linux/kernel/resource.c
<<
>>
Prefs
   1/*
   2 *      linux/kernel/resource.c
   3 *
   4 * Copyright (C) 1999   Linus Torvalds
   5 * Copyright (C) 1999   Martin Mares <mj@ucw.cz>
   6 *
   7 * Arbitrary resource management.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/export.h>
  13#include <linux/errno.h>
  14#include <linux/ioport.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/proc_fs.h>
  20#include <linux/sched.h>
  21#include <linux/seq_file.h>
  22#include <linux/device.h>
  23#include <linux/pfn.h>
  24#include <linux/mm.h>
  25#include <linux/resource_ext.h>
  26#include <asm/io.h>
  27
  28
  29struct resource ioport_resource = {
  30        .name   = "PCI IO",
  31        .start  = 0,
  32        .end    = IO_SPACE_LIMIT,
  33        .flags  = IORESOURCE_IO,
  34};
  35EXPORT_SYMBOL(ioport_resource);
  36
  37struct resource iomem_resource = {
  38        .name   = "PCI mem",
  39        .start  = 0,
  40        .end    = -1,
  41        .flags  = IORESOURCE_MEM,
  42};
  43EXPORT_SYMBOL(iomem_resource);
  44
  45/* constraints to be met while allocating resources */
  46struct resource_constraint {
  47        resource_size_t min, max, align;
  48        resource_size_t (*alignf)(void *, const struct resource *,
  49                        resource_size_t, resource_size_t);
  50        void *alignf_data;
  51};
  52
  53static DEFINE_RWLOCK(resource_lock);
  54
  55/*
  56 * For memory hotplug, there is no way to free resource entries allocated
  57 * by boot mem after the system is up. So for reusing the resource entry
  58 * we need to remember the resource.
  59 */
  60static struct resource *bootmem_resource_free;
  61static DEFINE_SPINLOCK(bootmem_resource_lock);
  62
  63static struct resource *next_resource(struct resource *p, bool sibling_only)
  64{
  65        /* Caller wants to traverse through siblings only */
  66        if (sibling_only)
  67                return p->sibling;
  68
  69        if (p->child)
  70                return p->child;
  71        while (!p->sibling && p->parent)
  72                p = p->parent;
  73        return p->sibling;
  74}
  75
  76static void *r_next(struct seq_file *m, void *v, loff_t *pos)
  77{
  78        struct resource *p = v;
  79        (*pos)++;
  80        return (void *)next_resource(p, false);
  81}
  82
  83#ifdef CONFIG_PROC_FS
  84
  85enum { MAX_IORES_LEVEL = 5 };
  86
  87static void *r_start(struct seq_file *m, loff_t *pos)
  88        __acquires(resource_lock)
  89{
  90        struct resource *p = m->private;
  91        loff_t l = 0;
  92        read_lock(&resource_lock);
  93        for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
  94                ;
  95        return p;
  96}
  97
  98static void r_stop(struct seq_file *m, void *v)
  99        __releases(resource_lock)
 100{
 101        read_unlock(&resource_lock);
 102}
 103
 104static int r_show(struct seq_file *m, void *v)
 105{
 106        struct resource *root = m->private;
 107        struct resource *r = v, *p;
 108        int width = root->end < 0x10000 ? 4 : 8;
 109        int depth;
 110
 111        for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
 112                if (p->parent == root)
 113                        break;
 114        seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
 115                        depth * 2, "",
 116                        width, (unsigned long long) r->start,
 117                        width, (unsigned long long) r->end,
 118                        r->name ? r->name : "<BAD>");
 119        return 0;
 120}
 121
 122static const struct seq_operations resource_op = {
 123        .start  = r_start,
 124        .next   = r_next,
 125        .stop   = r_stop,
 126        .show   = r_show,
 127};
 128
 129static int ioports_open(struct inode *inode, struct file *file)
 130{
 131        int res = seq_open(file, &resource_op);
 132        if (!res) {
 133                struct seq_file *m = file->private_data;
 134                m->private = &ioport_resource;
 135        }
 136        return res;
 137}
 138
 139static int iomem_open(struct inode *inode, struct file *file)
 140{
 141        int res = seq_open(file, &resource_op);
 142        if (!res) {
 143                struct seq_file *m = file->private_data;
 144                m->private = &iomem_resource;
 145        }
 146        return res;
 147}
 148
 149static const struct file_operations proc_ioports_operations = {
 150        .open           = ioports_open,
 151        .read           = seq_read,
 152        .llseek         = seq_lseek,
 153        .release        = seq_release,
 154};
 155
 156static const struct file_operations proc_iomem_operations = {
 157        .open           = iomem_open,
 158        .read           = seq_read,
 159        .llseek         = seq_lseek,
 160        .release        = seq_release,
 161};
 162
 163static int __init ioresources_init(void)
 164{
 165        proc_create("ioports", 0, NULL, &proc_ioports_operations);
 166        proc_create("iomem", 0, NULL, &proc_iomem_operations);
 167        return 0;
 168}
 169__initcall(ioresources_init);
 170
 171#endif /* CONFIG_PROC_FS */
 172
 173static void free_resource(struct resource *res)
 174{
 175        if (!res)
 176                return;
 177
 178        if (!PageSlab(virt_to_head_page(res))) {
 179                spin_lock(&bootmem_resource_lock);
 180                res->sibling = bootmem_resource_free;
 181                bootmem_resource_free = res;
 182                spin_unlock(&bootmem_resource_lock);
 183        } else {
 184                kfree(res);
 185        }
 186}
 187
 188static struct resource *alloc_resource(gfp_t flags)
 189{
 190        struct resource *res = NULL;
 191
 192        spin_lock(&bootmem_resource_lock);
 193        if (bootmem_resource_free) {
 194                res = bootmem_resource_free;
 195                bootmem_resource_free = res->sibling;
 196        }
 197        spin_unlock(&bootmem_resource_lock);
 198
 199        if (res)
 200                memset(res, 0, sizeof(struct resource));
