linux/kernel/relay.c
<<
>>
Prefs
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 *      (mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35        struct rchan_buf *buf = vma->vm_private_data;
  36        buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  43{
  44        struct page *page;
  45        struct rchan_buf *buf = vma->vm_private_data;
  46        pgoff_t pgoff = vmf->pgoff;
  47
  48        if (!buf)
  49                return VM_FAULT_OOM;
  50
  51        page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52        if (!page)
  53                return VM_FAULT_SIGBUS;
  54        get_page(page);
  55        vmf->page = page;
  56
  57        return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64        .fault = relay_buf_fault,
  65        .close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73        const size_t pa_size = n_pages * sizeof(struct page *);
  74        if (pa_size > PAGE_SIZE)
  75                return vzalloc(pa_size);
  76        return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84        kvfree(array);
  85}
  86
  87/**
  88 *      relay_mmap_buf: - mmap channel buffer to process address space
  89 *      @buf: relay channel buffer
  90 *      @vma: vm_area_struct describing memory to be mapped
  91 *
  92 *      Returns 0 if ok, negative on error
  93 *
  94 *      Caller should already have grabbed mmap_sem.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98        unsigned long length = vma->vm_end - vma->vm_start;
  99        struct file *filp = vma->vm_file;
 100
 101        if (!buf)
 102                return -EBADF;
 103
 104        if (length != (unsigned long)buf->chan->alloc_size)
 105                return -EINVAL;
 106
 107        vma->vm_ops = &relay_file_mmap_ops;
 108        vma->vm_flags |= VM_DONTEXPAND;
 109        vma->vm_private_data = buf;
 110        buf->chan->cb->buf_mapped(buf, filp);
 111
 112        return 0;
 113}
 114
 115/**
 116 *      relay_alloc_buf - allocate a channel buffer
 117 *      @buf: the buffer struct
 118 *      @size: total size of the buffer
 119 *
 120 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *      passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125        void *mem;
 126        unsigned int i, j, n_pages;
 127
 128        *size = PAGE_ALIGN(*size);
 129        n_pages = *size >> PAGE_SHIFT;
 130
 131        buf->page_array = relay_alloc_page_array(n_pages);
 132        if (!buf->page_array)
 133                return NULL;
 134
 135        for (i = 0; i < n_pages; i++) {
 136                buf->page_array[i] = alloc_page(GFP_KERNEL);
 137                if (unlikely(!buf->page_array[i]))
 138                        goto depopulate;
 139                set_page_private(buf->page_array[i], (unsigned long)buf);
 140        }
 141        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142        if (!mem)
 143                goto depopulate;
 144
 145        memset(mem, 0, *size);
 146        buf->page_count = n_pages;
 147        return mem;
 148
 149depopulate:
 150        for (j = 0; j < i; j++)
 151                __free_page(buf->page_array[j]);
 152        relay_free_page_array(buf->page_array);
 153        return NULL;
 154}
 155
 156/**
 157 *      relay_create_buf - allocate and initialize a channel buffer
 158 *      @chan: the relay channel
 159 *
 160 *      Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164        struct rchan_buf *buf;
 165
 166        if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
 167                return NULL;
 168
 169        buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170        if (!buf)
 171                return NULL;
 172        buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 173        if (!buf->padding)
 174                goto free_buf;
 175
 176        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 177        if (!buf->start)
 178                goto free_buf;
 179
 180        buf->chan = chan;
 181        kref_get(&buf->chan->kref);
 182        return buf;
 183
 184free_buf:
 185        kfree(buf->padding);
 186        kfree(buf);
 187        return NULL;
 188}
 189
 190/**
 191 *      relay_destroy_channel - free the channel struct
 192 *      @kref: target kernel reference that contains the relay channel
 193 *
 194 *      Should only be called from kref_put().
 195 */
 196static void relay_destroy_channel(struct kref *kref)
 197{
 198        struct rchan *chan = container_of(kref, struct rchan, kref);
 199        kfree(chan);
 200}
 201
 202/**
 203 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 204 *      @buf: the buffer struct
 205 */
 206static void relay_destroy_buf(struct rchan_buf *buf)
 207{
 208        struct rchan *chan = buf->chan;
 209        unsigned int i;
 210
 211        if (likely(buf->start)) {
 212                vunmap(buf->start);
 213                for (i = 0; i < buf->page_count; i++)
 214                        __free_page(buf->page_array[i]);
 215                relay_free_page_array(buf->page_array);
 216        }
 217        chan->buf[buf->cpu] = NULL;
 218        kfree(buf->padding);
 219        kfree(buf);
 220        kref_put(&chan->kref, relay_destroy_channel);
 221}
 222
 223/**
 224 *      relay_remove_buf - remove a channel buffer
 225 *      @kref: target kernel reference that contains the relay buffer
 226 *
 227 *      Removes the file from the filesystem, which also frees the
 228 *      rchan_buf_struct and the channel buffer.  Should only be called from
 229 *      kref_put().
 230 */
 231static void relay_remove_buf(struct kref *kref)
 232{
 233        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 234        relay_destroy_buf(buf);
 235}
 236
 237/**
 238 *      relay_buf_empty - boolean, is the channel buffer empty?
