNEL);                          \
 755}                                                                     \
 756static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 757                        struct module_kobject *mk, char *buffer)      \
 758{                                                                     \
 759        return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 760}                                                                     \
 761static int modinfo_##field##_exists(struct module *mod)               \
 762{                                                                     \
 763        return mod->field != NULL;                                    \
 764}                                                                     \
 765static void free_modinfo_##field(struct module *mod)                  \
 766{                                                                     \
 767        kfree(mod->field);                                            \
 768        mod->field = NULL;                                            \
 769}                                                                     \
 770static struct module_attribute modinfo_##field = {                    \
 771        .attr = { .name = __stringify(field), .mode = 0444 },         \
 772        .show = show_modinfo_##field,                                 \
 773        .setup = setup_modinfo_##field,                               \
 774        .test = modinfo_##field##_exists,                             \
 775        .free = free_modinfo_##field,                                 \
 776};
 777
 778MODINFO_ATTR(version);
 779MODINFO_ATTR(srcversion);
 780
 781static char last_unloaded_module[MODULE_NAME_LEN+1];
 782
 783#ifdef CONFIG_MODULE_UNLOAD
 784
 785EXPORT_TRACEPOINT_SYMBOL(module_get);
 786
 787/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 788#define MODULE_REF_BASE 1
 789
 790/* Init the unload section of the module. */
 791static int module_unload_init(struct module *mod)
 792{
 793        /*
 794         * Initialize reference counter to MODULE_REF_BASE.
 795         * refcnt == 0 means module is going.
 796         */
 797        atomic_set(&mod->refcnt, MODULE_REF_BASE);
 798
 799        INIT_LIST_HEAD(&mod->source_list);
 800        INIT_LIST_HEAD(&mod->target_list);
 801
 802        /* Hold reference count during initialization. */
 803        atomic_inc(&mod->refcnt);
 804
 805        return 0;
 806}
 807
 808/* Does a already use b? */
 809static int already_uses(struct module *a, struct module *b)
 810{
 811        struct module_use *use;
 812
 813        list_for_each_entry(use, &b->source_list, source_list) {
 814                if (use->source == a) {
 815                        pr_debug("%s uses %s!\n", a->name, b->name);
 816                        return 1;
 817                }
 818        }
 819        pr_debug("%s does not use %s!\n", a->name, b->name);
 820        return 0;
 821}
 822
 823/*
 824 * Module a uses b
 825 *  - we add 'a' as a "source", 'b' as a "target" of module use
 826 *  - the module_use is added to the list of 'b' sources (so
 827 *    'b' can walk the list to see who sourced them), and of 'a'
 828 *    targets (so 'a' can see what modules it targets).
 829 */
 830static int add_module_usage(struct module *a, struct module *b)
 831{
 832        struct module_use *use;
 833
 834        pr_debug("Allocating new usage for %s.\n", a->name);
 835        use = kmalloc(sizeof(*use), GFP_ATOMIC);
 836        if (!use) {
 837                pr_warn("%s: out of memory loading\n", a->name);
 838                return -ENOMEM;
 839        }
 840
 841        use->source = a;
 842        use->target = b;
 843        list_add(&use->source_list, &b->source_list);
 844        list_add(&use->target_list, &a->target_list);
 845        return 0;
 846}
 847
 848/* Module a uses b: caller needs module_mutex() */
 849int ref_module(struct module *a, struct module *b)
 850{
 851        int err;
 852
 853        if (b == NULL || already_uses(a, b))
 854                return 0;
 855
 856        /* If module isn't available, we fail. */
 857        err = strong_try_module_get(b);
 858        if (err)
 859                return err;
 860
 861        err = add_module_usage(a, b);
 862        if (err) {
 863                module_put(b);
 864                return err;
 865        }
 866        return 0;
 867}
 868EXPORT_SYMBOL_GPL(ref_module);
 869
 870/* Clear the unload stuff of the module. */
 871static void module_unload_free(struct module *mod)
 872{
 873        struct module_use *use, *tmp;
 874
 875        mutex_lock(&module_mutex);
 876        list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 877                struct module *i = use->target;
 878                pr_debug("%s unusing %s\n", mod->name, i->name);
 879                module_put(i);
 880                list_del(&use->source_list);
 881                list_del(&use->target_list);
 882                kfree(use);
 883        }
 884        mutex_unlock(&module_mutex);
 885}
 886
 887#ifdef CONFIG_MODULE_FORCE_UNLOAD
 888static inline int try_force_unload(unsigned int flags)
 889{
 890        int ret = (flags & O_TRUNC);
 891        if (ret)
 892                add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 893        return ret;
 894}
 895#else
 896static inline int try_force_unload(unsigned int flags)
 897{
 898        return 0;
 899}
 900#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 901
 902/* Try to release refcount of module, 0 means success. */
 903static int try_release_module_ref(struct module *mod)
 904{
 905        int ret;
 906
 907        /* Try to decrement refcnt which we set at loading */
 908        ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 909        BUG_ON(ret < 0);
 910        if (ret)
 911                /* Someone can put this right now, recover with checking */
 912                ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 913
 914        return ret;
 915}
 916
 917static int try_stop_module(struct module *mod, int flags, int *forced)
 918{
 919        /* If it's not unused, quit unless we're forcing. */
 920        if (try_release_module_ref(mod) != 0) {
 921                *forced = try_force_unload(flags);
 922                if (!(*forced))
 923                        return -EWOULDBLOCK;
 924        }
 925
 926        /* Mark it as dying. */
 927        mod->state = MODULE_STATE_GOING;
 928
 929        return 0;
 930}
 931
 932/**
 933 * module_refcount - return the refcount or -1 if unloading
 934 *
 935 * @mod:        the module we're checking
 936 *
 937 * Returns:
 938 *      -1 if the module is in the process of unloading
 939 *      otherwise the number of references in the kernel to the module
 940 */
 941int module_refcount(struct module *mod)
 942{
 943        return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 944}
 945EXPORT_SYMBOL(module_refcount);
 946
 947/* This exists whether we can unload or not */
 948static void free_module(struct module *mod);
 949
 950SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 951                unsigned int, flags)
 952{
 953        struct module *mod;
 954        char name[MODULE_NAME_LEN];
 955        int ret, forced = 0;
 956
 957        if (!capable(CAP_SYS_MODULE) || modules_disabled)
 958                return -EPERM;
 959
 960        if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 961                return -EFAULT;
 962        name[MODULE_NAME_LEN-1] = '\0';
 963
 964        if (mutex_lock_interruptible(&module_mutex) != 0)
 965                return -EINTR;
 966
 967        mod = find_module(name);
 968        if (!mod) {
 969                ret = -ENOENT;
 970                goto out;
 971        }
 972
 973        if (!list_empty(&mod->source_list)) {
 974                /* Other modules depend on us: get rid of them first. */
 975                ret = -EWOULDBLOCK;
 976                goto out;
 977        }
 978
 979        /* Doing init or already dying? */
 980        if (mod->state != MODULE_STATE_LIVE) {
 981                /* FIXME: if (force), slam module count damn the torpedoes */
 982                pr_debug("%s already dying\n", mod->name);
 983                ret = -EBUSY;
 984                goto out;
 985        }
 986
 987        /* If it has an init func, it must have an exit func to unload */
 988        if (mod->init && !mod->exit) {
 989                forced = try_force_unload(flags);
 990                if (!forced) {
 991                        /* This module can't be removed */
 992                        ret = -EBUSY;
 993                        goto out;
 994                }
 995        }
 996
 997        /* Stop the machine so refcounts can't move and disable module. */
 998        ret = try_stop_module(mod, flags, &forced);
 999        if (ret != 0)
1000                goto out;
1001
1002        mutex_unlock(&module_mutex);
1003        /* Final destruction now no one is using it. */
1004        if (mod->exit != NULL)
1005                mod->exit();
1006        blocking_notifier_call_chain(&module_notify_list,
1007                                     MODULE_STATE_GOING, mod);
1008        async_synchronize_full();
1009
1010        /* Store the name of the last unloaded module for diagnostic purposes */
1011        strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1012
1013        free_module(mod);
1014        return 0;
1015out:
1016        mutex_unlock(&module_mutex);
1017        return ret;
1018}
1019
1020static inline void print_unload_info(struct seq_file *m, struct module *mod)
1021{
1022        struct module_use *use;
1023        int printed_something = 0;
1024
1025        seq_printf(m, " %i ", module_refcount(mod));
1026
1027        /*
1028         * Always include a trailing , so userspace can differentiate
1029         * between this and the old multi-field proc format.
1030         */
1031        list_for_each_entry(use, &mod->source_list, source_list) {
1032                printed_something = 1;
1033                seq_printf(m, "%s,", use->source->name);
1034        }
1035
1036        if (mod->init != NULL && mod->exit == NULL) {
1037                printed_something = 1;
1038                seq_puts(m, "[permanent],");
1039        }
1040
1041        if (!printed_something)
1042                seq_puts(m, "-");
1043}
1044
1045void __symbol_put(const char *symbol)
1046{
1047        struct module *owner;
1048
1049        preempt_disable();
1050        if (!find_symbol(symbol, &owner, NULL, true, false))
1051                BUG();
1052        module_put(owner);
1053        preempt_enable();
1054}
1055EXPORT_SYMBOL(__symbol_put);
1056
1057/* Note this assumes addr is a function, which it currently always is. */
1058void symbol_put_addr(void *addr)
1059{
1060        struct module *modaddr;
1061        unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1062
1063        if (core_kernel_text(a))
1064                return;
1065
1066        /*
1067         * Even though we hold a reference on the module; we still need to
1068         * disable preemption in order to safely traverse the data structure.
1069         */
1070        preempt_disable();
1071        modaddr = __module_text_address(a);
1072        BUG_ON(!modaddr);
1073        module_put(modaddr);
1074        preempt_enable();
1075}
1076EXPORT_SYMBOL_GPL(symbol_put_addr);
1077
1078static ssize_t show_refcnt(struct module_attribute *mattr,
1079                           struct module_kobject *mk, char *buffer)
1080{
1081        return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1082}
1083
1084static struct module_attribute modinfo_refcnt =
1085        __ATTR(refcnt, 0444, show_refcnt, NULL);
1086
1087void __module_get(struct module *module)
1088{
1089        if (module) {
1090                preempt_disable();
1091                atomic_inc(&module->refcnt);
1092                trace_module_get(module, _RET_IP_);
1093                preempt_enable();
1094        }
1095}
1096EXPORT_SYMBOL(__module_get);
1097
1098bool try_module_get(struct module *module)
1099{
1100        bool ret = true;
1101
1102        if (module) {
1103                preempt_disable();
1104                /* Note: here, we can fail to get a reference */
1105                if (likely(module_is_live(module) &&
1106                           atomic_inc_not_zero(&module->refcnt) != 0))
1107                        trace_module_get(module, _RET_IP_);
1108                else
1109                        ret = false;
1110
1111                preempt_enable();
1112        }
1113        return ret;
1114}
1115EXPORT_SYMBOL(try_module_get);
1116
1117void module_put(struct module *module)
1118{
1119        int ret;
1120
1121        if (module) {
1122                preempt_disable();
1123                ret = atomic_dec_if_positive(&module->refcnt);
1124                WARN_ON(ret < 0);       /* Failed to put refcount */
1125                trace_module_put(module, _RET_IP_);
1126                preempt_enable();
1127        }
1128}
1129EXPORT_SYMBOL(module_put);
1130
1131#else /* !CONFIG_MODULE_UNLOAD */
1132static inline void print_unload_info(struct seq_file *m, struct module *mod)
1133{
1134        /* We don't know the usage count, or what modules are using. */
1135        seq_puts(m, " - -");
1136}
1137
1138static inline void module_unload_free(struct module *mod)
1139{
1140}
1141
1142int ref_module(struct module *a, struct module *b)
1143{
1144        return strong_try_module_get(b);
1145}
1146EXPORT_SYMBOL_GPL(ref_module);
1147
1148static inline int module_unload_init(struct module *mod)
1149{
1150        return 0;
1151}
1152#endif /* CONFIG_MODULE_UNLOAD */
1153
1154static size_t module_flags_taint(struct module *mod, char *buf)
1155{
1156        size_t l = 0;
1157
1158        if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1159                buf[l++] = 'P';
1160        if (mod->taints & (1 << TAINT_OOT_MODULE))
1161                buf[l++] = 'O';
1162        if (mod->taints & (1 << TAINT_FORCED_MODULE))
1163                buf[l++] = 'F';
1164        if (mod->taints & (1 << TAINT_CRAP))
1165                buf[l++] = 'C';
1166        if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1167                buf[l++] = 'E';
1168        /*
1169         * TAINT_FORCED_RMMOD: could be added.
1170         * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1171         * apply to modules.