 201        else
 202                res = kzalloc(sizeof(struct resource), flags);
 203
 204        return res;
 205}
 206
 207/* Return the conflict entry if you can't request it */
 208static struct resource * __request_resource(struct resource *root, struct resource *new)
 209{
 210        resource_size_t start = new->start;
 211        resource_size_t end = new->end;
 212        struct resource *tmp, **p;
 213
 214        if (end < start)
 215                return root;
 216        if (start < root->start)
 217                return root;
 218        if (end > root->end)
 219                return root;
 220        p = &root->child;
 221        for (;;) {
 222                tmp = *p;
 223                if (!tmp || tmp->start > end) {
 224                        new->sibling = tmp;
 225                        *p = new;
 226                        new->parent = root;
 227                        return NULL;
 228                }
 229                p = &tmp->sibling;
 230                if (tmp->end < start)
 231                        continue;
 232                return tmp;
 233        }
 234}
 235
 236static int __release_resource(struct resource *old)
 237{
 238        struct resource *tmp, **p;
 239
 240        p = &old->parent->child;
 241        for (;;) {
 242                tmp = *p;
 243                if (!tmp)
 244                        break;
 245                if (tmp == old) {
 246                        *p = tmp->sibling;
 247                        old->parent = NULL;
 248                        return 0;
 249                }
 250                p = &tmp->sibling;
 251        }
 252        return -EINVAL;
 253}
 254
 255static void __release_child_resources(struct resource *r)
 256{
 257        struct resource *tmp, *p;
 258        resource_size_t size;
 259
 260        p = r->child;
 261        r->child = NULL;
 262        while (p) {
 263                tmp = p;
 264                p = p->sibling;
 265
 266                tmp->parent = NULL;
 267                tmp->sibling = NULL;
 268                __release_child_resources(tmp);
 269
 270                printk(KERN_DEBUG "release child resource %pR\n", tmp);
 271                /* need to restore size, and keep flags */
 272                size = resource_size(tmp);
 273                tmp->start = 0;
 274                tmp->end = size - 1;
 275        }
 276}
 277
 278void release_child_resources(struct resource *r)
 279{
 280        write_lock(&resource_lock);
 281        __release_child_resources(r);
 282        write_unlock(&resource_lock);
 283}
 284
 285/**
 286 * request_resource_conflict - request and reserve an I/O or memory resource
 287 * @root: root resource descriptor
 288 * @new: resource descriptor desired by caller
 289 *
 290 * Returns 0 for success, conflict resource on error.
 291 */
 292struct resource *request_resource_conflict(struct resource *root, struct resource *new)
 293{
 294        struct resource *conflict;
 295
 296        write_lock(&resource_lock);
 297        conflict = __request_resource(root, new);
 298        write_unlock(&resource_lock);
 299        return conflict;
 300}
 301
 302/**
 303 * request_resource - request and reserve an I/O or memory resource
 304 * @root: root resource descriptor
 305 * @new: resource descriptor desired by caller
 306 *
 307 * Returns 0 for success, negative error code on error.
 308 */
 309int request_resource(struct resource *root, struct resource *new)
 310{
 311        struct resource *conflict;
 312
 313        conflict = request_resource_conflict(root, new);
 314        return conflict ? -EBUSY : 0;
 315}
 316
 317EXPORT_SYMBOL(request_resource);
 318
 319/**
 320 * release_resource - release a previously reserved resource
 321 * @old: resource pointer
 322 */
 323int release_resource(struct resource *old)
 324{
 325        int retval;
 326
 327        write_lock(&resource_lock);
 328        retval = __release_resource(old);
 329        write_unlock(&resource_lock);
 330        return retval;
 331}
 332
 333EXPORT_SYMBOL(release_resource);
 334
 335/*
 336 * Finds the lowest iomem reosurce exists with-in [res->start.res->end)
 337 * the caller must specify res->start, res->end, res->flags and "name".
 338 * If found, returns 0, res is overwritten, if not found, returns -1.
 339 * This walks through whole tree and not just first level children
 340 * until and unless first_level_children_only is true.
 341 */
 342static int find_next_iomem_res(struct resource *res, char *name,
 343                               bool first_level_children_only)
 344{
 345        resource_size_t start, end;
 346        struct resource *p;
 347        bool sibling_only = false;
 348
 349        BUG_ON(!res);
 350
 351        start = res->start;
 352        end = res->end;
 353        BUG_ON(start >= end);
 354
 355        if (first_level_children_only)
 356                sibling_only = true;
 357
 358        read_lock(&resource_lock);
 359
 360        for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
 361                if (p->flags != res->flags)
 362                        continue;
 363                if (name && strcmp(p->name, name))
 364                        continue;
 365                if (p->start > end) {
 366                        p = NULL;
 367                        break;
 368                }
 369                if ((p->end >= start) && (p->start < end))
 370                        break;
 371        }
 372
 373        read_unlock(&resource_lock);
 374        if (!p)
 375                return -1;
 376        /* copy data */
 377        if (res->start < p->start)
 378                res->start = p->start;
 379        if (res->end > p->end)
 380                res->end = p->end;
 381        return 0;
 382}
 383
 384/*
 385 * Walks through iomem resources and calls func() with matching resource
 386 * ranges. This walks through whole tree and not just first level children.
 387 * All the memory ranges which overlap start,end and also match flags and
 388 * name are valid candidates.