 239 *      @buf: channel buffer
 240 *
 241 *      Returns 1 if the buffer is empty, 0 otherwise.
 242 */
 243static int relay_buf_empty(struct rchan_buf *buf)
 244{
 245        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 246}
 247
 248/**
 249 *      relay_buf_full - boolean, is the channel buffer full?
 250 *      @buf: channel buffer
 251 *
 252 *      Returns 1 if the buffer is full, 0 otherwise.
 253 */
 254int relay_buf_full(struct rchan_buf *buf)
 255{
 256        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 257        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 258}
 259EXPORT_SYMBOL_GPL(relay_buf_full);
 260
 261/*
 262 * High-level relay kernel API and associated functions.
 263 */
 264
 265/*
 266 * rchan_callback implementations defining default channel behavior.  Used
 267 * in place of corresponding NULL values in client callback struct.
 268 */
 269
 270/*
 271 * subbuf_start() default callback.  Does nothing.
 272 */
 273static int subbuf_start_default_callback (struct rchan_buf *buf,
 274                                          void *subbuf,
 275                                          void *prev_subbuf,
 276                                          size_t prev_padding)
 277{
 278        if (relay_buf_full(buf))
 279                return 0;
 280
 281        return 1;
 282}
 283
 284/*
 285 * buf_mapped() default callback.  Does nothing.
 286 */
 287static void buf_mapped_default_callback(struct rchan_buf *buf,
 288                                        struct file *filp)
 289{
 290}
 291
 292/*
 293 * buf_unmapped() default callback.  Does nothing.
 294 */
 295static void buf_unmapped_default_callback(struct rchan_buf *buf,
 296                                          struct file *filp)
 297{
 298}
 299
 300/*
 301 * create_buf_file_create() default callback.  Does nothing.
 302 */
 303static struct dentry *create_buf_file_default_callback(const char *filename,
 304                                                       struct dentry *parent,
 305                                                       umode_t mode,
 306                                                       struct rchan_buf *buf,
 307                                                       int *is_global)
 308{
 309        return NULL;
 310}
 311
 312/*
 313 * remove_buf_file() default callback.  Does nothing.
 314 */
 315static int remove_buf_file_default_callback(struct dentry *dentry)
 316{
 317        return -EINVAL;
 318}
 319
 320/* relay channel default callbacks */
 321static struct rchan_callbacks default_channel_callbacks = {
 322        .subbuf_start = subbuf_start_default_callback,
 323        .buf_mapped = buf_mapped_default_callback,
 324        .buf_unmapped = buf_unmapped_default_callback,
 325        .create_buf_file = create_buf_file_default_callback,
 326        .remove_buf_file = remove_buf_file_default_callback,
 327};
 328
 329/**
 330 *      wakeup_readers - wake up readers waiting on a channel
 331 *      @data: contains the channel buffer
 332 *
 333 *      This is the timer function used to defer reader waking.
 334 */
 335static void wakeup_readers(unsigned long data)
 336{
 337        struct rchan_buf *buf = (struct rchan_buf *)data;
 338        wake_up_interruptible(&buf->read_wait);
 339}
 340
 341/**
 342 *      __relay_reset - reset a channel buffer
 343 *      @buf: the channel buffer
 344 *      @init: 1 if this is a first-time initialization
 345 *
 346 *      See relay_reset() for description of effect.
 347 */
 348static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 349{
 350        size_t i;
 351
 352        if (init) {
 353                init_waitqueue_head(&buf->read_wait);
 354                kref_init(&buf->kref);
 355                setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
 356        } else
 357                del_timer_sync(&buf->timer);
 358
 359        buf->subbufs_produced = 0;
 360        buf->subbufs_consumed = 0;
 361        buf->bytes_consumed = 0;
 362        buf->finalized = 0;
 363        buf->data = buf->start;
 364        buf->offset = 0;
 365
 366        for (i = 0; i < buf->chan->n_subbufs; i++)
 367                buf->padding[i] = 0;
 368
 369        buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 370}
 371
 372/**
 373 *      relay_reset - reset the channel
 374 *      @chan: the channel
 375 *
 376 *      This has the effect of erasing all data from all channel buffers
 377 *      and restarting the channel in its initial state.  The buffers
 378 *      are not freed, so any mappings are still in effect.
 379 *
 380 *      NOTE. Care should be taken that the channel isn't actually
 381 *      being used by anything when this call is made.
