linux/kernel/sched/cputime.c
<<
>>
Prefs
   1#include <linux/export.h>
   2#include <linux/sched.h>
   3#include <linux/tsacct_kern.h>
   4#include <linux/kernel_stat.h>
   5#include <linux/static_key.h>
   6#include <linux/context_tracking.h>
   7#include "sched.h"
   8
   9
  10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  11
  12/*
  13 * There are no locks covering percpu hardirq/softirq time.
  14 * They are only modified in vtime_account, on corresponding CPU
  15 * with interrupts disabled. So, writes are safe.
  16 * They are read and saved off onto struct rq in update_rq_clock().
  17 * This may result in other CPU reading this CPU's irq time and can
  18 * race with irq/vtime_account on this CPU. We would either get old
  19 * or new value with a side effect of accounting a slice of irq time to wrong
  20 * task when irq is in progress while we read rq->clock. That is a worthy
  21 * compromise in place of having locks on each irq in account_system_time.
  22 */
  23DEFINE_PER_CPU(u64, cpu_hardirq_time);
  24DEFINE_PER_CPU(u64, cpu_softirq_time);
  25
  26static DEFINE_PER_CPU(u64, irq_start_time);
  27static int sched_clock_irqtime;
  28
  29void enable_sched_clock_irqtime(void)
  30{
  31        sched_clock_irqtime = 1;
  32}
  33
  34void disable_sched_clock_irqtime(void)
  35{
  36        sched_clock_irqtime = 0;
  37}
  38
  39#ifndef CONFIG_64BIT
  40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  41#endif /* CONFIG_64BIT */
  42
  43/*
  44 * Called before incrementing preempt_count on {soft,}irq_enter
  45 * and before decrementing preempt_count on {soft,}irq_exit.
  46 */
  47void irqtime_account_irq(struct task_struct *curr)
  48{
  49        unsigned long flags;
  50        s64 delta;
  51        int cpu;
  52
  53        if (!sched_clock_irqtime)
  54                return;
  55
  56        local_irq_save(flags);
  57
  58        cpu = smp_processor_id();
  59        delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  60        __this_cpu_add(irq_start_time, delta);
  61
  62        irq_time_write_begin();
  63        /*
  64         * We do not account for softirq time from ksoftirqd here.
  65         * We want to continue accounting softirq time to ksoftirqd thread
  66         * in that case, so as not to confuse scheduler with a special task
  67         * that do not consume any time, but still wants to run.
  68         */
  69        if (hardirq_count())
  70                __this_cpu_add(cpu_hardirq_time, delta);
  71        else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72                __this_cpu_add(cpu_softirq_time, delta);
  73
  74        irq_time_write_end();
  75        local_irq_restore(flags);
  76}
  77EXPORT_SYMBOL_GPL(irqtime_account_irq);
  78
  79static int irqtime_account_hi_update(void)
  80{
  81        u64 *cpustat = kcpustat_this_cpu->cpustat;
  82        unsigned long flags;
  83        u64 latest_ns;
  84        int ret = 0;
  85
  86        local_irq_save(flags);
  87        latest_ns = this_cpu_read(cpu_hardirq_time);
  88        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  89                ret = 1;
  90        local_irq_restore(flags);
  91        return ret;
  92}
  93
  94static int irqtime_account_si_update(void)
  95{
  96        u64 *cpustat = kcpustat_this_cpu->cpustat;
  97        unsigned long flags;
  98        u64 latest_ns;
  99        int ret = 0;
 100
 101        local_irq_save(flags);
 102        latest_ns = this_cpu_read(cpu_softirq_time);
 103        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 104                ret = 1;
 105        local_irq_restore(flags);
 106        return ret;
 107}
 108
 109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 110
 111#define sched_clock_irqtime     (0)
 112
 113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 114
 115static inline void task_group_account_field(struct task_struct *p, int index,
 116                                            u64 tmp)
 117{
 118        /*
 119         * Since all updates are sure to touch the root cgroup, we
 120         * get ourselves ahead and touch it first. If the root cgroup
 121         * is the only cgroup, then nothing else should be necessary.