1172         */
1173        return l;
1174}
1175
1176static ssize_t show_initstate(struct module_attribute *mattr,
1177                              struct module_kobject *mk, char *buffer)
1178{
1179        const char *state = "unknown";
1180
1181        switch (mk->mod->state) {
1182        case MODULE_STATE_LIVE:
1183                state = "live";
1184                break;
1185        case MODULE_STATE_COMING:
1186                state = "coming";
1187                break;
1188        case MODULE_STATE_GOING:
1189                state = "going";
1190                break;
1191        default:
1192                BUG();
1193        }
1194        return sprintf(buffer, "%s\n", state);
1195}
1196
1197static struct module_attribute modinfo_initstate =
1198        __ATTR(initstate, 0444, show_initstate, NULL);
1199
1200static ssize_t store_uevent(struct module_attribute *mattr,
1201                            struct module_kobject *mk,
1202                            const char *buffer, size_t count)
1203{
1204        enum kobject_action action;
1205
1206        if (kobject_action_type(buffer, count, &action) == 0)
1207                kobject_uevent(&mk->kobj, action);
1208        return count;
1209}
1210
1211struct module_attribute module_uevent =
1212        __ATTR(uevent, 0200, NULL, store_uevent);
1213
1214static ssize_t show_coresize(struct module_attribute *mattr,
1215                             struct module_kobject *mk, char *buffer)
1216{
1217        return sprintf(buffer, "%u\n", mk->mod->core_size);
1218}
1219
1220static struct module_attribute modinfo_coresize =
1221        __ATTR(coresize, 0444, show_coresize, NULL);
1222
1223static ssize_t show_initsize(struct module_attribute *mattr,
1224                             struct module_kobject *mk, char *buffer)
1225{
1226        return sprintf(buffer, "%u\n", mk->mod->init_size);
1227}
1228
1229static struct module_attribute modinfo_initsize =
1230        __ATTR(initsize, 0444, show_initsize, NULL);
1231
1232static ssize_t show_taint(struct module_attribute *mattr,
1233                          struct module_kobject *mk, char *buffer)
1234{
1235        size_t l;
1236
1237        l = module_flags_taint(mk->mod, buffer);
1238        buffer[l++] = '\n';
1239        return l;
1240}
1241
1242static struct module_attribute modinfo_taint =
1243        __ATTR(taint, 0444, show_taint, NULL);
1244
1245static struct module_attribute *modinfo_attrs[] = {
1246        &module_uevent,
1247        &modinfo_version,
1248        &modinfo_srcversion,
1249        &modinfo_initstate,
1250        &modinfo_coresize,
1251        &modinfo_initsize,
1252        &modinfo_taint,
1253#ifdef CONFIG_MODULE_UNLOAD
1254        &modinfo_refcnt,
1255#endif
1256        NULL,
1257};
1258
1259static const char vermagic[] = VERMAGIC_STRING;
1260
1261static int try_to_force_load(struct module *mod, const char *reason)
1262{
1263#ifdef CONFIG_MODULE_FORCE_LOAD
1264        if (!test_taint(TAINT_FORCED_MODULE))
1265                pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1266        add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1267        return 0;
1268#else
1269        return -ENOEXEC;
1270#endif
1271}
1272
1273#ifdef CONFIG_MODVERSIONS
1274/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1275static unsigned long maybe_relocated(unsigned long crc,
1276                                     const struct module *crc_owner)
1277{
1278#ifdef ARCH_RELOCATES_KCRCTAB
1279        if (crc_owner == NULL)
1280                return crc - (unsigned long)reloc_start;
1281#endif
1282        return crc;
1283}
1284
1285static int check_version(Elf_Shdr *sechdrs,
1286                         unsigned int versindex,
1287                         const char *symname,
1288                         struct module *mod,
1289                         const unsigned long *crc,
1290                         const struct module *crc_owner)
1291{
1292        unsigned int i, num_versions;
1293        struct modversion_info *versions;
1294
1295        /* Exporting module didn't supply crcs?  OK, we're already tainted. */
1296        if (!crc)
1297                return 1;
1298
1299        /* No versions at all?  modprobe --force does this. */
1300        if (versindex == 0)
1301                return try_to_force_load(mod, symname) == 0;
1302
1303        versions = (void *) sechdrs[versindex].sh_addr;
1304        num_versions = sechdrs[versindex].sh_size
1305                / sizeof(struct modversion_info);
1306
1307        for (i = 0; i < num_versions; i++) {
1308                if (strcmp(versions[i].name, symname) != 0)
1309                        continue;
1310
1311                if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1312                        return 1;
1313                pr_debug("Found checksum %lX vs module %lX\n",
1314                       maybe_relocated(*crc, crc_owner), versions[i].crc);
1315                goto bad_version;
1316        }
1317
1318        pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1319        return 0;
1320
1321bad_version:
1322        pr_warn("%s: disagrees about version of symbol %s\n",
1323               mod->name, symname);
1324        return 0;
1325}
1326
1327static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1328                                          unsigned int versindex,
1329                                          struct module *mod)
1330{
1331        const unsigned long *crc;
1332
1333        /*
1334         * Since this should be found in kernel (which can't be removed), no
1335         * locking is necessary -- use preempt_disable() to placate lockdep.
1336         */
1337        preempt_disable();
1338        if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1339                         &crc, true, false)) {
1340                preempt_enable();
1341                BUG();
1342        }
1343        preempt_enable();
1344        return check_version(sechdrs, versindex,
1345                             VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1346                             NULL);
1347}
1348
1349/* First part is kernel version, which we ignore if module has crcs. */
1350static inline int same_magic(const char *amagic, const char *bmagic,
1351                             bool has_crcs)
1352{
1353        if (has_crcs) {
1354                amagic += strcspn(amagic, " ");
1355                bmagic += strcspn(bmagic, " ");
1356        }
1357        return strcmp(amagic, bmagic) == 0;
1358}
1359#else
1360static inline int check_version(Elf_Shdr *sechdrs,
1361                                unsigned int versindex,
1362                                const char *symname,
1363                                struct module *mod,
1364                                const unsigned long *crc,
1365                                const struct module *crc_owner)
1366{
1367        return 1;
1368}
1369
1370static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1371                                          unsigned int versindex,
1372                                          struct module *mod)
1373{
1374        return 1;
1375}
1376
1377static inline int same_magic(const char *amagic, const char *bmagic,
1378                             bool has_crcs)
1379{
1380        return strcmp(amagic, bmagic) == 0;
1381}
1382#endif /* CONFIG_MODVERSIONS */
1383
1384/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1385static const struct kernel_symbol *resolve_symbol(struct module *mod,
1386                                                  const struct load_info *info,
1387                                                  const char *name,
1388                                                  char ownername[])
1389{
1390        struct module *owner;
1391        const struct kernel_symbol *sym;
1392        const unsigned long *crc;
1393        int err;
1394
1395        /*
1396         * The module_mutex should not be a heavily contended lock;
1397         * if we get the occasional sleep here, we'll go an extra iteration
1398         * in the wait_event_interruptible(), which is harmless.
1399         */
1400        sched_annotate_sleep();
1401        mutex_lock(&module_mutex);
1402        sym = find_symbol(name, &owner, &crc,
1403                          !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1404        if (!sym)
1405                goto unlock;
1406
1407        if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1408                           owner)) {
1409                sym = ERR_PTR(-EINVAL);
1410                goto getname;
1411        }
1412
1413        err = ref_module(mod, owner);
1414        if (err) {
1415                sym = ERR_PTR(err);
1416                goto getname;
1417        }
1418
1419getname:
1420        /* We must make copy under the lock if we failed to get ref. */
1421        strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1422unlock:
1423        mutex_unlock(&module_mutex);
1424        return sym;
1425}
1426
1427static const struct kernel_symbol *
1428resolve_symbol_wait(struct module *mod,
1429                    const struct load_info *info,
1430                    const char *name)
1431{
1432        const struct kernel_symbol *ksym;
1433        char owner[MODULE_NAME_LEN];
1434
1435        if (wait_event_interruptible_timeout(module_wq,
1436                        !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1437                        || PTR_ERR(ksym) != -EBUSY,
1438                                             30 * HZ) <= 0) {
1439                pr_warn("%s: gave up waiting for init of module %s.\n",
1440                        mod->name, owner);
1441        }
1442        return ksym;
1443}
1444
1445/*
1446 * /sys/module/foo/sections stuff
1447 * J. Corbet <corbet@lwn.net>
1448 */
1449#ifdef CONFIG_SYSFS
1450
1451#ifdef CONFIG_KALLSYMS
1452static inline bool sect_empty(const Elf_Shdr *sect)
1453{
1454        return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1455}
1456
1457struct module_sect_attr {
1458        struct module_attribute mattr;
1459        char *name;
1460        unsigned long address;
1461};
1462
1463struct module_sect_attrs {
1464        struct attribute_group grp;
1465        unsigned int nsections;
1466        struct module_sect_attr attrs[0];
1467};
1468
1469static ssize_t module_sect_show(struct module_attribute *mattr,
1470                                struct module_kobject *mk, char *buf)
1471{
1472        struct module_sect_attr *sattr =
1473                container_of(mattr, struct module_sect_attr, mattr);
1474        return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1475}
1476
1477static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1478{
1479        unsigned int section;
1480
1481        for (section = 0; section < sect_attrs->nsections; section++)
1482                kfree(sect_attrs->attrs[section].name);
1483        kfree(sect_attrs);
1484}
1485
1486static void add_sect_attrs(struct module *mod, const struct load_info *info)
1487{
1488        unsigned int nloaded = 0, i, size[2];
1489        struct module_sect_attrs *sect_attrs;
1490        struct module_sect_attr *sattr;
1491        struct attribute **gattr;
1492
1493        /* Count loaded sections and allocate structures */
1494        for (i = 0; i < info->hdr->e_shnum; i++)
1495                if (!sect_empty(&info->sechdrs[i]))
1496                        nloaded++;
1497        size[0] = ALIGN(sizeof(*sect_attrs)
1498                        + nloaded * sizeof(sect_attrs->attrs[0]),
1499                        sizeof(sect_attrs->grp.attrs[0]));
1500        size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1501        sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1502        if (sect_attrs == NULL)
1503                return;
1504
1505        /* Setup section attributes. */
1506        sect_attrs->grp.name = "sections";
1507        sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1508
1509        sect_attrs->nsections = 0;
1510        sattr = &sect_attrs->attrs[0];
1511        gattr = &sect_attrs->grp.attrs[0];
1512        for (i = 0; i < info->hdr->e_shnum; i++) {
1513                Elf_Shdr *sec = &info->sechdrs[i];
1514                if (sect_empty(sec))
1515                        continue;
1516                sattr->address = sec->sh_addr;
1517                sattr->name = kstrdup(info->secstrings + sec->sh_name,
1518                                        GFP_KERNEL);
1519                if (sattr->name == NULL)
1520                        goto out;
1521                sect_attrs->nsections++;
1522                sysfs_attr_init(&sattr->mattr.attr);
1523                sattr->mattr.show = module_sect_show;
1524                sattr->mattr.store = NULL;
1525                sattr->mattr.attr.name = sattr->name;
1526                sattr->mattr.attr.mode = S_IRUGO;
1527                *(gattr++) = &(sattr++)->mattr.attr;
1528        }
1529        *gattr = NULL;
1530
1531        if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1532                goto out;
1533
1534        mod->sect_attrs = sect_attrs;
1535        return;
1536  out:
1537        free_sect_attrs(sect_attrs);
1538}
1539
1540static void remove_sect_attrs(struct module *mod)
1541{
1542        if (mod->sect_attrs) {
1543                sysfs_remove_group(&mod->mkobj.kobj,
1544                                   &mod->sect_attrs->grp);
1545                /* We are positive that no one is using any sect attrs
1546                 * at this point.  Deallocate immediately. */
1547                free_sect_attrs(mod->sect_attrs);
1548                mod->sect_attrs = NULL;
1549        }
1550}
1551
1552/*
1553 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1554 */
1555
1556struct module_notes_attrs {
1557        struct kobject *dir;
1558        unsigned int notes;
1559        struct bin_attribute attrs[0];
1560};
1561
1562static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1563                                 struct bin_attribute *bin_attr,
1564                                 char *buf, loff_t pos, size_t count)
1565{
1566        /*
1567         * The caller checked the pos and count against our size.