 382 */
 383void relay_reset(struct rchan *chan)
 384{
 385        unsigned int i;
 386
 387        if (!chan)
 388                return;
 389
 390        if (chan->is_global && chan->buf[0]) {
 391                __relay_reset(chan->buf[0], 0);
 392                return;
 393        }
 394
 395        mutex_lock(&relay_channels_mutex);
 396        for_each_possible_cpu(i)
 397                if (chan->buf[i])
 398                        __relay_reset(chan->buf[i], 0);
 399        mutex_unlock(&relay_channels_mutex);
 400}
 401EXPORT_SYMBOL_GPL(relay_reset);
 402
 403static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 404                                        struct dentry *dentry)
 405{
 406        buf->dentry = dentry;
 407        d_inode(buf->dentry)->i_size = buf->early_bytes;
 408}
 409
 410static struct dentry *relay_create_buf_file(struct rchan *chan,
 411                                            struct rchan_buf *buf,
 412                                            unsigned int cpu)
 413{
 414        struct dentry *dentry;
 415        char *tmpname;
 416
 417        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 418        if (!tmpname)
 419                return NULL;
 420        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 421
 422        /* Create file in fs */
 423        dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 424                                           S_IRUSR, buf,
 425                                           &chan->is_global);
 426
 427        kfree(tmpname);
 428
 429        return dentry;
 430}
 431
 432/*
 433 *      relay_open_buf - create a new relay channel buffer
 434 *
 435 *      used by relay_open() and CPU hotplug.
 436 */
 437static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 438{
 439        struct rchan_buf *buf = NULL;
 440        struct dentry *dentry;
 441
 442        if (chan->is_global)
 443                return chan->buf[0];
 444
 445        buf = relay_create_buf(chan);
 446        if (!buf)
 447                return NULL;
 448
 449        if (chan->has_base_filename) {
 450                dentry = relay_create_buf_file(chan, buf, cpu);
 451                if (!dentry)
 452                        goto free_buf;
 453                relay_set_buf_dentry(buf, dentry);
 454        }
 455
 456        buf->cpu = cpu;
 457        __relay_reset(buf, 1);
 458
 459        if(chan->is_global) {
 460                chan->buf[0] = buf;
 461                buf->cpu = 0;
 462        }
 463
 464        return buf;
 465
 466free_buf:
 467        relay_destroy_buf(buf);
 468        return NULL;
 469}
 470
 471/**
 472 *      relay_close_buf - close a channel buffer
 473 *      @buf: channel buffer
 474 *
 475 *      Marks the buffer finalized and restores the default callbacks.
 476 *      The channel buffer and channel buffer data structure are then freed
 477 *      automatically when the last reference is given up.
 478 */
 479static void relay_close_buf(struct rchan_buf *buf)
 480{
 481        buf->finalized = 1;
 482        del_timer_sync(&buf->timer);
 483        buf->chan->cb->remove_buf_file(buf->dentry);
 484        kref_put(&buf->kref, relay_remove_buf);
 485}
 486
 487static void setup_callbacks(struct rchan *chan,
 488                                   struct rchan_callbacks *cb)
 489{
 490        if (!cb) {
 491                chan->cb = &default_channel_callbacks;
 492                return;
 493        }
 494
 495        if (!cb->subbuf_start)
 496                cb->subbuf_start = subbuf_start_default_callback;
 497        if (!cb->buf_mapped)
 498                cb->buf_mapped = buf_mapped_default_callback;
 499        if (!cb->buf_unmapped)
 500                cb->buf_unmapped = buf_unmapped_default_callback;
 501        if (!cb->create_buf_file)
 502                cb->create_buf_file = create_buf_file_default_callback;
 503        if (!cb->remove_buf_file)
 504                cb->remove_buf_file = remove_buf_file_default_callback;
 505        chan->cb = cb;
 506}
 507
 508/**
 509 *      relay_hotcpu_callback - CPU hotplug callback
 510 *      @nb: notifier block
 511 *      @action: hotplug action to take
 512 *      @hcpu: CPU number
 513 *
 514 *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 515 */
 516static int relay_hotcpu_callback(struct notifier_block *nb,
 517                                unsigned long action,
 518                                void *hcpu)
 519{
 520        unsigned int hotcpu = (unsigned long)hcpu;
 521        struct rchan *chan;
 522
 523        switch(action) {
 524        case CPU_UP_PREPARE:
 525        case CPU_UP_PREPARE_FROZEN:
 526                mutex_lock(&relay_channels_mutex);
 527                list_for_each_entry(chan, &relay_channels, list) {
 528                        if (chan->buf[hotcpu])
 529                                continue;
 530                        chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
 531                        if(!chan->buf[hotcpu]) {
 532                                printk(KERN_ERR
 533                                        "relay_hotcpu_callback: cpu %d buffer "
 534                                        "creation failed\n", hotcpu);
 535                                mutex_unlock(&relay_channels_mutex);
 536                                return notifier_from_errno(-ENOMEM);
 537                        }
 538                }
 539                mutex_unlock(&relay_channels_mutex);
 540                break;
 541        case CPU_DEAD:
 542        case CPU_DEAD_FROZEN:
 543                /* No need to flush the cpu : will be flushed upon
 544                 * final relay_flush() call. */
 545                break;
 546        }
 547        return NOTIFY_OK;
 548}
 549
 550/**
 551 *      relay_open - create a new relay channel
 552 *      @base_filename: base name of files to create, %NULL for buffering only
 553 *      @parent: dentry of parent directory, %NULL for root directory or buffer
 554 *      @subbuf_size: size of sub-buffers
 555 *      @n_subbufs: number of sub-buffers
 556 *      @cb: client callback functions
 557 *      @private_data: user-defined data
 558 *
 559 *      Returns channel pointer if successful, %NULL otherwise.