 122         *
 123         */
 124        __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 125
 126        cpuacct_account_field(p, index, tmp);
 127}
 128
 129/*
 130 * Account user cpu time to a process.
 131 * @p: the process that the cpu time gets accounted to
 132 * @cputime: the cpu time spent in user space since the last update
 133 * @cputime_scaled: cputime scaled by cpu frequency
 134 */
 135void account_user_time(struct task_struct *p, cputime_t cputime,
 136                       cputime_t cputime_scaled)
 137{
 138        int index;
 139
 140        /* Add user time to process. */
 141        p->utime += cputime;
 142        p->utimescaled += cputime_scaled;
 143        account_group_user_time(p, cputime);
 144
 145        index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 146
 147        /* Add user time to cpustat. */
 148        task_group_account_field(p, index, (__force u64) cputime);
 149
 150        /* Account for user time used */
 151        acct_account_cputime(p);
 152}
 153
 154/*
 155 * Account guest cpu time to a process.
 156 * @p: the process that the cpu time gets accounted to
 157 * @cputime: the cpu time spent in virtual machine since the last update
 158 * @cputime_scaled: cputime scaled by cpu frequency
 159 */
 160static void account_guest_time(struct task_struct *p, cputime_t cputime,
 161                               cputime_t cputime_scaled)
 162{
 163        u64 *cpustat = kcpustat_this_cpu->cpustat;
 164
 165        /* Add guest time to process. */
 166        p->utime += cputime;
 167        p->utimescaled += cputime_scaled;
 168        account_group_user_time(p, cputime);
 169        p->gtime += cputime;
 170
 171        /* Add guest time to cpustat. */
 172        if (task_nice(p) > 0) {
 173                cpustat[CPUTIME_NICE] += (__force u64) cputime;
 174                cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
 175        } else {
 176                cpustat[CPUTIME_USER] += (__force u64) cputime;
 177                cpustat[CPUTIME_GUEST] += (__force u64) cputime;
 178        }
 179}
 180
 181/*
 182 * Account system cpu time to a process and desired cpustat field
 183 * @p: the process that the cpu time gets accounted to
 184 * @cputime: the cpu time spent in kernel space since the last update
 185 * @cputime_scaled: cputime scaled by cpu frequency
 186 * @target_cputime64: pointer to cpustat field that has to be updated
 187 */
 188static inline
 189void __account_system_time(struct task_struct *p, cputime_t cputime,
 190                        cputime_t cputime_scaled, int index)
 191{
 192        /* Add system time to process. */
 193        p->stime += cputime;
 194        p->stimescaled += cputime_scaled;
 195        account_group_system_time(p, cputime);
 196
 197        /* Add system time to cpustat. */
 198        task_group_account_field(p, index, (__force u64) cputime);
 199
 200        /* Account for system time used */
 201        acct_account_cputime(p);
 202}
 203
 204/*
 205 * Account system cpu time to a process.
 206 * @p: the process that the cpu time gets accounted to
 207 * @hardirq_offset: the offset to subtract from hardirq_count()
 208 * @cputime: the cpu time spent in kernel space since the last update
 209 * @cputime_scaled: cputime scaled by cpu frequency
 210 */
 211void account_system_time(struct task_struct *p, int hardirq_offset,
 212                         cputime_t cputime, cputime_t cputime_scaled)
 213{
 214        int index;
 215
 216        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 217                account_guest_time(p, cputime, cputime_scaled);
 218                return;
 219        }
 220
 221        if (hardirq_count() - hardirq_offset)
 222                index = CPUTIME_IRQ;
 223        else if (in_serving_softirq())
 224                index = CPUTIME_SOFTIRQ;
 225        else
 226                index = CPUTIME_SYSTEM;
 227
 228        __account_system_time(p, cputime, cputime_scaled, index);
 229}
 230
 231/*
 232 * Account for involuntary wait time.
 233 * @cputime: the cpu time spent in involuntary wait
 234 */
 235void account_steal_time(cputime_t cputime)
 236{
 237        u64 *cpustat = kcpustat_this_cpu->cpustat;
 238
 239        cpustat[CPUTIME_STEAL] += (__force u64) cputime;
 240}
 241
 242/*
 243 * Account for idle time.