1568         */
1569        memcpy(buf, bin_attr->private + pos, count);
1570        return count;
1571}
1572
1573static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1574                             unsigned int i)
1575{
1576        if (notes_attrs->dir) {
1577                while (i-- > 0)
1578                        sysfs_remove_bin_file(notes_attrs->dir,
1579                                              &notes_attrs->attrs[i]);
1580                kobject_put(notes_attrs->dir);
1581        }
1582        kfree(notes_attrs);
1583}
1584
1585static void add_notes_attrs(struct module *mod, const struct load_info *info)
1586{
1587        unsigned int notes, loaded, i;
1588        struct module_notes_attrs *notes_attrs;
1589        struct bin_attribute *nattr;
1590
1591        /* failed to create section attributes, so can't create notes */
1592        if (!mod->sect_attrs)
1593                return;
1594
1595        /* Count notes sections and allocate structures.  */
1596        notes = 0;
1597        for (i = 0; i < info->hdr->e_shnum; i++)
1598                if (!sect_empty(&info->sechdrs[i]) &&
1599                    (info->sechdrs[i].sh_type == SHT_NOTE))
1600                        ++notes;
1601
1602        if (notes == 0)
1603                return;
1604
1605        notes_attrs = kzalloc(sizeof(*notes_attrs)
1606                              + notes * sizeof(notes_attrs->attrs[0]),
1607                              GFP_KERNEL);
1608        if (notes_attrs == NULL)
1609                return;
1610
1611        notes_attrs->notes = notes;
1612        nattr = &notes_attrs->attrs[0];
1613        for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1614                if (sect_empty(&info->sechdrs[i]))
1615                        continue;
1616                if (info->sechdrs[i].sh_type == SHT_NOTE) {
1617                        sysfs_bin_attr_init(nattr);
1618                        nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1619                        nattr->attr.mode = S_IRUGO;
1620                        nattr->size = info->sechdrs[i].sh_size;
1621                        nattr->private = (void *) info->sechdrs[i].sh_addr;
1622                        nattr->read = module_notes_read;
1623                        ++nattr;
1624                }
1625                ++loaded;
1626        }
1627
1628        notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1629        if (!notes_attrs->dir)
1630                goto out;
1631
1632        for (i = 0; i < notes; ++i)
1633                if (sysfs_create_bin_file(notes_attrs->dir,
1634                                          &notes_attrs->attrs[i]))
1635                        goto out;
1636
1637        mod->notes_attrs = notes_attrs;
1638        return;
1639
1640  out:
1641        free_notes_attrs(notes_attrs, i);
1642}
1643
1644static void remove_notes_attrs(struct module *mod)
1645{
1646        if (mod->notes_attrs)
1647                free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1648}
1649
1650#else
1651
1652static inline void add_sect_attrs(struct module *mod,
1653                                  const struct load_info *info)
1654{
1655}
1656
1657static inline void remove_sect_attrs(struct module *mod)
1658{
1659}
1660
1661static inline void add_notes_attrs(struct module *mod,
1662                                   const struct load_info *info)
1663{
1664}
1665
1666static inline void remove_notes_attrs(struct module *mod)
1667{
1668}
1669#endif /* CONFIG_KALLSYMS */
1670
1671static void add_usage_links(struct module *mod)
1672{
1673#ifdef CONFIG_MODULE_UNLOAD
1674        struct module_use *use;
1675        int nowarn;
1676
1677        mutex_lock(&module_mutex);
1678        list_for_each_entry(use, &mod->target_list, target_list) {
1679                nowarn = sysfs_create_link(use->target->holders_dir,
1680                                           &mod->mkobj.kobj, mod->name);
1681        }
1682        mutex_unlock(&module_mutex);
1683#endif
1684}
1685
1686static void del_usage_links(struct module *mod)
1687{
1688#ifdef CONFIG_MODULE_UNLOAD
1689        struct module_use *use;
1690
1691        mutex_lock(&module_mutex);
1692        list_for_each_entry(use, &mod->target_list, target_list)
1693                sysfs_remove_link(use->target->holders_dir, mod->name);
1694        mutex_unlock(&module_mutex);
1695#endif
1696}
1697
1698static int module_add_modinfo_attrs(struct module *mod)
1699{
1700        struct module_attribute *attr;
1701        struct module_attribute *temp_attr;
1702        int error = 0;
1703        int i;
1704
1705        mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1706                                        (ARRAY_SIZE(modinfo_attrs) + 1)),
1707                                        GFP_KERNEL);
1708        if (!mod->modinfo_attrs)
1709                return -ENOMEM;
1710
1711        temp_attr = mod->modinfo_attrs;
1712        for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1713                if (!attr->test ||
1714                    (attr->test && attr->test(mod))) {
1715                        memcpy(temp_attr, attr, sizeof(*temp_attr));
1716                        sysfs_attr_init(&temp_attr->attr);
1717                        error = sysfs_create_file(&mod->mkobj.kobj,
1718                                        &temp_attr->attr);
1719                        ++temp_attr;
1720                }
1721        }
1722        return error;
1723}
1724
1725static void module_remove_modinfo_attrs(struct module *mod)
1726{
1727        struct module_attribute *attr;
1728        int i;
1729
1730        for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1731                /* pick a field to test for end of list */
1732                if (!attr->attr.name)
1733                        break;
1734                sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1735                if (attr->free)
1736                        attr->free(mod);
1737        }
1738        kfree(mod->modinfo_attrs);
1739}
1740
1741static void mod_kobject_put(struct module *mod)
1742{
1743        DECLARE_COMPLETION_ONSTACK(c);
1744        mod->mkobj.kobj_completion = &c;
1745        kobject_put(&mod->mkobj.kobj);
1746        wait_for_completion(&c);
1747}
1748
1749static int mod_sysfs_init(struct module *mod)
1750{
1751        int err;
1752        struct kobject *kobj;
1753
1754        if (!module_sysfs_initialized) {
1755                pr_err("%s: module sysfs not initialized\n", mod->name);
1756                err = -EINVAL;
1757                goto out;
1758        }
1759
1760        kobj = kset_find_obj(module_kset, mod->name);
1761        if (kobj) {
1762                pr_err("%s: module is already loaded\n", mod->name);
1763                kobject_put(kobj);
1764                err = -EINVAL;
1765                goto out;
1766        }
1767
1768        mod->mkobj.mod = mod;
1769
1770        memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1771        mod->mkobj.kobj.kset = module_kset;
1772        err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1773                                   "%s", mod->name);
1774        if (err)
1775                mod_kobject_put(mod);
1776
1777        /* delay uevent until full sysfs population */
1778out:
1779        return err;
1780}
1781
1782static int mod_sysfs_setup(struct module *mod,
1783                           const struct load_info *info,
1784                           struct kernel_param *kparam,
1785                           unsigned int num_params)
1786{
1787        int err;
1788
1789        err = mod_sysfs_init(mod);
1790        if (err)
1791                goto out;
1792
1793        mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1794        if (!mod->holders_dir) {
1795                err = -ENOMEM;
1796                goto out_unreg;
1797        }
1798
1799        err = module_param_sysfs_setup(mod, kparam, num_params);
1800        if (err)
1801                goto out_unreg_holders;
1802
1803        err = module_add_modinfo_attrs(mod);
1804        if (err)
1805                goto out_unreg_param;
1806
1807        add_usage_links(mod);
1808        add_sect_attrs(mod, info);
1809        add_notes_attrs(mod, info);
1810
1811        kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1812        return 0;
1813
1814out_unreg_param:
1815        module_param_sysfs_remove(mod);
1816out_unreg_holders:
1817        kobject_put(mod->holders_dir);
1818out_unreg:
1819        mod_kobject_put(mod);
1820out:
1821        return err;
1822}
1823
1824static void mod_sysfs_fini(struct module *mod)
1825{
1826        remove_notes_attrs(mod);
1827        remove_sect_attrs(mod);
1828        mod_kobject_put(mod);
1829}
1830
1831static void init_param_lock(struct module *mod)
1832{
1833        mutex_init(&mod->param_lock);
1834}
1835#else /* !CONFIG_SYSFS */
1836
1837static int mod_sysfs_setup(struct module *mod,
1838                           const struct load_info *info,
1839                           struct kernel_param *kparam,
1840                           unsigned int num_params)
1841{
1842        return 0;
1843}
1844
1845static void mod_sysfs_fini(struct module *mod)
1846{
1847}
1848
1849static void module_remove_modinfo_attrs(struct module *mod)
1850{
1851}
1852
1853static void del_usage_links(struct module *mod)
1854{
1855}
1856
1857static void init_param_lock(struct module *mod)
1858{
1859}
1860#endif /* CONFIG_SYSFS */
1861
1862static void mod_sysfs_teardown(struct module *mod)
1863{
1864        del_usage_links(mod);
1865        module_remove_modinfo_attrs(mod);
1866        module_param_sysfs_remove(mod);
1867        kobject_put(mod->mkobj.drivers_dir);
1868        kobject_put(mod->holders_dir);
1869        mod_sysfs_fini(mod);
1870}
1871
1872#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1873/*
1874 * LKM RO/NX protection: protect module's text/ro-data
1875 * from modification and any data from execution.
1876 */
1877void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1878{
1879        unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1880        unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1881
1882        if (end_pfn > begin_pfn)
1883                set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1884}
1885
1886static void set_section_ro_nx(void *base,
1887                        unsigned long text_size,
1888                        unsigned long ro_size,
1889                        unsigned long total_size)
1890{
1891        /* begin and end PFNs of the current subsection */
1892        unsigned long begin_pfn;
1893        unsigned long end_pfn;
1894
1895        /*
1896         * Set RO for module text and RO-data:
1897         * - Always protect first page.
1898         * - Do not protect last partial page.
1899         */
1900        if (ro_size > 0)
1901                set_page_attributes(base, base + ro_size, set_memory_ro);
1902
1903        /*
1904         * Set NX permissions for module data:
1905         * - Do not protect first partial page.
1906         * - Always protect last page.
1907         */
1908        if (total_size > text_size) {
1909                begin_pfn = PFN_UP((unsigned long)base + text_size);
1910                end_pfn = PFN_UP((unsigned long)base + total_size);
1911                if (end_pfn > begin_pfn)
1912                        set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1913        }
1914}
1915
1916static void unset_module_core_ro_nx(struct module *mod)
1917{
1918        set_page_attributes(mod->module_core + mod->core_text_size,
1919                mod->module_core + mod->core_size,
1920                set_memory_x);
1921        set_page_attributes(mod->module_core,
1922                mod->module_core + mod->core_ro_size,
1923                set_memory_rw);
1924}
1925
1926static void unset_module_init_ro_nx(struct module *mod)
1927{
1928        set_page_attributes(mod->module_init + mod->init_text_size,
1929                mod->module_init + mod->init_size,
1930                set_memory_x);
1931        set_page_attributes(mod->module_init,
1932                mod->module_init + mod->init_ro_size,
1933                set_memory_rw);
1934}
1935
1936/* Iterate through all modules and set each module's text as RW */
1937void set_all_modules_text_rw(void)
1938{
1939        struct module *mod;
1940
1941        mutex_lock(&module_mutex);
1942        list_for_each_entry_rcu(mod, &modules, list) {
1943                if (mod->state == MODULE_STATE_UNFORMED)
1944                        continue;
1945                if ((mod->module_core) && (mod->core_text_size)) {
1946                        set_page_attributes(mod->module_core,
1947                                                mod->module_core + mod->core_text_size,
1948                                                set_memory_rw);
1949                }
1950                if ((mod->module_init) && (mod->init_text_size)) {
1951                        set_page_attributes(mod->module_init,
1952                                                mod->module_init + mod->init_text_size,
1953                                                set_memory_rw);
1954                }
1955        }
1956        mutex_unlock(&module_mutex);
1957}
1958
1959/* Iterate through all modules and set each module's text as RO */
1960void set_all_modules_text_ro(void)
1961{
1962        struct module *mod;
1963
1964        mutex_lock(&module_mutex);
1965        list_for_each_entry_rcu(mod, &modules, list) {
1966                if (mod->state == MODULE_STATE_UNFORMED)
1967                        continue;
1968                if ((mod->module_core) && (mod->core_text_size)) {
1969                        set_page_attributes(mod->module_core,
1970                                                mod->module_core + mod->core_text_size,
1971                                                set_memory_ro);
1972                }
1973                if ((mod->module_init) && (mod->init_text_size)) {
1974                        set_page_attributes(mod->module_init,
1975                                                mod->module_init + mod->init_text_size,
1976                                                set_memory_ro);
1977                }
1978        }
1979        mutex_unlock(&module_mutex);
1980}
1981#else
1982static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1983static void unset_module_core_ro_nx(struct module *mod) { }
1984static void unset_module_init_ro_nx(struct module *mod) { }
1985#endif
1986
1987void __weak module_memfree(void *module_region)
1988{
1989        vfree(module_region);
1990}
1991
1992void __weak module_arch_cleanup(struct module *mod)
1993{
1994}
1995
1996void __weak module_arch_freeing_init(struct module *mod)
1997{
1998}
1999
2000/* Free a module, remove from lists, etc. */
2001static void free_module(struct module *mod)
2002{
2003        trace_module_free(mod);
2004
2005        mod_sysfs_teardown(mod);
2006
2007        /* We leave it in list to prevent duplicate loads, but make sure
2008         * that noone uses it while it's being deconstructed. */
2009        mutex_lock(&module_mutex);
2010        mod->state = MODULE_STATE_UNFORMED;
2011        mutex_unlock(&module_mutex);
2012
2013        /* Remove dynamic debug info */
2014        ddebug_remove_module(mod->name);
2015
2016        /* Arch-specific cleanup. */
2017        module_arch_cleanup(mod);
2018
2019        /* Module unload stuff */
2020        module_unload_free(mod);
2021
2022        /* Free any allocated parameters. */
2023        destroy_params(mod->kp, mod->num_kp);
2024
2025        /* Now we can delete it from the lists */
2026        mutex_lock(&module_mutex);
2027        /* Unlink carefully: kallsyms could be walking list. */
2028        list_del_rcu(&mod->list);
2029        mod_tree_remove(mod);
2030        /* Remove this module from bug list, this uses list_del_rcu */
2031        module_bug_cleanup(mod);
2032        /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2033        synchronize_sched();
2034        mutex_unlock(&module_mutex);
2035
2036        /* This may be NULL, but that's OK */
2037        unset_module_init_ro_nx(mod);
2038        module_arch_freeing_init(mod);
2039        module_memfree(mod->module_init);
2040        kfree(mod->args);
2041        percpu_modfree(mod);
2042
2043        /* Free lock-classes; relies on the preceding sync_rcu(). */
2044        lockdep_free_key_range(mod->module_core, mod->core_size);
2045
2046        /* Finally, free the core (containing the module structure) */
2047        unset_module_core_ro_nx(mod);
2048        module_memfree(mod->module_core);
2049
2050#ifdef CONFIG_MPU
2051        update_protections(current->mm);
2052#endif
2053}
2054
2055void *__symbol_get(const char *symbol)
2056{
2057        struct module *owner;
2058        const struct kernel_symbol *sym;
2059
2060        preempt_disable();
2061        sym = find_symbol(symbol, &owner, NULL, true, true);
2062        if (sym && strong_try_module_get(owner))
2063                sym = NULL;
2064        preempt_enable();
2065
2066        return sym ? (void *)sym->value : NULL;
2067}
2068EXPORT_SYMBOL_GPL(__symbol_get);
2069
2070/*
2071 * Ensure that an exported symbol [global namespace] does not already exist
2072 * in the kernel or in some other module's exported symbol table.