 560 *
 561 *      Creates a channel buffer for each cpu using the sizes and
 562 *      attributes specified.  The created channel buffer files
 563 *      will be named base_filename0...base_filenameN-1.  File
 564 *      permissions will be %S_IRUSR.
 565 */
 566struct rchan *relay_open(const char *base_filename,
 567                         struct dentry *parent,
 568                         size_t subbuf_size,
 569                         size_t n_subbufs,
 570                         struct rchan_callbacks *cb,
 571                         void *private_data)
 572{
 573        unsigned int i;
 574        struct rchan *chan;
 575
 576        if (!(subbuf_size && n_subbufs))
 577                return NULL;
 578        if (subbuf_size > UINT_MAX / n_subbufs)
 579                return NULL;
 580
 581        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 582        if (!chan)
 583                return NULL;
 584
 585        chan->version = RELAYFS_CHANNEL_VERSION;
 586        chan->n_subbufs = n_subbufs;
 587        chan->subbuf_size = subbuf_size;
 588        chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 589        chan->parent = parent;
 590        chan->private_data = private_data;
 591        if (base_filename) {
 592                chan->has_base_filename = 1;
 593                strlcpy(chan->base_filename, base_filename, NAME_MAX);
 594        }
 595        setup_callbacks(chan, cb);
 596        kref_init(&chan->kref);
 597
 598        mutex_lock(&relay_channels_mutex);
 599        for_each_online_cpu(i) {
 600                chan->buf[i] = relay_open_buf(chan, i);
 601                if (!chan->buf[i])
 602                        goto free_bufs;
 603        }
 604        list_add(&chan->list, &relay_channels);
 605        mutex_unlock(&relay_channels_mutex);
 606
 607        return chan;
 608
 609free_bufs:
 610        for_each_possible_cpu(i) {
 611                if (chan->buf[i])
 612                        relay_close_buf(chan->buf[i]);
 613        }
 614
 615        kref_put(&chan->kref, relay_destroy_channel);
 616        mutex_unlock(&relay_channels_mutex);
 617        return NULL;
 618}
 619EXPORT_SYMBOL_GPL(relay_open);
 620
 621struct rchan_percpu_buf_dispatcher {
 622        struct rchan_buf *buf;
 623        struct dentry *dentry;
 624};
 625
 626/* Called in atomic context. */
 627static void __relay_set_buf_dentry(void *info)
 628{
 629        struct rchan_percpu_buf_dispatcher *p = info;
 630
 631        relay_set_buf_dentry(p->buf, p->dentry);
 632}
 633
 634/**
 635 *      relay_late_setup_files - triggers file creation
 636 *      @chan: channel to operate on
 637 *      @base_filename: base name of files to create
 638 *      @parent: dentry of parent directory, %NULL for root directory
 639 *
 640 *      Returns 0 if successful, non-zero otherwise.
 641 *
 642 *      Use to setup files for a previously buffer-only channel.
 643 *      Useful to do early tracing in kernel, before VFS is up, for example.
 644 */
 645int relay_late_setup_files(struct rchan *chan,
 646                           const char *base_filename,
 647                           struct dentry *parent)
 648{
 649        int err = 0;
 650        unsigned int i, curr_cpu;
 651        unsigned long flags;
 652        struct dentry *dentry;
 653        struct rchan_percpu_buf_dispatcher disp;
 654
 655        if (!chan || !base_filename)
 656                return -EINVAL;
 657
 658        strlcpy(chan->base_filename, base_filename, NAME_MAX);
 659
 660        mutex_lock(&relay_channels_mutex);
 661        /* Is chan already set up? */
 662        if (unlikely(chan->has_base_filename)) {
 663                mutex_unlock(&relay_channels_mutex);
 664                return -EEXIST;
 665        }
 666        chan->has_base_filename = 1;
 667        chan->parent = parent;
 668        curr_cpu = get_cpu();
 669        /*
 670         * The CPU hotplug notifier ran before us and created buffers with
 671         * no files associated. So it's safe to call relay_setup_buf_file()
 672         * on all currently online CPUs.
 673         */
 674        for_each_online_cpu(i) {
 675                if (unlikely(!chan->buf[i])) {
 676                        WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 677                        err = -EINVAL;
 678                        break;
 679                }
 680
 681                dentry = relay_create_buf_file(chan, chan->buf[i], i);
 682                if (unlikely(!dentry)) {
 683                        err = -EINVAL;
 684                        break;
 685                }
 686
 687                if (curr_cpu == i) {
 688                        local_irq_save(flags);
 689                        relay_set_buf_dentry(chan->buf[i], dentry);
 690                        local_irq_restore(flags);
 691                } else {
 692                        disp.buf = chan->buf[i];
 693                        disp.dentry = dentry;
 694                        smp_mb();
 695                        /* relay_channels_mutex must be held, so wait. */
 696                        err = smp_call_function_single(i,
 697                                                       __relay_set_buf_dentry,
 698                                                       &disp, 1);
 699                }
 700                if (unlikely(err))
 701                        break;
 702        }
 703        put_cpu();
 704        mutex_unlock(&relay_channels_mutex);
 705
 706        return err;
 707}
 708
 709/**
 710 *      relay_switch_subbuf - switch to a new sub-buffer
 711 *      @buf: channel buffer
 712 *      @length: size of current event
 713 *
 714 *      Returns either the length passed in or 0 if full.