 389 *
 390 * @name: name of resource
 391 * @flags: resource flags
 392 * @start: start addr
 393 * @end: end addr
 394 */
 395int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
 396                void *arg, int (*func)(u64, u64, void *))
 397{
 398        struct resource res;
 399        u64 orig_end;
 400        int ret = -1;
 401
 402        res.start = start;
 403        res.end = end;
 404        res.flags = flags;
 405        orig_end = res.end;
 406        while ((res.start < res.end) &&
 407                (!find_next_iomem_res(&res, name, false))) {
 408                ret = (*func)(res.start, res.end, arg);
 409                if (ret)
 410                        break;
 411                res.start = res.end + 1;
 412                res.end = orig_end;
 413        }
 414        return ret;
 415}
 416
 417/*
 418 * This function calls callback against all memory range of "System RAM"
 419 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 420 * Now, this function is only for "System RAM". This function deals with
 421 * full ranges and not pfn. If resources are not pfn aligned, dealing
 422 * with pfn can truncate ranges.
 423 */
 424int walk_system_ram_res(u64 start, u64 end, void *arg,
 425                                int (*func)(u64, u64, void *))
 426{
 427        struct resource res;
 428        u64 orig_end;
 429        int ret = -1;
 430
 431        res.start = start;
 432        res.end = end;
 433        res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 434        orig_end = res.end;
 435        while ((res.start < res.end) &&
 436                (!find_next_iomem_res(&res, "System RAM", true))) {
 437                ret = (*func)(res.start, res.end, arg);
 438                if (ret)
 439                        break;
 440                res.start = res.end + 1;
 441                res.end = orig_end;
 442        }
 443        return ret;
 444}
 445
 446#if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
 447
 448/*
 449 * This function calls callback against all memory range of "System RAM"
 450 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
 451 * Now, this function is only for "System RAM".
 452 */
 453int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
 454                void *arg, int (*func)(unsigned long, unsigned long, void *))
 455{
 456        struct resource res;
 457        unsigned long pfn, end_pfn;
 458        u64 orig_end;
 459        int ret = -1;
 460
 461        res.start = (u64) start_pfn << PAGE_SHIFT;
 462        res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
 463        res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 464        orig_end = res.end;
 465        while ((res.start < res.end) &&
 466                (find_next_iomem_res(&res, "System RAM", true) >= 0)) {
 467                pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 468                end_pfn = (res.end + 1) >> PAGE_SHIFT;
 469                if (end_pfn > pfn)
 470                        ret = (*func)(pfn, end_pfn - pfn, arg);
 471                if (ret)
 472                        break;
 473                res.start = res.end + 1;
 474                res.end = orig_end;
 475        }
 476        return ret;
 477}
 478
 479#endif
 480
 481static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
 482{
 483        return 1;
 484}
 485/*
 486 * This generic page_is_ram() returns true if specified address is
 487 * registered as "System RAM" in iomem_resource list.
 488 */
 489int __weak page_is_ram(unsigned long pfn)
 490{
 491        return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
 492}
 493EXPORT_SYMBOL_GPL(page_is_ram);
 494
 495/**
 496 * region_intersects() - determine intersection of region with known resources
 497 * @start: region start address
 498 * @size: size of region
 499 * @name: name of resource (in iomem_resource)
 500 *
 501 * Check if the specified region partially overlaps or fully eclipses a
 502 * resource identified by @name.  Return REGION_DISJOINT if the region
 503 * does not overlap @name, return REGION_MIXED if the region overlaps
 504 * @type and another resource, and return REGION_INTERSECTS if the
 505 * region overlaps @type and no other defined resource. Note, that
 506 * REGION_INTERSECTS is also returned in the case when the specified
 507 * region overlaps RAM and undefined memory holes.
 508 *
 509 * region_intersect() is used by memory remapping functions to ensure
 510 * the user is not remapping RAM and is a vast speed up over walking
 511 * through the resource table page by page.
 512 */
 513int region_intersects(resource_size_t start, size_t size, const char *name)
 514{
 515        unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 516        resource_size_t end = start + size - 1;
 517        int type = 0; int other = 0;
 518        struct resource *p;
 519
 520        read_lock(&resource_lock);
 521        for (p = iomem_resource.child; p ; p = p->sibling) {
 522                bool is_type = strcmp(p->name, name) == 0 && p->flags == flags;
 523
 524                if (start >= p->start && start <= p->end)
 525                        is_type ? type++ : other++;
 526                if (end >= p->start && end <= p->end)
 527                        is_type ? type++ : other++;
 528                if (p->start >= start && p->end <= end)
 529                        is_type ? type++ : other++;
 530        }
 531        read_unlock(&resource_lock);
 532
 533        if (other == 0)
 534                return type ? REGION_INTERSECTS : REGION_DISJOINT;
 535
 536        if (type)
 537                return REGION_MIXED;
 538
 539        return REGION_DISJOINT;
 540}
 541
 542void __weak arch_remove_reservations(struct resource *avail)
 543{
 544}
 545
 546static resource_size_t simple_align_resource(void *data,
 547                                             const struct resource *avail,
 548                                             resource_size_t size,
 549                                             resource_size_t align)
 550{
 551        return avail->start;
 552}
 553
 554static void resource_clip(struct resource *res, resource_size_t min,
 555                          resource_size_t max)
 556{
 557        if (res->start < min)
 558                res->start = min;
 559        if (res->end > max)
 560                res->end = max;
 561}
 562
 563/*
 564 * Find empty slot in the resource tree with the given range and
 565 * alignment constraints
 566 */
 567static int __find_resource(struct resource *root, struct resource *old,
 568                         struct resource *new,
 569                         resource_size_t  size,
 570                         struct resource_constraint *constraint)
 571{
 572        struct resource *this = root->child;
 573        struct resource tmp = *new, avail, alloc;
 574
 575        tmp.start = root->start;
 576        /*
 577         * Skip past an allocated resource that starts at 0, since the assignment
 578         * of this->start - 1 to tmp->end below would cause an underflow.