2073 *
2074 * You must hold the module_mutex.
2075 */
2076static int verify_export_symbols(struct module *mod)
2077{
2078        unsigned int i;
2079        struct module *owner;
2080        const struct kernel_symbol *s;
2081        struct {
2082                const struct kernel_symbol *sym;
2083                unsigned int num;
2084        } arr[] = {
2085                { mod->syms, mod->num_syms },
2086                { mod->gpl_syms, mod->num_gpl_syms },
2087                { mod->gpl_future_syms, mod->num_gpl_future_syms },
2088#ifdef CONFIG_UNUSED_SYMBOLS
2089                { mod->unused_syms, mod->num_unused_syms },
2090                { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2091#endif
2092        };
2093
2094        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2095                for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2096                        if (find_symbol(s->name, &owner, NULL, true, false)) {
2097                                pr_err("%s: exports duplicate symbol %s"
2098                                       " (owned by %s)\n",
2099                                       mod->name, s->name, module_name(owner));
2100                                return -ENOEXEC;
2101                        }
2102                }
2103        }
2104        return 0;
2105}
2106
2107/* Change all symbols so that st_value encodes the pointer directly. */
2108static int simplify_symbols(struct module *mod, const struct load_info *info)
2109{
2110        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2111        Elf_Sym *sym = (void *)symsec->sh_addr;
2112        unsigned long secbase;
2113        unsigned int i;
2114        int ret = 0;
2115        const struct kernel_symbol *ksym;
2116
2117        for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2118                const char *name = info->strtab + sym[i].st_name;
2119
2120                switch (sym[i].st_shndx) {
2121                case SHN_COMMON:
2122                        /* Ignore common symbols */
2123                        if (!strncmp(name, "__gnu_lto", 9))
2124                                break;
2125
2126                        /* We compiled with -fno-common.  These are not
2127                           supposed to happen.  */
2128                        pr_debug("Common symbol: %s\n", name);
2129                        pr_warn("%s: please compile with -fno-common\n",
2130                               mod->name);
2131                        ret = -ENOEXEC;
2132                        break;
2133
2134                case SHN_ABS:
2135                        /* Don't need to do anything */
2136                        pr_debug("Absolute symbol: 0x%08lx\n",
2137                               (long)sym[i].st_value);
2138                        break;
2139
2140                case SHN_UNDEF:
2141                        ksym = resolve_symbol_wait(mod, info, name);
2142                        /* Ok if resolved.  */
2143                        if (ksym && !IS_ERR(ksym)) {
2144                                sym[i].st_value = ksym->value;
2145                                break;
2146                        }
2147
2148                        /* Ok if weak.  */
2149                        if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2150                                break;
2151
2152                        pr_warn("%s: Unknown symbol %s (err %li)\n",
2153                                mod->name, name, PTR_ERR(ksym));
2154                        ret = PTR_ERR(ksym) ?: -ENOENT;
2155                        break;
2156
2157                default:
2158                        /* Divert to percpu allocation if a percpu var. */
2159                        if (sym[i].st_shndx == info->index.pcpu)
2160                                secbase = (unsigned long)mod_percpu(mod);
2161                        else
2162                                secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2163                        sym[i].st_value += secbase;
2164                        break;
2165                }
2166        }
2167
2168        return ret;
2169}
2170
2171static int apply_relocations(struct module *mod, const struct load_info *info)
2172{
2173        unsigned int i;
2174        int err = 0;
2175
2176        /* Now do relocations. */
2177        for (i = 1; i < info->hdr->e_shnum; i++) {
2178                unsigned int infosec = info->sechdrs[i].sh_info;
2179
2180                /* Not a valid relocation section? */
2181                if (infosec >= info->hdr->e_shnum)
2182                        continue;
2183
2184                /* Don't bother with non-allocated sections */
2185                if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2186                        continue;
2187
2188                if (info->sechdrs[i].sh_type == SHT_REL)
2189                        err = apply_relocate(info->sechdrs, info->strtab,
2190                                             info->index.sym, i, mod);
2191                else if (info->sechdrs[i].sh_type == SHT_RELA)
2192                        err = apply_relocate_add(info->sechdrs, info->strtab,
2193                                                 info->index.sym, i, mod);
2194                if (err < 0)
2195                        break;
2196        }
2197        return err;
2198}
2199
2200/* Additional bytes needed by arch in front of individual sections */
2201unsigned int __weak arch_mod_section_prepend(struct module *mod,
2202                                             unsigned int section)
2203{
2204        /* default implementation just returns zero */
2205        return 0;
2206}
2207
2208/* Update size with this section: return offset. */
2209static long get_offset(struct module *mod, unsigned int *size,
2210                       Elf_Shdr *sechdr, unsigned int section)
2211{
2212        long ret;
2213
2214        *size += arch_mod_section_prepend(mod, section);
2215        ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2216        *size = ret + sechdr->sh_size;
2217        return ret;
2218}
2219
2220/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2221   might -- code, read-only data, read-write data, small data.  Tally
2222   sizes, and place the offsets into sh_entsize fields: high bit means it
2223   belongs in init. */
2224static void layout_sections(struct module *mod, struct load_info *info)
2225{
2226        static unsigned long const masks[][2] = {
2227                /* NOTE: all executable code must be the first section
2228                 * in this array; otherwise modify the text_size
2229                 * finder in the two loops below */
2230                { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2231                { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2232                { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2233                { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2234        };
2235        unsigned int m, i;
2236
2237        for (i = 0; i < info->hdr->e_shnum; i++)
2238                info->sechdrs[i].sh_entsize = ~0UL;
2239
2240        pr_debug("Core section allocation order:\n");
2241        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2242                for (i = 0; i < info->hdr->e_shnum; ++i) {
2243                        Elf_Shdr *s = &info->sechdrs[i];
2244                        const char *sname = info->secstrings + s->sh_name;
2245
2246                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2247                            || (s->sh_flags & masks[m][1])
2248                            || s->sh_entsize != ~0UL
2249                            || strstarts(sname, ".init"))
2250                                continue;
2251                        s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2252                        pr_debug("\t%s\n", sname);
2253                }
2254                switch (m) {
2255                case 0: /* executable */
2256                        mod->core_size = debug_align(mod->core_size);
2257                        mod->core_text_size = mod->core_size;
2258                        break;
2259                case 1: /* RO: text and ro-data */
2260                        mod->core_size = debug_align(mod->core_size);
2261                        mod->core_ro_size = mod->core_size;
2262                        break;
2263                case 3: /* whole core */
2264                        mod->core_size = debug_align(mod->core_size);
2265                        break;
2266                }
2267        }
2268
2269        pr_debug("Init section allocation order:\n");
2270        for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2271                for (i = 0; i < info->hdr->e_shnum; ++i) {
2272                        Elf_Shdr *s = &info->sechdrs[i];
2273                        const char *sname = info->secstrings + s->sh_name;
2274
2275                        if ((s->sh_flags & masks[m][0]) != masks[m][0]
2276                            || (s->sh_flags & masks[m][1])
2277                            || s->sh_entsize != ~0UL
2278                            || !strstarts(sname, ".init"))
2279                                continue;
2280                        s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2281                                         | INIT_OFFSET_MASK);
2282                        pr_debug("\t%s\n", sname);
2283                }
2284                switch (m) {
2285                case 0: /* executable */
2286                        mod->init_size = debug_align(mod->init_size);
2287                        mod->init_text_size = mod->init_size;
2288                        break;
2289                case 1: /* RO: text and ro-data */
2290                        mod->init_size = debug_align(mod->init_size);
2291                        mod->init_ro_size = mod->init_size;
2292                        break;
2293                case 3: /* whole init */
2294                        mod->init_size = debug_align(mod->init_size);
2295                        break;
2296                }
2297        }
2298}
2299
2300static void set_license(struct module *mod, const char *license)
2301{
2302        if (!license)
2303                license = "unspecified";
2304
2305        if (!license_is_gpl_compatible(license)) {
2306                if (!test_taint(TAINT_PROPRIETARY_MODULE))
2307                        pr_warn("%s: module license '%s' taints kernel.\n",
2308                                mod->name, license);
2309                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2310                                 LOCKDEP_NOW_UNRELIABLE);
2311        }
2312}
2313
2314/* Parse tag=value strings from .modinfo section */
2315static char *next_string(char *string, unsigned long *secsize)
2316{
2317        /* Skip non-zero chars */
2318        while (string[0]) {
2319                string++;
2320                if ((*secsize)-- <= 1)
2321                        return NULL;
2322        }
2323
2324        /* Skip any zero padding. */
2325        while (!string[0]) {
2326                string++;
2327                if ((*secsize)-- <= 1)
2328                        return NULL;
2329        }
2330        return string;
2331}
2332
2333static char *get_modinfo(struct load_info *info, const char *tag)
2334{
2335        char *p;
2336        unsigned int taglen = strlen(tag);
2337        Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2338        unsigned long size = infosec->sh_size;
2339
2340        for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2341                if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2342                        return p + taglen + 1;
2343        }
2344        return NULL;
2345}
2346
2347static void setup_modinfo(struct module *mod, struct load_info *info)
2348{
2349        struct module_attribute *attr;
2350        int i;
2351
2352        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2353                if (attr->setup)
2354                        attr->setup(mod, get_modinfo(info, attr->attr.name));
2355        }
2356}
2357
2358static void free_modinfo(struct module *mod)
2359{
2360        struct module_attribute *attr;
2361        int i;
2362
2363        for (i = 0; (attr = modinfo_attrs[i]); i++) {
2364                if (attr->free)
2365                        attr->free(mod);
2366        }
2367}
2368
2369#ifdef CONFIG_KALLSYMS
2370
2371/* lookup symbol in given range of kernel_symbols */
2372static const struct kernel_symbol *lookup_symbol(const char *name,
2373        const struct kernel_symbol *start,
2374        const struct kernel_symbol *stop)
2375{
2376        return bsearch(name, start, stop - start,
2377                        sizeof(struct kernel_symbol), cmp_name);
2378}
2379
2380static int is_exported(const char *name, unsigned long value,
2381                       const struct module *mod)
2382{
2383        const struct kernel_symbol *ks;
2384        if (!mod)
2385                ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2386        else
2387                ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2388        return ks != NULL && ks->value == value;
2389}
2390
2391/* As per nm */
2392static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2393{
2394        const Elf_Shdr *sechdrs = info->sechdrs;
2395
2396        if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2397                if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2398                        return 'v';
2399                else
2400                        return 'w';
2401        }
2402        if (sym->st_shndx == SHN_UNDEF)
2403                return 'U';
2404        if (sym->st_shndx == SHN_ABS)
2405                return 'a';
2406        if (sym->st_shndx >= SHN_LORESERVE)
2407                return '?';
2408        if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2409                return 't';
2410        if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2411            && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2412                if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2413                        return 'r';
2414                else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2415                        return 'g';
2416                else
2417                        return 'd';
2418        }
2419        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2420                if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2421                        return 's';
2422                else
2423                        return 'b';
2424        }
2425        if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2426                      ".debug")) {
2427                return 'n';
2428        }
2429        return '?';
2430}
2431
2432static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2433                        unsigned int shnum)
2434{
2435        const Elf_Shdr *sec;
2436
2437        if (src->st_shndx == SHN_UNDEF
2438            || src->st_shndx >= shnum
2439            || !src->st_name)
2440                return false;
2441
2442        sec = sechdrs + src->st_shndx;
2443        if (!(sec->sh_flags & SHF_ALLOC)
2444#ifndef CONFIG_KALLSYMS_ALL
2445            || !(sec->sh_flags & SHF_EXECINSTR)
2446#endif
2447            || (sec->sh_entsize & INIT_OFFSET_MASK))
2448                return false;
2449
2450        return true;
2451}
2452
2453/*
2454 * We only allocate and copy the strings needed by the parts of symtab
2455 * we keep.  This is simple, but has the effect of making multiple
2456 * copies of duplicates.  We could be more sophisticated, see
2457 * linux-kernel thread starting with
2458 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2459 */
2460static void layout_symtab(struct module *mod, struct load_info *info)
2461{
2462        Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2463        Elf_Shdr *strsect = info->sechdrs + info->index.str;
2464        const Elf_Sym *src;
2465        unsigned int i, nsrc, ndst, strtab_size = 0;
2466
2467        /* Put symbol section at end of init part of module. */
2468        symsect->sh_flags |= SHF_ALLOC;
2469        symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2470                                         info->index.sym) | INIT_OFFSET_MASK;
2471        pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2472
2473        src = (void *)info->hdr + symsect->sh_offset;
2474        nsrc = symsect->sh_size / sizeof(*src);
2475