 715 *
 716 *      Performs sub-buffer-switch tasks such as invoking callbacks,
 717 *      updating padding counts, waking up readers, etc.
 718 */
 719size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 720{
 721        void *old, *new;
 722        size_t old_subbuf, new_subbuf;
 723
 724        if (unlikely(length > buf->chan->subbuf_size))
 725                goto toobig;
 726
 727        if (buf->offset != buf->chan->subbuf_size + 1) {
 728                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 729                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 730                buf->padding[old_subbuf] = buf->prev_padding;
 731                buf->subbufs_produced++;
 732                if (buf->dentry)
 733                        d_inode(buf->dentry)->i_size +=
 734                                buf->chan->subbuf_size -
 735                                buf->padding[old_subbuf];
 736                else
 737                        buf->early_bytes += buf->chan->subbuf_size -
 738                                            buf->padding[old_subbuf];
 739                smp_mb();
 740                if (waitqueue_active(&buf->read_wait))
 741                        /*
 742                         * Calling wake_up_interruptible() from here
 743                         * will deadlock if we happen to be logging
 744                         * from the scheduler (trying to re-grab
 745                         * rq->lock), so defer it.
 746                         */
 747                        mod_timer(&buf->timer, jiffies + 1);
 748        }
 749
 750        old = buf->data;
 751        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 752        new = buf->start + new_subbuf * buf->chan->subbuf_size;
 753        buf->offset = 0;
 754        if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 755                buf->offset = buf->chan->subbuf_size + 1;
 756                return 0;
 757        }
 758        buf->data = new;
 759        buf->padding[new_subbuf] = 0;
 760
 761        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 762                goto toobig;
 763
 764        return length;
 765
 766toobig:
 767        buf->chan->last_toobig = length;
 768        return 0;
 769}
 770EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 771
 772/**
 773 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 774 *      @chan: the channel
 775 *      @cpu: the cpu associated with the channel buffer to update
 776 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
 777 *
 778 *      Adds to the channel buffer's consumed sub-buffer count.
 779 *      subbufs_consumed should be the number of sub-buffers newly consumed,
 780 *      not the total consumed.
 781 *
 782 *      NOTE. Kernel clients don't need to call this function if the channel
 783 *      mode is 'overwrite'.
 784 */
 785void relay_subbufs_consumed(struct rchan *chan,
 786                            unsigned int cpu,
 787                            size_t subbufs_consumed)
 788{
 789        struct rchan_buf *buf;
 790
 791        if (!chan)
 792                return;
 793
 794        if (cpu >= NR_CPUS || !chan->buf[cpu] ||
 795                                        subbufs_consumed > chan->n_subbufs)
 796                return;
 797
 798        buf = chan->buf[cpu];
 799        if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 800                buf->subbufs_consumed = buf->subbufs_produced;
 801        else
 802                buf->subbufs_consumed += subbufs_consumed;
 803}
 804EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 805
 806/**
 807 *      relay_close - close the channel
 808 *      @chan: the channel
 809 *
 810 *      Closes all channel buffers and frees the channel.
 811 */
 812void relay_close(struct rchan *chan)
 813{
 814        unsigned int i;
 815
 816        if (!chan)
 817                return;
 818
 819        mutex_lock(&relay_channels_mutex);
 820        if (chan->is_global && chan->buf[0])
 821                relay_close_buf(chan->buf[0]);
 822        else
 823                for_each_possible_cpu(i)
 824                        if (chan->buf[i])
 825                                relay_close_buf(chan->buf[i]);
 826
 827        if (chan->last_toobig)
 828                printk(KERN_WARNING "relay: one or more items not logged "
 829                       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
 830                       chan->last_toobig, chan->subbuf_size);
 831
 832        list_del(&chan->list);
 833        kref_put(&chan->kref, relay_destroy_channel);
 834        mutex_unlock(&relay_channels_mutex);
 835}
 836EXPORT_SYMBOL_GPL(relay_close);
 837
 838/**
 839 *      relay_flush - close the channel
 840 *      @chan: the channel
 841 *
 842 *      Flushes all channel buffers, i.e. forces buffer switch.
 843 */
 844void relay_flush(struct rchan *chan)
 845{
 846        unsigned int i;
 847
 848        if (!chan)
 849                return;
 850
 851        if (chan->is_global && chan->buf[0]) {
 852                relay_switch_subbuf(chan->buf[0], 0);
 853                return;
 854        }
 855
 856        mutex_lock(&relay_channels_mutex);
 857        for_each_possible_cpu(i)
 858                if (chan->buf[i])
 859                        relay_switch_subbuf(chan->buf[i], 0);
 860        mutex_unlock(&relay_channels_mutex);
 861}
 862EXPORT_SYMBOL_GPL(relay_flush);
 863
 864/**
 865 *      relay_file_open - open file op for relay files
 866 *      @inode: the inode
 867 *      @filp: the file
 868 *
 869 *      Increments the channel buffer refcount.
