1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38
39
40
41
42
43
44
45
46
47
48
49
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53
54
55
56
57
58
59
60
61
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65
66
67
68
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72
73
74
75static unsigned int sched_nr_latency = 8;
76
77
78
79
80
81unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83
84
85
86
87
88
89
90
91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96
97
98
99
100
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103#ifdef CONFIG_CFS_BANDWIDTH
104
105
106
107
108
109
110
111
112
113
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
135
136
137
138
139
140
141
142
143
144static unsigned int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
182#define WMULT_CONST (~0U)
183#define WMULT_SHIFT 32
184
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
201
202
203
204
205
206
207
208
209
210
211
212
213
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237}
238
239
240const struct sched_class fair_sched_class;
241
242
243
244
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251 return cfs_rq->rq;
252}
253
254
255#define entity_is_task(se) (!se->my_q)
256
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
265
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
289
290
291
292
293
294
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
316
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320
321static inline struct cfs_rq *
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
325 return se->cfs_rq;
326
327 return NULL;
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340
341
342
343
344
345
346
347
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
367#else
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
373
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
377}
378
379#define entity_is_task(se) 1
380
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
383
384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385{
386 return &task_rq(p)->cfs;
387}
388
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
424#endif
425
426static __always_inline
427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428
429
430
431
432
433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434{
435 s64 delta = (s64)(vruntime - max_vruntime);
436 if (delta > 0)
437 max_vruntime = vruntime;
438
439 return max_vruntime;
440}
441
442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
469 if (!cfs_rq->curr)
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
475
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
481}
482
483
484
485
486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
491 int leftmost = 1;
492
493
494
495
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499
500
501
502
503 if (entity_before(se, entry)) {
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511
512
513
514
515 if (leftmost)
516 cfs_rq->rb_leftmost = &se->run_node;
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
520}
521
522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523{
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
529 }
530
531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
532}
533
534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535{
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
542}
543
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556{
557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558
559 if (!last)
560 return NULL;
561
562 return rb_entry(last, struct sched_entity, run_node);
563}
564
565
566
567
568
569int sched_proc_update_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572{
573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574 unsigned int factor = get_update_sysctl_factor();
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
587#undef WRT_SYSCTL
588
589 return 0;
590}
591#endif
592
593
594
595
596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597{
598 if (unlikely(se->load.weight != NICE_0_LOAD))
599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600
601 return delta;
602}
603
604
605
606
607
608
609
610
611
612static u64 __sched_period(unsigned long nr_running)
613{
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
618}
619
620
621
622
623
624
625
626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629
630 for_each_sched_entity(se) {
631 struct load_weight *load;
632 struct load_weight lw;
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
636
637 if (unlikely(!se->on_rq)) {
638 lw = cfs_rq->load;
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
643 slice = __calc_delta(slice, se->load.weight, load);
644 }
645 return slice;
646}
647
648
649
650
651
652
653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
654{
655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
656}
657
658#ifdef CONFIG_SMP
659static int select_idle_sibling(struct task_struct *p, int cpu);
660static unsigned long task_h_load(struct task_struct *p);
661
662
663
664
665
666#define LOAD_AVG_PERIOD 32
667#define LOAD_AVG_MAX 47742
668#define LOAD_AVG_MAX_N 345
669
670
671void init_entity_runnable_average(struct sched_entity *se)
672{
673 struct sched_avg *sa = &se->avg;
674
675 sa->last_update_time = 0;
676
677
678
679
680
681 sa->period_contrib = 1023;
682 sa->load_avg = scale_load_down(se->load.weight);
683 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
684 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
685 sa->util_sum = LOAD_AVG_MAX;
686
687}
688
689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
691#else
692void init_entity_runnable_average(struct sched_entity *se)
693{
694}
695#endif
696
697
698
699
700static void update_curr(struct cfs_rq *cfs_rq)
701{
702 struct sched_entity *curr = cfs_rq->curr;
703 u64 now = rq_clock_task(rq_of(cfs_rq));
704 u64 delta_exec;
705
706 if (unlikely(!curr))
707 return;
708
709 delta_exec = now - curr->exec_start;
710 if (unlikely((s64)delta_exec <= 0))
711 return;
712
713 curr->exec_start = now;
714
715 schedstat_set(curr->statistics.exec_max,
716 max(delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720
721 curr->vruntime += calc_delta_fair(delta_exec, curr);
722 update_min_vruntime(cfs_rq);
723
724 if (entity_is_task(curr)) {
725 struct task_struct *curtask = task_of(curr);
726
727 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
728 cpuacct_charge(curtask, delta_exec);
729 account_group_exec_runtime(curtask, delta_exec);
730 }
731
732 account_cfs_rq_runtime(cfs_rq, delta_exec);
733}
734
735static void update_curr_fair(struct rq *rq)
736{
737 update_curr(cfs_rq_of(&rq->curr->se));
738}
739
740static inline void
741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
742{
743 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
744}
745
746
747
748
749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
750{
751
752
753
754
755 if (se != cfs_rq->curr)
756 update_stats_wait_start(cfs_rq, se);
757}
758
759static void
760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
761{
762 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
764 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
765 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
767#ifdef CONFIG_SCHEDSTATS
768 if (entity_is_task(se)) {
769 trace_sched_stat_wait(task_of(se),
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 }
772#endif
773 schedstat_set(se->statistics.wait_start, 0);
774}
775
776static inline void
777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
778{
779
780
781
782
783 if (se != cfs_rq->curr)
784 update_stats_wait_end(cfs_rq, se);
785}
786
787
788
789
790static inline void
791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
792{
793
794
795
796 se->exec_start = rq_clock_task(rq_of(cfs_rq));
797}
798
799
800
801
802
803#ifdef CONFIG_NUMA_BALANCING
804
805
806
807
808
809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
811
812
813unsigned int sysctl_numa_balancing_scan_size = 256;
814
815
816unsigned int sysctl_numa_balancing_scan_delay = 1000;
817
818static unsigned int task_nr_scan_windows(struct task_struct *p)
819{
820 unsigned long rss = 0;
821 unsigned long nr_scan_pages;
822
823
824
825
826
827
828 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
829 rss = get_mm_rss(p->mm);
830 if (!rss)
831 rss = nr_scan_pages;
832
833 rss = round_up(rss, nr_scan_pages);
834 return rss / nr_scan_pages;
835}
836
837
838#define MAX_SCAN_WINDOW 2560
839
840static unsigned int task_scan_min(struct task_struct *p)
841{
842 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
843 unsigned int scan, floor;
844 unsigned int windows = 1;
845
846 if (scan_size < MAX_SCAN_WINDOW)
847 windows = MAX_SCAN_WINDOW / scan_size;
848 floor = 1000 / windows;
849
850 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
851 return max_t(unsigned int, floor, scan);
852}
853
854static unsigned int task_scan_max(struct task_struct *p)
855{
856 unsigned int smin = task_scan_min(p);
857 unsigned int smax;
858
859
860 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
861 return max(smin, smax);
862}
863
864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running += (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
868}
869
870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
871{
872 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
873 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
874}
875
876struct numa_group {
877 atomic_t refcount;
878
879 spinlock_t lock;
880 int nr_tasks;
881 pid_t gid;
882
883 struct rcu_head rcu;
884 nodemask_t active_nodes;
885 unsigned long total_faults;
886
887
888
889
890
891 unsigned long *faults_cpu;
892 unsigned long faults[0];
893};
894
895
896#define NR_NUMA_HINT_FAULT_TYPES 2
897
898
899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
900
901
902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
903
904pid_t task_numa_group_id(struct task_struct *p)
905{
906 return p->numa_group ? p->numa_group->gid : 0;
907}
908
909
910
911
912
913
914
915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
916{
917 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
918}
919
920static inline unsigned long task_faults(struct task_struct *p, int nid)
921{
922 if (!p->numa_faults)
923 return 0;
924
925 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
926 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
927}
928
929static inline unsigned long group_faults(struct task_struct *p, int nid)
930{
931 if (!p->numa_group)
932 return 0;
933
934 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
935 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
936}
937
938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
939{
940 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
941 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
942}
943
944
945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
946 int maxdist, bool task)
947{
948 unsigned long score = 0;
949 int node;
950
951
952
953
954
955 if (sched_numa_topology_type == NUMA_DIRECT)
956 return 0;
957
958
959
960
961
962 for_each_online_node(node) {
963 unsigned long faults;
964 int dist = node_distance(nid, node);
965
966
967
968
969
970 if (dist == sched_max_numa_distance || node == nid)
971 continue;
972
973
974
975
976
977
978
979
980 if (sched_numa_topology_type == NUMA_BACKPLANE &&
981 dist > maxdist)
982 continue;
983
984
985 if (task)
986 faults = task_faults(p, node);
987 else
988 faults = group_faults(p, node);
989
990
991
992
993
994
995
996
997
998 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
999 faults *= (sched_max_numa_distance - dist);
1000 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001 }
1002
1003 score += faults;
1004 }
1005
1006 return score;
1007}
1008
1009
1010
1011
1012
1013
1014
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016 int dist)
1017{
1018 unsigned long faults, total_faults;
1019
1020 if (!p->numa_faults)
1021 return 0;
1022
1023 total_faults = p->total_numa_faults;
1024
1025 if (!total_faults)
1026 return 0;
1027
1028 faults = task_faults(p, nid);
1029 faults += score_nearby_nodes(p, nid, dist, true);
1030
1031 return 1000 * faults / total_faults;
1032}
1033
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035 int dist)
1036{
1037 unsigned long faults, total_faults;
1038
1039 if (!p->numa_group)
1040 return 0;
1041
1042 total_faults = p->numa_group->total_faults;
1043
1044 if (!total_faults)
1045 return 0;
1046
1047 faults = group_faults(p, nid);
1048 faults += score_nearby_nodes(p, nid, dist, false);
1049
1050 return 1000 * faults / total_faults;
1051}
1052
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054 int src_nid, int dst_cpu)
1055{
1056 struct numa_group *ng = p->numa_group;
1057 int dst_nid = cpu_to_node(dst_cpu);
1058 int last_cpupid, this_cpupid;
1059
1060 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080 if (!cpupid_pid_unset(last_cpupid) &&
1081 cpupid_to_nid(last_cpupid) != dst_nid)
1082 return false;
1083
1084
1085 if (cpupid_match_pid(p, last_cpupid))
1086 return true;
1087
1088
1089 if (!ng)
1090 return true;
1091
1092
1093
1094
1095
1096 if (!node_isset(dst_nid, ng->active_nodes))
1097 return false;
1098
1099
1100
1101
1102
1103 if (!node_isset(src_nid, ng->active_nodes))
1104 return true;
1105
1106
1107
1108
1109
1110
1111
1112
1113 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
1116static unsigned long weighted_cpuload(const int cpu);
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
1119static unsigned long capacity_of(int cpu);
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
1122
1123struct numa_stats {
1124 unsigned long nr_running;
1125 unsigned long load;
1126
1127
1128 unsigned long compute_capacity;
1129
1130
1131 unsigned long task_capacity;
1132 int has_free_capacity;
1133};
1134
1135
1136
1137
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
1140 int smt, cpu, cpus = 0;
1141 unsigned long capacity;
1142
1143 memset(ns, 0, sizeof(*ns));
1144 for_each_cpu(cpu, cpumask_of_node(nid)) {
1145 struct rq *rq = cpu_rq(cpu);
1146
1147 ns->nr_running += rq->nr_running;
1148 ns->load += weighted_cpuload(cpu);
1149 ns->compute_capacity += capacity_of(cpu);
1150
1151 cpus++;
1152 }
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162 if (!cpus)
1163 return;
1164
1165
1166 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167 capacity = cpus / smt;
1168
1169 ns->task_capacity = min_t(unsigned, capacity,
1170 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1171 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1172}
1173
1174struct task_numa_env {
1175 struct task_struct *p;
1176
1177 int src_cpu, src_nid;
1178 int dst_cpu, dst_nid;
1179
1180 struct numa_stats src_stats, dst_stats;
1181
1182 int imbalance_pct;
1183 int dist;
1184
1185 struct task_struct *best_task;
1186 long best_imp;
1187 int best_cpu;
1188};
1189
1190static void task_numa_assign(struct task_numa_env *env,
1191 struct task_struct *p, long imp)
1192{
1193 if (env->best_task)
1194 put_task_struct(env->best_task);
1195 if (p)
1196 get_task_struct(p);
1197
1198 env->best_task = p;
1199 env->best_imp = imp;
1200 env->best_cpu = env->dst_cpu;
1201}
1202
1203static bool load_too_imbalanced(long src_load, long dst_load,
1204 struct task_numa_env *env)
1205{
1206 long imb, old_imb;
1207 long orig_src_load, orig_dst_load;
1208 long src_capacity, dst_capacity;
1209
1210
1211
1212
1213
1214
1215
1216
1217 src_capacity = env->src_stats.compute_capacity;
1218 dst_capacity = env->dst_stats.compute_capacity;
1219
1220
1221 if (dst_load < src_load)
1222 swap(dst_load, src_load);
1223
1224
1225 imb = dst_load * src_capacity * 100 -
1226 src_load * dst_capacity * env->imbalance_pct;
1227 if (imb <= 0)
1228 return false;
1229
1230
1231
1232
1233
1234 orig_src_load = env->src_stats.load;
1235 orig_dst_load = env->dst_stats.load;
1236
1237 if (orig_dst_load < orig_src_load)
1238 swap(orig_dst_load, orig_src_load);
1239
1240 old_imb = orig_dst_load * src_capacity * 100 -
1241 orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243
1244 return (imb > old_imb);
1245}
1246
1247
1248
1249
1250
1251
1252
1253static void task_numa_compare(struct task_numa_env *env,
1254 long taskimp, long groupimp)
1255{
1256 struct rq *src_rq = cpu_rq(env->src_cpu);
1257 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258 struct task_struct *cur;
1259 long src_load, dst_load;
1260 long load;
1261 long imp = env->p->numa_group ? groupimp : taskimp;
1262 long moveimp = imp;
1263 int dist = env->dist;
1264
1265 rcu_read_lock();
1266
1267 raw_spin_lock_irq(&dst_rq->lock);
1268 cur = dst_rq->curr;
1269
1270
1271
1272
1273
1274
1275
1276 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1277 cur = NULL;
1278 raw_spin_unlock_irq(&dst_rq->lock);
1279
1280
1281
1282
1283
1284 if (cur == env->p)
1285 goto unlock;
1286
1287
1288
1289
1290
1291
1292
1293
1294 if (cur) {
1295
1296 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297 goto unlock;
1298
1299
1300
1301
1302
1303 if (cur->numa_group == env->p->numa_group) {
1304 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305 task_weight(cur, env->dst_nid, dist);
1306
1307
1308
1309
1310 if (cur->numa_group)
1311 imp -= imp/16;
1312 } else {
1313
1314
1315
1316
1317
1318 if (cur->numa_group)
1319 imp += group_weight(cur, env->src_nid, dist) -
1320 group_weight(cur, env->dst_nid, dist);
1321 else
1322 imp += task_weight(cur, env->src_nid, dist) -
1323 task_weight(cur, env->dst_nid, dist);
1324 }
1325 }
1326
1327 if (imp <= env->best_imp && moveimp <= env->best_imp)
1328 goto unlock;
1329
1330 if (!cur) {
1331
1332 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1333 !env->dst_stats.has_free_capacity)
1334 goto unlock;
1335
1336 goto balance;
1337 }
1338
1339
1340 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341 dst_rq->nr_running == 1)
1342 goto assign;
1343
1344
1345
1346
1347balance:
1348 load = task_h_load(env->p);
1349 dst_load = env->dst_stats.load + load;
1350 src_load = env->src_stats.load - load;
1351
1352 if (moveimp > imp && moveimp > env->best_imp) {
1353
1354
1355
1356
1357
1358
1359 if (!load_too_imbalanced(src_load, dst_load, env)) {
1360 imp = moveimp - 1;
1361 cur = NULL;
1362 goto assign;
1363 }
1364 }
1365
1366 if (imp <= env->best_imp)
1367 goto unlock;
1368
1369 if (cur) {
1370 load = task_h_load(cur);
1371 dst_load -= load;
1372 src_load += load;
1373 }
1374
1375 if (load_too_imbalanced(src_load, dst_load, env))
1376 goto unlock;
1377
1378
1379
1380
1381
1382 if (!cur)
1383 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
1385assign:
1386 task_numa_assign(env, cur, imp);
1387unlock:
1388 rcu_read_unlock();
1389}
1390
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392 long taskimp, long groupimp)
1393{
1394 int cpu;
1395
1396 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397
1398 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399 continue;
1400
1401 env->dst_cpu = cpu;