2476        /* Compute total space required for the core symbols' strtab. */
2477        for (ndst = i = 0; i < nsrc; i++) {
2478                if (i == 0 ||
2479                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2480                        strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2481                        ndst++;
2482                }
2483        }
2484
2485        /* Append room for core symbols at end of core part. */
2486        info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2487        info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2488        mod->core_size += strtab_size;
2489        mod->core_size = debug_align(mod->core_size);
2490
2491        /* Put string table section at end of init part of module. */
2492        strsect->sh_flags |= SHF_ALLOC;
2493        strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2494                                         info->index.str) | INIT_OFFSET_MASK;
2495        mod->init_size = debug_align(mod->init_size);
2496        pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2497}
2498
2499static void add_kallsyms(struct module *mod, const struct load_info *info)
2500{
2501        unsigned int i, ndst;
2502        const Elf_Sym *src;
2503        Elf_Sym *dst;
2504        char *s;
2505        Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2506
2507        mod->symtab = (void *)symsec->sh_addr;
2508        mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2509        /* Make sure we get permanent strtab: don't use info->strtab. */
2510        mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2511
2512        /* Set types up while we still have access to sections. */
2513        for (i = 0; i < mod->num_symtab; i++)
2514                mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2515
2516        mod->core_symtab = dst = mod->module_core + info->symoffs;
2517        mod->core_strtab = s = mod->module_core + info->stroffs;
2518        src = mod->symtab;
2519        for (ndst = i = 0; i < mod->num_symtab; i++) {
2520                if (i == 0 ||
2521                    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2522                        dst[ndst] = src[i];
2523                        dst[ndst++].st_name = s - mod->core_strtab;
2524                        s += strlcpy(s, &mod->strtab[src[i].st_name],
2525                                     KSYM_NAME_LEN) + 1;
2526                }
2527        }
2528        mod->core_num_syms = ndst;
2529}
2530#else
2531static inline void layout_symtab(struct module *mod, struct load_info *info)
2532{
2533}
2534
2535static void add_kallsyms(struct module *mod, const struct load_info *info)
2536{
2537}
2538#endif /* CONFIG_KALLSYMS */
2539
2540static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2541{
2542        if (!debug)
2543                return;
2544#ifdef CONFIG_DYNAMIC_DEBUG
2545        if (ddebug_add_module(debug, num, debug->modname))
2546                pr_err("dynamic debug error adding module: %s\n",
2547                        debug->modname);
2548#endif
2549}
2550
2551static void dynamic_debug_remove(struct _ddebug *debug)
2552{
2553        if (debug)
2554                ddebug_remove_module(debug->modname);
2555}
2556
2557void * __weak module_alloc(unsigned long size)
2558{
2559        return vmalloc_exec(size);
2560}
2561
2562#ifdef CONFIG_DEBUG_KMEMLEAK
2563static void kmemleak_load_module(const struct module *mod,
2564                                 const struct load_info *info)
2565{
2566        unsigned int i;
2567
2568        /* only scan the sections containing data */
2569        kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2570
2571        for (i = 1; i < info->hdr->e_shnum; i++) {
2572                /* Scan all writable sections that's not executable */
2573                if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2574                    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2575                    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2576                        continue;
2577
2578                kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2579                                   info->sechdrs[i].sh_size, GFP_KERNEL);
2580        }
2581}
2582#else
2583static inline void kmemleak_load_module(const struct module *mod,
2584                                        const struct load_info *info)
2585{
2586}
2587#endif
2588
2589#ifdef CONFIG_MODULE_SIG
2590static int module_sig_check(struct load_info *info)
2591{
2592        int err = -ENOKEY;
2593        const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2594        const void *mod = info->hdr;
2595
2596        if (info->len > markerlen &&
2597            memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2598                /* We truncate the module to discard the signature */
2599                info->len -= markerlen;
2600                err = mod_verify_sig(mod, &info->len);
2601        }
2602
2603        if (!err) {
2604                info->sig_ok = true;
2605                return 0;
2606        }
2607
2608        /* Not having a signature is only an error if we're strict. */
2609        if (err == -ENOKEY && !sig_enforce)
2610                err = 0;
2611
2612        return err;
2613}
2614#else /* !CONFIG_MODULE_SIG */
2615static int module_sig_check(struct load_info *info)
2616{
2617        return 0;
2618}
2619#endif /* !CONFIG_MODULE_SIG */
2620
2621/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2622static int elf_header_check(struct load_info *info)
2623{
2624        if (info->len < sizeof(*(info->hdr)))
2625                return -ENOEXEC;
2626
2627        if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2628            || info->hdr->e_type != ET_REL
2629            || !elf_check_arch(info->hdr)
2630            || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2631                return -ENOEXEC;
2632
2633        if (info->hdr->e_shoff >= info->len
2634            || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2635                info->len - info->hdr->e_shoff))
2636                return -ENOEXEC;
2637
2638        return 0;
2639}
2640
2641#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2642
2643static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2644{
2645        do {
2646                unsigned long n = min(len, COPY_CHUNK_SIZE);
2647
2648                if (copy_from_user(dst, usrc, n) != 0)
2649                        return -EFAULT;
2650                cond_resched();
2651                dst += n;
2652                usrc += n;
2653                len -= n;
2654        } while (len);
2655        return 0;
2656}
2657
2658/* Sets info->hdr and info->len. */
2659static int copy_module_from_user(const void __user *umod, unsigned long len,
2660                                  struct load_info *info)
2661{
2662        int err;
2663
2664        info->len = len;
2665        if (info->len < sizeof(*(info->hdr)))
2666                return -ENOEXEC;
2667
2668        err = security_kernel_module_from_file(NULL);
2669        if (err)
2670                return err;
2671
2672        /* Suck in entire file: we'll want most of it. */
2673        info->hdr = __vmalloc(info->len,
2674                        GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2675        if (!info->hdr)
2676                return -ENOMEM;
2677
2678        if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2679                vfree(info->hdr);
2680                return -EFAULT;
2681        }
2682
2683        return 0;
2684}
2685
2686/* Sets info->hdr and info->len. */
2687static int copy_module_from_fd(int fd, struct load_info *info)
2688{
2689        struct fd f = fdget(fd);
2690        int err;
2691        struct kstat stat;
2692        loff_t pos;
2693        ssize_t bytes = 0;
2694
2695        if (!f.file)
2696                return -ENOEXEC;
2697
2698        err = security_kernel_module_from_file(f.file);
2699        if (err)
2700                goto out;
2701
2702        err = vfs_getattr(&f.file->f_path, &stat);
2703        if (err)
2704                goto out;
2705
2706        if (stat.size > INT_MAX) {
2707                err = -EFBIG;
2708                goto out;
2709        }
2710
2711        /* Don't hand 0 to vmalloc, it whines. */
2712        if (stat.size == 0) {
2713                err = -EINVAL;
2714                goto out;
2715        }
2716
2717        info->hdr = vmalloc(stat.size);
2718        if (!info->hdr) {
2719                err = -ENOMEM;
2720                goto out;
2721        }
2722
2723        pos = 0;
2724        while (pos < stat.size) {
2725                bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2726                                    stat.size - pos);
2727                if (bytes < 0) {
2728                        vfree(info->hdr);
2729                        err = bytes;
2730                        goto out;
2731                }
2732                if (bytes == 0)
2733                        break;
2734                pos += bytes;
2735        }
2736        info->len = pos;
2737
2738out:
2739        fdput(f);
2740        return err;
2741}
2742
2743static void free_copy(struct load_info *info)
2744{
2745        vfree(info->hdr);
2746}
2747
2748static int rewrite_section_headers(struct load_info *info, int flags)
2749{
2750        unsigned int i;
2751
2752        /* This should always be true, but let's be sure. */
2753        info->sechdrs[0].sh_addr = 0;
2754
2755        for (i = 1; i < info->hdr->e_shnum; i++) {
2756                Elf_Shdr *shdr = &info->sechdrs[i];
2757                if (shdr->sh_type != SHT_NOBITS
2758                    && info->len < shdr->sh_offset + shdr->sh_size) {
2759                        pr_err("Module len %lu truncated\n", info->len);
2760                        return -ENOEXEC;
2761                }
2762
2763                /* Mark all sections sh_addr with their address in the
2764                   temporary image. */
2765                shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2766
2767#ifndef CONFIG_MODULE_UNLOAD
2768                /* Don't load .exit sections */
2769                if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2770                        shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2771#endif
2772        }
2773
2774        /* Track but don't keep modinfo and version sections. */
2775        if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2776                info->index.vers = 0; /* Pretend no __versions section! */
2777        else
2778                info->index.vers = find_sec(info, "__versions");
2779        info->index.info = find_sec(info, ".modinfo");
2780        info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2781        info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2782        return 0;
2783}
2784
2785/*
2786 * Set up our basic convenience variables (pointers to section headers,
2787 * search for module section index etc), and do some basic section
2788 * verification.
2789 *
2790 * Return the temporary module pointer (we'll replace it with the final
2791 * one when we move the module sections around).
2792 */
2793static struct module *setup_load_info(struct load_info *info, int flags)
2794{
2795        unsigned int i;
2796        int err;
2797        struct module *mod;
2798
2799        /* Set up the convenience variables */
2800        info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2801        info->secstrings = (void *)info->hdr
2802                + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2803
2804        err = rewrite_section_headers(info, flags);
2805        if (err)
2806                return ERR_PTR(err);
2807
2808        /* Find internal symbols and strings. */
2809        for (i = 1; i < info->hdr->e_shnum; i++) {
2810                if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2811                        info->index.sym = i;
2812                        info->index.str = info->sechdrs[i].sh_link;
2813                        info->strtab = (char *)info->hdr
2814                                + info->sechdrs[info->index.str].sh_offset;
2815                        break;
2816                }
2817        }
2818
2819        info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2820        if (!info->index.mod) {
2821                pr_warn("No module found in object\n");
2822                return ERR_PTR(-ENOEXEC);
2823        }
2824        /* This is temporary: point mod into copy of data. */
2825        mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2826
2827        if (info->index.sym == 0) {
2828                pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2829                return ERR_PTR(-ENOEXEC);
2830        }
2831
2832        info->index.pcpu = find_pcpusec(info);
2833
2834        /* Check module struct version now, before we try to use module. */
2835        if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2836                return ERR_PTR(-ENOEXEC);
2837
2838        return mod;
2839}
2840
2841static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2842{
2843        const char *modmagic = get_modinfo(info, "vermagic");
2844        int err;
2845
2846        if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2847                modmagic = NULL;
2848
2849        /* This is allowed: modprobe --force will invalidate it. */
2850        if (!modmagic) {
2851                err = try_to_force_load(mod, "bad vermagic");
2852                if (err)
2853                        return err;
2854        } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2855                pr_err("%s: version magic '%s' should be '%s'\n",
2856                       mod->name, modmagic, vermagic);
2857                return -ENOEXEC;
2858        }
2859
2860        if (!get_modinfo(info, "intree"))
2861                add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2862
2863        if (get_modinfo(info, "staging")) {
2864                add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2865                pr_warn("%s: module is from the staging directory, the quality "
2866                        "is unknown, you have been warned.\n", mod->name);
2867        }
2868
2869        /* Set up license info based on the info section */
2870        set_license(mod, get_modinfo(info, "license"));
2871
2872        return 0;
2873}
2874
2875static int find_module_sections(struct module *mod, struct load_info *info)
2876{
2877        mod->kp = section_objs(info, "__param",
2878                               sizeof(*mod->kp), &mod->num_kp);
2879        mod->syms = section_objs(info, "__ksymtab",
2880                                 sizeof(*mod->syms), &mod->num_syms);
2881        mod->crcs = section_addr(info, "__kcrctab");
2882        mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2883                                     sizeof(*mod->gpl_syms),
2884                                     &mod->num_gpl_syms);
2885        mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2886        mod->gpl_future_syms = section_objs(info,
2887                                            "__ksymtab_gpl_future",
2888                                            sizeof(*mod->gpl_future_syms),
2889                                            &mod->num_gpl_future_syms);
2890        mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2891
2892#ifdef CONFIG_UNUSED_SYMBOLS
2893        mod->unused_syms = section_objs(info, "__ksymtab_unused",
2894                                        sizeof(*mod->unused_syms),
2895                                        &mod->num_unused_syms);
2896        mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2897        mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2898                                            sizeof(*mod->unused_gpl_syms),
2899                                            &mod->num_unused_gpl_syms);
2900        mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2901#endif
2902#ifdef CONFIG_CONSTRUCTORS
2903        mod->ctors = section_objs(info, ".ctors",
2904                                  sizeof(*mod->ctors), &mod->num_ctors);
2905        if (!mod->ctors)
2906                mod->ctors = section_objs(info, ".init_array",
2907                                sizeof(*mod->ctors), &mod->num_ctors);
2908        else if (find_sec(info, ".init_array")) {
2909                /*
2910                 * This shouldn't happen with same compiler and binutils
2911                 * building all parts of the module.