 244 * @cputime: the cpu time spent in idle wait
 245 */
 246void account_idle_time(cputime_t cputime)
 247{
 248        u64 *cpustat = kcpustat_this_cpu->cpustat;
 249        struct rq *rq = this_rq();
 250
 251        if (atomic_read(&rq->nr_iowait) > 0)
 252                cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
 253        else
 254                cpustat[CPUTIME_IDLE] += (__force u64) cputime;
 255}
 256
 257static __always_inline bool steal_account_process_tick(void)
 258{
 259#ifdef CONFIG_PARAVIRT
 260        if (static_key_false(&paravirt_steal_enabled)) {
 261                u64 steal;
 262                cputime_t steal_ct;
 263
 264                steal = paravirt_steal_clock(smp_processor_id());
 265                steal -= this_rq()->prev_steal_time;
 266
 267                /*
 268                 * cputime_t may be less precise than nsecs (eg: if it's
 269                 * based on jiffies). Lets cast the result to cputime
 270                 * granularity and account the rest on the next rounds.
 271                 */
 272                steal_ct = nsecs_to_cputime(steal);
 273                this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
 274
 275                account_steal_time(steal_ct);
 276                return steal_ct;
 277        }
 278#endif
 279        return false;
 280}
 281
 282/*
 283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 284 * tasks (sum on group iteration) belonging to @tsk's group.
 285 */
 286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 287{
 288        struct signal_struct *sig = tsk->signal;
 289        cputime_t utime, stime;
 290        struct task_struct *t;
 291        unsigned int seq, nextseq;
 292        unsigned long flags;
 293
 294        rcu_read_lock();
 295        /* Attempt a lockless read on the first round. */
 296        nextseq = 0;
 297        do {
 298                seq = nextseq;
 299                flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 300                times->utime = sig->utime;
 301                times->stime = sig->stime;
 302                times->sum_exec_runtime = sig->sum_sched_runtime;
 303
 304                for_each_thread(tsk, t) {
 305                        task_cputime(t, &utime, &stime);
 306                        times->utime += utime;
 307                        times->stime += stime;
 308                        times->sum_exec_runtime += task_sched_runtime(t);
 309                }
 310                /* If lockless access failed, take the lock. */
 311                nextseq = 1;
 312        } while (need_seqretry(&sig->stats_lock, seq));
 313        done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 314        rcu_read_unlock();
 315}
 316
 317#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 318/*
 319 * Account a tick to a process and cpustat
 320 * @p: the process that the cpu time gets accounted to
 321 * @user_tick: is the tick from userspace
 322 * @rq: the pointer to rq
 323 *
 324 * Tick demultiplexing follows the order
 325 * - pending hardirq update
 326 * - pending softirq update
 327 * - user_time
 328 * - idle_time
 329 * - system time
 330 *   - check for guest_time
 331 *   - else account as system_time
 332 *
 333 * Check for hardirq is done both for system and user time as there is
 334 * no timer going off while we are on hardirq and hence we may never get an
 335 * opportunity to update it solely in system time.
 336 * p->stime and friends are only updated on system time and not on irq
 337 * softirq as those do not count in task exec_runtime any more.
 338 */
 339static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 340                                         struct rq *rq, int ticks)
 341{
 342        cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
 343        u64 cputime = (__force u64) cputime_one_jiffy;
 344        u64 *cpustat = kcpustat_this_cpu->cpustat;
 345
 346        if (steal_account_process_tick())
 347                return;
 348
 349        cputime *= ticks;
 350        scaled *= ticks;
 351
 352        if (irqtime_account_hi_update()) {
 353                cpustat[CPUTIME_IRQ] += cputime;
 354        } else if (irqtime_account_si_update()) {
 355                cpustat[CPUTIME_SOFTIRQ] += cputime;
 356        } else if (this_cpu_ksoftirqd() == p) {
 357                /*
 358                 * ksoftirqd time do not get accounted in cpu_softirq_time.