1402 task_numa_compare(env, taskimp, groupimp);
1403 }
1404}
1405
1406
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409 struct numa_stats *src = &env->src_stats;
1410 struct numa_stats *dst = &env->dst_stats;
1411
1412 if (src->has_free_capacity && !dst->has_free_capacity)
1413 return false;
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423 if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425 dst->load * src->compute_capacity * 100)
1426 return true;
1427
1428 return false;
1429}
1430
1431static int task_numa_migrate(struct task_struct *p)
1432{
1433 struct task_numa_env env = {
1434 .p = p,
1435
1436 .src_cpu = task_cpu(p),
1437 .src_nid = task_node(p),
1438
1439 .imbalance_pct = 112,
1440
1441 .best_task = NULL,
1442 .best_imp = 0,
1443 .best_cpu = -1
1444 };
1445 struct sched_domain *sd;
1446 unsigned long taskweight, groupweight;
1447 int nid, ret, dist;
1448 long taskimp, groupimp;
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458 rcu_read_lock();
1459 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1460 if (sd)
1461 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1462 rcu_read_unlock();
1463
1464
1465
1466
1467
1468
1469
1470 if (unlikely(!sd)) {
1471 p->numa_preferred_nid = task_node(p);
1472 return -EINVAL;
1473 }
1474
1475 env.dst_nid = p->numa_preferred_nid;
1476 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477 taskweight = task_weight(p, env.src_nid, dist);
1478 groupweight = group_weight(p, env.src_nid, dist);
1479 update_numa_stats(&env.src_stats, env.src_nid);
1480 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1482 update_numa_stats(&env.dst_stats, env.dst_nid);
1483
1484
1485 if (numa_has_capacity(&env))
1486 task_numa_find_cpu(&env, taskimp, groupimp);
1487
1488
1489
1490
1491
1492
1493
1494
1495 if (env.best_cpu == -1 || (p->numa_group &&
1496 nodes_weight(p->numa_group->active_nodes) > 1)) {
1497 for_each_online_node(nid) {
1498 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499 continue;
1500
1501 dist = node_distance(env.src_nid, env.dst_nid);
1502 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503 dist != env.dist) {
1504 taskweight = task_weight(p, env.src_nid, dist);
1505 groupweight = group_weight(p, env.src_nid, dist);
1506 }
1507
1508
1509 taskimp = task_weight(p, nid, dist) - taskweight;
1510 groupimp = group_weight(p, nid, dist) - groupweight;
1511 if (taskimp < 0 && groupimp < 0)
1512 continue;
1513
1514 env.dist = dist;
1515 env.dst_nid = nid;
1516 update_numa_stats(&env.dst_stats, env.dst_nid);
1517 if (numa_has_capacity(&env))
1518 task_numa_find_cpu(&env, taskimp, groupimp);
1519 }
1520 }
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530 if (p->numa_group) {
1531 if (env.best_cpu == -1)
1532 nid = env.src_nid;
1533 else
1534 nid = env.dst_nid;
1535
1536 if (node_isset(nid, p->numa_group->active_nodes))
1537 sched_setnuma(p, env.dst_nid);
1538 }
1539
1540
1541 if (env.best_cpu == -1)
1542 return -EAGAIN;
1543
1544
1545
1546
1547
1548 p->numa_scan_period = task_scan_min(p);
1549
1550 if (env.best_task == NULL) {
1551 ret = migrate_task_to(p, env.best_cpu);
1552 if (ret != 0)
1553 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1554 return ret;
1555 }
1556
1557 ret = migrate_swap(p, env.best_task);
1558 if (ret != 0)
1559 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1560 put_task_struct(env.best_task);
1561 return ret;
1562}
1563
1564
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
1567 unsigned long interval = HZ;
1568
1569
1570 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1571 return;
1572
1573
1574 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575 p->numa_migrate_retry = jiffies + interval;
1576
1577
1578 if (task_node(p) == p->numa_preferred_nid)
1579 return;
1580
1581
1582 task_numa_migrate(p);
1583}
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598 unsigned long faults, max_faults = 0;
1599 int nid;
1600
1601 for_each_online_node(nid) {
1602 faults = group_faults_cpu(numa_group, nid);
1603 if (faults > max_faults)
1604 max_faults = faults;
1605 }
1606
1607 for_each_online_node(nid) {
1608 faults = group_faults_cpu(numa_group, nid);
1609 if (!node_isset(nid, numa_group->active_nodes)) {
1610 if (faults > max_faults * 6 / 16)
1611 node_set(nid, numa_group->active_nodes);
1612 } else if (faults < max_faults * 3 / 16)
1613 node_clear(nid, numa_group->active_nodes);
1614 }
1615}
1616
1617
1618
1619
1620
1621
1622
1623
1624#define NUMA_PERIOD_SLOTS 10
1625#define NUMA_PERIOD_THRESHOLD 7
1626
1627
1628
1629
1630
1631
1632
1633static void update_task_scan_period(struct task_struct *p,
1634 unsigned long shared, unsigned long private)
1635{
1636 unsigned int period_slot;
1637 int ratio;
1638 int diff;
1639
1640 unsigned long remote = p->numa_faults_locality[0];
1641 unsigned long local = p->numa_faults_locality[1];
1642
1643
1644
1645
1646
1647
1648
1649
1650 if (local + shared == 0 || p->numa_faults_locality[2]) {
1651 p->numa_scan_period = min(p->numa_scan_period_max,
1652 p->numa_scan_period << 1);
1653
1654 p->mm->numa_next_scan = jiffies +
1655 msecs_to_jiffies(p->numa_scan_period);
1656
1657 return;
1658 }
1659
1660
1661
1662
1663
1664
1665
1666 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670 if (!slot)
1671 slot = 1;
1672 diff = slot * period_slot;
1673 } else {
1674 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1685 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686 }
1687
1688 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689 task_scan_min(p), task_scan_max(p));
1690 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
1693
1694
1695
1696
1697
1698
1699
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702 u64 runtime, delta, now;
1703
1704 now = p->se.exec_start;
1705 runtime = p->se.sum_exec_runtime;
1706
1707 if (p->last_task_numa_placement) {
1708 delta = runtime - p->last_sum_exec_runtime;
1709 *period = now - p->last_task_numa_placement;
1710 } else {
1711 delta = p->se.avg.load_sum / p->se.load.weight;
1712 *period = LOAD_AVG_MAX;
1713 }
1714
1715 p->last_sum_exec_runtime = runtime;
1716 p->last_task_numa_placement = now;
1717
1718 return delta;
1719}
1720
1721
1722
1723
1724
1725
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728 nodemask_t nodes;
1729 int dist;
1730
1731
1732 if (sched_numa_topology_type == NUMA_DIRECT)
1733 return nid;
1734
1735
1736
1737
1738
1739
1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741 unsigned long score, max_score = 0;
1742 int node, max_node = nid;
1743
1744 dist = sched_max_numa_distance;
1745
1746 for_each_online_node(node) {
1747 score = group_weight(p, node, dist);
1748 if (score > max_score) {
1749 max_score = score;
1750 max_node = node;
1751 }
1752 }
1753 return max_node;
1754 }
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765 nodes = node_online_map;
1766 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767 unsigned long max_faults = 0;
1768 nodemask_t max_group = NODE_MASK_NONE;
1769 int a, b;
1770
1771
1772 if (!find_numa_distance(dist))
1773 continue;
1774
1775 for_each_node_mask(a, nodes) {
1776 unsigned long faults = 0;
1777 nodemask_t this_group;
1778 nodes_clear(this_group);
1779
1780
1781 for_each_node_mask(b, nodes) {
1782 if (node_distance(a, b) < dist) {
1783 faults += group_faults(p, b);
1784 node_set(b, this_group);
1785 node_clear(b, nodes);
1786 }
1787 }
1788
1789
1790 if (faults > max_faults) {
1791 max_faults = faults;
1792 max_group = this_group;
1793
1794
1795
1796
1797
1798 nid = a;
1799 }
1800 }
1801
1802 if (!max_faults)
1803 break;
1804 nodes = max_group;
1805 }
1806 return nid;
1807}
1808
1809static void task_numa_placement(struct task_struct *p)
1810{
1811 int seq, nid, max_nid = -1, max_group_nid = -1;
1812 unsigned long max_faults = 0, max_group_faults = 0;
1813 unsigned long fault_types[2] = { 0, 0 };
1814 unsigned long total_faults;
1815 u64 runtime, period;
1816 spinlock_t *group_lock = NULL;
1817
1818
1819
1820
1821
1822
1823 seq = READ_ONCE(p->mm->numa_scan_seq);
1824 if (p->numa_scan_seq == seq)
1825 return;
1826 p->numa_scan_seq = seq;
1827 p->numa_scan_period_max = task_scan_max(p);
1828
1829 total_faults = p->numa_faults_locality[0] +
1830 p->numa_faults_locality[1];
1831 runtime = numa_get_avg_runtime(p, &period);
1832
1833
1834 if (p->numa_group) {
1835 group_lock = &p->numa_group->lock;
1836 spin_lock_irq(group_lock);
1837 }
1838
1839
1840 for_each_online_node(nid) {
1841
1842 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1843 unsigned long faults = 0, group_faults = 0;
1844 int priv;
1845
1846 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1847 long diff, f_diff, f_weight;
1848
1849 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1853
1854
1855 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856 fault_types[priv] += p->numa_faults[membuf_idx];
1857 p->numa_faults[membuf_idx] = 0;
1858
1859
1860
1861
1862
1863
1864
1865
1866 f_weight = div64_u64(runtime << 16, period + 1);
1867 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1868 (total_faults + 1);
1869 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870 p->numa_faults[cpubuf_idx] = 0;
1871
1872 p->numa_faults[mem_idx] += diff;
1873 p->numa_faults[cpu_idx] += f_diff;
1874 faults += p->numa_faults[mem_idx];
1875 p->total_numa_faults += diff;
1876 if (p->numa_group) {
1877
1878
1879
1880
1881
1882
1883
1884 p->numa_group->faults[mem_idx] += diff;
1885 p->numa_group->faults_cpu[mem_idx] += f_diff;
1886 p->numa_group->total_faults += diff;
1887 group_faults += p->numa_group->faults[mem_idx];
1888 }
1889 }
1890
1891 if (faults > max_faults) {
1892 max_faults = faults;
1893 max_nid = nid;
1894 }
1895
1896 if (group_faults > max_group_faults) {
1897 max_group_faults = group_faults;
1898 max_group_nid = nid;
1899 }
1900 }
1901
1902 update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
1904 if (p->numa_group) {
1905 update_numa_active_node_mask(p->numa_group);
1906 spin_unlock_irq(group_lock);
1907 max_nid = preferred_group_nid(p, max_group_nid);
1908 }
1909
1910 if (max_faults) {
1911
1912 if (max_nid != p->numa_preferred_nid)
1913 sched_setnuma(p, max_nid);
1914
1915 if (task_node(p) != p->numa_preferred_nid)
1916 numa_migrate_preferred(p);
1917 }
1918}
1919
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922 return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927 if (atomic_dec_and_test(&grp->refcount))
1928 kfree_rcu(grp, rcu);
1929}
1930
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932 int *priv)
1933{
1934 struct numa_group *grp, *my_grp;
1935 struct task_struct *tsk;
1936 bool join = false;
1937 int cpu = cpupid_to_cpu(cpupid);
1938 int i;
1939
1940 if (unlikely(!p->numa_group)) {
1941 unsigned int size = sizeof(struct numa_group) +
1942 4*nr_node_ids*sizeof(unsigned long);
1943
1944 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945 if (!grp)
1946 return;
1947
1948 atomic_set(&grp->refcount, 1);
1949 spin_lock_init(&grp->lock);
1950 grp->gid = p->pid;
1951
1952 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953 nr_node_ids;
1954
1955 node_set(task_node(current), grp->active_nodes);
1956
1957 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1958 grp->faults[i] = p->numa_faults[i];
1959
1960 grp->total_faults = p->total_numa_faults;
1961
1962 grp->nr_tasks++;
1963 rcu_assign_pointer(p->numa_group, grp);
1964 }
1965
1966 rcu_read_lock();
1967 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1968
1969 if (!cpupid_match_pid(tsk, cpupid))
1970 goto no_join;
1971
1972 grp = rcu_dereference(tsk->numa_group);
1973 if (!grp)
1974 goto no_join;
1975
1976 my_grp = p->numa_group;
1977 if (grp == my_grp)
1978 goto no_join;
1979
1980
1981
1982
1983
1984 if (my_grp->nr_tasks > grp->nr_tasks)
1985 goto no_join;
1986
1987
1988
1989
1990 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1991 goto no_join;
1992
1993
1994 if (tsk->mm == current->mm)
1995 join = true;
1996
1997
1998 if (flags & TNF_SHARED)
1999 join = true;
2000
2001
2002 *priv = !join;
2003
2004 if (join && !get_numa_group(grp))
2005 goto no_join;
2006
2007 rcu_read_unlock();
2008
2009 if (!join)
2010 return;
2011
2012 BUG_ON(irqs_disabled());
2013 double_lock_irq(&my_grp->lock, &grp->lock);
2014
2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2016 my_grp->faults[i] -= p->numa_faults[i];
2017 grp->faults[i] += p->numa_faults[i];
2018 }
2019 my_grp->total_faults -= p->total_numa_faults;
2020 grp->total_faults += p->total_numa_faults;
2021
2022 my_grp->nr_tasks--;
2023 grp->nr_tasks++;
2024
2025 spin_unlock(&my_grp->lock);
2026 spin_unlock_irq(&grp->lock);
2027
2028 rcu_assign_pointer(p->numa_group, grp);
2029
2030 put_numa_group(my_grp);
2031 return;
2032
2033no_join:
2034 rcu_read_unlock();
2035 return;
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040 struct numa_group *grp = p->numa_group;
2041 void *numa_faults = p->numa_faults;
2042 unsigned long flags;
2043 int i;
2044
2045 if (grp) {
2046 spin_lock_irqsave(&grp->lock, flags);
2047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2048 grp->faults[i] -= p->numa_faults[i];
2049 grp->total_faults -= p->total_numa_faults;
2050
2051 grp->nr_tasks--;
2052 spin_unlock_irqrestore(&grp->lock, flags);
2053 RCU_INIT_POINTER(p->numa_group, NULL);
2054 put_numa_group(grp);
2055 }
2056
2057 p->numa_faults = NULL;
2058 kfree(numa_faults);
2059}
2060
2061
2062
2063
2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2065{
2066 struct task_struct *p = current;
2067 bool migrated = flags & TNF_MIGRATED;
2068 int cpu_node = task_node(current);
2069 int local = !!(flags & TNF_FAULT_LOCAL);
2070 int priv;
2071
2072 if (!numabalancing_enabled)
2073 return;
2074
2075
2076 if (!p->mm)
2077 return;
2078
2079
2080 if (unlikely(!p->numa_faults)) {
2081 int size = sizeof(*p->numa_faults) *
2082 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2083
2084 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085 if (!p->numa_faults)
2086 return;
2087
2088 p->total_numa_faults = 0;
2089 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2090 }
2091
2092
2093
2094
2095
2096 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097 priv = 1;
2098 } else {
2099 priv = cpupid_match_pid(p, last_cpupid);
2100 if (!priv && !(flags & TNF_NO_GROUP))
2101 task_numa_group(p, last_cpupid, flags, &priv);
2102 }
2103
2104
2105
2106
2107
2108
2109
2110 if (!priv && !local && p->numa_group &&
2111 node_isset(cpu_node, p->numa_group->active_nodes) &&
2112 node_isset(mem_node, p->numa_group->active_nodes))
2113 local = 1;
2114
2115 task_numa_placement(p);
2116
2117
2118
2119
2120
2121 if (time_after(jiffies, p->numa_migrate_retry))
2122 numa_migrate_preferred(p);
2123
2124 if (migrated)
2125 p->numa_pages_migrated += pages;
2126 if (flags & TNF_MIGRATE_FAIL)
2127 p->numa_faults_locality[2] += pages;
2128
2129 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2131 p->numa_faults_locality[local] += pages;
2132}
2133
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
2136
2137
2138
2139
2140
2141
2142
2143
2144 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2145 p->mm->numa_scan_offset = 0;
2146}
2147
2148
2149
2150
2151
2152void task_numa_work(struct callback_head *work)
2153{
2154 unsigned long migrate, next_scan, now = jiffies;
2155 struct task_struct *p = current;
2156 struct mm_struct *mm = p->mm;
2157 struct vm_area_struct *vma;
2158 unsigned long start, end;
2159 unsigned long nr_pte_updates = 0;
2160 long pages;
2161
2162 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164 work->next = work;
2165
2166
2167
2168
2169
2170
2171
2172
2173 if (p->flags & PF_EXITING)
2174 return;
2175
2176 if (!mm->numa_next_scan) {
2177 mm->numa_next_scan = now +
2178 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2179 }
2180
2181
2182
2183
2184 migrate = mm->numa_next_scan;
2185 if (time_before(now, migrate))
2186 return;
2187
2188 if (p->numa_scan_period == 0) {
2189 p->numa_scan_period_max = task_scan_max(p);
2190 p->numa_scan_period = task_scan_min(p);
2191 }
2192
2193 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2194 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195 return;
2196
2197
2198
2199
2200
2201 p->node_stamp += 2 * TICK_NSEC;
2202
2203 start = mm->numa_scan_offset;
2204 pages = sysctl_numa_balancing_scan_size;
2205 pages <<= 20 - PAGE_SHIFT;
2206 if (!pages)
2207 return;
2208
2209 down_read(&mm->mmap_sem);
2210 vma = find_vma(mm, start);
2211 if (!vma) {
2212 reset_ptenuma_scan(p);
2213 start = 0;
2214 vma = mm->mmap;
2215 }
2216 for (; vma; vma = vma->vm_next) {
2217 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2218 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2219 continue;
2220 }
2221
2222
2223
2224
2225
2226
2227
2228 if (!vma->vm_mm ||
2229 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230 continue;
2231
2232
2233
2234
2235
2236 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237 continue;
2238
2239 do {
2240 start = max(start, vma->vm_start);
2241 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242 end = min(end, vma->vm_end);
2243 nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245
2246
2247
2248
2249
2250 if (nr_pte_updates)
2251 pages -= (end - start) >> PAGE_SHIFT;
2252
2253 start = end;
2254 if (pages <= 0)
2255 goto out;
2256
2257 cond_resched();
2258 } while (end != vma->vm_end);
2259 }
2260
2261out:
2262
2263
2264
2265
2266
2267
2268 if (vma)
2269 mm->numa_scan_offset = start;
2270 else
2271 reset_ptenuma_scan(p);
2272 up_read(&mm->mmap_sem);
2273}
2274
2275
2276
2277
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280 struct callback_head *work = &curr->numa_work;
2281 u64 period, now;
2282
2283
2284
2285
2286 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287 return;
2288
2289
2290
2291
2292
2293
2294
2295 now = curr->se.sum_exec_runtime;
2296 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298 if (now - curr->node_stamp > period) {
2299 if (!curr->node_stamp)
2300 curr->numa_scan_period = task_scan_min(curr);
2301 curr->node_stamp += period;
2302
2303 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304 init_task_work(work, task_numa_work);
2305 task_work_add(curr, work, true);
2306 }
2307 }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
2321#endif
2322
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326 update_load_add(&cfs_rq->load, se->load.weight);
2327 if (!parent_entity(se))
2328 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2329#ifdef CONFIG_SMP
2330 if (entity_is_task(se)) {
2331 struct rq *rq = rq_of(cfs_rq);
2332
2333 account_numa_enqueue(rq, task_of(se));
2334 list_add(&se->group_node, &rq->cfs_tasks);
2335 }
2336#endif
2337 cfs_rq->nr_running++;
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343 update_load_sub(&cfs_rq->load, se->load.weight);
2344 if (!parent_entity(se))
2345 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2346 if (entity_is_task(se)) {