 579         */
 580        if (this && this->start == root->start) {
 581                tmp.start = (this == old) ? old->start : this->end + 1;
 582                this = this->sibling;
 583        }
 584        for(;;) {
 585                if (this)
 586                        tmp.end = (this == old) ?  this->end : this->start - 1;
 587                else
 588                        tmp.end = root->end;
 589
 590                if (tmp.end < tmp.start)
 591                        goto next;
 592
 593                resource_clip(&tmp, constraint->min, constraint->max);
 594                arch_remove_reservations(&tmp);
 595
 596                /* Check for overflow after ALIGN() */
 597                avail.start = ALIGN(tmp.start, constraint->align);
 598                avail.end = tmp.end;
 599                avail.flags = new->flags & ~IORESOURCE_UNSET;
 600                if (avail.start >= tmp.start) {
 601                        alloc.flags = avail.flags;
 602                        alloc.start = constraint->alignf(constraint->alignf_data, &avail,
 603                                        size, constraint->align);
 604                        alloc.end = alloc.start + size - 1;
 605                        if (resource_contains(&avail, &alloc)) {
 606                                new->start = alloc.start;
 607                                new->end = alloc.end;
 608                                return 0;
 609                        }
 610                }
 611
 612next:           if (!this || this->end == root->end)
 613                        break;
 614
 615                if (this != old)
 616                        tmp.start = this->end + 1;
 617                this = this->sibling;
 618        }
 619        return -EBUSY;
 620}
 621
 622/*
 623 * Find empty slot in the resource tree given range and alignment.
 624 */
 625static int find_resource(struct resource *root, struct resource *new,
 626                        resource_size_t size,
 627                        struct resource_constraint  *constraint)
 628{
 629        return  __find_resource(root, NULL, new, size, constraint);
 630}
 631
 632/**
 633 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
 634 *      The resource will be relocated if the new size cannot be reallocated in the
 635 *      current location.
 636 *
 637 * @root: root resource descriptor
 638 * @old:  resource descriptor desired by caller
 639 * @newsize: new size of the resource descriptor
 640 * @constraint: the size and alignment constraints to be met.
 641 */
 642static int reallocate_resource(struct resource *root, struct resource *old,
 643                        resource_size_t newsize,
 644                        struct resource_constraint  *constraint)
 645{
 646        int err=0;
 647        struct resource new = *old;
 648        struct resource *conflict;
 649
 650        write_lock(&resource_lock);
 651
 652        if ((err = __find_resource(root, old, &new, newsize, constraint)))
 653                goto out;
 654
 655        if (resource_contains(&new, old)) {
 656                old->start = new.start;
 657                old->end = new.end;
 658                goto out;
 659        }
 660
 661        if (old->child) {
 662                err = -EBUSY;
 663                goto out;
 664        }
 665
 666        if (resource_contains(old, &new)) {
 667                old->start = new.start;
 668                old->end = new.end;
 669        } else {
 670                __release_resource(old);
 671                *old = new;
 672                conflict = __request_resource(root, old);
 673                BUG_ON(conflict);
 674        }
 675out:
 676        write_unlock(&resource_lock);
 677        return err;
 678}
 679
 680
 681/**
 682 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
 683 *      The resource will be reallocated with a new size if it was already allocated
 684 * @root: root resource descriptor
 685 * @new: resource descriptor desired by caller
 686 * @size: requested resource region size
 687 * @min: minimum boundary to allocate
 688 * @max: maximum boundary to allocate
 689 * @align: alignment requested, in bytes
 690 * @alignf: alignment function, optional, called if not NULL
 691 * @alignf_data: arbitrary data to pass to the @alignf function
 692 */
 693int allocate_resource(struct resource *root, struct resource *new,
 694                      resource_size_t size, resource_size_t min,
 695                      resource_size_t max, resource_size_t align,
 696                      resource_size_t (*alignf)(void *,
 697                                                const struct resource *,
 698                                                resource_size_t,
 699                                                resource_size_t),
 700                      void *alignf_data)
 701{
 702        int err;
 703        struct resource_constraint constraint;
 704
 705        if (!alignf)
 706                alignf = simple_align_resource;
 707
 708        constraint.min = min;
 709        constraint.max = max;
 710        constraint.align = align;
 711        constraint.alignf = alignf;
 712        constraint.alignf_data = alignf_data;
 713
 714        if ( new->parent ) {
 715                /* resource is already allocated, try reallocating with
 716                   the new constraints */
 717                return reallocate_resource(root, new, size, &constraint);
 718        }
 719
 720        write_lock(&resource_lock);
 721        err = find_resource(root, new, size, &constraint);
 722        if (err >= 0 && __request_resource(root, new))
 723                err = -EBUSY;
 724        write_unlock(&resource_lock);
 725        return err;
 726}
 727
 728EXPORT_SYMBOL(allocate_resource);
 729
 730/**
 731 * lookup_resource - find an existing resource by a resource start address
 732 * @root: root resource descriptor
 733 * @start: resource start address
 734 *
 735 * Returns a pointer to the resource if found, NULL otherwise
 736 */
 737struct resource *lookup_resource(struct resource *root, resource_size_t start)
 738{
 739        struct resource *res;
 740
 741        read_lock(&resource_lock);
 742        for (res = root->child; res; res = res->sibling) {
 743                if (res->start == start)
 744                        break;
 745        }
 746        read_unlock(&resource_lock);
 747
 748        return res;
 749}
 750
 751/*
 752 * Insert a resource into the resource tree. If successful, return NULL,
 753 * otherwise return the conflicting resource (compare to __request_resource())
 754 */
 755static struct resource * __insert_resource(struct resource *parent, struct resource *new)
 756{
 757        struct resource *first, *next;
 758
 759        for (;; parent = first) {
 760                first = __request_resource(parent, new);
 761                if (!first)
 762                        return first;
 763
 764                if (first == parent)
 765                        return first;
 766                if (WARN_ON(first == new))      /* duplicated insertion */
 767                        return first;
 768
 769                if ((first->start > new->start) || (first->end < new->end))
 770                        break;
 771                if ((first->start == new->start) && (first->end == new->end))
 772                        break;
 773        }
 774
 775        for (next = first; ; next = next->sibling) {
 776                /* Partial overlap? Bad, and unfixable */
 777                if (next->start < new->start || next->end > new->end)
 778                        return next;
 779                if (!next->sibling)
 780                        break;
 781                if (next->sibling->start > new->end)
 782                        break;
 783        }
 784
 785        new->parent = parent;
 786        new->sibling = next->sibling;
 787        new->child = first;
 788
 789        next->sibling = NULL;
 790        for (next = first; next; next = next->sibling)
 791                next->parent = new;
 792
 793        if (parent->child == first) {
 794                parent->child = new;
 795        } else {
 796                next = parent->child;
 797                while (next->sibling != first)
 798                        next = next->sibling;
 799                next->sibling = new;
 800        }
 801        return NULL;
 802}
 803
 804/**
 805 * insert_resource_conflict - Inserts resource in the resource tree
 806 * @parent: parent of the new resource
 807 * @new: new resource to insert
 808 *
 809 * Returns 0 on success, conflict resource if the resource can't be inserted.