 870 */
 871static int relay_file_open(struct inode *inode, struct file *filp)
 872{
 873        struct rchan_buf *buf = inode->i_private;
 874        kref_get(&buf->kref);
 875        filp->private_data = buf;
 876
 877        return nonseekable_open(inode, filp);
 878}
 879
 880/**
 881 *      relay_file_mmap - mmap file op for relay files
 882 *      @filp: the file
 883 *      @vma: the vma describing what to map
 884 *
 885 *      Calls upon relay_mmap_buf() to map the file into user space.
 886 */
 887static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 888{
 889        struct rchan_buf *buf = filp->private_data;
 890        return relay_mmap_buf(buf, vma);
 891}
 892
 893/**
 894 *      relay_file_poll - poll file op for relay files
 895 *      @filp: the file
 896 *      @wait: poll table
 897 *
 898 *      Poll implemention.
 899 */
 900static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
 901{
 902        unsigned int mask = 0;
 903        struct rchan_buf *buf = filp->private_data;
 904
 905        if (buf->finalized)
 906                return POLLERR;
 907
 908        if (filp->f_mode & FMODE_READ) {
 909                poll_wait(filp, &buf->read_wait, wait);
 910                if (!relay_buf_empty(buf))
 911                        mask |= POLLIN | POLLRDNORM;
 912        }
 913
 914        return mask;
 915}
 916
 917/**
 918 *      relay_file_release - release file op for relay files
 919 *      @inode: the inode
 920 *      @filp: the file
 921 *
 922 *      Decrements the channel refcount, as the filesystem is
 923 *      no longer using it.
 924 */
 925static int relay_file_release(struct inode *inode, struct file *filp)
 926{
 927        struct rchan_buf *buf = filp->private_data;
 928        kref_put(&buf->kref, relay_remove_buf);
 929
 930        return 0;
 931}
 932
 933/*
 934 *      relay_file_read_consume - update the consumed count for the buffer
 935 */
 936static void relay_file_read_consume(struct rchan_buf *buf,
 937                                    size_t read_pos,
 938                                    size_t bytes_consumed)
 939{
 940        size_t subbuf_size = buf->chan->subbuf_size;
 941        size_t n_subbufs = buf->chan->n_subbufs;
 942        size_t read_subbuf;
 943
 944        if (buf->subbufs_produced == buf->subbufs_consumed &&
 945            buf->offset == buf->bytes_consumed)
 946                return;
 947
 948        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 949                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 950                buf->bytes_consumed = 0;
 951        }
 952
 953        buf->bytes_consumed += bytes_consumed;
 954        if (!read_pos)
 955                read_subbuf = buf->subbufs_consumed % n_subbufs;
 956        else
 957                read_subbuf = read_pos / buf->chan->subbuf_size;
 958        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 959                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 960                    (buf->offset == subbuf_size))
 961                        return;
 962                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 963                buf->bytes_consumed = 0;
 964        }
 965}
 966
 967/*
 968 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
 969 */
 970static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 971{
 972        size_t subbuf_size = buf->chan->subbuf_size;
 973        size_t n_subbufs = buf->chan->n_subbufs;
 974        size_t produced = buf->subbufs_produced;
 975        size_t consumed = buf->subbufs_consumed;
 976
 977        relay_file_read_consume(buf, read_pos, 0);
 978
 979        consumed = buf->subbufs_consumed;
 980
 981        if (unlikely(buf->offset > subbuf_size)) {
 982                if (produced == consumed)
 983                        return 0;
 984                return 1;
 985        }
 986
 987        if (unlikely(produced - consumed >= n_subbufs)) {
 988                consumed = produced - n_subbufs + 1;
 989                buf->subbufs_consumed = consumed;
 990                buf->bytes_consumed = 0;
 991        }
 992
 993        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
 994        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
 995
 996        if (consumed > produced)
 997                produced += n_subbufs * subbuf_size;
 998
 999        if (consumed == produced) {
1000                if (buf->offset == subbuf_size &&
1001                    buf->subbufs_produced > buf->subbufs_consumed)
1002                        return 1;
1003                return 0;
1004        }
1005
1006        return 1;
1007}
1008
1009/**
1010 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1011 *      @read_pos: file read position
1012 *      @buf: relay channel buffer
1013 */
1014static size_t relay_file_read_subbuf_avail(size_t read_pos,
1015                                           struct rchan_buf *buf)
1016{
1017        size_t padding, avail = 0;
1018        size_t read_subbuf, read_offset, write_subbuf, write_offset;
1019        size_t subbuf_size = buf->chan->subbuf_size;
1020
1021        write_subbuf = (buf->data - buf->start) / subbuf_size;
1022        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1023        read_subbuf = read_pos / subbuf_size;
1024        read_offset = read_pos % subbuf_size;
1025        padding = buf->padding[read_subbuf];
1026
1027        if (read_subbuf == write_subbuf) {
1028                if (read_offset + padding < write_offset)
1029                        avail = write_offset - (read_offset + padding);
1030        } else
1031                avail = (subbuf_size - padding) - read_offset;
1032
1033        return avail;
1034}
1035
1036/**
1037 *      relay_file_read_start_pos - find the first available byte to read
1038 *      @read_pos: file read position
1039 *      @buf: relay channel buffer
1040 *
1041 *      If the @read_pos is in the middle of padding, return the
1042 *      position of the first actually available byte, otherwise
1043 *      return the original value.