2347 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2348 list_del_init(&se->group_node);
2349 }
2350 cfs_rq->nr_running--;
2351}
2352
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357 long tg_weight;
2358
2359
2360
2361
2362
2363
2364 tg_weight = atomic_long_read(&tg->load_avg);
2365 tg_weight -= cfs_rq->tg_load_avg_contrib;
2366 tg_weight += cfs_rq->load.weight;
2367
2368 return tg_weight;
2369}
2370
2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2372{
2373 long tg_weight, load, shares;
2374
2375 tg_weight = calc_tg_weight(tg, cfs_rq);
2376 load = cfs_rq->load.weight;
2377
2378 shares = (tg->shares * load);
2379 if (tg_weight)
2380 shares /= tg_weight;
2381
2382 if (shares < MIN_SHARES)
2383 shares = MIN_SHARES;
2384 if (shares > tg->shares)
2385 shares = tg->shares;
2386
2387 return shares;
2388}
2389# else
2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2391{
2392 return tg->shares;
2393}
2394# endif
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396 unsigned long weight)
2397{
2398 if (se->on_rq) {
2399
2400 if (cfs_rq->curr == se)
2401 update_curr(cfs_rq);
2402 account_entity_dequeue(cfs_rq, se);
2403 }
2404
2405 update_load_set(&se->load, weight);
2406
2407 if (se->on_rq)
2408 account_entity_enqueue(cfs_rq, se);
2409}
2410
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2414{
2415 struct task_group *tg;
2416 struct sched_entity *se;
2417 long shares;
2418
2419 tg = cfs_rq->tg;
2420 se = tg->se[cpu_of(rq_of(cfs_rq))];
2421 if (!se || throttled_hierarchy(cfs_rq))
2422 return;
2423#ifndef CONFIG_SMP
2424 if (likely(se->load.weight == tg->shares))
2425 return;
2426#endif
2427 shares = calc_cfs_shares(cfs_rq, tg);
2428
2429 reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else
2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2433{
2434}
2435#endif
2436
2437#ifdef CONFIG_SMP
2438
2439static const u32 runnable_avg_yN_inv[] = {
2440 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445 0x85aac367, 0x82cd8698,
2446};
2447
2448
2449
2450
2451
2452static const u32 runnable_avg_yN_sum[] = {
2453 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
2458
2459
2460
2461
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
2464 unsigned int local_n;
2465
2466 if (!n)
2467 return val;
2468 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469 return 0;
2470
2471
2472 local_n = n;
2473
2474
2475
2476
2477
2478
2479
2480
2481 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482 val >>= local_n / LOAD_AVG_PERIOD;
2483 local_n %= LOAD_AVG_PERIOD;
2484 }
2485
2486 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487 return val;
2488}
2489
2490
2491
2492
2493
2494
2495
2496
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499 u32 contrib = 0;
2500
2501 if (likely(n <= LOAD_AVG_PERIOD))
2502 return runnable_avg_yN_sum[n];
2503 else if (unlikely(n >= LOAD_AVG_MAX_N))
2504 return LOAD_AVG_MAX;
2505
2506
2507 do {
2508 contrib /= 2;
2509 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511 n -= LOAD_AVG_PERIOD;
2512 } while (n > LOAD_AVG_PERIOD);
2513
2514 contrib = decay_load(contrib, n);
2515 return contrib + runnable_avg_yN_sum[n];
2516}
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546static __always_inline int
2547__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2548 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2549{
2550 u64 delta, periods;
2551 u32 contrib;
2552 int delta_w, decayed = 0;
2553 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2554
2555 delta = now - sa->last_update_time;
2556
2557
2558
2559
2560 if ((s64)delta < 0) {
2561 sa->last_update_time = now;
2562 return 0;
2563 }
2564
2565
2566
2567
2568
2569 delta >>= 10;
2570 if (!delta)
2571 return 0;
2572 sa->last_update_time = now;
2573
2574
2575 delta_w = sa->period_contrib;
2576 if (delta + delta_w >= 1024) {
2577 decayed = 1;
2578
2579
2580 sa->period_contrib = 0;
2581
2582
2583
2584
2585
2586
2587 delta_w = 1024 - delta_w;
2588 if (weight) {
2589 sa->load_sum += weight * delta_w;
2590 if (cfs_rq)
2591 cfs_rq->runnable_load_sum += weight * delta_w;
2592 }
2593 if (running)
2594 sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
2595
2596 delta -= delta_w;
2597
2598
2599 periods = delta / 1024;
2600 delta %= 1024;
2601
2602 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2603 if (cfs_rq) {
2604 cfs_rq->runnable_load_sum =
2605 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606 }
2607 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2608
2609
2610 contrib = __compute_runnable_contrib(periods);
2611 if (weight) {
2612 sa->load_sum += weight * contrib;
2613 if (cfs_rq)
2614 cfs_rq->runnable_load_sum += weight * contrib;
2615 }
2616 if (running)
2617 sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
2618 }
2619
2620
2621 if (weight) {
2622 sa->load_sum += weight * delta;
2623 if (cfs_rq)
2624 cfs_rq->runnable_load_sum += weight * delta;
2625 }
2626 if (running)
2627 sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
2628
2629 sa->period_contrib += delta;
2630
2631 if (decayed) {
2632 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2633 if (cfs_rq) {
2634 cfs_rq->runnable_load_avg =
2635 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636 }
2637 sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638 }
2639
2640 return decayed;
2641}
2642
2643#ifdef CONFIG_FAIR_GROUP_SCHED
2644
2645
2646
2647
2648static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2649{
2650 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2651
2652 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2655 }
2656}
2657
2658#else
2659static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2660#endif
2661
2662static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2663
2664
2665static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2666{
2667 struct sched_avg *sa = &cfs_rq->avg;
2668 int decayed, removed = 0;
2669
2670 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2674 removed = 1;
2675 }
2676
2677 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2678 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2679 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2680 sa->util_sum = max_t(s32, sa->util_sum -
2681 ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2682 }
2683
2684 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2685 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2686
2687#ifndef CONFIG_64BIT
2688 smp_wmb();
2689 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2690#endif
2691
2692 return decayed || removed;
2693}
2694
2695
2696static inline void update_load_avg(struct sched_entity *se, int update_tg)
2697{
2698 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2699 int cpu = cpu_of(rq_of(cfs_rq));
2700 u64 now = cfs_rq_clock_task(cfs_rq);
2701
2702
2703
2704
2705
2706 __update_load_avg(now, cpu, &se->avg,
2707 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
2708
2709 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2710 update_tg_load_avg(cfs_rq, 0);
2711}
2712
2713
2714static inline void
2715enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2716{
2717 struct sched_avg *sa = &se->avg;
2718 u64 now = cfs_rq_clock_task(cfs_rq);
2719 int migrated = 0, decayed;
2720
2721 if (sa->last_update_time == 0) {
2722 sa->last_update_time = now;
2723 migrated = 1;
2724 }
2725 else {
2726 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2727 se->on_rq * scale_load_down(se->load.weight),
2728 cfs_rq->curr == se, NULL);
2729 }
2730
2731 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2732
2733 cfs_rq->runnable_load_avg += sa->load_avg;
2734 cfs_rq->runnable_load_sum += sa->load_sum;
2735
2736 if (migrated) {
2737 cfs_rq->avg.load_avg += sa->load_avg;
2738 cfs_rq->avg.load_sum += sa->load_sum;
2739 cfs_rq->avg.util_avg += sa->util_avg;
2740 cfs_rq->avg.util_sum += sa->util_sum;
2741 }
2742
2743 if (decayed || migrated)
2744 update_tg_load_avg(cfs_rq, 0);
2745}
2746
2747
2748static inline void
2749dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
2751 update_load_avg(se, 1);
2752
2753 cfs_rq->runnable_load_avg =
2754 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2755 cfs_rq->runnable_load_sum =
2756 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2757}
2758
2759
2760
2761
2762
2763void remove_entity_load_avg(struct sched_entity *se)
2764{
2765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2766 u64 last_update_time;
2767
2768#ifndef CONFIG_64BIT
2769 u64 last_update_time_copy;
2770
2771 do {
2772 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2773 smp_rmb();
2774 last_update_time = cfs_rq->avg.last_update_time;
2775 } while (last_update_time != last_update_time_copy);
2776#else
2777 last_update_time = cfs_rq->avg.last_update_time;
2778#endif
2779
2780 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2781 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2782 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2783}
2784
2785
2786
2787
2788
2789
2790void idle_enter_fair(struct rq *this_rq)
2791{
2792}
2793
2794
2795
2796
2797
2798
2799void idle_exit_fair(struct rq *this_rq)
2800{
2801}
2802
2803static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2804{
2805 return cfs_rq->runnable_load_avg;
2806}
2807
2808static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2809{
2810 return cfs_rq->avg.load_avg;
2811}
2812
2813static int idle_balance(struct rq *this_rq);
2814
2815#else
2816
2817static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2818static inline void
2819enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2820static inline void
2821dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2822static inline void remove_entity_load_avg(struct sched_entity *se) {}
2823
2824static inline int idle_balance(struct rq *rq)
2825{
2826 return 0;
2827}
2828
2829#endif
2830
2831static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2832{
2833#ifdef CONFIG_SCHEDSTATS
2834 struct task_struct *tsk = NULL;
2835
2836 if (entity_is_task(se))
2837 tsk = task_of(se);
2838
2839 if (se->statistics.sleep_start) {
2840 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2841
2842 if ((s64)delta < 0)
2843 delta = 0;
2844
2845 if (unlikely(delta > se->statistics.sleep_max))
2846 se->statistics.sleep_max = delta;
2847
2848 se->statistics.sleep_start = 0;
2849 se->statistics.sum_sleep_runtime += delta;
2850
2851 if (tsk) {
2852 account_scheduler_latency(tsk, delta >> 10, 1);
2853 trace_sched_stat_sleep(tsk, delta);
2854 }
2855 }
2856 if (se->statistics.block_start) {
2857 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2858
2859 if ((s64)delta < 0)
2860 delta = 0;
2861
2862 if (unlikely(delta > se->statistics.block_max))
2863 se->statistics.block_max = delta;
2864
2865 se->statistics.block_start = 0;
2866 se->statistics.sum_sleep_runtime += delta;
2867
2868 if (tsk) {
2869 if (tsk->in_iowait) {
2870 se->statistics.iowait_sum += delta;
2871 se->statistics.iowait_count++;
2872 trace_sched_stat_iowait(tsk, delta);
2873 }
2874
2875 trace_sched_stat_blocked(tsk, delta);
2876
2877
2878
2879
2880
2881
2882 if (unlikely(prof_on == SLEEP_PROFILING)) {
2883 profile_hits(SLEEP_PROFILING,
2884 (void *)get_wchan(tsk),
2885 delta >> 20);
2886 }
2887 account_scheduler_latency(tsk, delta >> 10, 0);
2888 }
2889 }
2890#endif
2891}
2892
2893static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894{
2895#ifdef CONFIG_SCHED_DEBUG
2896 s64 d = se->vruntime - cfs_rq->min_vruntime;
2897
2898 if (d < 0)
2899 d = -d;
2900
2901 if (d > 3*sysctl_sched_latency)
2902 schedstat_inc(cfs_rq, nr_spread_over);
2903#endif
2904}
2905
2906static void
2907place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2908{
2909 u64 vruntime = cfs_rq->min_vruntime;
2910
2911
2912
2913
2914
2915
2916
2917 if (initial && sched_feat(START_DEBIT))
2918 vruntime += sched_vslice(cfs_rq, se);
2919
2920
2921 if (!initial) {
2922 unsigned long thresh = sysctl_sched_latency;
2923
2924
2925
2926
2927
2928 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2929 thresh >>= 1;
2930
2931 vruntime -= thresh;
2932 }
2933
2934
2935 se->vruntime = max_vruntime(se->vruntime, vruntime);
2936}
2937
2938static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2939
2940static void
2941enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2942{
2943
2944
2945
2946
2947 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2948 se->vruntime += cfs_rq->min_vruntime;
2949
2950
2951
2952
2953 update_curr(cfs_rq);
2954 enqueue_entity_load_avg(cfs_rq, se);
2955 account_entity_enqueue(cfs_rq, se);
2956 update_cfs_shares(cfs_rq);
2957
2958 if (flags & ENQUEUE_WAKEUP) {
2959 place_entity(cfs_rq, se, 0);
2960 enqueue_sleeper(cfs_rq, se);
2961 }
2962
2963 update_stats_enqueue(cfs_rq, se);
2964 check_spread(cfs_rq, se);
2965 if (se != cfs_rq->curr)
2966 __enqueue_entity(cfs_rq, se);
2967 se->on_rq = 1;
2968
2969 if (cfs_rq->nr_running == 1) {
2970 list_add_leaf_cfs_rq(cfs_rq);
2971 check_enqueue_throttle(cfs_rq);
2972 }
2973}
2974
2975static void __clear_buddies_last(struct sched_entity *se)
2976{
2977 for_each_sched_entity(se) {
2978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979 if (cfs_rq->last != se)
2980 break;
2981
2982 cfs_rq->last = NULL;
2983 }
2984}
2985
2986static void __clear_buddies_next(struct sched_entity *se)
2987{
2988 for_each_sched_entity(se) {
2989 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2990 if (cfs_rq->next != se)
2991 break;
2992
2993 cfs_rq->next = NULL;
2994 }
2995}
2996
2997static void __clear_buddies_skip(struct sched_entity *se)
2998{
2999 for_each_sched_entity(se) {
3000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3001 if (cfs_rq->skip != se)
3002 break;
3003
3004 cfs_rq->skip = NULL;
3005 }
3006}
3007
3008static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3009{
3010 if (cfs_rq->last == se)
3011 __clear_buddies_last(se);
3012
3013 if (cfs_rq->next == se)
3014 __clear_buddies_next(se);
3015
3016 if (cfs_rq->skip == se)
3017 __clear_buddies_skip(se);
3018}
3019
3020static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3021
3022static void
3023dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3024{
3025
3026
3027
3028 update_curr(cfs_rq);
3029 dequeue_entity_load_avg(cfs_rq, se);
3030
3031 update_stats_dequeue(cfs_rq, se);
3032 if (flags & DEQUEUE_SLEEP) {
3033#ifdef CONFIG_SCHEDSTATS
3034 if (entity_is_task(se)) {
3035 struct task_struct *tsk = task_of(se);
3036
3037 if (tsk->state & TASK_INTERRUPTIBLE)
3038 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3039 if (tsk->state & TASK_UNINTERRUPTIBLE)
3040 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3041 }
3042#endif
3043 }
3044
3045 clear_buddies(cfs_rq, se);
3046
3047 if (se != cfs_rq->curr)
3048 __dequeue_entity(cfs_rq, se);
3049 se->on_rq = 0;
3050 account_entity_dequeue(cfs_rq, se);
3051
3052
3053
3054
3055
3056
3057 if (!(flags & DEQUEUE_SLEEP))
3058 se->vruntime -= cfs_rq->min_vruntime;
3059
3060
3061 return_cfs_rq_runtime(cfs_rq);
3062
3063 update_min_vruntime(cfs_rq);
3064 update_cfs_shares(cfs_rq);
3065}
3066
3067
3068
3069
3070static void
3071check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3072{
3073 unsigned long ideal_runtime, delta_exec;
3074 struct sched_entity *se;
3075 s64 delta;
3076
3077 ideal_runtime = sched_slice(cfs_rq, curr);
3078 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3079 if (delta_exec > ideal_runtime) {
3080 resched_curr(rq_of(cfs_rq));
3081
3082
3083
3084
3085 clear_buddies(cfs_rq, curr);
3086 return;
3087 }
3088
3089
3090
3091
3092
3093
3094 if (delta_exec < sysctl_sched_min_granularity)
3095 return;
3096
3097 se = __pick_first_entity(cfs_rq);
3098 delta = curr->vruntime - se->vruntime;
3099
3100 if (delta < 0)
3101 return;
3102
3103 if (delta > ideal_runtime)
3104 resched_curr(rq_of(cfs_rq));
3105}
3106
3107static void
3108set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3109{
3110
3111 if (se->on_rq) {
3112
3113
3114
3115
3116
3117 update_stats_wait_end(cfs_rq, se);
3118 __dequeue_entity(cfs_rq, se);
3119 update_load_avg(se, 1);
3120 }
3121
3122 update_stats_curr_start(cfs_rq, se);
3123 cfs_rq->curr = se;
3124#ifdef CONFIG_SCHEDSTATS
3125
3126
3127
3128
3129
3130 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3131 se->statistics.slice_max = max(se->statistics.slice_max,
3132 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3133 }
3134#endif
3135 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3136}
3137
3138static int
3139wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3140
3141
3142
3143
3144
3145
3146
3147
3148static struct sched_entity *
3149pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3150{
3151 struct sched_entity *left = __pick_first_entity(cfs_rq);
3152 struct sched_entity *se;
3153
3154
3155
3156
3157
3158 if (!left || (curr && entity_before(curr, left)))
3159 left = curr;
3160
3161 se = left;
3162
3163
3164
3165
3166
3167 if (cfs_rq->skip == se) {
3168 struct sched_entity *second;
3169
3170 if (se == curr) {
3171 second = __pick_first_entity(cfs_rq);
3172 } else {
3173 second = __pick_next_entity(se);
3174 if (!second || (curr && entity_before(curr, second)))
3175 second = curr;
3176 }
3177
3178 if (second && wakeup_preempt_entity(second, left) < 1)
3179 se = second;
3180 }
3181
3182
3183
3184
3185 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3186 se = cfs_rq->last;
3187
3188
3189
3190
3191 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3192 se = cfs_rq->next;
3193
3194 clear_buddies(cfs_rq, se);
3195
3196 return se;
3197}
3198
3199static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3200
3201static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3202{
3203
3204
3205
3206
3207 if (prev->on_rq)
3208 update_curr(cfs_rq);
3209
3210
3211 check_cfs_rq_runtime(cfs_rq);
3212
3213 check_spread(cfs_rq, prev);
3214 if (prev->on_rq) {
3215 update_stats_wait_start(cfs_rq, prev);
3216
3217 __enqueue_entity(cfs_rq, prev);
3218
3219 update_load_avg(prev, 0);
3220 }
3221 cfs_rq->curr = NULL;
3222}
3223
3224static void
3225entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3226{
3227
3228
3229
3230 update_curr(cfs_rq);
3231
3232
3233
3234
3235 update_load_avg(curr, 1);
3236 update_cfs_shares(cfs_rq);
3237
3238#ifdef CONFIG_SCHED_HRTICK
3239
3240
3241
3242
3243 if (queued) {
3244 resched_curr(rq_of(cfs_rq));
3245 return;
3246 }
3247
3248
3249
3250 if (!sched_feat(DOUBLE_TICK) &&
3251 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3252 return;
3253#endif
3254
3255 if (cfs_rq->nr_running > 1)
3256 check_preempt_tick(cfs_rq, curr);
3257}
3258
3259
3260
3261
3262
3263
3264#ifdef CONFIG_CFS_BANDWIDTH
3265
3266#ifdef HAVE_JUMP_LABEL
3267static struct static_key __cfs_bandwidth_used;
3268
3269static inline bool cfs_bandwidth_used(void)
3270{
3271 return static_key_false(&__cfs_bandwidth_used);
3272}
3273
3274void cfs_bandwidth_usage_inc(void)
3275{
3276 static_key_slow_inc(&__cfs_bandwidth_used);
3277}
3278
