linux/kernel/sched/fair.c
<<
>>
Prefs
   1/*
   2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   3 *
   4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   5 *
   6 *  Interactivity improvements by Mike Galbraith
   7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   8 *
   9 *  Various enhancements by Dmitry Adamushko.
  10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11 *
  12 *  Group scheduling enhancements by Srivatsa Vaddagiri
  13 *  Copyright IBM Corporation, 2007
  14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15 *
  16 *  Scaled math optimizations by Thomas Gleixner
  17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18 *
  19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21 */
  22
  23#include <linux/latencytop.h>
  24#include <linux/sched.h>
  25#include <linux/cpumask.h>
  26#include <linux/cpuidle.h>
  27#include <linux/slab.h>
  28#include <linux/profile.h>
  29#include <linux/interrupt.h>
  30#include <linux/mempolicy.h>
  31#include <linux/migrate.h>
  32#include <linux/task_work.h>
  33
  34#include <trace/events/sched.h>
  35
  36#include "sched.h"
  37
  38/*
  39 * Targeted preemption latency for CPU-bound tasks:
  40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  41 *
  42 * NOTE: this latency value is not the same as the concept of
  43 * 'timeslice length' - timeslices in CFS are of variable length
  44 * and have no persistent notion like in traditional, time-slice
  45 * based scheduling concepts.
  46 *
  47 * (to see the precise effective timeslice length of your workload,
  48 *  run vmstat and monitor the context-switches (cs) field)
  49 */
  50unsigned int sysctl_sched_latency = 6000000ULL;
  51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  52
  53/*
  54 * The initial- and re-scaling of tunables is configurable
  55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  56 *
  57 * Options are:
  58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  61 */
  62enum sched_tunable_scaling sysctl_sched_tunable_scaling
  63        = SCHED_TUNABLESCALING_LOG;
  64
  65/*
  66 * Minimal preemption granularity for CPU-bound tasks:
  67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68 */
  69unsigned int sysctl_sched_min_granularity = 750000ULL;
  70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  71
  72/*
  73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  74 */
  75static unsigned int sched_nr_latency = 8;
  76
  77/*
  78 * After fork, child runs first. If set to 0 (default) then
  79 * parent will (try to) run first.
  80 */
  81unsigned int sysctl_sched_child_runs_first __read_mostly;
  82
  83/*
  84 * SCHED_OTHER wake-up granularity.
  85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  86 *
  87 * This option delays the preemption effects of decoupled workloads
  88 * and reduces their over-scheduling. Synchronous workloads will still
  89 * have immediate wakeup/sleep latencies.
  90 */
  91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  93
  94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  95
  96/*
  97 * The exponential sliding  window over which load is averaged for shares
  98 * distribution.
  99 * (default: 10msec)
 100 */
 101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
 102
 103#ifdef CONFIG_CFS_BANDWIDTH
 104/*
 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 106 * each time a cfs_rq requests quota.
 107 *
 108 * Note: in the case that the slice exceeds the runtime remaining (either due
 109 * to consumption or the quota being specified to be smaller than the slice)
 110 * we will always only issue the remaining available time.
 111 *
 112 * default: 5 msec, units: microseconds
 113  */
 114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
 115#endif
 116
 117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 118{
 119        lw->weight += inc;
 120        lw->inv_weight = 0;
 121}
 122
 123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 124{
 125        lw->weight -= dec;
 126        lw->inv_weight = 0;
 127}
 128
 129static inline void update_load_set(struct load_weight *lw, unsigned long w)
 130{
 131        lw->weight = w;
 132        lw->inv_weight = 0;
 133}
 134
 135/*
 136 * Increase the granularity value when there are more CPUs,
 137 * because with more CPUs the 'effective latency' as visible
 138 * to users decreases. But the relationship is not linear,
 139 * so pick a second-best guess by going with the log2 of the
 140 * number of CPUs.
 141 *
 142 * This idea comes from the SD scheduler of Con Kolivas:
 143 */
 144static unsigned int get_update_sysctl_factor(void)
 145{
 146        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 147        unsigned int factor;
 148
 149        switch (sysctl_sched_tunable_scaling) {
 150        case SCHED_TUNABLESCALING_NONE:
 151                factor = 1;
 152                break;
 153        case SCHED_TUNABLESCALING_LINEAR:
 154                factor = cpus;
 155                break;
 156        case SCHED_TUNABLESCALING_LOG:
 157        default:
 158                factor = 1 + ilog2(cpus);
 159                break;
 160        }
 161
 162        return factor;
 163}
 164
 165static void update_sysctl(void)
 166{
 167        unsigned int factor = get_update_sysctl_factor();
 168
 169#define SET_SYSCTL(name) \
 170        (sysctl_##name = (factor) * normalized_sysctl_##name)
 171        SET_SYSCTL(sched_min_granularity);
 172        SET_SYSCTL(sched_latency);
 173        SET_SYSCTL(sched_wakeup_granularity);
 174#undef SET_SYSCTL
 175}
 176
 177void sched_init_granularity(void)
 178{
 179        update_sysctl();
 180}
 181
 182#define WMULT_CONST     (~0U)
 183#define WMULT_SHIFT     32
 184
 185static void __update_inv_weight(struct load_weight *lw)
 186{
 187        unsigned long w;
 188
 189        if (likely(lw->inv_weight))
 190                return;
 191
 192        w = scale_load_down(lw->weight);
 193
 194        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 195                lw->inv_weight = 1;
 196        else if (unlikely(!w))
 197                lw->inv_weight = WMULT_CONST;
 198        else
 199                lw->inv_weight = WMULT_CONST / w;
 200}
 201
 202/*
 203 * delta_exec * weight / lw.weight
 204 *   OR
 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 206 *
 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 210 *
 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 213 */