1044 */
1045static size_t relay_file_read_start_pos(size_t read_pos,
1046                                        struct rchan_buf *buf)
1047{
1048        size_t read_subbuf, padding, padding_start, padding_end;
1049        size_t subbuf_size = buf->chan->subbuf_size;
1050        size_t n_subbufs = buf->chan->n_subbufs;
1051        size_t consumed = buf->subbufs_consumed % n_subbufs;
1052
1053        if (!read_pos)
1054                read_pos = consumed * subbuf_size + buf->bytes_consumed;
1055        read_subbuf = read_pos / subbuf_size;
1056        padding = buf->padding[read_subbuf];
1057        padding_start = (read_subbuf + 1) * subbuf_size - padding;
1058        padding_end = (read_subbuf + 1) * subbuf_size;
1059        if (read_pos >= padding_start && read_pos < padding_end) {
1060                read_subbuf = (read_subbuf + 1) % n_subbufs;
1061                read_pos = read_subbuf * subbuf_size;
1062        }
1063
1064        return read_pos;
1065}
1066
1067/**
1068 *      relay_file_read_end_pos - return the new read position
1069 *      @read_pos: file read position
1070 *      @buf: relay channel buffer
1071 *      @count: number of bytes to be read
1072 */
1073static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1074                                      size_t read_pos,
1075                                      size_t count)
1076{
1077        size_t read_subbuf, padding, end_pos;
1078        size_t subbuf_size = buf->chan->subbuf_size;
1079        size_t n_subbufs = buf->chan->n_subbufs;
1080
1081        read_subbuf = read_pos / subbuf_size;
1082        padding = buf->padding[read_subbuf];
1083        if (read_pos % subbuf_size + count + padding == subbuf_size)
1084                end_pos = (read_subbuf + 1) * subbuf_size;
1085        else
1086                end_pos = read_pos + count;
1087        if (end_pos >= subbuf_size * n_subbufs)
1088                end_pos = 0;
1089
1090        return end_pos;
1091}
1092
1093/*
1094 *      subbuf_read_actor - read up to one subbuf's worth of data
1095 */
1096static int subbuf_read_actor(size_t read_start,
1097                             struct rchan_buf *buf,
1098                             size_t avail,
1099                             read_descriptor_t *desc)
1100{
1101        void *from;
1102        int ret = 0;
1103
1104        from = buf->start + read_start;
1105        ret = avail;
1106        if (copy_to_user(desc->arg.buf, from, avail)) {
1107                desc->error = -EFAULT;
1108                ret = 0;
1109        }
1110        desc->arg.data += ret;
1111        desc->written += ret;
1112        desc->count -= ret;
1113
1114        return ret;
1115}
1116
1117typedef int (*subbuf_actor_t) (size_t read_start,
1118                               struct rchan_buf *buf,
1119                               size_t avail,
1120                               read_descriptor_t *desc);
1121
1122/*
1123 *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1124 */
1125static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1126                                        subbuf_actor_t subbuf_actor,
1127                                        read_descriptor_t *desc)
1128{
1129        struct rchan_buf *buf = filp->private_data;
1130        size_t read_start, avail;
1131        int ret;
1132
1133        if (!desc->count)
1134                return 0;
1135
1136        mutex_lock(&file_inode(filp)->i_mutex);
1137        do {
1138                if (!relay_file_read_avail(buf, *ppos))
1139                        break;
1140
1141                read_start = relay_file_read_start_pos(*ppos, buf);
1142                avail = relay_file_read_subbuf_avail(read_start, buf);
1143                if (!avail)
1144                        break;
1145
1146                avail = min(desc->count, avail);
1147                ret = subbuf_actor(read_start, buf, avail, desc);
1148                if (desc->error < 0)
1149                        break;
1150
1151                if (ret) {
1152                        relay_file_read_consume(buf, read_start, ret);
1153                        *ppos = relay_file_read_end_pos(buf, read_start, ret);
1154                }
1155        } while (desc->count && ret);
1156        mutex_unlock(&file_inode(filp)->i_mutex);
1157
1158        return desc->written;
1159}
1160
1161static ssize_t relay_file_read(struct file *filp,
1162                               char __user *buffer,
1163                               size_t count,
1164                               loff_t *ppos)
1165{
1166        read_descriptor_t desc;
1167        desc.written = 0;
1168        desc.count = count;
1169        desc.arg.buf = buffer;
1170        desc.error = 0;
1171        return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1172}
1173
1174static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1175{
1176        rbuf->bytes_consumed += bytes_consumed;
1177
1178        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1179                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1180                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1181        }
1182}
1183
1184static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1185                                   struct pipe_buffer *buf)
1186{
1187        struct rchan_buf *rbuf;
1188
1189        rbuf = (struct rchan_buf *)page_private(buf->page);
1190        relay_consume_bytes(rbuf, buf->private);
1191}
1192
1193static const struct pipe_buf_operations relay_pipe_buf_ops = {
1194        .can_merge = 0,
1195        .confirm = generic_pipe_buf_confirm,
1196        .release = relay_pipe_buf_release,
1197        .steal = generic_pipe_buf_steal,