 810 *
 811 * This function is equivalent to request_resource_conflict when no conflict
 812 * happens. If a conflict happens, and the conflicting resources
 813 * entirely fit within the range of the new resource, then the new
 814 * resource is inserted and the conflicting resources become children of
 815 * the new resource.
 816 */
 817struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
 818{
 819        struct resource *conflict;
 820
 821        write_lock(&resource_lock);
 822        conflict = __insert_resource(parent, new);
 823        write_unlock(&resource_lock);
 824        return conflict;
 825}
 826
 827/**
 828 * insert_resource - Inserts a resource in the resource tree
 829 * @parent: parent of the new resource
 830 * @new: new resource to insert
 831 *
 832 * Returns 0 on success, -EBUSY if the resource can't be inserted.
 833 */
 834int insert_resource(struct resource *parent, struct resource *new)
 835{
 836        struct resource *conflict;
 837
 838        conflict = insert_resource_conflict(parent, new);
 839        return conflict ? -EBUSY : 0;
 840}
 841
 842/**
 843 * insert_resource_expand_to_fit - Insert a resource into the resource tree
 844 * @root: root resource descriptor
 845 * @new: new resource to insert
 846 *
 847 * Insert a resource into the resource tree, possibly expanding it in order
 848 * to make it encompass any conflicting resources.
 849 */
 850void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
 851{
 852        if (new->parent)
 853                return;
 854
 855        write_lock(&resource_lock);
 856        for (;;) {
 857                struct resource *conflict;
 858
 859                conflict = __insert_resource(root, new);
 860                if (!conflict)
 861                        break;
 862                if (conflict == root)
 863                        break;
 864
 865                /* Ok, expand resource to cover the conflict, then try again .. */
 866                if (conflict->start < new->start)
 867                        new->start = conflict->start;
 868                if (conflict->end > new->end)
 869                        new->end = conflict->end;
 870
 871                printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
 872        }
 873        write_unlock(&resource_lock);
 874}
 875
 876static int __adjust_resource(struct resource *res, resource_size_t start,
 877                                resource_size_t size)
 878{
 879        struct resource *tmp, *parent = res->parent;
 880        resource_size_t end = start + size - 1;
 881        int result = -EBUSY;
 882
 883        if (!parent)
 884                goto skip;
 885
 886        if ((start < parent->start) || (end > parent->end))
 887                goto out;
 888
 889        if (res->sibling && (res->sibling->start <= end))
 890                goto out;
 891
 892        tmp = parent->child;
 893        if (tmp != res) {
 894                while (tmp->sibling != res)
 895                        tmp = tmp->sibling;
 896                if (start <= tmp->end)
 897                        goto out;
 898        }
 899
 900skip:
 901        for (tmp = res->child; tmp; tmp = tmp->sibling)
 902                if ((tmp->start < start) || (tmp->end > end))
 903                        goto out;
 904
 905        res->start = start;
 906        res->end = end;
 907        result = 0;
 908
 909 out:
 910        return result;
 911}
 912
 913/**
 914 * adjust_resource - modify a resource's start and size
 915 * @res: resource to modify
 916 * @start: new start value
 917 * @size: new size
 918 *
 919 * Given an existing resource, change its start and size to match the
 920 * arguments.  Returns 0 on success, -EBUSY if it can't fit.
 921 * Existing children of the resource are assumed to be immutable.