3279void cfs_bandwidth_usage_dec(void)
3280{
3281 static_key_slow_dec(&__cfs_bandwidth_used);
3282}
3283#else
3284static bool cfs_bandwidth_used(void)
3285{
3286 return true;
3287}
3288
3289void cfs_bandwidth_usage_inc(void) {}
3290void cfs_bandwidth_usage_dec(void) {}
3291#endif
3292
3293
3294
3295
3296
3297static inline u64 default_cfs_period(void)
3298{
3299 return 100000000ULL;
3300}
3301
3302static inline u64 sched_cfs_bandwidth_slice(void)
3303{
3304 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3305}
3306
3307
3308
3309
3310
3311
3312
3313
3314void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3315{
3316 u64 now;
3317
3318 if (cfs_b->quota == RUNTIME_INF)
3319 return;
3320
3321 now = sched_clock_cpu(smp_processor_id());
3322 cfs_b->runtime = cfs_b->quota;
3323 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3324}
3325
3326static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3327{
3328 return &tg->cfs_bandwidth;
3329}
3330
3331
3332static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3333{
3334 if (unlikely(cfs_rq->throttle_count))
3335 return cfs_rq->throttled_clock_task;
3336
3337 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3338}
3339
3340
3341static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3342{
3343 struct task_group *tg = cfs_rq->tg;
3344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3345 u64 amount = 0, min_amount, expires;
3346
3347
3348 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3349
3350 raw_spin_lock(&cfs_b->lock);
3351 if (cfs_b->quota == RUNTIME_INF)
3352 amount = min_amount;
3353 else {
3354 start_cfs_bandwidth(cfs_b);
3355
3356 if (cfs_b->runtime > 0) {
3357 amount = min(cfs_b->runtime, min_amount);
3358 cfs_b->runtime -= amount;
3359 cfs_b->idle = 0;
3360 }
3361 }
3362 expires = cfs_b->runtime_expires;
3363 raw_spin_unlock(&cfs_b->lock);
3364
3365 cfs_rq->runtime_remaining += amount;
3366
3367
3368
3369
3370
3371 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3372 cfs_rq->runtime_expires = expires;
3373
3374 return cfs_rq->runtime_remaining > 0;
3375}
3376
3377
3378
3379
3380
3381static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3382{
3383 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384
3385
3386 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3387 return;
3388
3389 if (cfs_rq->runtime_remaining < 0)
3390 return;
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3404
3405 cfs_rq->runtime_expires += TICK_NSEC;
3406 } else {
3407
3408 cfs_rq->runtime_remaining = 0;
3409 }
3410}
3411
3412static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3413{
3414
3415 cfs_rq->runtime_remaining -= delta_exec;
3416 expire_cfs_rq_runtime(cfs_rq);
3417
3418 if (likely(cfs_rq->runtime_remaining > 0))
3419 return;
3420
3421
3422
3423
3424
3425 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3426 resched_curr(rq_of(cfs_rq));
3427}
3428
3429static __always_inline
3430void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3431{
3432 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3433 return;
3434
3435 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3436}
3437
3438static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3439{
3440 return cfs_bandwidth_used() && cfs_rq->throttled;
3441}
3442
3443
3444static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3445{
3446 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3447}
3448
3449
3450
3451
3452
3453
3454static inline int throttled_lb_pair(struct task_group *tg,
3455 int src_cpu, int dest_cpu)
3456{
3457 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3458
3459 src_cfs_rq = tg->cfs_rq[src_cpu];
3460 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3461
3462 return throttled_hierarchy(src_cfs_rq) ||
3463 throttled_hierarchy(dest_cfs_rq);
3464}
3465
3466
3467static int tg_unthrottle_up(struct task_group *tg, void *data)
3468{
3469 struct rq *rq = data;
3470 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3471
3472 cfs_rq->throttle_count--;
3473#ifdef CONFIG_SMP
3474 if (!cfs_rq->throttle_count) {
3475
3476 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3477 cfs_rq->throttled_clock_task;
3478 }
3479#endif
3480
3481 return 0;
3482}
3483
3484static int tg_throttle_down(struct task_group *tg, void *data)
3485{
3486 struct rq *rq = data;
3487 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3488
3489
3490 if (!cfs_rq->throttle_count)
3491 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3492 cfs_rq->throttle_count++;
3493
3494 return 0;
3495}
3496
3497static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3498{
3499 struct rq *rq = rq_of(cfs_rq);
3500 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3501 struct sched_entity *se;
3502 long task_delta, dequeue = 1;
3503 bool empty;
3504
3505 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3506
3507
3508 rcu_read_lock();
3509 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3510 rcu_read_unlock();
3511
3512 task_delta = cfs_rq->h_nr_running;
3513 for_each_sched_entity(se) {
3514 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3515
3516 if (!se->on_rq)
3517 break;
3518
3519 if (dequeue)
3520 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3521 qcfs_rq->h_nr_running -= task_delta;
3522
3523 if (qcfs_rq->load.weight)
3524 dequeue = 0;
3525 }
3526
3527 if (!se)
3528 sub_nr_running(rq, task_delta);
3529
3530 cfs_rq->throttled = 1;
3531 cfs_rq->throttled_clock = rq_clock(rq);
3532 raw_spin_lock(&cfs_b->lock);
3533 empty = list_empty(&cfs_b->throttled_cfs_rq);
3534
3535
3536
3537
3538
3539 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3540
3541
3542
3543
3544
3545 if (empty)
3546 start_cfs_bandwidth(cfs_b);
3547
3548 raw_spin_unlock(&cfs_b->lock);
3549}
3550
3551void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3552{
3553 struct rq *rq = rq_of(cfs_rq);
3554 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3555 struct sched_entity *se;
3556 int enqueue = 1;
3557 long task_delta;
3558
3559 se = cfs_rq->tg->se[cpu_of(rq)];
3560
3561 cfs_rq->throttled = 0;
3562
3563 update_rq_clock(rq);
3564
3565 raw_spin_lock(&cfs_b->lock);
3566 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3567 list_del_rcu(&cfs_rq->throttled_list);
3568 raw_spin_unlock(&cfs_b->lock);
3569
3570
3571 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3572
3573 if (!cfs_rq->load.weight)
3574 return;
3575
3576 task_delta = cfs_rq->h_nr_running;
3577 for_each_sched_entity(se) {
3578 if (se->on_rq)
3579 enqueue = 0;
3580
3581 cfs_rq = cfs_rq_of(se);
3582 if (enqueue)
3583 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3584 cfs_rq->h_nr_running += task_delta;
3585
3586 if (cfs_rq_throttled(cfs_rq))
3587 break;
3588 }
3589
3590 if (!se)
3591 add_nr_running(rq, task_delta);
3592
3593
3594 if (rq->curr == rq->idle && rq->cfs.nr_running)
3595 resched_curr(rq);
3596}
3597
3598static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3599 u64 remaining, u64 expires)
3600{
3601 struct cfs_rq *cfs_rq;
3602 u64 runtime;
3603 u64 starting_runtime = remaining;
3604
3605 rcu_read_lock();
3606 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3607 throttled_list) {
3608 struct rq *rq = rq_of(cfs_rq);
3609
3610 raw_spin_lock(&rq->lock);
3611 if (!cfs_rq_throttled(cfs_rq))
3612 goto next;
3613
3614 runtime = -cfs_rq->runtime_remaining + 1;
3615 if (runtime > remaining)
3616 runtime = remaining;
3617 remaining -= runtime;
3618
3619 cfs_rq->runtime_remaining += runtime;
3620 cfs_rq->runtime_expires = expires;
3621
3622
3623 if (cfs_rq->runtime_remaining > 0)
3624 unthrottle_cfs_rq(cfs_rq);
3625
3626next:
3627 raw_spin_unlock(&rq->lock);
3628
3629 if (!remaining)
3630 break;
3631 }
3632 rcu_read_unlock();
3633
3634 return starting_runtime - remaining;
3635}
3636
3637
3638
3639
3640
3641
3642
3643static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3644{
3645 u64 runtime, runtime_expires;
3646 int throttled;
3647
3648
3649 if (cfs_b->quota == RUNTIME_INF)
3650 goto out_deactivate;
3651
3652 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3653 cfs_b->nr_periods += overrun;
3654
3655
3656
3657
3658
3659 if (cfs_b->idle && !throttled)
3660 goto out_deactivate;
3661
3662 __refill_cfs_bandwidth_runtime(cfs_b);
3663
3664 if (!throttled) {
3665
3666 cfs_b->idle = 1;
3667 return 0;
3668 }
3669
3670
3671 cfs_b->nr_throttled += overrun;
3672
3673 runtime_expires = cfs_b->runtime_expires;
3674
3675
3676
3677
3678
3679
3680
3681
3682 while (throttled && cfs_b->runtime > 0) {
3683 runtime = cfs_b->runtime;
3684 raw_spin_unlock(&cfs_b->lock);
3685
3686 runtime = distribute_cfs_runtime(cfs_b, runtime,
3687 runtime_expires);
3688 raw_spin_lock(&cfs_b->lock);
3689
3690 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3691
3692 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3693 }
3694
3695
3696
3697
3698
3699
3700
3701 cfs_b->idle = 0;
3702
3703 return 0;
3704
3705out_deactivate:
3706 return 1;
3707}
3708
3709
3710static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3711
3712static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3713
3714static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3715
3716
3717
3718
3719
3720
3721
3722
3723static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3724{
3725 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3726 u64 remaining;
3727
3728
3729 if (hrtimer_callback_running(refresh_timer))
3730 return 1;
3731
3732
3733 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3734 if (remaining < min_expire)
3735 return 1;
3736
3737 return 0;
3738}
3739
3740static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3741{
3742 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3743
3744
3745 if (runtime_refresh_within(cfs_b, min_left))
3746 return;
3747
3748 hrtimer_start(&cfs_b->slack_timer,
3749 ns_to_ktime(cfs_bandwidth_slack_period),
3750 HRTIMER_MODE_REL);
3751}
3752
3753
3754static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3755{
3756 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3757 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3758
3759 if (slack_runtime <= 0)
3760 return;
3761
3762 raw_spin_lock(&cfs_b->lock);
3763 if (cfs_b->quota != RUNTIME_INF &&
3764 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3765 cfs_b->runtime += slack_runtime;
3766
3767
3768 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3769 !list_empty(&cfs_b->throttled_cfs_rq))
3770 start_cfs_slack_bandwidth(cfs_b);
3771 }
3772 raw_spin_unlock(&cfs_b->lock);
3773
3774
3775 cfs_rq->runtime_remaining -= slack_runtime;
3776}
3777
3778static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3779{
3780 if (!cfs_bandwidth_used())
3781 return;
3782
3783 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3784 return;
3785
3786 __return_cfs_rq_runtime(cfs_rq);
3787}
3788
3789
3790
3791
3792
3793static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3794{
3795 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3796 u64 expires;
3797
3798
3799 raw_spin_lock(&cfs_b->lock);
3800 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3801 raw_spin_unlock(&cfs_b->lock);
3802 return;
3803 }
3804
3805 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3806 runtime = cfs_b->runtime;
3807
3808 expires = cfs_b->runtime_expires;
3809 raw_spin_unlock(&cfs_b->lock);
3810
3811 if (!runtime)
3812 return;
3813
3814 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3815
3816 raw_spin_lock(&cfs_b->lock);
3817 if (expires == cfs_b->runtime_expires)
3818 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3819 raw_spin_unlock(&cfs_b->lock);
3820}
3821
3822
3823
3824
3825
3826
3827static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3828{
3829 if (!cfs_bandwidth_used())
3830 return;
3831
3832
3833 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3834 return;
3835
3836
3837 if (cfs_rq_throttled(cfs_rq))
3838 return;
3839
3840
3841 account_cfs_rq_runtime(cfs_rq, 0);
3842 if (cfs_rq->runtime_remaining <= 0)
3843 throttle_cfs_rq(cfs_rq);
3844}
3845
3846
3847static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3848{
3849 if (!cfs_bandwidth_used())
3850 return false;
3851
3852 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3853 return false;
3854
3855
3856
3857
3858
3859 if (cfs_rq_throttled(cfs_rq))
3860 return true;
3861
3862 throttle_cfs_rq(cfs_rq);
3863 return true;
3864}
3865
3866static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3867{
3868 struct cfs_bandwidth *cfs_b =
3869 container_of(timer, struct cfs_bandwidth, slack_timer);
3870
3871 do_sched_cfs_slack_timer(cfs_b);
3872
3873 return HRTIMER_NORESTART;
3874}
3875
3876static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3877{
3878 struct cfs_bandwidth *cfs_b =
3879 container_of(timer, struct cfs_bandwidth, period_timer);
3880 int overrun;
3881 int idle = 0;
3882
3883 raw_spin_lock(&cfs_b->lock);
3884 for (;;) {
3885 overrun = hrtimer_forward_now(timer, cfs_b->period);
3886 if (!overrun)
3887 break;
3888
3889 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3890 }
3891 if (idle)
3892 cfs_b->period_active = 0;
3893 raw_spin_unlock(&cfs_b->lock);
3894
3895 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3896}
3897
3898void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3899{
3900 raw_spin_lock_init(&cfs_b->lock);
3901 cfs_b->runtime = 0;
3902 cfs_b->quota = RUNTIME_INF;
3903 cfs_b->period = ns_to_ktime(default_cfs_period());
3904
3905 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3906 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3907 cfs_b->period_timer.function = sched_cfs_period_timer;
3908 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3909 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3910}
3911
3912static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3913{
3914 cfs_rq->runtime_enabled = 0;
3915 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3916}
3917
3918void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3919{
3920 lockdep_assert_held(&cfs_b->lock);
3921
3922 if (!cfs_b->period_active) {
3923 cfs_b->period_active = 1;
3924 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3925 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3926 }
3927}
3928
3929static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3930{
3931
3932 if (!cfs_b->throttled_cfs_rq.next)
3933 return;
3934
3935 hrtimer_cancel(&cfs_b->period_timer);
3936 hrtimer_cancel(&cfs_b->slack_timer);
3937}
3938
3939static void __maybe_unused update_runtime_enabled(struct rq *rq)
3940{
3941 struct cfs_rq *cfs_rq;
3942
3943 for_each_leaf_cfs_rq(rq, cfs_rq) {
3944 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3945
3946 raw_spin_lock(&cfs_b->lock);
3947 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3948 raw_spin_unlock(&cfs_b->lock);
3949 }
3950}
3951
3952static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3953{
3954 struct cfs_rq *cfs_rq;
3955
3956 for_each_leaf_cfs_rq(rq, cfs_rq) {
3957 if (!cfs_rq->runtime_enabled)
3958 continue;
3959
3960
3961
3962
3963
3964 cfs_rq->runtime_remaining = 1;
3965
3966
3967
3968
3969 cfs_rq->runtime_enabled = 0;
3970
3971 if (cfs_rq_throttled(cfs_rq))
3972 unthrottle_cfs_rq(cfs_rq);
3973 }
3974}
3975
3976#else
3977static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3978{
3979 return rq_clock_task(rq_of(cfs_rq));
3980}
3981
3982static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3983static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3984static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3985static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3986
3987static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3988{
3989 return 0;
3990}
3991
3992static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3993{
3994 return 0;
3995}
3996
3997static inline int throttled_lb_pair(struct task_group *tg,
3998 int src_cpu, int dest_cpu)
3999{
4000 return 0;
4001}
4002
4003void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4004
4005#ifdef CONFIG_FAIR_GROUP_SCHED
4006static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4007#endif
4008
4009static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4010{
4011 return NULL;
4012}
4013static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4014static inline void update_runtime_enabled(struct rq *rq) {}
4015static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4016
4017#endif
4018
4019
4020
4021
4022
4023#ifdef CONFIG_SCHED_HRTICK
4024static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4025{
4026 struct sched_entity *se = &p->se;
4027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4028
4029 WARN_ON(task_rq(p) != rq);
4030
4031 if (cfs_rq->nr_running > 1) {
4032 u64 slice = sched_slice(cfs_rq, se);
4033 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4034 s64 delta = slice - ran;
4035
4036 if (delta < 0) {
4037 if (rq->curr == p)
4038 resched_curr(rq);
4039 return;
4040 }
4041 hrtick_start(rq, delta);
4042 }
4043}
4044
4045
4046
4047
4048
4049
4050static void hrtick_update(struct rq *rq)
4051{
4052 struct task_struct *curr = rq->curr;
4053
4054 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4055 return;
4056
4057 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4058 hrtick_start_fair(rq, curr);
4059}
4060#else
4061static inline void
4062hrtick_start_fair(struct rq *rq, struct task_struct *p)
4063{
4064}
4065
4066static inline void hrtick_update(struct rq *rq)
4067{
4068}
4069#endif
4070
4071
4072
4073
4074
4075
4076static void
4077enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4078{
4079 struct cfs_rq *cfs_rq;
4080 struct sched_entity *se = &p->se;
4081
4082 for_each_sched_entity(se) {
4083 if (se->on_rq)
4084 break;
4085 cfs_rq = cfs_rq_of(se);
4086 enqueue_entity(cfs_rq, se, flags);
4087
4088
4089
4090
4091
4092
4093
4094 if (cfs_rq_throttled(cfs_rq))
4095 break;
4096 cfs_rq->h_nr_running++;
4097
4098 flags = ENQUEUE_WAKEUP;
4099 }
4100
4101 for_each_sched_entity(se) {
4102 cfs_rq = cfs_rq_of(se);
4103 cfs_rq->h_nr_running++;
4104
4105 if (cfs_rq_throttled(cfs_rq))
4106 break;
4107
4108 update_load_avg(se, 1);
4109 update_cfs_shares(cfs_rq);
4110 }
4111
4112 if (!se)
4113 add_nr_running(rq, 1);
4114
4115 hrtick_update(rq);
4116}
4117
4118static void set_next_buddy(struct sched_entity *se);
4119
4120
4121
4122
4123
4124
4125static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4126{
4127 struct cfs_rq *cfs_rq;
4128 struct sched_entity *se = &p->se;
4129 int task_sleep = flags & DEQUEUE_SLEEP;
4130
4131 for_each_sched_entity(se) {
4132 cfs_rq = cfs_rq_of(se);
4133 dequeue_entity(cfs_rq, se, flags);
4134
4135
4136
4137
4138
4139
4140
4141 if (cfs_rq_throttled(cfs_rq))
4142 break;
4143 cfs_rq->h_nr_running--;
4144
4145
4146 if (cfs_rq->load.weight) {
4147
4148
4149
4150
4151 if (task_sleep && parent_entity(se))
4152 set_next_buddy(parent_entity(se));
4153
4154
4155 se = parent_entity(se);
4156 break;
4157 }
4158 flags |= DEQUEUE_SLEEP;
4159 }
4160
4161 for_each_sched_entity(se) {