 359                 * So, we have to handle it separately here.
 360                 * Also, p->stime needs to be updated for ksoftirqd.
 361                 */
 362                __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
 363        } else if (user_tick) {
 364                account_user_time(p, cputime, scaled);
 365        } else if (p == rq->idle) {
 366                account_idle_time(cputime);
 367        } else if (p->flags & PF_VCPU) { /* System time or guest time */
 368                account_guest_time(p, cputime, scaled);
 369        } else {
 370                __account_system_time(p, cputime, scaled,       CPUTIME_SYSTEM);
 371        }
 372}
 373
 374static void irqtime_account_idle_ticks(int ticks)
 375{
 376        struct rq *rq = this_rq();
 377
 378        irqtime_account_process_tick(current, 0, rq, ticks);
 379}
 380#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 381static inline void irqtime_account_idle_ticks(int ticks) {}
 382static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 383                                                struct rq *rq, int nr_ticks) {}
 384#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 385
 386/*
 387 * Use precise platform statistics if available:
 388 */
 389#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 390
 391#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 392void vtime_common_task_switch(struct task_struct *prev)
 393{
 394        if (is_idle_task(prev))
 395                vtime_account_idle(prev);
 396        else
 397                vtime_account_system(prev);
 398
 399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 400        vtime_account_user(prev);
 401#endif
 402        arch_vtime_task_switch(prev);
 403}
 404#endif
 405
 406/*
 407 * Archs that account the whole time spent in the idle task
 408 * (outside irq) as idle time can rely on this and just implement
 409 * vtime_account_system() and vtime_account_idle(). Archs that
 410 * have other meaning of the idle time (s390 only includes the
 411 * time spent by the CPU when it's in low power mode) must override
 412 * vtime_account().
 413 */
 414#ifndef __ARCH_HAS_VTIME_ACCOUNT
 415void vtime_common_account_irq_enter(struct task_struct *tsk)
 416{
 417        if (!in_interrupt()) {
 418                /*
 419                 * If we interrupted user, context_tracking_in_user()
 420                 * is 1 because the context tracking don't hook
 421                 * on irq entry/exit. This way we know if
 422                 * we need to flush user time on kernel entry.
 423                 */
 424                if (context_tracking_in_user()) {
 425                        vtime_account_user(tsk);
 426                        return;
 427                }
 428
 429                if (is_idle_task(tsk)) {
 430                        vtime_account_idle(tsk);
 431                        return;
 432                }
 433        }
 434        vtime_account_system(tsk);
 435}
 436EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
 437#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 438#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 439
 440
 441#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 442void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 443{
 444        *ut = p->utime;
 445        *st = p->stime;
 446}
 447
 448void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 449{
 450        struct task_cputime cputime;
 451
 452        thread_group_cputime(p, &cputime);
 453
 454        *ut = cputime.utime;
 455        *st = cputime.stime;
 456}
 457#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 458/*
 459 * Account a single tick of cpu time.
 460 * @p: the process that the cpu time gets accounted to
 461 * @user_tick: indicates if the tick is a user or a system tick
 462 */
 463void account_process_tick(struct task_struct *p, int user_tick)
 464{
 465        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 466        struct rq *rq = this_rq();
 467
 468        if (vtime_accounting_enabled())
 469                return;
 470
 471        if (sched_clock_irqtime) {
 472                irqtime_account_process_tick(p, user_tick, rq, 1);
 473                return;
 474        }
 475
 476        if (steal_account_process_tick())
 477                return;
 478
 479        if (user_tick)
 480                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 481        else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
 482                account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
 483                                    one_jiffy_scaled);
 484        else
 485                account_idle_time(cputime_one_jiffy);
 486}
 487
 488/*
 489 * Account multiple ticks of steal time.
 490 * @p: the process from which the cpu time has been stolen
 491 * @ticks: number of stolen ticks
 492 */
 493void account_steal_ticks(unsigned long ticks)
 494{
 495        account_steal_time(jiffies_to_cputime(ticks));
 496}
 497
 498/*
 499 * Account multiple ticks of idle time.