 922 */
 923int adjust_resource(struct resource *res, resource_size_t start,
 924                        resource_size_t size)
 925{
 926        int result;
 927
 928        write_lock(&resource_lock);
 929        result = __adjust_resource(res, start, size);
 930        write_unlock(&resource_lock);
 931        return result;
 932}
 933EXPORT_SYMBOL(adjust_resource);
 934
 935static void __init __reserve_region_with_split(struct resource *root,
 936                resource_size_t start, resource_size_t end,
 937                const char *name)
 938{
 939        struct resource *parent = root;
 940        struct resource *conflict;
 941        struct resource *res = alloc_resource(GFP_ATOMIC);
 942        struct resource *next_res = NULL;
 943
 944        if (!res)
 945                return;
 946
 947        res->name = name;
 948        res->start = start;
 949        res->end = end;
 950        res->flags = IORESOURCE_BUSY;
 951
 952        while (1) {
 953
 954                conflict = __request_resource(parent, res);
 955                if (!conflict) {
 956                        if (!next_res)
 957                                break;
 958                        res = next_res;
 959                        next_res = NULL;
 960                        continue;
 961                }
 962
 963                /* conflict covered whole area */
 964                if (conflict->start <= res->start &&
 965                                conflict->end >= res->end) {
 966                        free_resource(res);
 967                        WARN_ON(next_res);
 968                        break;
 969                }
 970
 971                /* failed, split and try again */
 972                if (conflict->start > res->start) {
 973                        end = res->end;
 974                        res->end = conflict->start - 1;
 975                        if (conflict->end < end) {
 976                                next_res = alloc_resource(GFP_ATOMIC);
 977                                if (!next_res) {
 978                                        free_resource(res);
 979                                        break;
 980                                }
 981                                next_res->name = name;
 982                                next_res->start = conflict->end + 1;
 983                                next_res->end = end;
 984                                next_res->flags = IORESOURCE_BUSY;
 985                        }
 986                } else {
 987                        res->start = conflict->end + 1;
 988                }
 989        }
 990
 991}
 992
 993void __init reserve_region_with_split(struct resource *root,
 994                resource_size_t start, resource_size_t end,
 995                const char *name)
 996{
 997        int abort = 0;
 998
 999        write_lock(&resource_lock);
1000        if (root->start > start || root->end < end) {
1001                pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1002                       (unsigned long long)start, (unsigned long long)end,
1003                       root);
1004                if (start > root->end || end < root->start)
1005                        abort = 1;
1006                else {
1007                        if (end > root->end)
1008                                end = root->end;
1009                        if (start < root->start)
1010                                start = root->start;
1011                        pr_err("fixing request to [0x%llx-0x%llx]\n",
1012                               (unsigned long long)start,
1013                               (unsigned long long)end);
1014                }
1015                dump_stack();
1016        }
1017        if (!abort)
1018                __reserve_region_with_split(root, start, end, name);
1019        write_unlock(&resource_lock);
1020}
1021
1022/**
1023 * resource_alignment - calculate resource's alignment
1024 * @res: resource pointer
1025 *
1026 * Returns alignment on success, 0 (invalid alignment) on failure.
1027 */
1028resource_size_t resource_alignment(struct resource *res)
1029{
1030        switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1031        case IORESOURCE_SIZEALIGN:
1032                return resource_size(res);
1033        case IORESOURCE_STARTALIGN:
1034                return res->start;
1035        default:
1036                return 0;
1037        }
1038}
1039
1040/*
1041 * This is compatibility stuff for IO resources.
1042 *
1043 * Note how this, unlike the above, knows about
1044 * the IO flag meanings (busy etc).
1045 *
1046 * request_region creates a new busy region.
1047 *
1048 * release_region releases a matching busy region.
1049 */
1050
1051static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1052
1053/**
1054 * __request_region - create a new busy resource region
1055 * @parent: parent resource descriptor
1056 * @start: resource start address
1057 * @n: resource region size
1058 * @name: reserving caller's ID string
1059 * @flags: IO resource flags
1060 */
1061struct resource * __request_region(struct resource *parent,
1062                                   resource_size_t start, resource_size_t n,
1063                                   const char *name, int flags)
1064{
1065        DECLARE_WAITQUEUE(wait, current);
1066        struct resource *res = alloc_resource(GFP_KERNEL);
1067
1068        if (!res)
1069                return NULL;
1070
1071        res->name = name;
1072        res->start = start;
1073        res->end = start + n - 1;
1074        res->flags = resource_type(parent);
1075        res->flags |= IORESOURCE_BUSY | flags;
1076
1077        write_lock(&resource_lock);
1078
1079        for (;;) {
1080                struct resource *conflict;
1081
1082                conflict = __request_resource(parent, res);
1083                if (!conflict)
1084                        break;
1085                if (conflict != parent) {
1086                        parent = conflict;
1087                        if (!(conflict->flags & IORESOURCE_BUSY))
1088                                continue;
1089                }
1090                if (conflict->flags & flags & IORESOURCE_MUXED) {
1091                        add_wait_queue(&muxed_resource_wait, &wait);
1092                        write_unlock(&resource_lock);
1093                        set_current_state(TASK_UNINTERRUPTIBLE);
1094                        schedule();
1095                        remove_wait_queue(&muxed_resource_wait, &wait);
1096                        write_lock(&resource_lock);
1097                        continue;
1098                }
1099                /* Uhhuh, that didn't work out.. */
1100                free_resource(res);
1101                res = NULL;
1102                break;
1103        }
1104        write_unlock(&resource_lock);
1105        return res;
1106}
1107EXPORT_SYMBOL(__request_region);
1108
1109/**
1110 * __release_region - release a previously reserved resource region
1111 * @parent: parent resource descriptor
1112 * @start: resource start address
1113 * @n: resource region size
1114 *
1115 * The described resource region must match a currently busy region.
1116 */
1117void __release_region(struct resource *parent, resource_size_t start,
1118                        resource_size_t n)
1119{
1120        struct resource **p;
1121        resource_size_t end;
1122
1123        p = &parent->child;
1124        end = start + n - 1;
1125
1126        write_lock(&resource_lock);
1127
1128        for (;;) {
1129                struct resource *res = *p;
1130
1131                if (!res)
1132                        break;
1133                if (res->start <= start && res->end >= end) {
1134                        if (!(res->flags & IORESOURCE_BUSY)) {
1135                                p = &res->child;
1136                                continue;
1137                        }
1138                        if (res->start != start || res->end != end)
1139                                break;
1140                        *p = res->sibling;
1141                        write_unlock(&resource_lock);
1142                        if (res->flags & IORESOURCE_MUXED)
1143                                wake_up(&muxed_resource_wait);
1144                        free_resource(res);
1145                        return;
1146                }
1147                p = &res->sibling;
1148        }
1149
1150        write_unlock(&resource_lock);
1151
1152        printk(KERN_WARNING "Trying to free nonexistent resource "
1153                "<%016llx-%016llx>\n", (unsigned long long)start,
1154                (unsigned long long)end);
1155}
1156EXPORT_SYMBOL(__release_region);
1157
1158#ifdef CONFIG_MEMORY_HOTREMOVE
1159/**
1160 * release_mem_region_adjustable - release a previously reserved memory region
1161 * @parent: parent resource descriptor
1162 * @start: resource start address
1163 * @size: resource region size
1164 *
1165 * This interface is intended for memory hot-delete.  The requested region
1166 * is released from a currently busy memory resource.  The requested region
1167 * must either match exactly or fit into a single busy resource entry.  In
1168 * the latter case, the remaining resource is adjusted accordingly.