2912                 */
2913                pr_warn("%s: has both .ctors and .init_array.\n",
2914                       mod->name);
2915                return -EINVAL;
2916        }
2917#endif
2918
2919#ifdef CONFIG_TRACEPOINTS
2920        mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2921                                             sizeof(*mod->tracepoints_ptrs),
2922                                             &mod->num_tracepoints);
2923#endif
2924#ifdef HAVE_JUMP_LABEL
2925        mod->jump_entries = section_objs(info, "__jump_table",
2926                                        sizeof(*mod->jump_entries),
2927                                        &mod->num_jump_entries);
2928#endif
2929#ifdef CONFIG_EVENT_TRACING
2930        mod->trace_events = section_objs(info, "_ftrace_events",
2931                                         sizeof(*mod->trace_events),
2932                                         &mod->num_trace_events);
2933        mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2934                                        sizeof(*mod->trace_enums),
2935                                        &mod->num_trace_enums);
2936#endif
2937#ifdef CONFIG_TRACING
2938        mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2939                                         sizeof(*mod->trace_bprintk_fmt_start),
2940                                         &mod->num_trace_bprintk_fmt);
2941#endif
2942#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2943        /* sechdrs[0].sh_size is always zero */
2944        mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2945                                             sizeof(*mod->ftrace_callsites),
2946                                             &mod->num_ftrace_callsites);
2947#endif
2948
2949        mod->extable = section_objs(info, "__ex_table",
2950                                    sizeof(*mod->extable), &mod->num_exentries);
2951
2952        if (section_addr(info, "__obsparm"))
2953                pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2954
2955        info->debug = section_objs(info, "__verbose",
2956                                   sizeof(*info->debug), &info->num_debug);
2957
2958        return 0;
2959}
2960
2961static int move_module(struct module *mod, struct load_info *info)
2962{
2963        int i;
2964        void *ptr;
2965
2966        /* Do the allocs. */
2967        ptr = module_alloc(mod->core_size);
2968        /*
2969         * The pointer to this block is stored in the module structure
2970         * which is inside the block. Just mark it as not being a
2971         * leak.
2972         */
2973        kmemleak_not_leak(ptr);
2974        if (!ptr)
2975                return -ENOMEM;
2976
2977        memset(ptr, 0, mod->core_size);
2978        mod->module_core = ptr;
2979
2980        if (mod->init_size) {
2981                ptr = module_alloc(mod->init_size);
2982                /*
2983                 * The pointer to this block is stored in the module structure
2984                 * which is inside the block. This block doesn't need to be
2985                 * scanned as it contains data and code that will be freed
2986                 * after the module is initialized.
2987                 */
2988                kmemleak_ignore(ptr);
2989                if (!ptr) {
2990                        module_memfree(mod->module_core);
2991                        return -ENOMEM;
2992                }
2993                memset(ptr, 0, mod->init_size);
2994                mod->module_init = ptr;
2995        } else
2996                mod->module_init = NULL;
2997
2998        /* Transfer each section which specifies SHF_ALLOC */
2999        pr_debug("final section addresses:\n");
3000        for (i = 0; i < info->hdr->e_shnum; i++) {
3001                void *dest;
3002                Elf_Shdr *shdr = &info->sechdrs[i];
3003
3004                if (!(shdr->sh_flags & SHF_ALLOC))
3005                        continue;
3006
3007                if (shdr->sh_entsize & INIT_OFFSET_MASK)
3008                        dest = mod->module_init
3009                                + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3010                else
3011                        dest = mod->module_core + shdr->sh_entsize;
3012
3013                if (shdr->sh_type != SHT_NOBITS)
3014                        memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3015                /* Update sh_addr to point to copy in image. */
3016                shdr->sh_addr = (unsigned long)dest;
3017                pr_debug("\t0x%lx %s\n",
3018                         (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3019        }
3020
3021        return 0;
3022}
3023
3024static int check_module_license_and_versions(struct module *mod)
3025{
3026        /*
3027         * ndiswrapper is under GPL by itself, but loads proprietary modules.
3028         * Don't use add_taint_module(), as it would prevent ndiswrapper from
3029         * using GPL-only symbols it needs.
3030         */
3031        if (strcmp(mod->name, "ndiswrapper") == 0)
3032                add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3033
3034        /* driverloader was caught wrongly pretending to be under GPL */
3035        if (strcmp(mod->name, "driverloader") == 0)
3036                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3037                                 LOCKDEP_NOW_UNRELIABLE);
3038
3039        /* lve claims to be GPL but upstream won't provide source */
3040        if (strcmp(mod->name, "lve") == 0)
3041                add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3042                                 LOCKDEP_NOW_UNRELIABLE);
3043
3044#ifdef CONFIG_MODVERSIONS
3045        if ((mod->num_syms && !mod->crcs)
3046            || (mod->num_gpl_syms && !mod->gpl_crcs)
3047            || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3048#ifdef CONFIG_UNUSED_SYMBOLS
3049            || (mod->num_unused_syms && !mod->unused_crcs)
3050            || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3051#endif
3052                ) {
3053                return try_to_force_load(mod,
3054                                         "no versions for exported symbols");
3055        }
3056#endif
3057        return 0;
3058}
3059
3060static void flush_module_icache(const struct module *mod)
3061{
3062        mm_segment_t old_fs;
3063
3064        /* flush the icache in correct context */
3065        old_fs = get_fs();
3066        set_fs(KERNEL_DS);
3067
3068        /*
3069         * Flush the instruction cache, since we've played with text.
3070         * Do it before processing of module parameters, so the module
3071         * can provide parameter accessor functions of its own.
3072         */
3073        if (mod->module_init)
3074                flush_icache_range((unsigned long)mod->module_init,
3075                                   (unsigned long)mod->module_init
3076                                   + mod->init_size);
3077        flush_icache_range((unsigned long)mod->module_core,
3078                           (unsigned long)mod->module_core + mod->core_size);
3079
3080        set_fs(old_fs);
3081}
3082
3083int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3084                                     Elf_Shdr *sechdrs,
3085                                     char *secstrings,
3086                                     struct module *mod)
3087{
3088        return 0;
3089}
3090
3091static struct module *layout_and_allocate(struct load_info *info, int flags)
3092{
3093        /* Module within temporary copy. */
3094        struct module *mod;
3095        int err;
3096
3097        mod = setup_load_info(info, flags);
3098        if (IS_ERR(mod))
3099                return mod;
3100
3101        err = check_modinfo(mod, info, flags);
3102        if (err)
3103                return ERR_PTR(err);
3104
3105        /* Allow arches to frob section contents and sizes.  */
3106        err = module_frob_arch_sections(info->hdr, info->sechdrs,
3107                                        info->secstrings, mod);
3108        if (err < 0)
3109                return ERR_PTR(err);
3110
3111        /* We will do a special allocation for per-cpu sections later. */
3112        info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3113
3114        /* Determine total sizes, and put offsets in sh_entsize.  For now
3115           this is done generically; there doesn't appear to be any
3116           special cases for the architectures. */
3117        layout_sections(mod, info);
3118        layout_symtab(mod, info);
3119
3120        /* Allocate and move to the final place */
3121        err = move_module(mod, info);
3122        if (err)
3123                return ERR_PTR(err);
3124
3125        /* Module has been copied to its final place now: return it. */
3126        mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3127        kmemleak_load_module(mod, info);
3128        return mod;
3129}
3130
3131/* mod is no longer valid after this! */
3132static void module_deallocate(struct module *mod, struct load_info *info)
3133{
3134        percpu_modfree(mod);
3135        module_arch_freeing_init(mod);
3136        module_memfree(mod->module_init);
3137        module_memfree(mod->module_core);
3138}
3139
3140int __weak module_finalize(const Elf_Ehdr *hdr,
3141                           const Elf_Shdr *sechdrs,
3142                           struct module *me)
3143{
3144        return 0;
3145}
3146
3147static int post_relocation(struct module *mod, const struct load_info *info)
3148{
3149        /* Sort exception table now relocations are done. */
3150        sort_extable(mod->extable, mod->extable + mod->num_exentries);
3151
3152        /* Copy relocated percpu area over. */
3153        percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3154                       info->sechdrs[info->index.pcpu].sh_size);
3155
3156        /* Setup kallsyms-specific fields. */
3157        add_kallsyms(mod, info);
3158
3159        /* Arch-specific module finalizing. */
3160        return module_finalize(info->hdr, info->sechdrs, mod);
3161}
3162
3163/* Is this module of this name done loading?  No locks held. */
3164static bool finished_loading(const char *name)
3165{
3166        struct module *mod;
3167        bool ret;
3168
3169        /*
3170         * The module_mutex should not be a heavily contended lock;
3171         * if we get the occasional sleep here, we'll go an extra iteration
3172         * in the wait_event_interruptible(), which is harmless.
3173         */
3174        sched_annotate_sleep();
3175        mutex_lock(&module_mutex);
3176        mod = find_module_all(name, strlen(name), true);
3177        ret = !mod || mod->state == MODULE_STATE_LIVE
3178                || mod->state == MODULE_STATE_GOING;
3179        mutex_unlock(&module_mutex);
3180
3181        return ret;
3182}
3183
3184/* Call module constructors. */
3185static void do_mod_ctors(struct module *mod)
3186{
3187#ifdef CONFIG_CONSTRUCTORS
3188        unsigned long i;
3189
3190        for (i = 0; i < mod->num_ctors; i++)
3191                mod->ctors[i]();
3192#endif
3193}
3194
3195/* For freeing module_init on success, in case kallsyms traversing */
3196struct mod_initfree {
3197        struct rcu_head rcu;
3198        void *module_init;
3199};
3200
3201static void do_free_init(struct rcu_head *head)
3202{
3203        struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3204        module_memfree(m->module_init);
3205        kfree(m);
3206}
3207
3208/*
3209 * This is where the real work happens.
3210 *
3211 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3212 * helper command 'lx-symbols'.
3213 */
3214static noinline int do_init_module(struct module *mod)
3215{
3216        int ret = 0;
3217        struct mod_initfree *freeinit;
3218
3219        freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3220        if (!freeinit) {
3221                ret = -ENOMEM;
3222                goto fail;
3223        }
3224        freeinit->module_init = mod->module_init;
3225
3226        /*
3227         * We want to find out whether @mod uses async during init.  Clear
3228         * PF_USED_ASYNC.  async_schedule*() will set it.
3229         */
3230        current->flags &= ~PF_USED_ASYNC;
3231
3232        do_mod_ctors(mod);
3233        /* Start the module */
3234        if (mod->init != NULL)
3235                ret = do_one_initcall(mod->init);
3236        if (ret < 0) {
3237                goto fail_free_freeinit;
3238        }
3239        if (ret > 0) {
3240                pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3241                        "follow 0/-E convention\n"
3242                        "%s: loading module anyway...\n",
3243                        __func__, mod->name, ret, __func__);
3244                dump_stack();
3245        }
3246
3247        /* Now it's a first class citizen! */
3248        mod->state = MODULE_STATE_LIVE;
3249        blocking_notifier_call_chain(&module_notify_list,
3250                                     MODULE_STATE_LIVE, mod);
3251
3252        /*
3253         * We need to finish all async code before the module init sequence
3254         * is done.  This has potential to deadlock.  For example, a newly
3255         * detected block device can trigger request_module() of the
3256         * default iosched from async probing task.  Once userland helper
3257         * reaches here, async_synchronize_full() will wait on the async
3258         * task waiting on request_module() and deadlock.