 500 * @ticks: number of stolen ticks
 501 */
 502void account_idle_ticks(unsigned long ticks)
 503{
 504
 505        if (sched_clock_irqtime) {
 506                irqtime_account_idle_ticks(ticks);
 507                return;
 508        }
 509
 510        account_idle_time(jiffies_to_cputime(ticks));
 511}
 512
 513/*
 514 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 515 * loosing precision when the numbers are big.
 516 */
 517static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
 518{
 519        u64 scaled;
 520
 521        for (;;) {
 522                /* Make sure "rtime" is the bigger of stime/rtime */
 523                if (stime > rtime)
 524                        swap(rtime, stime);
 525
 526                /* Make sure 'total' fits in 32 bits */
 527                if (total >> 32)
 528                        goto drop_precision;
 529
 530                /* Does rtime (and thus stime) fit in 32 bits? */
 531                if (!(rtime >> 32))
 532                        break;
 533
 534                /* Can we just balance rtime/stime rather than dropping bits? */
 535                if (stime >> 31)
 536                        goto drop_precision;
 537
 538                /* We can grow stime and shrink rtime and try to make them both fit */
 539                stime <<= 1;
 540                rtime >>= 1;
 541                continue;
 542
 543drop_precision:
 544                /* We drop from rtime, it has more bits than stime */
 545                rtime >>= 1;
 546                total >>= 1;
 547        }
 548
 549        /*
 550         * Make sure gcc understands that this is a 32x32->64 multiply,
 551         * followed by a 64/32->64 divide.
 552         */
 553        scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
 554        return (__force cputime_t) scaled;
 555}
 556
 557/*
 558 * Adjust tick based cputime random precision against scheduler runtime
 559 * accounting.
 560 *
 561 * Tick based cputime accounting depend on random scheduling timeslices of a
 562 * task to be interrupted or not by the timer.  Depending on these
 563 * circumstances, the number of these interrupts may be over or
 564 * under-optimistic, matching the real user and system cputime with a variable
 565 * precision.
 566 *
 567 * Fix this by scaling these tick based values against the total runtime
 568 * accounted by the CFS scheduler.
 569 *
 570 * This code provides the following guarantees:
 571 *
 572 *   stime + utime == rtime
 573 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 574 *
 575 * Assuming that rtime_i+1 >= rtime_i.
 576 */
 577static void cputime_adjust(struct task_cputime *curr,
 578                           struct prev_cputime *prev,
 579                           cputime_t *ut, cputime_t *st)
 580{
 581        cputime_t rtime, stime, utime;
 582        unsigned long flags;
 583
 584        /* Serialize concurrent callers such that we can honour our guarantees */
 585        raw_spin_lock_irqsave(&prev->lock, flags);
 586        rtime = nsecs_to_cputime(curr->sum_exec_runtime);
 587
 588        /*
 589         * This is possible under two circumstances:
 590         *  - rtime isn't monotonic after all (a bug);
 591         *  - we got reordered by the lock.
 592         *
 593         * In both cases this acts as a filter such that the rest of the code
 594         * can assume it is monotonic regardless of anything else.
 595         */
 596        if (prev->stime + prev->utime >= rtime)
 597                goto out;
 598
 599        stime = curr->stime;
 600        utime = curr->utime;
 601
 602        if (utime == 0) {
 603                stime = rtime;
 604                goto update;
 605        }
 606
 607        if (stime == 0) {
 608                utime = rtime;
 609                goto update;
 610        }
 611
 612        stime = scale_stime((__force u64)stime, (__force u64)rtime,
 613                            (__force u64)(stime + utime));
 614
 615        /*
 616         * Make sure stime doesn't go backwards; this preserves monotonicity
 617         * for utime because rtime is monotonic.
 618         *
 619         *  utime_i+1 = rtime_i+1 - stime_i
 620         *            = rtime_i+1 - (rtime_i - utime_i)
 621         *            = (rtime_i+1 - rtime_i) + utime_i
 622         *            >= utime_i
 623         */
 624        if (stime < prev->stime)
 625                stime = prev->stime;
 626        utime = rtime - stime;
 627
 628        /*
 629         * Make sure utime doesn't go backwards; this still preserves
 630         * monotonicity for stime, analogous argument to above.