1169 * Existing children of the busy memory resource must be immutable in the
1170 * request.
1171 *
1172 * Note:
1173 * - Additional release conditions, such as overlapping region, can be
1174 *   supported after they are confirmed as valid cases.
1175 * - When a busy memory resource gets split into two entries, the code
1176 *   assumes that all children remain in the lower address entry for
1177 *   simplicity.  Enhance this logic when necessary.
1178 */
1179int release_mem_region_adjustable(struct resource *parent,
1180                        resource_size_t start, resource_size_t size)
1181{
1182        struct resource **p;
1183        struct resource *res;
1184        struct resource *new_res;
1185        resource_size_t end;
1186        int ret = -EINVAL;
1187
1188        end = start + size - 1;
1189        if ((start < parent->start) || (end > parent->end))
1190                return ret;
1191
1192        /* The alloc_resource() result gets checked later */
1193        new_res = alloc_resource(GFP_KERNEL);
1194
1195        p = &parent->child;
1196        write_lock(&resource_lock);
1197
1198        while ((res = *p)) {
1199                if (res->start >= end)
1200                        break;
1201
1202                /* look for the next resource if it does not fit into */
1203                if (res->start > start || res->end < end) {
1204                        p = &res->sibling;
1205                        continue;
1206                }
1207
1208                if (!(res->flags & IORESOURCE_MEM))
1209                        break;
1210
1211                if (!(res->flags & IORESOURCE_BUSY)) {
1212                        p = &res->child;
1213                        continue;
1214                }
1215
1216                /* found the target resource; let's adjust accordingly */
1217                if (res->start == start && res->end == end) {
1218                        /* free the whole entry */
1219                        *p = res->sibling;
1220                        free_resource(res);
1221                        ret = 0;
1222                } else if (res->start == start && res->end != end) {
1223                        /* adjust the start */
1224                        ret = __adjust_resource(res, end + 1,
1225                                                res->end - end);
1226                } else if (res->start != start && res->end == end) {
1227                        /* adjust the end */
1228                        ret = __adjust_resource(res, res->start,
1229                                                start - res->start);
1230                } else {
1231                        /* split into two entries */
1232                        if (!new_res) {
1233                                ret = -ENOMEM;
1234                                break;
1235                        }
1236                        new_res->name = res->name;
1237                        new_res->start = end + 1;
1238                        new_res->end = res->end;
1239                        new_res->flags = res->flags;
1240                        new_res->parent = res->parent;
1241                        new_res->sibling = res->sibling;
1242                        new_res->child = NULL;
1243
1244                        ret = __adjust_resource(res, res->start,
1245                                                start - res->start);
1246                        if (ret)
1247                                break;
1248                        res->sibling = new_res;
1249                        new_res = NULL;
1250                }
1251
1252                break;
1253        }
1254
1255        write_unlock(&resource_lock);
1256        free_resource(new_res);
1257        return ret;
1258}
1259#endif  /* CONFIG_MEMORY_HOTREMOVE */
1260
1261/*
1262 * Managed region resource
1263 */
1264static void devm_resource_release(struct device *dev, void *ptr)
1265{
1266        struct resource **r = ptr;
1267
1268        release_resource(*r);
1269}
1270
1271/**
1272 * devm_request_resource() - request and reserve an I/O or memory resource
1273 * @dev: device for which to request the resource
1274 * @root: root of the resource tree from which to request the resource
1275 * @new: descriptor of the resource to request
1276 *
1277 * This is a device-managed version of request_resource(). There is usually
1278 * no need to release resources requested by this function explicitly since
1279 * that will be taken care of when the device is unbound from its driver.
1280 * If for some reason the resource needs to be released explicitly, because
1281 * of ordering issues for example, drivers must call devm_release_resource()
1282 * rather than the regular release_resource().
1283 *
1284 * When a conflict is detected between any existing resources and the newly
1285 * requested resource, an error message will be printed.
1286 *
1287 * Returns 0 on success or a negative error code on failure.
1288 */
1289int devm_request_resource(struct device *dev, struct resource *root,
1290                          struct resource *new)
1291{
1292        struct resource *conflict, **ptr;
1293
1294        ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1295        if (!ptr)
1296                return -ENOMEM;
1297
1298        *ptr = new;
1299
1300        conflict = request_resource_conflict(root, new);
1301        if (conflict) {
1302                dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1303                        new, conflict->name, conflict);
1304                devres_free(ptr);
1305                return -EBUSY;
1306        }
1307
1308        devres_add(dev, ptr);
1309        return 0;
1310}
1311EXPORT_SYMBOL(devm_request_resource);
1312
1313static int devm_resource_match(struct device *dev, void *res, void *data)
1314{
1315        struct resource **ptr = res;
1316
1317        return *ptr == data;
1318}
1319
1320/**
1321 * devm_release_resource() - release a previously requested resource
1322 * @dev: device for which to release the resource
1323 * @new: descriptor of the resource to release
1324 *
1325 * Releases a resource previously requested using devm_request_resource().