1198        .get = generic_pipe_buf_get,
1199};
1200
1201static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1202{
1203}
1204
1205/*
1206 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1207 */
1208static ssize_t subbuf_splice_actor(struct file *in,
1209                               loff_t *ppos,
1210                               struct pipe_inode_info *pipe,
1211                               size_t len,
1212                               unsigned int flags,
1213                               int *nonpad_ret)
1214{
1215        unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1216        struct rchan_buf *rbuf = in->private_data;
1217        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1218        uint64_t pos = (uint64_t) *ppos;
1219        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1220        size_t read_start = (size_t) do_div(pos, alloc_size);
1221        size_t read_subbuf = read_start / subbuf_size;
1222        size_t padding = rbuf->padding[read_subbuf];
1223        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1224        struct page *pages[PIPE_DEF_BUFFERS];
1225        struct partial_page partial[PIPE_DEF_BUFFERS];
1226        struct splice_pipe_desc spd = {
1227                .pages = pages,
1228                .nr_pages = 0,
1229                .nr_pages_max = PIPE_DEF_BUFFERS,
1230                .partial = partial,
1231                .flags = flags,
1232                .ops = &relay_pipe_buf_ops,
1233                .spd_release = relay_page_release,
1234        };
1235        ssize_t ret;
1236
1237        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1238                return 0;
1239        if (splice_grow_spd(pipe, &spd))
1240                return -ENOMEM;
1241
1242        /*
1243         * Adjust read len, if longer than what is available
1244         */
1245        if (len > (subbuf_size - read_start % subbuf_size))
1246                len = subbuf_size - read_start % subbuf_size;
1247
1248        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1249        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1250        poff = read_start & ~PAGE_MASK;
1251        nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1252
1253        for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1254                unsigned int this_len, this_end, private;
1255                unsigned int cur_pos = read_start + total_len;
1256
1257                if (!len)
1258                        break;
1259
1260                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1261                private = this_len;
1262
1263                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1264                spd.partial[spd.nr_pages].offset = poff;
1265
1266                this_end = cur_pos + this_len;
1267                if (this_end >= nonpad_end) {
1268                        this_len = nonpad_end - cur_pos;
1269                        private = this_len + padding;
1270                }
1271                spd.partial[spd.nr_pages].len = this_len;
1272                spd.partial[spd.nr_pages].private = private;
1273
1274                len -= this_len;
1275                total_len += this_len;
1276                poff = 0;
1277                pidx = (pidx + 1) % subbuf_pages;
1278
1279                if (this_end >= nonpad_end) {
1280                        spd.nr_pages++;
1281                        break;
1282                }
1283        }
1284
1285        ret = 0;
1286        if (!spd.nr_pages)
1287                goto out;
1288
1289        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1290        if (ret < 0 || ret < total_len)
1291                goto out;
1292
1293        if (read_start + ret == nonpad_end)
1294                ret += padding;
1295
1296out:
1297        splice_shrink_spd(&spd);
1298        return ret;
1299}
1300
1301static ssize_t relay_file_splice_read(struct file *in,
1302                                      loff_t *ppos,
1303                                      struct pipe_inode_info *pipe,
1304                                      size_t len,
1305                                      unsigned int flags)
1306{
1307        ssize_t spliced;
1308        int ret;
1309        int nonpad_ret = 0;
1310
1311        ret = 0;
1312        spliced = 0;
1313
1314        while (len && !spliced) {
1315                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1316                if (ret < 0)
1317                        break;
1318                else if (!ret) {
1319                        if (flags & SPLICE_F_NONBLOCK)
1320                                ret = -EAGAIN;
1321                        break;
1322                }
1323
1324                *ppos += ret;
1325                if (ret > len)
1326                        len = 0;
1327                else
1328                        len -= ret;
1329                spliced += nonpad_ret;
1330                nonpad_ret = 0;
1331        }
1332
1333        if (spliced)
1334                return spliced;
1335
1336        return ret;
1337}
1338
1339const struct file_operations relay_file_operations = {
1340        .open           = relay_file_open,
1341        .poll           = relay_file_poll,
1342        .mmap           = relay_file_mmap,
1343        .read           = relay_file_read,
1344        .llseek         = no_llseek,
1345        .release        = relay_file_release,
1346        .splice_read    = relay_file_splice_read,
1347};
1348EXPORT_SYMBOL_GPL(relay_file_operations);
1349
1350static __init int relay_init(void)
1351{
1352
1353        hotcpu_notifier(relay_hotcpu_callback, 0);
1354        return 0;
1355}
1356
1357early_initcall(relay_init);
1358