4162 cfs_rq = cfs_rq_of(se);
4163 cfs_rq->h_nr_running--;
4164
4165 if (cfs_rq_throttled(cfs_rq))
4166 break;
4167
4168 update_load_avg(se, 1);
4169 update_cfs_shares(cfs_rq);
4170 }
4171
4172 if (!se)
4173 sub_nr_running(rq, 1);
4174
4175 hrtick_update(rq);
4176}
4177
4178#ifdef CONFIG_SMP
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211#define DEGRADE_SHIFT 7
4212static const unsigned char
4213 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4214static const unsigned char
4215 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4216 {0, 0, 0, 0, 0, 0, 0, 0},
4217 {64, 32, 8, 0, 0, 0, 0, 0},
4218 {96, 72, 40, 12, 1, 0, 0},
4219 {112, 98, 75, 43, 15, 1, 0},
4220 {120, 112, 98, 76, 45, 16, 2} };
4221
4222
4223
4224
4225
4226
4227static unsigned long
4228decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4229{
4230 int j = 0;
4231
4232 if (!missed_updates)
4233 return load;
4234
4235 if (missed_updates >= degrade_zero_ticks[idx])
4236 return 0;
4237
4238 if (idx == 1)
4239 return load >> missed_updates;
4240
4241 while (missed_updates) {
4242 if (missed_updates % 2)
4243 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4244
4245 missed_updates >>= 1;
4246 j++;
4247 }
4248 return load;
4249}
4250
4251
4252
4253
4254
4255
4256static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4257 unsigned long pending_updates)
4258{
4259 int i, scale;
4260
4261 this_rq->nr_load_updates++;
4262
4263
4264 this_rq->cpu_load[0] = this_load;
4265 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4266 unsigned long old_load, new_load;
4267
4268
4269
4270 old_load = this_rq->cpu_load[i];
4271 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4272 new_load = this_load;
4273
4274
4275
4276
4277
4278 if (new_load > old_load)
4279 new_load += scale - 1;
4280
4281 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4282 }
4283
4284 sched_avg_update(this_rq);
4285}
4286
4287
4288static unsigned long weighted_cpuload(const int cpu)
4289{
4290 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4291}
4292
4293#ifdef CONFIG_NO_HZ_COMMON
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311static void update_idle_cpu_load(struct rq *this_rq)
4312{
4313 unsigned long curr_jiffies = READ_ONCE(jiffies);
4314 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4315 unsigned long pending_updates;
4316
4317
4318
4319
4320 if (load || curr_jiffies == this_rq->last_load_update_tick)
4321 return;
4322
4323 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4324 this_rq->last_load_update_tick = curr_jiffies;
4325
4326 __update_cpu_load(this_rq, load, pending_updates);
4327}
4328
4329
4330
4331
4332void update_cpu_load_nohz(void)
4333{
4334 struct rq *this_rq = this_rq();
4335 unsigned long curr_jiffies = READ_ONCE(jiffies);
4336 unsigned long pending_updates;
4337
4338 if (curr_jiffies == this_rq->last_load_update_tick)
4339 return;
4340
4341 raw_spin_lock(&this_rq->lock);
4342 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4343 if (pending_updates) {
4344 this_rq->last_load_update_tick = curr_jiffies;
4345
4346
4347
4348
4349 __update_cpu_load(this_rq, 0, pending_updates);
4350 }
4351 raw_spin_unlock(&this_rq->lock);
4352}
4353#endif
4354
4355
4356
4357
4358void update_cpu_load_active(struct rq *this_rq)
4359{
4360 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4361
4362
4363
4364 this_rq->last_load_update_tick = jiffies;
4365 __update_cpu_load(this_rq, load, 1);
4366}
4367
4368
4369
4370
4371
4372
4373
4374
4375static unsigned long source_load(int cpu, int type)
4376{
4377 struct rq *rq = cpu_rq(cpu);
4378 unsigned long total = weighted_cpuload(cpu);
4379
4380 if (type == 0 || !sched_feat(LB_BIAS))
4381 return total;
4382
4383 return min(rq->cpu_load[type-1], total);
4384}
4385
4386
4387
4388
4389
4390static unsigned long target_load(int cpu, int type)
4391{
4392 struct rq *rq = cpu_rq(cpu);
4393 unsigned long total = weighted_cpuload(cpu);
4394
4395 if (type == 0 || !sched_feat(LB_BIAS))
4396 return total;
4397
4398 return max(rq->cpu_load[type-1], total);
4399}
4400
4401static unsigned long capacity_of(int cpu)
4402{
4403 return cpu_rq(cpu)->cpu_capacity;
4404}
4405
4406static unsigned long capacity_orig_of(int cpu)
4407{
4408 return cpu_rq(cpu)->cpu_capacity_orig;
4409}
4410
4411static unsigned long cpu_avg_load_per_task(int cpu)
4412{
4413 struct rq *rq = cpu_rq(cpu);
4414 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4415 unsigned long load_avg = weighted_cpuload(cpu);
4416
4417 if (nr_running)
4418 return load_avg / nr_running;
4419
4420 return 0;
4421}
4422
4423static void record_wakee(struct task_struct *p)
4424{
4425
4426
4427
4428
4429
4430 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4431 current->wakee_flips >>= 1;
4432 current->wakee_flip_decay_ts = jiffies;
4433 }
4434
4435 if (current->last_wakee != p) {
4436 current->last_wakee = p;
4437 current->wakee_flips++;
4438 }
4439}
4440
4441static void task_waking_fair(struct task_struct *p)
4442{
4443 struct sched_entity *se = &p->se;
4444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4445 u64 min_vruntime;
4446
4447#ifndef CONFIG_64BIT
4448 u64 min_vruntime_copy;
4449
4450 do {
4451 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4452 smp_rmb();
4453 min_vruntime = cfs_rq->min_vruntime;
4454 } while (min_vruntime != min_vruntime_copy);
4455#else
4456 min_vruntime = cfs_rq->min_vruntime;
4457#endif
4458
4459 se->vruntime -= min_vruntime;
4460 record_wakee(p);
4461}
4462
4463#ifdef CONFIG_FAIR_GROUP_SCHED
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4515{
4516 struct sched_entity *se = tg->se[cpu];
4517
4518 if (!tg->parent)
4519 return wl;
4520
4521 for_each_sched_entity(se) {
4522 long w, W;
4523
4524 tg = se->my_q->tg;
4525
4526
4527
4528
4529 W = wg + calc_tg_weight(tg, se->my_q);
4530
4531
4532
4533
4534 w = cfs_rq_load_avg(se->my_q) + wl;
4535
4536
4537
4538
4539 if (W > 0 && w < W)
4540 wl = (w * (long)tg->shares) / W;
4541 else
4542 wl = tg->shares;
4543
4544
4545
4546
4547
4548
4549 if (wl < MIN_SHARES)
4550 wl = MIN_SHARES;
4551
4552
4553
4554
4555 wl -= se->avg.load_avg;
4556
4557
4558
4559
4560
4561
4562
4563
4564 wg = 0;
4565 }
4566
4567 return wl;
4568}
4569#else
4570
4571static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4572{
4573 return wl;
4574}
4575
4576#endif
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590static int wake_wide(struct task_struct *p)
4591{
4592 unsigned int master = current->wakee_flips;
4593 unsigned int slave = p->wakee_flips;
4594 int factor = this_cpu_read(sd_llc_size);
4595
4596 if (master < slave)
4597 swap(master, slave);
4598 if (slave < factor || master < slave * factor)
4599 return 0;
4600 return 1;
4601}
4602
4603static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4604{
4605 s64 this_load, load;
4606 s64 this_eff_load, prev_eff_load;
4607 int idx, this_cpu, prev_cpu;
4608 struct task_group *tg;
4609 unsigned long weight;
4610 int balanced;
4611
4612 idx = sd->wake_idx;
4613 this_cpu = smp_processor_id();
4614 prev_cpu = task_cpu(p);
4615 load = source_load(prev_cpu, idx);
4616 this_load = target_load(this_cpu, idx);
4617
4618
4619
4620
4621
4622
4623 if (sync) {
4624 tg = task_group(current);
4625 weight = current->se.avg.load_avg;
4626
4627 this_load += effective_load(tg, this_cpu, -weight, -weight);
4628 load += effective_load(tg, prev_cpu, 0, -weight);
4629 }
4630
4631 tg = task_group(p);
4632 weight = p->se.avg.load_avg;
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643 this_eff_load = 100;
4644 this_eff_load *= capacity_of(prev_cpu);
4645
4646 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4647 prev_eff_load *= capacity_of(this_cpu);
4648
4649 if (this_load > 0) {
4650 this_eff_load *= this_load +
4651 effective_load(tg, this_cpu, weight, weight);
4652
4653 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4654 }
4655
4656 balanced = this_eff_load <= prev_eff_load;
4657
4658 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4659
4660 if (!balanced)
4661 return 0;
4662
4663 schedstat_inc(sd, ttwu_move_affine);
4664 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4665
4666 return 1;
4667}
4668
4669
4670
4671
4672
4673static struct sched_group *
4674find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4675 int this_cpu, int sd_flag)
4676{
4677 struct sched_group *idlest = NULL, *group = sd->groups;
4678 unsigned long min_load = ULONG_MAX, this_load = 0;
4679 int load_idx = sd->forkexec_idx;
4680 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4681
4682 if (sd_flag & SD_BALANCE_WAKE)
4683 load_idx = sd->wake_idx;
4684
4685 do {
4686 unsigned long load, avg_load;
4687 int local_group;
4688 int i;
4689
4690
4691 if (!cpumask_intersects(sched_group_cpus(group),
4692 tsk_cpus_allowed(p)))
4693 continue;
4694
4695 local_group = cpumask_test_cpu(this_cpu,
4696 sched_group_cpus(group));
4697
4698
4699 avg_load = 0;
4700
4701 for_each_cpu(i, sched_group_cpus(group)) {
4702
4703 if (local_group)
4704 load = source_load(i, load_idx);
4705 else
4706 load = target_load(i, load_idx);
4707
4708 avg_load += load;
4709 }
4710
4711
4712 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4713
4714 if (local_group) {
4715 this_load = avg_load;
4716 } else if (avg_load < min_load) {
4717 min_load = avg_load;
4718 idlest = group;
4719 }
4720 } while (group = group->next, group != sd->groups);
4721
4722 if (!idlest || 100*this_load < imbalance*min_load)
4723 return NULL;
4724 return idlest;
4725}
4726
4727
4728
4729
4730static int
4731find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4732{
4733 unsigned long load, min_load = ULONG_MAX;
4734 unsigned int min_exit_latency = UINT_MAX;
4735 u64 latest_idle_timestamp = 0;
4736 int least_loaded_cpu = this_cpu;
4737 int shallowest_idle_cpu = -1;
4738 int i;
4739
4740
4741 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4742 if (idle_cpu(i)) {
4743 struct rq *rq = cpu_rq(i);
4744 struct cpuidle_state *idle = idle_get_state(rq);
4745 if (idle && idle->exit_latency < min_exit_latency) {
4746
4747
4748
4749
4750
4751 min_exit_latency = idle->exit_latency;
4752 latest_idle_timestamp = rq->idle_stamp;
4753 shallowest_idle_cpu = i;
4754 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4755 rq->idle_stamp > latest_idle_timestamp) {
4756
4757
4758
4759
4760
4761 latest_idle_timestamp = rq->idle_stamp;
4762 shallowest_idle_cpu = i;
4763 }
4764 } else if (shallowest_idle_cpu == -1) {
4765 load = weighted_cpuload(i);
4766 if (load < min_load || (load == min_load && i == this_cpu)) {
4767 min_load = load;
4768 least_loaded_cpu = i;
4769 }
4770 }
4771 }
4772
4773 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4774}
4775
4776
4777
4778
4779static int select_idle_sibling(struct task_struct *p, int target)
4780{
4781 struct sched_domain *sd;
4782 struct sched_group *sg;
4783 int i = task_cpu(p);
4784
4785 if (idle_cpu(target))
4786 return target;
4787
4788
4789
4790
4791 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4792 return i;
4793
4794
4795
4796
4797 sd = rcu_dereference(per_cpu(sd_llc, target));
4798 for_each_lower_domain(sd) {
4799 sg = sd->groups;
4800 do {
4801 if (!cpumask_intersects(sched_group_cpus(sg),
4802 tsk_cpus_allowed(p)))
4803 goto next;
4804
4805 for_each_cpu(i, sched_group_cpus(sg)) {
4806 if (i == target || !idle_cpu(i))
4807 goto next;
4808 }
4809
4810 target = cpumask_first_and(sched_group_cpus(sg),
4811 tsk_cpus_allowed(p));
4812 goto done;
4813next:
4814 sg = sg->next;
4815 } while (sg != sd->groups);
4816 }
4817done:
4818 return target;
4819}
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837static int get_cpu_usage(int cpu)
4838{
4839 unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
4840 unsigned long capacity = capacity_orig_of(cpu);
4841
4842 if (usage >= SCHED_LOAD_SCALE)
4843 return capacity;
4844
4845 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4846}
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860static int
4861select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4862{
4863 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4864 int cpu = smp_processor_id();
4865 int new_cpu = prev_cpu;
4866 int want_affine = 0;
4867 int sync = wake_flags & WF_SYNC;
4868
4869 if (sd_flag & SD_BALANCE_WAKE)
4870 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4871
4872 rcu_read_lock();
4873 for_each_domain(cpu, tmp) {
4874 if (!(tmp->flags & SD_LOAD_BALANCE))
4875 break;
4876
4877
4878
4879
4880
4881 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4882 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4883 affine_sd = tmp;
4884 break;
4885 }
4886
4887 if (tmp->flags & sd_flag)
4888 sd = tmp;
4889 else if (!want_affine)
4890 break;
4891 }
4892
4893 if (affine_sd) {
4894 sd = NULL;
4895 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4896 new_cpu = cpu;
4897 }
4898
4899 if (!sd) {
4900 if (sd_flag & SD_BALANCE_WAKE)
4901 new_cpu = select_idle_sibling(p, new_cpu);
4902
4903 } else while (sd) {
4904 struct sched_group *group;
4905 int weight;
4906
4907 if (!(sd->flags & sd_flag)) {
4908 sd = sd->child;
4909 continue;
4910 }
4911
4912 group = find_idlest_group(sd, p, cpu, sd_flag);
4913 if (!group) {
4914 sd = sd->child;
4915 continue;
4916 }
4917
4918 new_cpu = find_idlest_cpu(group, p, cpu);
4919 if (new_cpu == -1 || new_cpu == cpu) {
4920
4921 sd = sd->child;
4922 continue;
4923 }
4924
4925
4926 cpu = new_cpu;
4927 weight = sd->span_weight;
4928 sd = NULL;
4929 for_each_domain(cpu, tmp) {
4930 if (weight <= tmp->span_weight)
4931 break;
4932 if (tmp->flags & sd_flag)
4933 sd = tmp;
4934 }
4935
4936 }
4937 rcu_read_unlock();
4938
4939 return new_cpu;
4940}
4941
4942
4943
4944
4945
4946
4947
4948static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4949{
4950
4951
4952
4953
4954
4955
4956
4957 remove_entity_load_avg(&p->se);
4958
4959
4960 p->se.avg.last_update_time = 0;
4961
4962
4963 p->se.exec_start = 0;
4964}
4965
4966static void task_dead_fair(struct task_struct *p)
4967{
4968 remove_entity_load_avg(&p->se);
4969}
4970#endif
4971
4972static unsigned long
4973wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4974{
4975 unsigned long gran = sysctl_sched_wakeup_granularity;
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990 return calc_delta_fair(gran, se);
4991}
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007static int
5008wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5009{
5010 s64 gran, vdiff = curr->vruntime - se->vruntime;
5011
5012 if (vdiff <= 0)
5013 return -1;
5014
5015 gran = wakeup_gran(curr, se);
5016 if (vdiff > gran)
5017 return 1;
5018
5019 return 0;
5020}
5021
5022static void set_last_buddy(struct sched_entity *se)
5023{
5024 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5025 return;
5026
5027 for_each_sched_entity(se)
5028 cfs_rq_of(se)->last = se;
5029}
5030
5031static void set_next_buddy(struct sched_entity *se)
5032{
5033 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5034 return;
5035
5036 for_each_sched_entity(se)
5037 cfs_rq_of(se)->next = se;
5038}
5039
5040static void set_skip_buddy(struct sched_entity *se)
5041{
5042 for_each_sched_entity(se)
5043 cfs_rq_of(se)->skip = se;
5044}
5045
5046
5047
5048
5049static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5050{
5051 struct task_struct *curr = rq->curr;
5052 struct sched_entity *se = &curr->se, *pse = &p->se;
5053 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5054 int scale = cfs_rq->nr_running >= sched_nr_latency;
5055 int next_buddy_marked = 0;
5056
5057 if (unlikely(se == pse))
5058 return;
5059
5060
5061
5062
5063
5064
5065
5066 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5067 return;
5068
5069 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5070 set_next_buddy(pse);
5071 next_buddy_marked = 1;
5072 }
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084 if (test_tsk_need_resched(curr))
5085 return;
5086
5087
5088 if (unlikely(curr->policy == SCHED_IDLE) &&
5089 likely(p->policy != SCHED_IDLE))
5090 goto preempt;
5091
5092
5093
5094
5095
5096 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5097 return;
5098
5099 find_matching_se(&se, &pse);
5100 update_curr(cfs_rq_of(se));
5101 BUG_ON(!pse);
5102 if (wakeup_preempt_entity(se, pse) == 1) {
5103
5104
5105
5106
5107 if (!next_buddy_marked)
5108 set_next_buddy(pse);
5109 goto preempt;
5110 }
5111
5112 return;
5113
5114preempt:
5115 resched_curr(rq);
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125 if (unlikely(!se->on_rq || curr == rq->idle))
5126 return;
5127
5128 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5129 set_last_buddy(se);
5130}
5131
5132static struct task_struct *
5133pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5134{
5135 struct cfs_rq *cfs_rq = &rq->cfs;
5136 struct sched_entity *se;
5137 struct task_struct *p;
5138 int new_tasks;
5139
5140again:
5141#ifdef CONFIG_FAIR_GROUP_SCHED
5142 if (!cfs_rq->nr_running)
5143 goto idle;
5144
5145 if (prev->sched_class != &fair_sched_class)
5146 goto simple;
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156 do {
5157 struct sched_entity *curr = cfs_rq->curr;
5158
5159
5160
5161
5162
5163
5164
5165 if (curr) {
5166 if (curr->on_rq)
5167 update_curr(cfs_rq);
5168 else
5169 curr = NULL;
5170
5171
5172
5173
5174
5175
5176
5177 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5178 goto simple;
5179 }
5180
5181 se = pick_next_entity(cfs_rq, curr);
5182 cfs_rq = group_cfs_rq(se);
5183 } while (cfs_rq);
5184
5185 p = task_of(se);
5186
5187
5188
5189
5190
5191
5192 if (prev != p) {
5193 struct sched_entity *pse = &prev->se;
5194
5195 while (!(cfs_rq = is_same_group(se, pse))) {
5196 int se_depth = se->depth;
5197 int pse_depth = pse->depth;
5198
5199 if (se_depth <= pse_depth) {
5200 put_prev_entity(cfs_rq_of(pse), pse);
5201 pse = parent_entity(pse);
5202 }
5203 if (se_depth >= pse_depth) {
5204 set_next_entity(cfs_rq_of(se), se);
5205 se = parent_entity(se);
5206 }
5207 }
5208
5209 put_prev_entity(cfs_rq, pse);
5210 set_next_entity(cfs_rq, se);
5211 }
5212
5213 if (hrtick_enabled(rq))
5214 hrtick_start_fair(rq, p);
5215
5216 return p;
5217simple:
5218 cfs_rq = &rq->cfs;
5219#endif
5220
5221 if (!cfs_rq->nr_running)
5222 goto idle;
5223
5224 put_prev_task(rq, prev);
5225
5226 do {
5227 se = pick_next_entity(cfs_rq, NULL);
5228 set_next_entity(cfs_rq, se);
5229 cfs_rq = group_cfs_rq(se);
5230 } while (cfs_rq);
5231
5232 p = task_of(se);
5233
5234 if (hrtick_enabled(rq))
5235 hrtick_start_fair(rq, p);
5236
5237 return p;
5238
5239idle:
5240
5241
5242
5243
5244
5245
5246 lockdep_unpin_lock(&rq->lock);
5247 new_tasks = idle_balance(rq);
5248 lockdep_pin_lock(&rq->lock);
5249
5250
5251
5252
5253
5254 if (new_tasks < 0)
5255 return RETRY_TASK;
5256
5257 if (new_tasks > 0)
5258 goto again;
5259
5260 return NULL;
5261}
5262
5263
5264
5265
5266static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5267{
5268 struct sched_entity *se = &prev->se;