1326 */
1327void devm_release_resource(struct device *dev, struct resource *new)
1328{
1329        WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1330                               new));
1331}
1332EXPORT_SYMBOL(devm_release_resource);
1333
1334struct region_devres {
1335        struct resource *parent;
1336        resource_size_t start;
1337        resource_size_t n;
1338};
1339
1340static void devm_region_release(struct device *dev, void *res)
1341{
1342        struct region_devres *this = res;
1343
1344        __release_region(this->parent, this->start, this->n);
1345}
1346
1347static int devm_region_match(struct device *dev, void *res, void *match_data)
1348{
1349        struct region_devres *this = res, *match = match_data;
1350
1351        return this->parent == match->parent &&
1352                this->start == match->start && this->n == match->n;
1353}
1354
1355struct resource * __devm_request_region(struct device *dev,
1356                                struct resource *parent, resource_size_t start,
1357                                resource_size_t n, const char *name)
1358{
1359        struct region_devres *dr = NULL;
1360        struct resource *res;
1361
1362        dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1363                          GFP_KERNEL);
1364        if (!dr)
1365                return NULL;
1366
1367        dr->parent = parent;
1368        dr->start = start;
1369        dr->n = n;
1370
1371        res = __request_region(parent, start, n, name, 0);
1372        if (res)
1373                devres_add(dev, dr);
1374        else
1375                devres_free(dr);
1376
1377        return res;
1378}
1379EXPORT_SYMBOL(__devm_request_region);
1380
1381void __devm_release_region(struct device *dev, struct resource *parent,
1382                           resource_size_t start, resource_size_t n)
1383{
1384        struct region_devres match_data = { parent, start, n };
1385
1386        __release_region(parent, start, n);
1387        WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1388                               &match_data));
1389}
1390EXPORT_SYMBOL(__devm_release_region);
1391
1392/*
1393 * Called from init/main.c to reserve IO ports.
1394 */
1395#define MAXRESERVE 4
1396static int __init reserve_setup(char *str)
1397{
1398        static int reserved;
1399        static struct resource reserve[MAXRESERVE];
1400
1401        for (;;) {
1402                unsigned int io_start, io_num;
1403                int x = reserved;
1404
1405                if (get_option (&str, &io_start) != 2)
1406                        break;
1407                if (get_option (&str, &io_num)   == 0)
1408                        break;
1409                if (x < MAXRESERVE) {
1410                        struct resource *res = reserve + x;
1411                        res->name = "reserved";
1412                        res->start = io_start;
1413                        res->end = io_start + io_num - 1;
1414                        res->flags = IORESOURCE_BUSY;
1415                        res->child = NULL;
1416                        if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1417                                reserved = x+1;
1418                }
1419        }
1420        return 1;
1421}
1422
1423__setup("reserve=", reserve_setup);
1424
1425/*
1426 * Check if the requested addr and size spans more than any slot in the
1427 * iomem resource tree.
1428 */
1429int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1430{
1431        struct resource *p = &iomem_resource;
1432        int err = 0;
1433        loff_t l;
1434
1435        read_lock(&resource_lock);
1436        for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1437                /*
1438                 * We can probably skip the resources without
1439                 * IORESOURCE_IO attribute?
1440                 */
1441                if (p->start >= addr + size)
1442                        continue;
1443                if (p->end < addr)
1444                        continue;
1445                if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1446                    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1447                        continue;
1448                /*
1449                 * if a resource is "BUSY", it's not a hardware resource
1450                 * but a driver mapping of such a resource; we don't want
1451                 * to warn for those; some drivers legitimately map only
1452                 * partial hardware resources. (example: vesafb)
1453                 */
1454                if (p->flags & IORESOURCE_BUSY)
1455                        continue;
1456
1457                printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1458                       (unsigned long long)addr,
1459                       (unsigned long long)(addr + size - 1),
1460                       p->name, p);
1461                err = -1;
1462                break;
1463        }
1464        read_unlock(&resource_lock);
1465
1466        return err;
1467}
1468
1469#ifdef CONFIG_STRICT_DEVMEM
1470static int strict_iomem_checks = 1;
1471#else
1472static int strict_iomem_checks;
1473#endif
1474
1475/*
1476 * check if an address is reserved in the iomem resource tree
1477 * returns 1 if reserved, 0 if not reserved.
1478 */
1479int iomem_is_exclusive(u64 addr)
1480{
1481        struct resource *p = &iomem_resource;
1482        int err = 0;
1483        loff_t l;
1484        int size = PAGE_SIZE;
1485
1486        if (!strict_iomem_checks)
1487                return 0;
1488
1489        addr = addr & PAGE_MASK;
1490
1491        read_lock(&resource_lock);
1492        for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1493                /*
1494                 * We can probably skip the resources without
1495                 * IORESOURCE_IO attribute?
1496                 */
1497                if (p->start >= addr + size)
1498                        break;
1499                if (p->end < addr)
1500                        continue;
1501                if (p->flags & IORESOURCE_BUSY &&
1502                     p->flags & IORESOURCE_EXCLUSIVE) {
1503                        err = 1;
1504                        break;
1505                }
1506        }
1507        read_unlock(&resource_lock);
1508
1509        return err;
1510}
1511
1512struct resource_entry *resource_list_create_entry(struct resource *res,
1513                                                  size_t extra_size)
1514{
1515        struct resource_entry *entry;
1516
1517        entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1518        if (entry) {
1519                INIT_LIST_HEAD(&entry->node);
1520                entry->res = res ? res : &entry->__res;
1521        }
1522
1523        return entry;
1524}
1525EXPORT_SYMBOL(resource_list_create_entry);
1526
1527void resource_list_free(struct list_head *head)
1528{
1529        struct resource_entry *entry, *tmp;
1530
1531        list_for_each_entry_safe(entry, tmp, head, node)
1532                resource_list_destroy_entry(entry);
1533}
1534EXPORT_SYMBOL(resource_list_free);
1535
1536static int __init strict_iomem(char *str)
1537{
1538        if (strstr(str, "relaxed"))
1539                strict_iomem_checks = 0;
1540        if (strstr(str, "strict"))
1541                strict_iomem_checks = 1;
1542        return 1;
1543}
1544
1545__setup("iomem=", strict_iomem);
1546