 631         */
 632        if (utime < prev->utime) {
 633                utime = prev->utime;
 634                stime = rtime - utime;
 635        }
 636
 637update:
 638        prev->stime = stime;
 639        prev->utime = utime;
 640out:
 641        *ut = prev->utime;
 642        *st = prev->stime;
 643        raw_spin_unlock_irqrestore(&prev->lock, flags);
 644}
 645
 646void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 647{
 648        struct task_cputime cputime = {
 649                .sum_exec_runtime = p->se.sum_exec_runtime,
 650        };
 651
 652        task_cputime(p, &cputime.utime, &cputime.stime);
 653        cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 654}
 655
 656void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 657{
 658        struct task_cputime cputime;
 659
 660        thread_group_cputime(p, &cputime);
 661        cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 662}
 663#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 664
 665#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 666static unsigned long long vtime_delta(struct task_struct *tsk)
 667{
 668        unsigned long long clock;
 669
 670        clock = local_clock();
 671        if (clock < tsk->vtime_snap)
 672                return 0;
 673
 674        return clock - tsk->vtime_snap;
 675}
 676
 677static cputime_t get_vtime_delta(struct task_struct *tsk)
 678{
 679        unsigned long long delta = vtime_delta(tsk);
 680
 681        WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
 682        tsk->vtime_snap += delta;
 683
 684        /* CHECKME: always safe to convert nsecs to cputime? */
 685        return nsecs_to_cputime(delta);
 686}
 687
 688static void __vtime_account_system(struct task_struct *tsk)
 689{
 690        cputime_t delta_cpu = get_vtime_delta(tsk);
 691
 692        account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
 693}
 694
 695void vtime_account_system(struct task_struct *tsk)
 696{
 697        write_seqlock(&tsk->vtime_seqlock);
 698        __vtime_account_system(tsk);
 699        write_sequnlock(&tsk->vtime_seqlock);
 700}
 701
 702void vtime_gen_account_irq_exit(struct task_struct *tsk)
 703{
 704        write_seqlock(&tsk->vtime_seqlock);
 705        __vtime_account_system(tsk);
 706        if (context_tracking_in_user())
 707                tsk->vtime_snap_whence = VTIME_USER;
 708        write_sequnlock(&tsk->vtime_seqlock);
 709}
 710
 711void vtime_account_user(struct task_struct *tsk)
 712{
 713        cputime_t delta_cpu;
 714
 715        write_seqlock(&tsk->vtime_seqlock);
 716        delta_cpu = get_vtime_delta(tsk);
 717        tsk->vtime_snap_whence = VTIME_SYS;
 718        account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
 719        write_sequnlock(&tsk->vtime_seqlock);
 720}
 721
 722void vtime_user_enter(struct task_struct *tsk)
 723{
 724        write_seqlock(&tsk->vtime_seqlock);
 725        __vtime_account_system(tsk);
 726        tsk->vtime_snap_whence = VTIME_USER;
 727        write_sequnlock(&tsk->vtime_seqlock);
 728}
 729
 730void vtime_guest_enter(struct task_struct *tsk)
 731{
 732        /*
 733         * The flags must be updated under the lock with
 734         * the vtime_snap flush and update.
 735         * That enforces a right ordering and update sequence
 736         * synchronization against the reader (task_gtime())
 737         * that can thus safely catch up with a tickless delta.