3259         *
3260         * This deadlock is avoided by perfomring async_synchronize_full()
3261         * iff module init queued any async jobs.  This isn't a full
3262         * solution as it will deadlock the same if module loading from
3263         * async jobs nests more than once; however, due to the various
3264         * constraints, this hack seems to be the best option for now.
3265         * Please refer to the following thread for details.
3266         *
3267         * http://thread.gmane.org/gmane.linux.kernel/1420814
3268         */
3269        if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3270                async_synchronize_full();
3271
3272        mutex_lock(&module_mutex);
3273        /* Drop initial reference. */
3274        module_put(mod);
3275        trim_init_extable(mod);
3276#ifdef CONFIG_KALLSYMS
3277        mod->num_symtab = mod->core_num_syms;
3278        mod->symtab = mod->core_symtab;
3279        mod->strtab = mod->core_strtab;
3280#endif
3281        mod_tree_remove_init(mod);
3282        unset_module_init_ro_nx(mod);
3283        module_arch_freeing_init(mod);
3284        mod->module_init = NULL;
3285        mod->init_size = 0;
3286        mod->init_ro_size = 0;
3287        mod->init_text_size = 0;
3288        /*
3289         * We want to free module_init, but be aware that kallsyms may be
3290         * walking this with preempt disabled.  In all the failure paths, we
3291         * call synchronize_sched(), but we don't want to slow down the success
3292         * path, so use actual RCU here.
3293         */
3294        call_rcu_sched(&freeinit->rcu, do_free_init);
3295        mutex_unlock(&module_mutex);
3296        wake_up_all(&module_wq);
3297
3298        return 0;
3299
3300fail_free_freeinit:
3301        kfree(freeinit);
3302fail:
3303        /* Try to protect us from buggy refcounters. */
3304        mod->state = MODULE_STATE_GOING;
3305        synchronize_sched();
3306        module_put(mod);
3307        blocking_notifier_call_chain(&module_notify_list,
3308                                     MODULE_STATE_GOING, mod);
3309        free_module(mod);
3310        wake_up_all(&module_wq);
3311        return ret;
3312}
3313
3314static int may_init_module(void)
3315{
3316        if (!capable(CAP_SYS_MODULE) || modules_disabled)
3317                return -EPERM;
3318
3319        return 0;
3320}
3321
3322/*
3323 * We try to place it in the list now to make sure it's unique before
3324 * we dedicate too many resources.  In particular, temporary percpu
3325 * memory exhaustion.
3326 */
3327static int add_unformed_module(struct module *mod)
3328{
3329        int err;
3330        struct module *old;
3331
3332        mod->state = MODULE_STATE_UNFORMED;
3333
3334again:
3335        mutex_lock(&module_mutex);
3336        old = find_module_all(mod->name, strlen(mod->name), true);
3337        if (old != NULL) {
3338                if (old->state == MODULE_STATE_COMING
3339                    || old->state == MODULE_STATE_UNFORMED) {
3340                        /* Wait in case it fails to load. */
3341                        mutex_unlock(&module_mutex);
3342                        err = wait_event_interruptible(module_wq,
3343                                               finished_loading(mod->name));
3344                        if (err)
3345                                goto out_unlocked;
3346                        goto again;
3347                }
3348                err = -EEXIST;
3349                goto out;
3350        }
3351        mod_update_bounds(mod);
3352        list_add_rcu(&mod->list, &modules);
3353        mod_tree_insert(mod);
3354        err = 0;
3355
3356out:
3357        mutex_unlock(&module_mutex);
3358out_unlocked:
3359        return err;
3360}
3361
3362static int complete_formation(struct module *mod, struct load_info *info)
3363{
3364        int err;
3365
3366        mutex_lock(&module_mutex);
3367
3368        /* Find duplicate symbols (must be called under lock). */
3369        err = verify_export_symbols(mod);
3370        if (err < 0)
3371                goto out;
3372
3373        /* This relies on module_mutex for list integrity. */
3374        module_bug_finalize(info->hdr, info->sechdrs, mod);
3375
3376        /* Set RO and NX regions for core */
3377        set_section_ro_nx(mod->module_core,
3378                                mod->core_text_size,
3379                                mod->core_ro_size,
3380                                mod->core_size);
3381
3382        /* Set RO and NX regions for init */
3383        set_section_ro_nx(mod->module_init,
3384                                mod->init_text_size,
3385                                mod->init_ro_size,
3386                                mod->init_size);
3387
3388        /* Mark state as coming so strong_try_module_get() ignores us,
3389         * but kallsyms etc. can see us. */
3390        mod->state = MODULE_STATE_COMING;
3391        mutex_unlock(&module_mutex);
3392
3393        blocking_notifier_call_chain(&module_notify_list,
3394                                     MODULE_STATE_COMING, mod);
3395        return 0;
3396
3397out:
3398        mutex_unlock(&module_mutex);
3399        return err;
3400}
3401
3402static int unknown_module_param_cb(char *param, char *val, const char *modname,
3403                                   void *arg)
3404{
3405        struct module *mod = arg;
3406        int ret;
3407
3408        if (strcmp(param, "async_probe") == 0) {
3409                mod->async_probe_requested = true;
3410                return 0;
3411        }
3412
3413        /* Check for magic 'dyndbg' arg */
3414        ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3415        if (ret != 0)
3416                pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3417        return 0;
3418}
3419
3420/* Allocate and load the module: note that size of section 0 is always
3421   zero, and we rely on this for optional sections. */
3422static int load_module(struct load_info *info, const char __user *uargs,
3423                       int flags)
3424{
3425        struct module *mod;
3426        long err;
3427        char *after_dashes;
3428
3429        err = module_sig_check(info);
3430        if (err)
3431                goto free_copy;
3432
3433        err = elf_header_check(info);
3434        if (err)
3435                goto free_copy;
3436
3437        /* Figure out module layout, and allocate all the memory. */
3438        mod = layout_and_allocate(info, flags);
3439        if (IS_ERR(mod)) {
3440                err = PTR_ERR(mod);
3441                goto free_copy;
3442        }
3443
3444        /* Reserve our place in the list. */
3445        err = add_unformed_module(mod);
3446        if (err)
3447                goto free_module;
3448
3449#ifdef CONFIG_MODULE_SIG
3450        mod->sig_ok = info->sig_ok;
3451        if (!mod->sig_ok) {
3452                pr_notice_once("%s: module verification failed: signature "
3453                               "and/or required key missing - tainting "
3454                               "kernel\n", mod->name);
3455                add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3456        }
3457#endif
3458
3459        /* To avoid stressing percpu allocator, do this once we're unique. */
3460        err = percpu_modalloc(mod, info);
3461        if (err)
3462                goto unlink_mod;
3463
3464        /* Now module is in final location, initialize linked lists, etc. */
3465        err = module_unload_init(mod);
3466        if (err)
3467                goto unlink_mod;
3468
3469        init_param_lock(mod);
3470
3471        /* Now we've got everything in the final locations, we can
3472         * find optional sections. */
3473        err = find_module_sections(mod, info);
3474        if (err)
3475                goto free_unload;
3476
3477        err = check_module_license_and_versions(mod);
3478        if (err)
3479                goto free_unload;
3480
3481        /* Set up MODINFO_ATTR fields */
3482        setup_modinfo(mod, info);
3483
3484        /* Fix up syms, so that st_value is a pointer to location. */
3485        err = simplify_symbols(mod, info);
3486        if (err < 0)
3487                goto free_modinfo;
3488
3489        err = apply_relocations(mod, info);
3490        if (err < 0)
3491                goto free_modinfo;
3492
3493        err = post_relocation(mod, info);
3494        if (err < 0)
3495                goto free_modinfo;
3496
3497        flush_module_icache(mod);
3498
3499        /* Now copy in args */
3500        mod->args = strndup_user(uargs, ~0UL >> 1);
3501        if (IS_ERR(mod->args)) {
3502                err = PTR_ERR(mod->args);
3503                goto free_arch_cleanup;
3504        }
3505
3506        dynamic_debug_setup(info->debug, info->num_debug);
3507
3508        /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3509        ftrace_module_init(mod);
3510
3511        /* Finally it's fully formed, ready to start executing. */
3512        err = complete_formation(mod, info);
3513        if (err)
3514                goto ddebug_cleanup;
3515
3516        /* Module is ready to execute: parsing args may do that. */
3517        after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3518                                  -32768, 32767, NULL,
3519                                  unknown_module_param_cb);
3520        if (IS_ERR(after_dashes)) {
3521                err = PTR_ERR(after_dashes);
3522                goto bug_cleanup;
3523        } else if (after_dashes) {
3524                pr_warn("%s: parameters '%s' after `--' ignored\n",
3525                       mod->name, after_dashes);
3526        }
3527
3528        /* Link in to syfs. */
3529        err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3530        if (err < 0)
3531                goto bug_cleanup;
3532
3533        /* Get rid of temporary copy. */
3534        free_copy(info);
3535
3536        /* Done! */
3537        trace_module_load(mod);
3538
3539        return do_init_module(mod);
3540
3541 bug_cleanup:
3542        /* module_bug_cleanup needs module_mutex protection */
3543        mutex_lock(&module_mutex);
3544        module_bug_cleanup(mod);
3545        mutex_unlock(&module_mutex);
3546
3547        blocking_notifier_call_chain(&module_notify_list,
3548                                     MODULE_STATE_GOING, mod);
3549
3550        /* we can't deallocate the module until we clear memory protection */
3551        unset_module_init_ro_nx(mod);
3552        unset_module_core_ro_nx(mod);
3553
3554 ddebug_cleanup:
3555        dynamic_debug_remove(info->debug);
3556        synchronize_sched();
3557        kfree(mod->args);
3558 free_arch_cleanup:
3559        module_arch_cleanup(mod);
3560 free_modinfo:
3561        free_modinfo(mod);
3562 free_unload:
3563        module_unload_free(mod);
3564 unlink_mod:
3565        mutex_lock(&module_mutex);
3566        /* Unlink carefully: kallsyms could be walking list. */
3567        list_del_rcu(&mod->list);
3568        mod_tree_remove(mod);
3569        wake_up_all(&module_wq);
3570        /* Wait for RCU-sched synchronizing before releasing mod->list. */
3571        synchronize_sched();
3572        mutex_unlock(&module_mutex);
3573 free_module:
3574        /* Free lock-classes; relies on the preceding sync_rcu() */
3575        lockdep_free_key_range(mod->module_core, mod->core_size);
3576
3577        module_deallocate(mod, info);
3578 free_copy:
3579        free_copy(info);
3580        return err;
3581}
3582
3583SYSCALL_DEFINE3(init_module, void __user *, umod,
3584                unsigned long, len, const char __user *, uargs)
3585{
3586        int err;
3587        struct load_info info = { };
3588
3589        err = may_init_module();
3590        if (err)
3591                return err;
3592
3593        pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3594               umod, len, uargs);
3595
3596        err = copy_module_from_user(umod, len, &info);
3597        if (err)
3598                return err;
3599
3600        return load_module(&info, uargs, 0);
3601}
3602
3603SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3604{
3605        int err;
3606        struct load_info info = { };
3607
3608        err = may_init_module();
3609        if (err)
3610                return err;
3611
3612        pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3613
3614        if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3615                      |MODULE_INIT_IGNORE_VERMAGIC))
3616                return -EINVAL;
3617
3618        err = copy_module_from_fd(fd, &info);
3619        if (err)
3620                return err;
3621
3622        return load_module(&info, uargs, flags);
3623}
3624
3625static inline int within(unsigned long addr, void *start, unsigned long size)
3626{
3627        return ((void *)addr >= start && (void *)addr < start + size);
3628}
3629
3630#ifdef CONFIG_KALLSYMS
3631/*
3632 * This ignores the intensely annoying "mapping symbols" found
3633 * in ARM ELF files: $a, $t and $d.