5269 struct cfs_rq *cfs_rq;
5270
5271 for_each_sched_entity(se) {
5272 cfs_rq = cfs_rq_of(se);
5273 put_prev_entity(cfs_rq, se);
5274 }
5275}
5276
5277
5278
5279
5280
5281
5282static void yield_task_fair(struct rq *rq)
5283{
5284 struct task_struct *curr = rq->curr;
5285 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5286 struct sched_entity *se = &curr->se;
5287
5288
5289
5290
5291 if (unlikely(rq->nr_running == 1))
5292 return;
5293
5294 clear_buddies(cfs_rq, se);
5295
5296 if (curr->policy != SCHED_BATCH) {
5297 update_rq_clock(rq);
5298
5299
5300
5301 update_curr(cfs_rq);
5302
5303
5304
5305
5306
5307 rq_clock_skip_update(rq, true);
5308 }
5309
5310 set_skip_buddy(se);
5311}
5312
5313static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5314{
5315 struct sched_entity *se = &p->se;
5316
5317
5318 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5319 return false;
5320
5321
5322 set_next_buddy(se);
5323
5324 yield_task_fair(rq);
5325
5326 return true;
5327}
5328
5329#ifdef CONFIG_SMP
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5449
5450enum fbq_type { regular, remote, all };
5451
5452#define LBF_ALL_PINNED 0x01
5453#define LBF_NEED_BREAK 0x02
5454#define LBF_DST_PINNED 0x04
5455#define LBF_SOME_PINNED 0x08
5456
5457struct lb_env {
5458 struct sched_domain *sd;
5459
5460 struct rq *src_rq;
5461 int src_cpu;
5462
5463 int dst_cpu;
5464 struct rq *dst_rq;
5465
5466 struct cpumask *dst_grpmask;
5467 int new_dst_cpu;
5468 enum cpu_idle_type idle;
5469 long imbalance;
5470
5471 struct cpumask *cpus;
5472
5473 unsigned int flags;
5474
5475 unsigned int loop;
5476 unsigned int loop_break;
5477 unsigned int loop_max;
5478
5479 enum fbq_type fbq_type;
5480 struct list_head tasks;
5481};
5482
5483
5484
5485
5486static int task_hot(struct task_struct *p, struct lb_env *env)
5487{
5488 s64 delta;
5489
5490 lockdep_assert_held(&env->src_rq->lock);
5491
5492 if (p->sched_class != &fair_sched_class)
5493 return 0;
5494
5495 if (unlikely(p->policy == SCHED_IDLE))
5496 return 0;
5497
5498
5499
5500
5501 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5502 (&p->se == cfs_rq_of(&p->se)->next ||
5503 &p->se == cfs_rq_of(&p->se)->last))
5504 return 1;
5505
5506 if (sysctl_sched_migration_cost == -1)
5507 return 1;
5508 if (sysctl_sched_migration_cost == 0)
5509 return 0;
5510
5511 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5512
5513 return delta < (s64)sysctl_sched_migration_cost;
5514}
5515
5516#ifdef CONFIG_NUMA_BALANCING
5517
5518
5519
5520
5521
5522static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5523{
5524 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5525 unsigned long src_faults, dst_faults;
5526 int src_nid, dst_nid;
5527
5528 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5529 return -1;
5530
5531 if (!sched_feat(NUMA))
5532 return -1;
5533
5534 src_nid = cpu_to_node(env->src_cpu);
5535 dst_nid = cpu_to_node(env->dst_cpu);
5536
5537 if (src_nid == dst_nid)
5538 return -1;
5539
5540
5541 if (src_nid == p->numa_preferred_nid) {
5542 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5543 return 1;
5544 else
5545 return -1;
5546 }
5547
5548
5549 if (dst_nid == p->numa_preferred_nid)
5550 return 0;
5551
5552 if (numa_group) {
5553 src_faults = group_faults(p, src_nid);
5554 dst_faults = group_faults(p, dst_nid);
5555 } else {
5556 src_faults = task_faults(p, src_nid);
5557 dst_faults = task_faults(p, dst_nid);
5558 }
5559
5560 return dst_faults < src_faults;
5561}
5562
5563#else
5564static inline int migrate_degrades_locality(struct task_struct *p,
5565 struct lb_env *env)
5566{
5567 return -1;
5568}
5569#endif
5570
5571
5572
5573
5574static
5575int can_migrate_task(struct task_struct *p, struct lb_env *env)
5576{
5577 int tsk_cache_hot;
5578
5579 lockdep_assert_held(&env->src_rq->lock);
5580
5581
5582
5583
5584
5585
5586
5587
5588 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5589 return 0;
5590
5591 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5592 int cpu;
5593
5594 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5595
5596 env->flags |= LBF_SOME_PINNED;
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5607 return 0;
5608
5609
5610 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5611 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5612 env->flags |= LBF_DST_PINNED;
5613 env->new_dst_cpu = cpu;
5614 break;
5615 }
5616 }
5617
5618 return 0;
5619 }
5620
5621
5622 env->flags &= ~LBF_ALL_PINNED;
5623
5624 if (task_running(env->src_rq, p)) {
5625 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5626 return 0;
5627 }
5628
5629
5630
5631
5632
5633
5634
5635 tsk_cache_hot = migrate_degrades_locality(p, env);
5636 if (tsk_cache_hot == -1)
5637 tsk_cache_hot = task_hot(p, env);
5638
5639 if (tsk_cache_hot <= 0 ||
5640 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5641 if (tsk_cache_hot == 1) {
5642 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5643 schedstat_inc(p, se.statistics.nr_forced_migrations);
5644 }
5645 return 1;
5646 }
5647
5648 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5649 return 0;
5650}
5651
5652
5653
5654
5655static void detach_task(struct task_struct *p, struct lb_env *env)
5656{
5657 lockdep_assert_held(&env->src_rq->lock);
5658
5659 deactivate_task(env->src_rq, p, 0);
5660 p->on_rq = TASK_ON_RQ_MIGRATING;
5661 set_task_cpu(p, env->dst_cpu);
5662}
5663
5664
5665
5666
5667
5668
5669
5670static struct task_struct *detach_one_task(struct lb_env *env)
5671{
5672 struct task_struct *p, *n;
5673
5674 lockdep_assert_held(&env->src_rq->lock);
5675
5676 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5677 if (!can_migrate_task(p, env))
5678 continue;
5679
5680 detach_task(p, env);
5681
5682
5683
5684
5685
5686
5687
5688 schedstat_inc(env->sd, lb_gained[env->idle]);
5689 return p;
5690 }
5691 return NULL;
5692}
5693
5694static const unsigned int sched_nr_migrate_break = 32;
5695
5696
5697
5698
5699
5700
5701
5702static int detach_tasks(struct lb_env *env)
5703{
5704 struct list_head *tasks = &env->src_rq->cfs_tasks;
5705 struct task_struct *p;
5706 unsigned long load;
5707 int detached = 0;
5708
5709 lockdep_assert_held(&env->src_rq->lock);
5710
5711 if (env->imbalance <= 0)
5712 return 0;
5713
5714 while (!list_empty(tasks)) {
5715
5716
5717
5718
5719 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5720 break;
5721
5722 p = list_first_entry(tasks, struct task_struct, se.group_node);
5723
5724 env->loop++;
5725
5726 if (env->loop > env->loop_max)
5727 break;
5728
5729
5730 if (env->loop > env->loop_break) {
5731 env->loop_break += sched_nr_migrate_break;
5732 env->flags |= LBF_NEED_BREAK;
5733 break;
5734 }
5735
5736 if (!can_migrate_task(p, env))
5737 goto next;
5738
5739 load = task_h_load(p);
5740
5741 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5742 goto next;
5743
5744 if ((load / 2) > env->imbalance)
5745 goto next;
5746
5747 detach_task(p, env);
5748 list_add(&p->se.group_node, &env->tasks);
5749
5750 detached++;
5751 env->imbalance -= load;
5752
5753#ifdef CONFIG_PREEMPT
5754
5755
5756
5757
5758
5759 if (env->idle == CPU_NEWLY_IDLE)
5760 break;
5761#endif
5762
5763
5764
5765
5766
5767 if (env->imbalance <= 0)
5768 break;
5769
5770 continue;
5771next:
5772 list_move_tail(&p->se.group_node, tasks);
5773 }
5774
5775
5776
5777
5778
5779
5780 schedstat_add(env->sd, lb_gained[env->idle], detached);
5781
5782 return detached;
5783}
5784
5785
5786
5787
5788static void attach_task(struct rq *rq, struct task_struct *p)
5789{
5790 lockdep_assert_held(&rq->lock);
5791
5792 BUG_ON(task_rq(p) != rq);
5793 p->on_rq = TASK_ON_RQ_QUEUED;
5794 activate_task(rq, p, 0);
5795 check_preempt_curr(rq, p, 0);
5796}
5797
5798
5799
5800
5801
5802static void attach_one_task(struct rq *rq, struct task_struct *p)
5803{
5804 raw_spin_lock(&rq->lock);
5805 attach_task(rq, p);
5806 raw_spin_unlock(&rq->lock);
5807}
5808
5809
5810
5811
5812
5813static void attach_tasks(struct lb_env *env)
5814{
5815 struct list_head *tasks = &env->tasks;
5816 struct task_struct *p;
5817
5818 raw_spin_lock(&env->dst_rq->lock);
5819
5820 while (!list_empty(tasks)) {
5821 p = list_first_entry(tasks, struct task_struct, se.group_node);
5822 list_del_init(&p->se.group_node);
5823
5824 attach_task(env->dst_rq, p);
5825 }
5826
5827 raw_spin_unlock(&env->dst_rq->lock);
5828}
5829
5830#ifdef CONFIG_FAIR_GROUP_SCHED
5831static void update_blocked_averages(int cpu)
5832{
5833 struct rq *rq = cpu_rq(cpu);
5834 struct cfs_rq *cfs_rq;
5835 unsigned long flags;
5836
5837 raw_spin_lock_irqsave(&rq->lock, flags);
5838 update_rq_clock(rq);
5839
5840
5841
5842
5843
5844 for_each_leaf_cfs_rq(rq, cfs_rq) {
5845
5846 if (throttled_hierarchy(cfs_rq))
5847 continue;
5848
5849 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5850 update_tg_load_avg(cfs_rq, 0);
5851 }
5852 raw_spin_unlock_irqrestore(&rq->lock, flags);
5853}
5854
5855
5856
5857
5858
5859
5860static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5861{
5862 struct rq *rq = rq_of(cfs_rq);
5863 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5864 unsigned long now = jiffies;
5865 unsigned long load;
5866
5867 if (cfs_rq->last_h_load_update == now)
5868 return;
5869
5870 cfs_rq->h_load_next = NULL;
5871 for_each_sched_entity(se) {
5872 cfs_rq = cfs_rq_of(se);
5873 cfs_rq->h_load_next = se;
5874 if (cfs_rq->last_h_load_update == now)
5875 break;
5876 }
5877
5878 if (!se) {
5879 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5880 cfs_rq->last_h_load_update = now;
5881 }
5882
5883 while ((se = cfs_rq->h_load_next) != NULL) {
5884 load = cfs_rq->h_load;
5885 load = div64_ul(load * se->avg.load_avg,
5886 cfs_rq_load_avg(cfs_rq) + 1);
5887 cfs_rq = group_cfs_rq(se);
5888 cfs_rq->h_load = load;
5889 cfs_rq->last_h_load_update = now;
5890 }
5891}
5892
5893static unsigned long task_h_load(struct task_struct *p)
5894{
5895 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5896
5897 update_cfs_rq_h_load(cfs_rq);
5898 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5899 cfs_rq_load_avg(cfs_rq) + 1);
5900}
5901#else
5902static inline void update_blocked_averages(int cpu)
5903{
5904 struct rq *rq = cpu_rq(cpu);
5905 struct cfs_rq *cfs_rq = &rq->cfs;
5906 unsigned long flags;
5907
5908 raw_spin_lock_irqsave(&rq->lock, flags);
5909 update_rq_clock(rq);
5910 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5911 raw_spin_unlock_irqrestore(&rq->lock, flags);
5912}
5913
5914static unsigned long task_h_load(struct task_struct *p)
5915{
5916 return p->se.avg.load_avg;
5917}
5918#endif
5919
5920
5921
5922enum group_type {
5923 group_other = 0,
5924 group_imbalanced,
5925 group_overloaded,
5926};
5927
5928
5929
5930
5931struct sg_lb_stats {
5932 unsigned long avg_load;
5933 unsigned long group_load;
5934 unsigned long sum_weighted_load;
5935 unsigned long load_per_task;
5936 unsigned long group_capacity;
5937 unsigned long group_usage;
5938 unsigned int sum_nr_running;
5939 unsigned int idle_cpus;
5940 unsigned int group_weight;
5941 enum group_type group_type;
5942 int group_no_capacity;
5943#ifdef CONFIG_NUMA_BALANCING
5944 unsigned int nr_numa_running;
5945 unsigned int nr_preferred_running;
5946#endif
5947};
5948
5949
5950
5951
5952
5953struct sd_lb_stats {
5954 struct sched_group *busiest;
5955 struct sched_group *local;
5956 unsigned long total_load;
5957 unsigned long total_capacity;
5958 unsigned long avg_load;
5959
5960 struct sg_lb_stats busiest_stat;
5961 struct sg_lb_stats local_stat;
5962};
5963
5964static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5965{
5966
5967
5968
5969
5970
5971
5972 *sds = (struct sd_lb_stats){
5973 .busiest = NULL,
5974 .local = NULL,
5975 .total_load = 0UL,
5976 .total_capacity = 0UL,
5977 .busiest_stat = {
5978 .avg_load = 0UL,
5979 .sum_nr_running = 0,
5980 .group_type = group_other,
5981 },
5982 };
5983}
5984
5985
5986
5987
5988
5989
5990
5991
5992static inline int get_sd_load_idx(struct sched_domain *sd,
5993 enum cpu_idle_type idle)
5994{
5995 int load_idx;
5996
5997 switch (idle) {
5998 case CPU_NOT_IDLE:
5999 load_idx = sd->busy_idx;
6000 break;
6001
6002 case CPU_NEWLY_IDLE:
6003 load_idx = sd->newidle_idx;
6004 break;
6005 default:
6006 load_idx = sd->idle_idx;
6007 break;
6008 }
6009
6010 return load_idx;
6011}
6012
6013static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6014{
6015 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6016 return sd->smt_gain / sd->span_weight;
6017
6018 return SCHED_CAPACITY_SCALE;
6019}
6020
6021unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6022{
6023 return default_scale_cpu_capacity(sd, cpu);
6024}
6025
6026static unsigned long scale_rt_capacity(int cpu)
6027{
6028 struct rq *rq = cpu_rq(cpu);
6029 u64 total, used, age_stamp, avg;
6030 s64 delta;
6031
6032
6033
6034
6035
6036 age_stamp = READ_ONCE(rq->age_stamp);
6037 avg = READ_ONCE(rq->rt_avg);
6038 delta = __rq_clock_broken(rq) - age_stamp;
6039
6040 if (unlikely(delta < 0))
6041 delta = 0;
6042
6043 total = sched_avg_period() + delta;
6044
6045 used = div_u64(avg, total);
6046
6047 if (likely(used < SCHED_CAPACITY_SCALE))
6048 return SCHED_CAPACITY_SCALE - used;
6049
6050 return 1;
6051}
6052
6053static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6054{
6055 unsigned long capacity = SCHED_CAPACITY_SCALE;
6056 struct sched_group *sdg = sd->groups;
6057
6058 if (sched_feat(ARCH_CAPACITY))
6059 capacity *= arch_scale_cpu_capacity(sd, cpu);
6060 else
6061 capacity *= default_scale_cpu_capacity(sd, cpu);
6062
6063 capacity >>= SCHED_CAPACITY_SHIFT;
6064
6065 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6066
6067 capacity *= scale_rt_capacity(cpu);
6068 capacity >>= SCHED_CAPACITY_SHIFT;
6069
6070 if (!capacity)
6071 capacity = 1;
6072
6073 cpu_rq(cpu)->cpu_capacity = capacity;
6074 sdg->sgc->capacity = capacity;
6075}
6076
6077void update_group_capacity(struct sched_domain *sd, int cpu)
6078{
6079 struct sched_domain *child = sd->child;
6080 struct sched_group *group, *sdg = sd->groups;
6081 unsigned long capacity;
6082 unsigned long interval;
6083
6084 interval = msecs_to_jiffies(sd->balance_interval);
6085 interval = clamp(interval, 1UL, max_load_balance_interval);
6086 sdg->sgc->next_update = jiffies + interval;
6087
6088 if (!child) {
6089 update_cpu_capacity(sd, cpu);
6090 return;
6091 }
6092
6093 capacity = 0;
6094
6095 if (child->flags & SD_OVERLAP) {
6096
6097
6098
6099
6100
6101 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6102 struct sched_group_capacity *sgc;
6103 struct rq *rq = cpu_rq(cpu);
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116 if (unlikely(!rq->sd)) {
6117 capacity += capacity_of(cpu);
6118 continue;
6119 }
6120
6121 sgc = rq->sd->groups->sgc;
6122 capacity += sgc->capacity;
6123 }
6124 } else {
6125
6126
6127
6128
6129
6130 group = child->groups;
6131 do {
6132 capacity += group->sgc->capacity;
6133 group = group->next;
6134 } while (group != child->groups);
6135 }
6136
6137 sdg->sgc->capacity = capacity;
6138}
6139
6140
6141
6142
6143
6144
6145static inline int
6146check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6147{
6148 return ((rq->cpu_capacity * sd->imbalance_pct) <
6149 (rq->cpu_capacity_orig * 100));
6150}
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181static inline int sg_imbalanced(struct sched_group *group)
6182{
6183 return group->sgc->imbalance;
6184}
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198static inline bool
6199group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6200{
6201 if (sgs->sum_nr_running < sgs->group_weight)
6202 return true;
6203
6204 if ((sgs->group_capacity * 100) >
6205 (sgs->group_usage * env->sd->imbalance_pct))
6206 return true;
6207
6208 return false;
6209}
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219static inline bool
6220group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6221{
6222 if (sgs->sum_nr_running <= sgs->group_weight)
6223 return false;
6224
6225 if ((sgs->group_capacity * 100) <
6226 (sgs->group_usage * env->sd->imbalance_pct))
6227 return true;
6228
6229 return false;
6230}
6231
6232static enum group_type group_classify(struct lb_env *env,
6233 struct sched_group *group,
6234 struct sg_lb_stats *sgs)
6235{
6236 if (sgs->group_no_capacity)
6237 return group_overloaded;
6238
6239 if (sg_imbalanced(group))
6240 return group_imbalanced;
6241
6242 return group_other;
6243}
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254static inline void update_sg_lb_stats(struct lb_env *env,
6255 struct sched_group *group, int load_idx,
6256 int local_group, struct sg_lb_stats *sgs,
6257 bool *overload)
6258{
6259 unsigned long load;
6260 int i;
6261
6262 memset(sgs, 0, sizeof(*sgs));
6263
6264 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6265 struct rq *rq = cpu_rq(i);
6266
6267
6268 if (local_group)
6269 load = target_load(i, load_idx);
6270 else
6271 load = source_load(i, load_idx);
6272
6273 sgs->group_load += load;
6274 sgs->group_usage += get_cpu_usage(i);
6275 sgs->sum_nr_running += rq->cfs.h_nr_running;
6276
6277 if (rq->nr_running > 1)
6278 *overload = true;
6279
6280#ifdef CONFIG_NUMA_BALANCING
6281 sgs->nr_numa_running += rq->nr_numa_running;
6282 sgs->nr_preferred_running += rq->nr_preferred_running;
6283#endif
6284 sgs->sum_weighted_load += weighted_cpuload(i);
6285 if (idle_cpu(i))
6286 sgs->idle_cpus++;
6287 }
6288
6289
6290 sgs->group_capacity = group->sgc->capacity;
6291 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6292
6293 if (sgs->sum_nr_running)
6294 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6295
6296 sgs->group_weight = group->group_weight;
6297
6298 sgs->group_no_capacity = group_is_overloaded(env, sgs);
6299 sgs->group_type = group_classify(env, group, sgs);
6300}
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315static bool update_sd_pick_busiest(struct lb_env *env,
6316 struct sd_lb_stats *sds,
6317 struct sched_group *sg,
6318 struct sg_lb_stats *sgs)
6319{
6320 struct sg_lb_stats *busiest = &sds->busiest_stat;
6321
6322 if (sgs->group_type > busiest->group_type)
6323 return true;
6324
6325 if (sgs->group_type < busiest->group_type)
6326 return false;
6327
6328 if (sgs->avg_load <= busiest->avg_load)
6329 return false;
6330
6331
6332 if (!(env->sd->flags & SD_ASYM_PACKING))
6333 return true;
6334
6335
6336
6337
6338
6339
6340 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6341 if (!sds->busiest)
6342 return true;
6343
6344 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6345 return true;
6346 }
6347
6348 return false;
6349}
6350
6351#ifdef CONFIG_NUMA_BALANCING
6352static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6353{
6354 if (sgs->sum_nr_running > sgs->nr_numa_running)
6355 return regular;
6356 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6357 return remote;
6358 return all;
6359}
6360
6361static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6362{
6363 if (rq->nr_running > rq->nr_numa_running)