 738         */
 739        write_seqlock(&tsk->vtime_seqlock);
 740        __vtime_account_system(tsk);
 741        current->flags |= PF_VCPU;
 742        write_sequnlock(&tsk->vtime_seqlock);
 743}
 744EXPORT_SYMBOL_GPL(vtime_guest_enter);
 745
 746void vtime_guest_exit(struct task_struct *tsk)
 747{
 748        write_seqlock(&tsk->vtime_seqlock);
 749        __vtime_account_system(tsk);
 750        current->flags &= ~PF_VCPU;
 751        write_sequnlock(&tsk->vtime_seqlock);
 752}
 753EXPORT_SYMBOL_GPL(vtime_guest_exit);
 754
 755void vtime_account_idle(struct task_struct *tsk)
 756{
 757        cputime_t delta_cpu = get_vtime_delta(tsk);
 758
 759        account_idle_time(delta_cpu);
 760}
 761
 762void arch_vtime_task_switch(struct task_struct *prev)
 763{
 764        write_seqlock(&prev->vtime_seqlock);
 765        prev->vtime_snap_whence = VTIME_SLEEPING;
 766        write_sequnlock(&prev->vtime_seqlock);
 767
 768        write_seqlock(&current->vtime_seqlock);
 769        current->vtime_snap_whence = VTIME_SYS;
 770        current->vtime_snap = sched_clock_cpu(smp_processor_id());
 771        write_sequnlock(&current->vtime_seqlock);
 772}
 773
 774void vtime_init_idle(struct task_struct *t, int cpu)
 775{
 776        unsigned long flags;
 777
 778        write_seqlock_irqsave(&t->vtime_seqlock, flags);
 779        t->vtime_snap_whence = VTIME_SYS;
 780        t->vtime_snap = sched_clock_cpu(cpu);
 781        write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
 782}
 783
 784cputime_t task_gtime(struct task_struct *t)
 785{
 786        unsigned int seq;
 787        cputime_t gtime;
 788
 789        do {
 790                seq = read_seqbegin(&t->vtime_seqlock);
 791
 792                gtime = t->gtime;
 793                if (t->flags & PF_VCPU)
 794                        gtime += vtime_delta(t);
 795
 796        } while (read_seqretry(&t->vtime_seqlock, seq));
 797
 798        return gtime;
 799}
 800
 801/*
 802 * Fetch cputime raw values from fields of task_struct and
 803 * add up the pending nohz execution time since the last
 804 * cputime snapshot.
 805 */
 806static void
 807fetch_task_cputime(struct task_struct *t,
 808                   cputime_t *u_dst, cputime_t *s_dst,
 809                   cputime_t *u_src, cputime_t *s_src,
 810                   cputime_t *udelta, cputime_t *sdelta)
 811{
 812        unsigned int seq;
 813        unsigned long long delta;
 814
 815        do {
 816                *udelta = 0;
 817                *sdelta = 0;
 818
 819                seq = read_seqbegin(&t->vtime_seqlock);
 820
 821                if (u_dst)
 822                        *u_dst = *u_src;
 823                if (s_dst)
 824                        *s_dst = *s_src;
 825
 826                /* Task is sleeping, nothing to add */
 827                if (t->vtime_snap_whence == VTIME_SLEEPING ||
 828                    is_idle_task(t))
 829                        continue;
 830
 831                delta = vtime_delta(t);
 832
 833                /*
 834                 * Task runs either in user or kernel space, add pending nohz time to
 835                 * the right place.
 836                 */
 837                if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
 838                        *udelta = delta;
 839                } else {
 840                        if (t->vtime_snap_whence == VTIME_SYS)
 841                                *sdelta = delta;
 842                }
 843        } while (read_seqretry(&t->vtime_seqlock, seq));
 844}
 845
 846
 847void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
 848{
 849        cputime_t udelta, sdelta;
 850
 851        fetch_task_cputime(t, utime, stime, &t->utime,
 852                           &t->stime, &udelta, &sdelta);
 853        if (utime)
 854                *utime += udelta;
 855        if (stime)
 856                *stime += sdelta;
 857}
 858
 859void task_cputime_scaled(struct task_struct *t,
 860                         cputime_t *utimescaled, cputime_t *stimescaled)
 861{
 862        cputime_t udelta, sdelta;
 863
 864        fetch_task_cputime(t, utimescaled, stimescaled,
 865                           &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
 866        if (utimescaled)
 867                *utimescaled += cputime_to_scaled(udelta);
 868        if (stimescaled)
 869                *stimescaled += cputime_to_scaled(sdelta);
 870}
 871#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
 872