3634 */
3635static inline int is_arm_mapping_symbol(const char *str)
3636{
3637        if (str[0] == '.' && str[1] == 'L')
3638                return true;
3639        return str[0] == '$' && strchr("axtd", str[1])
3640               && (str[2] == '\0' || str[2] == '.');
3641}
3642
3643static const char *get_ksymbol(struct module *mod,
3644                               unsigned long addr,
3645                               unsigned long *size,
3646                               unsigned long *offset)
3647{
3648        unsigned int i, best = 0;
3649        unsigned long nextval;
3650
3651        /* At worse, next value is at end of module */
3652        if (within_module_init(addr, mod))
3653                nextval = (unsigned long)mod->module_init+mod->init_text_size;
3654        else
3655                nextval = (unsigned long)mod->module_core+mod->core_text_size;
3656
3657        /* Scan for closest preceding symbol, and next symbol. (ELF
3658           starts real symbols at 1). */
3659        for (i = 1; i < mod->num_symtab; i++) {
3660                if (mod->symtab[i].st_shndx == SHN_UNDEF)
3661                        continue;
3662
3663                /* We ignore unnamed symbols: they're uninformative
3664                 * and inserted at a whim. */
3665                if (mod->symtab[i].st_value <= addr
3666                    && mod->symtab[i].st_value > mod->symtab[best].st_value
3667                    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3668                    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3669                        best = i;
3670                if (mod->symtab[i].st_value > addr
3671                    && mod->symtab[i].st_value < nextval
3672                    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3673                    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3674                        nextval = mod->symtab[i].st_value;
3675        }
3676
3677        if (!best)
3678                return NULL;
3679
3680        if (size)
3681                *size = nextval - mod->symtab[best].st_value;
3682        if (offset)
3683                *offset = addr - mod->symtab[best].st_value;
3684        return mod->strtab + mod->symtab[best].st_name;
3685}
3686
3687/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3688 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3689const char *module_address_lookup(unsigned long addr,
3690                            unsigned long *size,
3691                            unsigned long *offset,
3692                            char **modname,
3693                            char *namebuf)
3694{
3695        const char *ret = NULL;
3696        struct module *mod;
3697
3698        preempt_disable();
3699        mod = __module_address(addr);
3700        if (mod) {
3701                if (modname)
3702                        *modname = mod->name;
3703                ret = get_ksymbol(mod, addr, size, offset);
3704        }
3705        /* Make a copy in here where it's safe */
3706        if (ret) {
3707                strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3708                ret = namebuf;
3709        }
3710        preempt_enable();
3711
3712        return ret;
3713}
3714
3715int lookup_module_symbol_name(unsigned long addr, char *symname)
3716{
3717        struct module *mod;
3718
3719        preempt_disable();
3720        list_for_each_entry_rcu(mod, &modules, list) {
3721                if (mod->state == MODULE_STATE_UNFORMED)
3722                        continue;
3723                if (within_module(addr, mod)) {
3724                        const char *sym;
3725
3726                        sym = get_ksymbol(mod, addr, NULL, NULL);
3727                        if (!sym)
3728                                goto out;
3729                        strlcpy(symname, sym, KSYM_NAME_LEN);
3730                        preempt_enable();
3731                        return 0;
3732                }
3733        }
3734out:
3735        preempt_enable();
3736        return -ERANGE;
3737}
3738
3739int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3740                        unsigned long *offset, char *modname, char *name)
3741{
3742        struct module *mod;
3743
3744        preempt_disable();
3745        list_for_each_entry_rcu(mod, &modules, list) {
3746                if (mod->state == MODULE_STATE_UNFORMED)
3747                        continue;
3748                if (within_module(addr, mod)) {
3749                        const char *sym;
3750
3751                        sym = get_ksymbol(mod, addr, size, offset);
3752                        if (!sym)
3753                                goto out;
3754                        if (modname)
3755                                strlcpy(modname, mod->name, MODULE_NAME_LEN);
3756                        if (name)
3757                                strlcpy(name, sym, KSYM_NAME_LEN);
3758                        preempt_enable();
3759                        return 0;
3760                }
3761        }
3762out:
3763        preempt_enable();
3764        return -ERANGE;
3765}
3766
3767int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3768                        char *name, char *module_name, int *exported)
3769{
3770        struct module *mod;
3771
3772        preempt_disable();
3773        list_for_each_entry_rcu(mod, &modules, list) {
3774                if (mod->state == MODULE_STATE_UNFORMED)
3775                        continue;
3776                if (symnum < mod->num_symtab) {
3777                        *value = mod->symtab[symnum].st_value;
3778                        *type = mod->symtab[symnum].st_info;
3779                        strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3780                                KSYM_NAME_LEN);
3781                        strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3782                        *exported = is_exported(name, *value, mod);
3783                        preempt_enable();
3784                        return 0;
3785                }
3786                symnum -= mod->num_symtab;
3787        }
3788        preempt_enable();
3789        return -ERANGE;
3790}
3791
3792static unsigned long mod_find_symname(struct module *mod, const char *name)
3793{
3794        unsigned int i;
3795
3796        for (i = 0; i < mod->num_symtab; i++)
3797                if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3798                    mod->symtab[i].st_info != 'U')
3799                        return mod->symtab[i].st_value;
3800        return 0;
3801}
3802
3803/* Look for this name: can be of form module:name. */
3804unsigned long module_kallsyms_lookup_name(const char *name)
3805{
3806        struct module *mod;
3807        char *colon;
3808        unsigned long ret = 0;
3809
3810        /* Don't lock: we're in enough trouble already. */
3811        preempt_disable();
3812        if ((colon = strchr(name, ':')) != NULL) {
3813                if ((mod = find_module_all(name, colon - name, false)) != NULL)
3814                        ret = mod_find_symname(mod, colon+1);
3815        } else {
3816                list_for_each_entry_rcu(mod, &modules, list) {
3817                        if (mod->state == MODULE_STATE_UNFORMED)
3818                                continue;
3819                        if ((ret = mod_find_symname(mod, name)) != 0)
3820                                break;
3821                }
3822        }
3823        preempt_enable();
3824        return ret;
3825}
3826
3827int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3828                                             struct module *, unsigned long),
3829                                   void *data)
3830{
3831        struct module *mod;
3832        unsigned int i;
3833        int ret;
3834
3835        module_assert_mutex();
3836
3837        list_for_each_entry(mod, &modules, list) {
3838                if (mod->state == MODULE_STATE_UNFORMED)
3839                        continue;
3840                for (i = 0; i < mod->num_symtab; i++) {
3841                        ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3842                                 mod, mod->symtab[i].st_value);
3843                        if (ret != 0)
3844                                return ret;
3845                }
3846        }
3847        return 0;
3848}
3849#endif /* CONFIG_KALLSYMS */
3850
3851static char *module_flags(struct module *mod, char *buf)
3852{
3853        int bx = 0;
3854
3855        BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3856        if (mod->taints ||
3857            mod->state == MODULE_STATE_GOING ||
3858            mod->state == MODULE_STATE_COMING) {
3859                buf[bx++] = '(';
3860                bx += module_flags_taint(mod, buf + bx);
3861                /* Show a - for module-is-being-unloaded */
3862                if (mod->state == MODULE_STATE_GOING)
3863                        buf[bx++] = '-';
3864                /* Show a + for module-is-being-loaded */
3865                if (mod->state == MODULE_STATE_COMING)
3866                        buf[bx++] = '+';
3867                buf[bx++] = ')';
3868        }
3869        buf[bx] = '\0';
3870
3871        return buf;
3872}
3873
3874#ifdef CONFIG_PROC_FS
3875/* Called by the /proc file system to return a list of modules. */
3876static void *m_start(struct seq_file *m, loff_t *pos)
3877{
3878        mutex_lock(&module_mutex);
3879        return seq_list_start(&modules, *pos);
3880}
3881
3882static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3883{
3884        return seq_list_next(p, &modules, pos);
3885}
3886
3887static void m_stop(struct seq_file *m, void *p)
3888{
3889        mutex_unlock(&module_mutex);
3890}
3891
3892static int m_show(struct seq_file *m, void *p)
3893{
3894        struct module *mod = list_entry(p, struct module, list);
3895        char buf[8];
3896
3897        /* We always ignore unformed modules. */
3898        if (mod->state == MODULE_STATE_UNFORMED)
3899                return 0;
3900
3901        seq_printf(m, "%s %u",
3902                   mod->name, mod->init_size + mod->core_size);
3903        print_unload_info(m, mod);
3904
3905        /* Informative for users. */
3906        seq_printf(m, " %s",
3907                   mod->state == MODULE_STATE_GOING ? "Unloading" :
3908                   mod->state == MODULE_STATE_COMING ? "Loading" :
3909                   "Live");
3910        /* Used by oprofile and other similar tools. */
3911        seq_printf(m, " 0x%pK", mod->module_core);
3912
3913        /* Taints info */
3914        if (mod->taints)
3915                seq_printf(m, " %s", module_flags(mod, buf));
3916
3917        seq_puts(m, "\n");
3918        return 0;
3919}
3920
3921/* Format: modulename size refcount deps address
3922
3923   Where refcount is a number or -, and deps is a comma-separated list
3924   of depends or -.
3925*/
3926static const struct seq_operations modules_op = {
3927        .start  = m_start,
3928        .next   = m_next,
3929        .stop   = m_stop,
3930        .show   = m_show
3931};
3932
3933static int modules_open(struct inode *inode, struct file *file)
3934{
3935        return seq_open(file, &modules_op);
3936}
3937
3938static const struct file_operations proc_modules_operations = {
3939        .open           = modules_open,
3940        .read           = seq_read,
3941        .llseek         = seq_lseek,
3942        .release        = seq_release,
3943};
3944
3945static int __init proc_modules_init(void)
3946{
3947        proc_create("modules", 0, NULL, &proc_modules_operations);
3948        return 0;
3949}
3950module_init(proc_modules_init);
3951#endif
3952
3953/* Given an address, look for it in the module exception tables. */
3954const struct exception_table_entry *search_module_extables(unsigned long addr)
3955{
3956        const struct exception_table_entry *e = NULL;
3957        struct module *mod;
3958
3959        preempt_disable();
3960        list_for_each_entry_rcu(mod, &modules, list) {
3961                if (mod->state == MODULE_STATE_UNFORMED)
3962                        continue;
3963                if (mod->num_exentries == 0)
3964                        continue;
3965
3966                e = search_extable(mod->extable,
3967                                   mod->extable + mod->num_exentries - 1,
3968                                   addr);
3969                if (e)
3970                        break;
3971        }
3972        preempt_enable();
3973
3974        /* Now, if we found one, we are running inside it now, hence
3975           we cannot unload the module, hence no refcnt needed. */
3976        return e;
3977}
3978
3979/*
3980 * is_module_address - is this address inside a module?
3981 * @addr: the address to check.
3982 *
3983 * See is_module_text_address() if you simply want to see if the address
3984 * is code (not data).
3985 */
3986bool is_module_address(unsigned long addr)
3987{
3988        bool ret;
3989
3990        preempt_disable();
3991        ret = __module_address(addr) != NULL;
3992        preempt_enable();
3993
3994        return ret;
3995}
3996
3997/*
3998 * __module_address - get the module which contains an address.
3999 * @addr: the address.
4000 *
4001 * Must be called with preempt disabled or module mutex held so that
4002 * module doesn't get freed during this.
4003 */
4004struct module *__module_address(unsigned long addr)
4005{
4006        struct module *mod;
4007
4008        if (addr < module_addr_min || addr > module_addr_max)
4009                return NULL;
4010
4011        module_assert_mutex_or_preempt();
4012
4013        mod = mod_find(addr);
4014        if (mod) {
4015                BUG_ON(!within_module(addr, mod));
4016                if (mod->state == MODULE_STATE_UNFORMED)
4017                        mod = NULL;
4018        }
4019        return mod;
4020}
4021EXPORT_SYMBOL_GPL(__module_address);
4022
4023/*
4024 * is_module_text_address - is this address inside module code?
4025 * @addr: the address to check.
4026 *
4027 * See is_module_address() if you simply want to see if the address is
4028 * anywhere in a module.  See kernel_text_address() for testing if an
4029 * address corresponds to kernel or module code.
4030 */
4031bool is_module_text_address(unsigned long addr)
4032{
4033        bool ret;
4034
4035        preempt_disable();
4036        ret = __module_text_address(addr) != NULL;
4037        preempt_enable();
4038
4039        return ret;
4040}
4041
4042/*
4043 * __module_text_address - get the module whose code contains an address.
4044 * @addr: the address.
4045 *
4046 * Must be called with preempt disabled or module mutex held so that
4047 * module doesn't get freed during this.
4048 */
4049struct module *__module_text_address(unsigned long addr)
4050{
4051        struct module *mod = __module_address(addr);
4052        if (mod) {
4053                /* Make sure it's within the text section. */
4054                if (!within(addr, mod->module_init, mod->init_text_size)
4055                    && !within(addr, mod->module_core, mod->core_text_size))
4056                        mod = NULL;
4057        }
4058        return mod;
4059}
4060EXPORT_SYMBOL_GPL(__module_text_address);
4061
4062/* Don't grab lock, we're oopsing. */
4063void print_modules(void)
4064{
4065        struct module *mod;
4066        char buf[8];
4067
4068        printk(KERN_DEFAULT "Modules linked in:");
4069        /* Most callers should already have preempt disabled, but make sure */
4070        preempt_disable();
4071        list_for_each_entry_rcu(mod, &modules, list) {
4072                if (mod->state == MODULE_STATE_UNFORMED)
4073                        continue;
4074                pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4075        }
4076        preempt_enable();
4077        if (last_unloaded_module[0])
4078                pr_cont(" [last unloaded: %s]", last_unloaded_module);
4079        pr_cont("\n");
4080}
4081
4082#ifdef CONFIG_MODVERSIONS
4083/* Generate the signature for all relevant module structures here.
4084 * If these change, we don't want to try to parse the module. */
4085void module_layout(struct module *mod,
4086                   struct modversion_info *ver,
4087                   struct kernel_param *kp,
4088                   struct kernel_symbol *ks,
4089                   struct tracepoint * const *tp)
4090{
4091}
4092EXPORT_SYMBOL(module_layout);
4093#endif
4094