6364 return regular;
6365 if (rq->nr_running > rq->nr_preferred_running)
6366 return remote;
6367 return all;
6368}
6369#else
6370static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6371{
6372 return all;
6373}
6374
6375static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6376{
6377 return regular;
6378}
6379#endif
6380
6381
6382
6383
6384
6385
6386static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6387{
6388 struct sched_domain *child = env->sd->child;
6389 struct sched_group *sg = env->sd->groups;
6390 struct sg_lb_stats tmp_sgs;
6391 int load_idx, prefer_sibling = 0;
6392 bool overload = false;
6393
6394 if (child && child->flags & SD_PREFER_SIBLING)
6395 prefer_sibling = 1;
6396
6397 load_idx = get_sd_load_idx(env->sd, env->idle);
6398
6399 do {
6400 struct sg_lb_stats *sgs = &tmp_sgs;
6401 int local_group;
6402
6403 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6404 if (local_group) {
6405 sds->local = sg;
6406 sgs = &sds->local_stat;
6407
6408 if (env->idle != CPU_NEWLY_IDLE ||
6409 time_after_eq(jiffies, sg->sgc->next_update))
6410 update_group_capacity(env->sd, env->dst_cpu);
6411 }
6412
6413 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6414 &overload);
6415
6416 if (local_group)
6417 goto next_group;
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429 if (prefer_sibling && sds->local &&
6430 group_has_capacity(env, &sds->local_stat) &&
6431 (sgs->sum_nr_running > 1)) {
6432 sgs->group_no_capacity = 1;
6433 sgs->group_type = group_overloaded;
6434 }
6435
6436 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6437 sds->busiest = sg;
6438 sds->busiest_stat = *sgs;
6439 }
6440
6441next_group:
6442
6443 sds->total_load += sgs->group_load;
6444 sds->total_capacity += sgs->group_capacity;
6445
6446 sg = sg->next;
6447 } while (sg != env->sd->groups);
6448
6449 if (env->sd->flags & SD_NUMA)
6450 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6451
6452 if (!env->sd->parent) {
6453
6454 if (env->dst_rq->rd->overload != overload)
6455 env->dst_rq->rd->overload = overload;
6456 }
6457
6458}
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6484{
6485 int busiest_cpu;
6486
6487 if (!(env->sd->flags & SD_ASYM_PACKING))
6488 return 0;
6489
6490 if (!sds->busiest)
6491 return 0;
6492
6493 busiest_cpu = group_first_cpu(sds->busiest);
6494 if (env->dst_cpu > busiest_cpu)
6495 return 0;
6496
6497 env->imbalance = DIV_ROUND_CLOSEST(
6498 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6499 SCHED_CAPACITY_SCALE);
6500
6501 return 1;
6502}
6503
6504
6505
6506
6507
6508
6509
6510
6511static inline
6512void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6513{
6514 unsigned long tmp, capa_now = 0, capa_move = 0;
6515 unsigned int imbn = 2;
6516 unsigned long scaled_busy_load_per_task;
6517 struct sg_lb_stats *local, *busiest;
6518
6519 local = &sds->local_stat;
6520 busiest = &sds->busiest_stat;
6521
6522 if (!local->sum_nr_running)
6523 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6524 else if (busiest->load_per_task > local->load_per_task)
6525 imbn = 1;
6526
6527 scaled_busy_load_per_task =
6528 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6529 busiest->group_capacity;
6530
6531 if (busiest->avg_load + scaled_busy_load_per_task >=
6532 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6533 env->imbalance = busiest->load_per_task;
6534 return;
6535 }
6536
6537
6538
6539
6540
6541
6542
6543 capa_now += busiest->group_capacity *
6544 min(busiest->load_per_task, busiest->avg_load);
6545 capa_now += local->group_capacity *
6546 min(local->load_per_task, local->avg_load);
6547 capa_now /= SCHED_CAPACITY_SCALE;
6548
6549
6550 if (busiest->avg_load > scaled_busy_load_per_task) {
6551 capa_move += busiest->group_capacity *
6552 min(busiest->load_per_task,
6553 busiest->avg_load - scaled_busy_load_per_task);
6554 }
6555
6556
6557 if (busiest->avg_load * busiest->group_capacity <
6558 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6559 tmp = (busiest->avg_load * busiest->group_capacity) /
6560 local->group_capacity;
6561 } else {
6562 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6563 local->group_capacity;
6564 }
6565 capa_move += local->group_capacity *
6566 min(local->load_per_task, local->avg_load + tmp);
6567 capa_move /= SCHED_CAPACITY_SCALE;
6568
6569
6570 if (capa_move > capa_now)
6571 env->imbalance = busiest->load_per_task;
6572}
6573
6574
6575
6576
6577
6578
6579
6580static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6581{
6582 unsigned long max_pull, load_above_capacity = ~0UL;
6583 struct sg_lb_stats *local, *busiest;
6584
6585 local = &sds->local_stat;
6586 busiest = &sds->busiest_stat;
6587
6588 if (busiest->group_type == group_imbalanced) {
6589
6590
6591
6592
6593 busiest->load_per_task =
6594 min(busiest->load_per_task, sds->avg_load);
6595 }
6596
6597
6598
6599
6600
6601
6602 if (busiest->avg_load <= sds->avg_load ||
6603 local->avg_load >= sds->avg_load) {
6604 env->imbalance = 0;
6605 return fix_small_imbalance(env, sds);
6606 }
6607
6608
6609
6610
6611 if (busiest->group_type == group_overloaded &&
6612 local->group_type == group_overloaded) {
6613 load_above_capacity = busiest->sum_nr_running *
6614 SCHED_LOAD_SCALE;
6615 if (load_above_capacity > busiest->group_capacity)
6616 load_above_capacity -= busiest->group_capacity;
6617 else
6618 load_above_capacity = ~0UL;
6619 }
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6630
6631
6632 env->imbalance = min(
6633 max_pull * busiest->group_capacity,
6634 (sds->avg_load - local->avg_load) * local->group_capacity
6635 ) / SCHED_CAPACITY_SCALE;
6636
6637
6638
6639
6640
6641
6642
6643 if (env->imbalance < busiest->load_per_task)
6644 return fix_small_imbalance(env, sds);
6645}
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666static struct sched_group *find_busiest_group(struct lb_env *env)
6667{
6668 struct sg_lb_stats *local, *busiest;
6669 struct sd_lb_stats sds;
6670
6671 init_sd_lb_stats(&sds);
6672
6673
6674
6675
6676
6677 update_sd_lb_stats(env, &sds);
6678 local = &sds.local_stat;
6679 busiest = &sds.busiest_stat;
6680
6681
6682 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6683 check_asym_packing(env, &sds))
6684 return sds.busiest;
6685
6686
6687 if (!sds.busiest || busiest->sum_nr_running == 0)
6688 goto out_balanced;
6689
6690 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6691 / sds.total_capacity;
6692
6693
6694
6695
6696
6697
6698 if (busiest->group_type == group_imbalanced)
6699 goto force_balance;
6700
6701
6702 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6703 busiest->group_no_capacity)
6704 goto force_balance;
6705
6706
6707
6708
6709
6710 if (local->avg_load >= busiest->avg_load)
6711 goto out_balanced;
6712
6713
6714
6715
6716
6717 if (local->avg_load >= sds.avg_load)
6718 goto out_balanced;
6719
6720 if (env->idle == CPU_IDLE) {
6721
6722
6723
6724
6725
6726
6727
6728 if ((busiest->group_type != group_overloaded) &&
6729 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6730 goto out_balanced;
6731 } else {
6732
6733
6734
6735
6736 if (100 * busiest->avg_load <=
6737 env->sd->imbalance_pct * local->avg_load)
6738 goto out_balanced;
6739 }
6740
6741force_balance:
6742
6743 calculate_imbalance(env, &sds);
6744 return sds.busiest;
6745
6746out_balanced:
6747 env->imbalance = 0;
6748 return NULL;
6749}
6750
6751
6752
6753
6754static struct rq *find_busiest_queue(struct lb_env *env,
6755 struct sched_group *group)
6756{
6757 struct rq *busiest = NULL, *rq;
6758 unsigned long busiest_load = 0, busiest_capacity = 1;
6759 int i;
6760
6761 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6762 unsigned long capacity, wl;
6763 enum fbq_type rt;
6764
6765 rq = cpu_rq(i);
6766 rt = fbq_classify_rq(rq);
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787 if (rt > env->fbq_type)
6788 continue;
6789
6790 capacity = capacity_of(i);
6791
6792 wl = weighted_cpuload(i);
6793
6794
6795
6796
6797
6798
6799 if (rq->nr_running == 1 && wl > env->imbalance &&
6800 !check_cpu_capacity(rq, env->sd))
6801 continue;
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814 if (wl * busiest_capacity > busiest_load * capacity) {
6815 busiest_load = wl;
6816 busiest_capacity = capacity;
6817 busiest = rq;
6818 }
6819 }
6820
6821 return busiest;
6822}
6823
6824
6825
6826
6827
6828#define MAX_PINNED_INTERVAL 512
6829
6830
6831DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6832
6833static int need_active_balance(struct lb_env *env)
6834{
6835 struct sched_domain *sd = env->sd;
6836
6837 if (env->idle == CPU_NEWLY_IDLE) {
6838
6839
6840
6841
6842
6843
6844 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6845 return 1;
6846 }
6847
6848
6849
6850
6851
6852
6853
6854 if ((env->idle != CPU_NOT_IDLE) &&
6855 (env->src_rq->cfs.h_nr_running == 1)) {
6856 if ((check_cpu_capacity(env->src_rq, sd)) &&
6857 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6858 return 1;
6859 }
6860
6861 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6862}
6863
6864static int active_load_balance_cpu_stop(void *data);
6865
6866static int should_we_balance(struct lb_env *env)
6867{
6868 struct sched_group *sg = env->sd->groups;
6869 struct cpumask *sg_cpus, *sg_mask;
6870 int cpu, balance_cpu = -1;
6871
6872
6873
6874
6875
6876 if (env->idle == CPU_NEWLY_IDLE)
6877 return 1;
6878
6879 sg_cpus = sched_group_cpus(sg);
6880 sg_mask = sched_group_mask(sg);
6881
6882 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6883 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6884 continue;
6885
6886 balance_cpu = cpu;
6887 break;
6888 }
6889
6890 if (balance_cpu == -1)
6891 balance_cpu = group_balance_cpu(sg);
6892
6893
6894
6895
6896
6897 return balance_cpu == env->dst_cpu;
6898}
6899
6900
6901
6902
6903
6904static int load_balance(int this_cpu, struct rq *this_rq,
6905 struct sched_domain *sd, enum cpu_idle_type idle,
6906 int *continue_balancing)
6907{
6908 int ld_moved, cur_ld_moved, active_balance = 0;
6909 struct sched_domain *sd_parent = sd->parent;
6910 struct sched_group *group;
6911 struct rq *busiest;
6912 unsigned long flags;
6913 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6914
6915 struct lb_env env = {
6916 .sd = sd,
6917 .dst_cpu = this_cpu,
6918 .dst_rq = this_rq,
6919 .dst_grpmask = sched_group_cpus(sd->groups),
6920 .idle = idle,
6921 .loop_break = sched_nr_migrate_break,
6922 .cpus = cpus,
6923 .fbq_type = all,
6924 .tasks = LIST_HEAD_INIT(env.tasks),
6925 };
6926
6927
6928
6929
6930
6931 if (idle == CPU_NEWLY_IDLE)
6932 env.dst_grpmask = NULL;
6933
6934 cpumask_copy(cpus, cpu_active_mask);
6935
6936 schedstat_inc(sd, lb_count[idle]);
6937
6938redo:
6939 if (!should_we_balance(&env)) {
6940 *continue_balancing = 0;
6941 goto out_balanced;
6942 }
6943
6944 group = find_busiest_group(&env);
6945 if (!group) {
6946 schedstat_inc(sd, lb_nobusyg[idle]);
6947 goto out_balanced;
6948 }
6949
6950 busiest = find_busiest_queue(&env, group);
6951 if (!busiest) {
6952 schedstat_inc(sd, lb_nobusyq[idle]);
6953 goto out_balanced;
6954 }
6955
6956 BUG_ON(busiest == env.dst_rq);
6957
6958 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6959
6960 env.src_cpu = busiest->cpu;
6961 env.src_rq = busiest;
6962
6963 ld_moved = 0;
6964 if (busiest->nr_running > 1) {
6965
6966
6967
6968
6969
6970
6971 env.flags |= LBF_ALL_PINNED;
6972 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6973
6974more_balance:
6975 raw_spin_lock_irqsave(&busiest->lock, flags);
6976
6977
6978
6979
6980
6981 cur_ld_moved = detach_tasks(&env);
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991 raw_spin_unlock(&busiest->lock);
6992
6993 if (cur_ld_moved) {
6994 attach_tasks(&env);
6995 ld_moved += cur_ld_moved;
6996 }
6997
6998 local_irq_restore(flags);
6999
7000 if (env.flags & LBF_NEED_BREAK) {
7001 env.flags &= ~LBF_NEED_BREAK;
7002 goto more_balance;
7003 }
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7025
7026
7027 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7028
7029 env.dst_rq = cpu_rq(env.new_dst_cpu);
7030 env.dst_cpu = env.new_dst_cpu;
7031 env.flags &= ~LBF_DST_PINNED;
7032 env.loop = 0;
7033 env.loop_break = sched_nr_migrate_break;
7034
7035
7036
7037
7038
7039 goto more_balance;
7040 }
7041
7042
7043
7044
7045 if (sd_parent) {
7046 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7047
7048 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7049 *group_imbalance = 1;
7050 }
7051
7052
7053 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7054 cpumask_clear_cpu(cpu_of(busiest), cpus);
7055 if (!cpumask_empty(cpus)) {
7056 env.loop = 0;
7057 env.loop_break = sched_nr_migrate_break;
7058 goto redo;
7059 }
7060 goto out_all_pinned;
7061 }
7062 }
7063
7064 if (!ld_moved) {
7065 schedstat_inc(sd, lb_failed[idle]);
7066
7067
7068
7069
7070
7071
7072 if (idle != CPU_NEWLY_IDLE)
7073 sd->nr_balance_failed++;
7074
7075 if (need_active_balance(&env)) {
7076 raw_spin_lock_irqsave(&busiest->lock, flags);
7077
7078
7079
7080
7081
7082 if (!cpumask_test_cpu(this_cpu,
7083 tsk_cpus_allowed(busiest->curr))) {
7084 raw_spin_unlock_irqrestore(&busiest->lock,
7085 flags);
7086 env.flags |= LBF_ALL_PINNED;
7087 goto out_one_pinned;
7088 }
7089
7090
7091
7092
7093
7094
7095 if (!busiest->active_balance) {
7096 busiest->active_balance = 1;
7097 busiest->push_cpu = this_cpu;
7098 active_balance = 1;
7099 }
7100 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7101
7102 if (active_balance) {
7103 stop_one_cpu_nowait(cpu_of(busiest),
7104 active_load_balance_cpu_stop, busiest,
7105 &busiest->active_balance_work);
7106 }
7107
7108
7109
7110
7111
7112 sd->nr_balance_failed = sd->cache_nice_tries+1;
7113 }
7114 } else
7115 sd->nr_balance_failed = 0;
7116
7117 if (likely(!active_balance)) {
7118
7119 sd->balance_interval = sd->min_interval;
7120 } else {
7121
7122
7123
7124
7125
7126
7127 if (sd->balance_interval < sd->max_interval)
7128 sd->balance_interval *= 2;
7129 }
7130
7131 goto out;
7132
7133out_balanced:
7134
7135
7136
7137
7138 if (sd_parent) {
7139 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7140
7141 if (*group_imbalance)
7142 *group_imbalance = 0;
7143 }
7144
7145out_all_pinned:
7146
7147
7148
7149
7150
7151 schedstat_inc(sd, lb_balanced[idle]);
7152
7153 sd->nr_balance_failed = 0;
7154
7155out_one_pinned:
7156
7157 if (((env.flags & LBF_ALL_PINNED) &&
7158 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7159 (sd->balance_interval < sd->max_interval))
7160 sd->balance_interval *= 2;
7161
7162 ld_moved = 0;
7163out:
7164 return ld_moved;
7165}
7166
7167static inline unsigned long
7168get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7169{
7170 unsigned long interval = sd->balance_interval;
7171
7172 if (cpu_busy)
7173 interval *= sd->busy_factor;
7174
7175
7176 interval = msecs_to_jiffies(interval);
7177 interval = clamp(interval, 1UL, max_load_balance_interval);
7178
7179 return interval;
7180}
7181
7182static inline void
7183update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7184{
7185 unsigned long interval, next;
7186
7187 interval = get_sd_balance_interval(sd, cpu_busy);
7188 next = sd->last_balance + interval;
7189
7190 if (time_after(*next_balance, next))
7191 *next_balance = next;
7192}
7193
7194
7195
7196
7197
7198static int idle_balance(struct rq *this_rq)
7199{
7200 unsigned long next_balance = jiffies + HZ;
7201 int this_cpu = this_rq->cpu;
7202 struct sched_domain *sd;
7203 int pulled_task = 0;
7204 u64 curr_cost = 0;
7205
7206 idle_enter_fair(this_rq);
7207
7208
7209
7210
7211
7212 this_rq->idle_stamp = rq_clock(this_rq);
7213
7214 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7215 !this_rq->rd->overload) {
7216 rcu_read_lock();
7217 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7218 if (sd)
7219 update_next_balance(sd, 0, &next_balance);
7220 rcu_read_unlock();
7221
7222 goto out;
7223 }
7224
7225 raw_spin_unlock(&this_rq->lock);
7226
7227 update_blocked_averages(this_cpu);
7228 rcu_read_lock();
7229 for_each_domain(this_cpu, sd) {
7230 int continue_balancing = 1;
7231 u64 t0, domain_cost;
7232
7233 if (!(sd->flags & SD_LOAD_BALANCE))
7234 continue;
7235
7236 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7237 update_next_balance(sd, 0, &next_balance);
7238 break;
7239 }
7240
7241 if (sd->flags & SD_BALANCE_NEWIDLE) {
7242 t0 = sched_clock_cpu(this_cpu);
7243
7244 pulled_task = load_balance(this_cpu, this_rq,
7245 sd, CPU_NEWLY_IDLE,
7246 &continue_balancing);
7247
7248 domain_cost = sched_clock_cpu(this_cpu) - t0;
7249 if (domain_cost > sd->max_newidle_lb_cost)
7250 sd->max_newidle_lb_cost = domain_cost;
7251
7252 curr_cost += domain_cost;
7253 }
7254
7255 update_next_balance(sd, 0, &next_balance);
7256
7257
7258
7259
7260
7261 if (pulled_task || this_rq->nr_running > 0)
7262 break;
7263 }
7264 rcu_read_unlock();
7265
7266 raw_spin_lock(&this_rq->lock);
7267
7268 if (curr_cost > this_rq->max_idle_balance_cost)
7269 this_rq->max_idle_balance_cost = curr_cost;
7270
7271
7272
7273
7274
7275
7276 if (this_rq->cfs.h_nr_running && !pulled_task)
7277 pulled_task = 1;
7278
7279out:
7280
7281 if (time_after(this_rq->next_balance, next_balance))
7282 this_rq->next_balance = next_balance;
7283
7284
7285 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7286 pulled_task = -1;
7287
7288 if (pulled_task) {
7289 idle_exit_fair(this_rq);
7290 this_rq->idle_stamp = 0;
7291 }
7292
7293 return pulled_task;
7294}
7295
7296
7297
7298
7299
7300
7301
7302static int active_load_balance_cpu_stop(void *data)
7303{
7304 struct rq *busiest_rq = data;
7305 int busiest_cpu = cpu_of(busiest_rq);
7306 int target_cpu = busiest_rq->push_cpu;
7307 struct rq *target_rq = cpu_rq(target_cpu);
7308 struct sched_domain *sd;
7309 struct task_struct *p = NULL;
7310
7311 raw_spin_lock_irq(&busiest_rq->lock);
7312
7313
7314 if (unlikely(busiest_cpu != smp_processor_id() ||
7315 !busiest_rq->active_balance))
7316 goto out_unlock;
7317
7318
7319 if (busiest_rq->nr_running <= 1)
7320 goto out_unlock;
7321
7322
7323
7324
7325
7326
7327 BUG_ON(busiest_rq == target_rq);
7328
7329
7330 rcu_read_lock();
7331 for_each_domain(target_cpu, sd) {
7332 if ((sd->flags & SD_LOAD_BALANCE) &&
7333 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7334 break;
7335 }
7336
7337 if (likely(sd)) {
7338 struct lb_env env = {
7339 .sd = sd,
7340 .dst_cpu = target_cpu,
7341 .dst_rq = target_rq,
7342 .src_cpu = busiest_rq->cpu,
7343 .src_rq = busiest_rq,
7344 .idle = CPU_IDLE,
7345 };
7346
7347 schedstat_inc(sd, alb_count);
7348
7349 p = detach_one_task(&env);
7350 if (p)
7351 schedstat_inc(sd, alb_pushed);
7352 else
7353 schedstat_inc(sd, alb_failed);
7354 }
7355 rcu_read_unlock();
7356out_unlock:
7357 busiest_rq->active_balance = 0;
7358 raw_spin_unlock(&busiest_rq->lock);
7359
7360 if (p)
7361 attach_one_task(target_rq, p);
7362
7363 local_irq_enable();
7364
7365 return 0;
7366}
7367
7368static inline int on_null_domain(struct rq *rq)
7369{
7370 return unlikely(!rcu_dereference_sched(rq->sd));
7371}
7372
7373#ifdef CONFIG_NO_HZ_COMMON
7374
7375
7376
7377
7378
7379
7380static struct {
7381 cpumask_var_t idle_cpus_mask;
7382 atomic_t nr_cpus;
7383 unsigned long next_balance;
7384} nohz ____cacheline_aligned;
7385
7386static inline int find_new_ilb(void)
7387{
7388 int ilb = cpumask_first(nohz.idle_cpus_mask);
7389
7390 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7391 return ilb;
7392
7393 return nr_cpu_ids;
7394}
7395
7396
7397
7398
7399
7400
7401static void nohz_balancer_kick(void)
7402{
7403 int ilb_cpu;
7404
7405 nohz.next_balance++;
7406
7407 ilb_cpu = find_new_ilb();
7408
7409 if (ilb_cpu >= nr_cpu_ids)
7410 return;
7411
7412 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7413 return;
7414
7415
7416
7417
7418
7419
7420 smp_send_reschedule(ilb_cpu);
7421 return;
7422}
7423
7424static inline void nohz_balance_exit_idle(int cpu)
7425{
7426 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7427
7428
7429
7430 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7431 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7432 atomic_dec(&nohz.nr_cpus);
7433 }
7434 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7435 }
7436}
7437
7438static inline void set_cpu_sd_state_busy(void)
7439{
7440 struct sched_domain *sd;
7441 int cpu = smp_processor_id();
7442
7443 rcu_read_lock();
7444 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7445
7446 if (!sd || !sd->nohz_idle)
7447 goto unlock;
7448 sd->nohz_idle = 0;
7449
7450 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7451unlock:
7452 rcu_read_unlock();
7453}
7454
7455void set_cpu_sd_state_idle(void)
7456{
7457 struct sched_domain *sd;
7458 int cpu = smp_processor_id();
7459
7460 rcu_read_lock();
7461 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7462
7463 if (!sd || sd->nohz_idle)
7464 goto unlock;
7465 sd->nohz_idle = 1;
7466
7467 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7468unlock:
7469 rcu_read_unlock();
7470}
7471
7472
7473
7474
7475
7476void nohz_balance_enter_idle(int cpu)
7477{
7478
7479
7480
7481 if (!cpu_active(cpu))
7482 return;
7483
7484 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7485 return;
7486
7487
7488
7489
7490 if (on_null_domain(cpu_rq(cpu)))
7491 return;
7492
7493 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7494 atomic_inc(&nohz.nr_cpus);
7495 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7496}
7497
7498static int sched_ilb_notifier(struct notifier_block *nfb,
7499 unsigned long action, void *hcpu)
7500{
7501 switch (action & ~CPU_TASKS_FROZEN) {
7502 case CPU_DYING:
7503 nohz_balance_exit_idle(smp_processor_id());
7504 return NOTIFY_OK;
7505 default:
7506 return NOTIFY_DONE;
7507 }
7508}
7509#endif
7510
7511static DEFINE_SPINLOCK(balancing);
7512
7513
7514
7515
7516
7517void update_max_interval(void)
7518{
7519 max_load_balance_interval = HZ*num_online_cpus()/10;
7520}
7521
7522
7523
7524
7525
7526
7527
7528static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7529{
7530 int continue_balancing = 1;
7531 int cpu = rq->cpu;
7532 unsigned long interval;
7533 struct sched_domain *sd;
7534
7535 unsigned long next_balance = jiffies + 60*HZ;
7536 int update_next_balance = 0;
7537 int need_serialize, need_decay = 0;
7538 u64 max_cost = 0;
7539
7540 update_blocked_averages(cpu);
7541
7542 rcu_read_lock();
7543 for_each_domain(cpu, sd) {
7544
7545
7546
7547
7548 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7549 sd->max_newidle_lb_cost =
7550 (sd->max_newidle_lb_cost * 253) / 256;
7551 sd->next_decay_max_lb_cost = jiffies + HZ;
7552 need_decay = 1;
7553 }
7554 max_cost += sd->max_newidle_lb_cost;
7555
7556 if (!(sd->flags & SD_LOAD_BALANCE))
7557 continue;
7558
7559
7560
7561
7562
7563
7564 if (!continue_balancing) {
7565 if (need_decay)
7566 continue;
7567 break;
7568 }
7569
7570 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7571
7572 need_serialize = sd->flags & SD_SERIALIZE;
7573 if (need_serialize) {
7574 if (!spin_trylock(&balancing))
7575 goto out;
7576 }
7577
7578 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7579 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7580
7581
7582
7583
7584
7585 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7586 }
7587 sd->last_balance = jiffies;
7588 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7589 }
7590 if (need_serialize)
7591 spin_unlock(&balancing);
7592out:
7593 if (time_after(next_balance, sd->last_balance + interval)) {
7594 next_balance = sd->last_balance + interval;
7595 update_next_balance = 1;
7596 }
7597 }
7598 if (need_decay) {
7599
7600
7601
7602
7603 rq->max_idle_balance_cost =
7604 max((u64)sysctl_sched_migration_cost, max_cost);
7605 }
7606 rcu_read_unlock();
7607
7608
7609
7610
7611
7612
7613 if (likely(update_next_balance))
7614 rq->next_balance = next_balance;
7615}
7616
7617#ifdef CONFIG_NO_HZ_COMMON
7618
7619
7620
7621
7622static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7623{
7624 int this_cpu = this_rq->cpu;
7625 struct rq *rq;
7626 int balance_cpu;
7627
7628 if (idle != CPU_IDLE ||
7629 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7630 goto end;
7631
7632 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7633 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7634 continue;
7635
7636
7637
7638
7639
7640
7641 if (need_resched())
7642 break;
7643
7644 rq = cpu_rq(balance_cpu);
7645
7646
7647
7648
7649
7650 if (time_after_eq(jiffies, rq->next_balance)) {
7651 raw_spin_lock_irq(&rq->lock);
7652 update_rq_clock(rq);
7653 update_idle_cpu_load(rq);
7654 raw_spin_unlock_irq(&rq->lock);
7655 rebalance_domains(rq, CPU_IDLE);
7656 }
7657
7658 if (time_after(this_rq->next_balance, rq->next_balance))
7659 this_rq->next_balance = rq->next_balance;
7660 }
7661 nohz.next_balance = this_rq->next_balance;
7662end:
7663 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7664}
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677static inline bool nohz_kick_needed(struct rq *rq)
7678{
7679 unsigned long now = jiffies;
7680 struct sched_domain *sd;
7681 struct sched_group_capacity *sgc;
7682 int nr_busy, cpu = rq->cpu;
7683 bool kick = false;
7684
7685 if (unlikely(rq->idle_balance))
7686 return false;
7687
7688
7689
7690
7691
7692 set_cpu_sd_state_busy();
7693 nohz_balance_exit_idle(cpu);
7694
7695
7696
7697
7698
7699 if (likely(!atomic_read(&nohz.nr_cpus)))
7700 return false;
7701
7702 if (time_before(now, nohz.next_balance))
7703 return false;
7704
7705 if (rq->nr_running >= 2)
7706 return true;
7707
7708 rcu_read_lock();
7709 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7710 if (sd) {
7711 sgc = sd->groups->sgc;
7712 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7713
7714 if (nr_busy > 1) {
7715 kick = true;
7716 goto unlock;
7717 }
7718
7719 }
7720
7721 sd = rcu_dereference(rq->sd);
7722 if (sd) {
7723 if ((rq->cfs.h_nr_running >= 1) &&
7724 check_cpu_capacity(rq, sd)) {
7725 kick = true;
7726 goto unlock;
7727 }
7728 }
7729
7730 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7731 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7732 sched_domain_span(sd)) < cpu)) {
7733 kick = true;
7734 goto unlock;
7735 }
7736
7737unlock:
7738 rcu_read_unlock();
7739 return kick;
7740}
7741#else
7742static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7743#endif
7744
7745
7746
7747
7748
7749static void run_rebalance_domains(struct softirq_action *h)
7750{
7751 struct rq *this_rq = this_rq();
7752 enum cpu_idle_type idle = this_rq->idle_balance ?
7753 CPU_IDLE : CPU_NOT_IDLE;
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763 nohz_idle_balance(this_rq, idle);
7764 rebalance_domains(this_rq, idle);
7765}
7766
7767
7768
7769
7770void trigger_load_balance(struct rq *rq)
7771{
7772
7773 if (unlikely(on_null_domain(rq)))
7774 return;
7775
7776 if (time_after_eq(jiffies, rq->next_balance))
7777 raise_softirq(SCHED_SOFTIRQ);
7778#ifdef CONFIG_NO_HZ_COMMON
7779 if (nohz_kick_needed(rq))
7780 nohz_balancer_kick();
7781#endif
7782}
7783
7784static void rq_online_fair(struct rq *rq)
7785{
7786 update_sysctl();
7787
7788 update_runtime_enabled(rq);
7789}
7790
7791static void rq_offline_fair(struct rq *rq)
7792{
7793 update_sysctl();
7794
7795
7796 unthrottle_offline_cfs_rqs(rq);
7797}
7798
7799#endif
7800
7801
7802
7803
7804static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7805{
7806 struct cfs_rq *cfs_rq;
7807 struct sched_entity *se = &curr->se;
7808
7809 for_each_sched_entity(se) {
7810 cfs_rq = cfs_rq_of(se);
7811 entity_tick(cfs_rq, se, queued);
7812 }
7813
7814 if (numabalancing_enabled)
7815 task_tick_numa(rq, curr);
7816}
7817
7818
7819
7820
7821
7822
7823static void task_fork_fair(struct task_struct *p)
7824{
7825 struct cfs_rq *cfs_rq;
7826 struct sched_entity *se = &p->se, *curr;
7827 int this_cpu = smp_processor_id();
7828 struct rq *rq = this_rq();
7829 unsigned long flags;
7830
7831 raw_spin_lock_irqsave(&rq->lock, flags);
7832
7833 update_rq_clock(rq);
7834
7835 cfs_rq = task_cfs_rq(current);
7836 curr = cfs_rq->curr;
7837
7838
7839
7840
7841
7842
7843
7844 rcu_read_lock();
7845 __set_task_cpu(p, this_cpu);
7846 rcu_read_unlock();
7847
7848 update_curr(cfs_rq);
7849
7850 if (curr)
7851 se->vruntime = curr->vruntime;
7852 place_entity(cfs_rq, se, 1);
7853
7854 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7855
7856
7857
7858
7859 swap(curr->vruntime, se->vruntime);
7860 resched_curr(rq);
7861 }
7862
7863 se->vruntime -= cfs_rq->min_vruntime;
7864
7865 raw_spin_unlock_irqrestore(&rq->lock, flags);
7866}
7867
7868
7869
7870
7871
7872static void
7873prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7874{
7875 if (!task_on_rq_queued(p))
7876 return;
7877
7878
7879
7880
7881
7882
7883 if (rq->curr == p) {
7884 if (p->prio > oldprio)
7885 resched_curr(rq);
7886 } else
7887 check_preempt_curr(rq, p, 0);
7888}
7889
7890static void switched_from_fair(struct rq *rq, struct task_struct *p)
7891{
7892 struct sched_entity *se = &p->se;
7893 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7905
7906
7907
7908
7909 place_entity(cfs_rq, se, 0);
7910 se->vruntime -= cfs_rq->min_vruntime;
7911 }
7912
7913#ifdef CONFIG_SMP
7914
7915 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
7916 se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
7917
7918 cfs_rq->avg.load_avg =
7919 max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7920 cfs_rq->avg.load_sum =
7921 max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7922 cfs_rq->avg.util_avg =
7923 max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7924 cfs_rq->avg.util_sum =
7925 max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
7926#endif
7927}
7928
7929
7930
7931
7932static void switched_to_fair(struct rq *rq, struct task_struct *p)
7933{
7934 struct sched_entity *se = &p->se;
7935
7936#ifdef CONFIG_FAIR_GROUP_SCHED
7937
7938
7939
7940
7941 se->depth = se->parent ? se->parent->depth + 1 : 0;
7942#endif
7943
7944 if (!task_on_rq_queued(p)) {
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955 if (p->state != TASK_RUNNING)
7956 se->vruntime += cfs_rq_of(se)->min_vruntime;
7957 return;
7958 }
7959
7960
7961
7962
7963
7964
7965 if (rq->curr == p)
7966 resched_curr(rq);
7967 else
7968 check_preempt_curr(rq, p, 0);
7969}
7970
7971
7972
7973
7974
7975
7976static void set_curr_task_fair(struct rq *rq)
7977{
7978 struct sched_entity *se = &rq->curr->se;
7979
7980 for_each_sched_entity(se) {
7981 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7982
7983 set_next_entity(cfs_rq, se);
7984
7985 account_cfs_rq_runtime(cfs_rq, 0);
7986 }
7987}
7988
7989void init_cfs_rq(struct cfs_rq *cfs_rq)
7990{
7991 cfs_rq->tasks_timeline = RB_ROOT;
7992 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7993#ifndef CONFIG_64BIT
7994 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7995#endif
7996#ifdef CONFIG_SMP
7997 atomic_long_set(&cfs_rq->removed_load_avg, 0);
7998 atomic_long_set(&cfs_rq->removed_util_avg, 0);
7999#endif
8000}
8001
8002#ifdef CONFIG_FAIR_GROUP_SCHED
8003static void task_move_group_fair(struct task_struct *p, int queued)
8004{
8005 struct sched_entity *se = &p->se;
8006 struct cfs_rq *cfs_rq;
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8034 queued = 1;
8035
8036 if (!queued)
8037 se->vruntime -= cfs_rq_of(se)->min_vruntime;
8038 set_task_rq(p, task_cpu(p));
8039 se->depth = se->parent ? se->parent->depth + 1 : 0;
8040 if (!queued) {
8041 cfs_rq = cfs_rq_of(se);
8042 se->vruntime += cfs_rq->min_vruntime;
8043
8044#ifdef CONFIG_SMP
8045
8046 p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8047 cfs_rq->avg.load_avg += p->se.avg.load_avg;
8048 cfs_rq->avg.load_sum += p->se.avg.load_sum;
8049 cfs_rq->avg.util_avg += p->se.avg.util_avg;
8050 cfs_rq->avg.util_sum += p->se.avg.util_sum;
8051#endif
8052 }
8053}
8054
8055void free_fair_sched_group(struct task_group *tg)
8056{
8057 int i;
8058
8059 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8060
8061 for_each_possible_cpu(i) {
8062 if (tg->cfs_rq)
8063 kfree(tg->cfs_rq[i]);
8064 if (tg->se) {
8065 if (tg->se[i])
8066 remove_entity_load_avg(tg->se[i]);
8067 kfree(tg->se[i]);
8068 }
8069 }
8070
8071 kfree(tg->cfs_rq);
8072 kfree(tg->se);
8073}
8074
8075int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8076{
8077 struct cfs_rq *cfs_rq;
8078 struct sched_entity *se;
8079 int i;
8080
8081 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8082 if (!tg->cfs_rq)
8083 goto err;
8084 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8085 if (!tg->se)
8086 goto err;
8087
8088 tg->shares = NICE_0_LOAD;
8089
8090 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8091
8092 for_each_possible_cpu(i) {
8093 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8094 GFP_KERNEL, cpu_to_node(i));
8095 if (!cfs_rq)
8096 goto err;
8097
8098 se = kzalloc_node(sizeof(struct sched_entity),
8099 GFP_KERNEL, cpu_to_node(i));
8100 if (!se)
8101 goto err_free_rq;
8102
8103 init_cfs_rq(cfs_rq);
8104 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8105 init_entity_runnable_average(se);
8106 }
8107
8108 return 1;
8109
8110err_free_rq:
8111 kfree(cfs_rq);
8112err:
8113 return 0;
8114}
8115
8116void unregister_fair_sched_group(struct task_group *tg, int cpu)
8117{
8118 struct rq *rq = cpu_rq(cpu);
8119 unsigned long flags;
8120
8121
8122
8123
8124
8125 if (!tg->cfs_rq[cpu]->on_list)
8126 return;
8127
8128 raw_spin_lock_irqsave(&rq->lock, flags);
8129 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8130 raw_spin_unlock_irqrestore(&rq->lock, flags);
8131}
8132
8133void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8134 struct sched_entity *se, int cpu,
8135 struct sched_entity *parent)
8136{
8137 struct rq *rq = cpu_rq(cpu);
8138
8139 cfs_rq->tg = tg;
8140 cfs_rq->rq = rq;
8141 init_cfs_rq_runtime(cfs_rq);
8142
8143 tg->cfs_rq[cpu] = cfs_rq;
8144 tg->se[cpu] = se;
8145
8146
8147 if (!se)
8148 return;
8149
8150 if (!parent) {
8151 se->cfs_rq = &rq->cfs;
8152 se->depth = 0;
8153 } else {
8154 se->cfs_rq = parent->my_q;
8155 se->depth = parent->depth + 1;
8156 }
8157
8158 se->my_q = cfs_rq;
8159
8160 update_load_set(&se->load, NICE_0_LOAD);
8161 se->parent = parent;
8162}
8163
8164static DEFINE_MUTEX(shares_mutex);
8165
8166int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8167{
8168 int i;
8169 unsigned long flags;
8170
8171
8172
8173
8174 if (!tg->se[0])
8175 return -EINVAL;
8176
8177 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8178
8179 mutex_lock(&shares_mutex);
8180 if (tg->shares == shares)
8181 goto done;
8182
8183 tg->shares = shares;
8184 for_each_possible_cpu(i) {
8185 struct rq *rq = cpu_rq(i);
8186 struct sched_entity *se;
8187
8188 se = tg->se[i];
8189
8190 raw_spin_lock_irqsave(&rq->lock, flags);
8191
8192
8193 update_rq_clock(rq);
8194 for_each_sched_entity(se)
8195 update_cfs_shares(group_cfs_rq(se));
8196 raw_spin_unlock_irqrestore(&rq->lock, flags);
8197 }
8198
8199done:
8200 mutex_unlock(&shares_mutex);
8201 return 0;
8202}
8203#else
8204
8205void free_fair_sched_group(struct task_group *tg) { }
8206
8207int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8208{
8209 return 1;
8210}
8211
8212void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8213
8214#endif
8215
8216
8217static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8218{
8219 struct sched_entity *se = &task->se;
8220 unsigned int rr_interval = 0;
8221
8222
8223
8224
8225
8226 if (rq->cfs.load.weight)
8227 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8228
8229 return rr_interval;
8230}
8231
8232
8233
8234
8235const struct sched_class fair_sched_class = {
8236 .next = &idle_sched_class,
8237 .enqueue_task = enqueue_task_fair,
8238 .dequeue_task = dequeue_task_fair,
8239 .yield_task = yield_task_fair,
8240 .yield_to_task = yield_to_task_fair,
8241
8242 .check_preempt_curr = check_preempt_wakeup,
8243
8244 .pick_next_task = pick_next_task_fair,
8245 .put_prev_task = put_prev_task_fair,
8246
8247#ifdef CONFIG_SMP
8248 .select_task_rq = select_task_rq_fair,
8249 .migrate_task_rq = migrate_task_rq_fair,
8250
8251 .rq_online = rq_online_fair,
8252 .rq_offline = rq_offline_fair,
8253
8254 .task_waking = task_waking_fair,
8255 .task_dead = task_dead_fair,
8256 .set_cpus_allowed = set_cpus_allowed_common,
8257#endif
8258
8259 .set_curr_task = set_curr_task_fair,
8260 .task_tick = task_tick_fair,
8261 .task_fork = task_fork_fair,
8262
8263 .prio_changed = prio_changed_fair,
8264 .switched_from = switched_from_fair,
8265 .switched_to = switched_to_fair,
8266
8267 .get_rr_interval = get_rr_interval_fair,
8268
8269 .update_curr = update_curr_fair,
8270
8271#ifdef CONFIG_FAIR_GROUP_SCHED
8272 .task_move_group = task_move_group_fair,
8273#endif
8274};
8275
8276#ifdef CONFIG_SCHED_DEBUG
8277void print_cfs_stats(struct seq_file *m, int cpu)
8278{
8279 struct cfs_rq *cfs_rq;
8280
8281 rcu_read_lock();
8282 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8283 print_cfs_rq(m, cpu, cfs_rq);
8284 rcu_read_unlock();
8285}
8286
8287#ifdef CONFIG_NUMA_BALANCING
8288void show_numa_stats(struct task_struct *p, struct seq_file *m)
8289{
8290 int node;
8291 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8292
8293 for_each_online_node(node) {
8294 if (p->numa_faults) {
8295 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8296 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8297 }
8298 if (p->numa_group) {
8299 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8300 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8301 }
8302 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8303 }
8304}
8305#endif
8306#endif
8307
8308__init void init_sched_fair_class(void)
8309{
8310#ifdef CONFIG_SMP
8311 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8312
8313#ifdef CONFIG_NO_HZ_COMMON
8314 nohz.next_balance = jiffies;
8315 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8316 cpu_notifier(sched_ilb_notifier, 0);
8317#endif
8318#endif
8319
8320}
8321