 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 215{
 216        u64 fact = scale_load_down(weight);
 217        int shift = WMULT_SHIFT;
 218
 219        __update_inv_weight(lw);
 220
 221        if (unlikely(fact >> 32)) {
 222                while (fact >> 32) {
 223                        fact >>= 1;
 224                        shift--;
 225                }
 226        }
 227
 228        /* hint to use a 32x32->64 mul */
 229        fact = (u64)(u32)fact * lw->inv_weight;
 230
 231        while (fact >> 32) {
 232                fact >>= 1;
 233                shift--;
 234        }
 235
 236        return mul_u64_u32_shr(delta_exec, fact, shift);
 237}
 238
 239
 240const struct sched_class fair_sched_class;
 241
 242/**************************************************************
 243 * CFS operations on generic schedulable entities:
 244 */
 245
 246#ifdef CONFIG_FAIR_GROUP_SCHED
 247
 248/* cpu runqueue to which this cfs_rq is attached */
 249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 250{
 251        return cfs_rq->rq;
 252}
 253
 254/* An entity is a task if it doesn't "own" a runqueue */
 255#define entity_is_task(se)      (!se->my_q)
 256
 257static inline struct task_struct *task_of(struct sched_entity *se)
 258{
 259#ifdef CONFIG_SCHED_DEBUG
 260        WARN_ON_ONCE(!entity_is_task(se));
 261#endif
 262        return container_of(se, struct task_struct, se);
 263}
 264
 265/* Walk up scheduling entities hierarchy */
 266#define for_each_sched_entity(se) \
 267                for (; se; se = se->parent)
 268
 269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 270{
 271        return p->se.cfs_rq;
 272}
 273
 274/* runqueue on which this entity is (to be) queued */
 275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 276{
 277        return se->cfs_rq;
 278}
 279
 280/* runqueue "owned" by this group */
 281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 282{
 283        return grp->my_q;
 284}
 285
 286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 287{
 288        if (!cfs_rq->on_list) {
 289                /*
 290                 * Ensure we either appear before our parent (if already
 291                 * enqueued) or force our parent to appear after us when it is
 292                 * enqueued.  The fact that we always enqueue bottom-up
 293                 * reduces this to two cases.
 294                 */
 295                if (cfs_rq->tg->parent &&
 296                    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
 297                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 298                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 299                } else {
 300                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 301                                &rq_of(cfs_rq)->leaf_cfs_rq_list);
 302                }
 303
 304                cfs_rq->on_list = 1;
 305        }
 306}
 307
 308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 309{
 310        if (cfs_rq->on_list) {
 311                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 312                cfs_rq->on_list = 0;
 313        }
 314}
 315
 316/* Iterate thr' all leaf cfs_rq's on a runqueue */
 317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 318        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
 319
 320/* Do the two (enqueued) entities belong to the same group ? */
 321static inline struct cfs_rq *
 322is_same_group(struct sched_entity *se, struct sched_entity *pse)
 323{
 324        if (se->cfs_rq == pse->cfs_rq)
 325                return se->cfs_rq;
 326
 327        return NULL;
 328}
 329
 330static inline struct sched_entity *parent_entity(struct sched_entity *se)
 331{
 332        return se->parent;
 333}
 334
 335static void
 336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 337{
 338        int se_depth, pse_depth;
 339
 340        /*
 341         * preemption test can be made between sibling entities who are in the
 342         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 343         * both tasks until we find their ancestors who are siblings of common
 344         * parent.
 345         */
 346
 347        /* First walk up until both entities are at same depth */
 348        se_depth = (*se)->depth;
 349        pse_depth = (*pse)->depth;
 350
 351        while (se_depth > pse_depth) {
 352                se_depth--;
 353                *se = parent_entity(*se);
 354        }
 355
 356        while (pse_depth > se_depth) {
 357                pse_depth--;
 358                *pse = parent_entity(*pse);
 359        }
 360
 361        while (!is_same_group(*se, *pse)) {
 362                *se = parent_entity(*se);
 363                *pse = parent_entity(*pse);
 364        }
 365}
 366
 367#else   /* !CONFIG_FAIR_GROUP_SCHED */
 368
 369static inline struct task_struct *task_of(struct sched_entity *se)
 370{
 371        return container_of(se, struct task_struct, se);
 372}
 373
 374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 375{
 376        return container_of(cfs_rq, struct rq, cfs);
 377}
 378
 379#define entity_is_task(se)      1
 380
 381#define for_each_sched_entity(se) \
 382                for (; se; se = NULL)
 383
 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 385{
 386        return &task_rq(p)->cfs;
 387}
 388
 389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 390{
 391        struct task_struct *p = task_of(se);
 392        struct rq *rq = task_rq(p);
 393
 394        return &rq->cfs;
 395}
 396
 397/* runqueue "owned" by this group */
 398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 399{
 400        return NULL;
 401}
 402
 403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 404{
 405}
 406
 407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 408{
 409}
 410
 411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
 412                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 413
 414static inline struct sched_entity *parent_entity(struct sched_entity *se)
 415{
 416        return NULL;
 417}
 418
 419static inline void
 420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 421{
 422}
 423
 424#endif  /* CONFIG_FAIR_GROUP_SCHED */
 425
 426static __always_inline
 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 428
 429/**************************************************************
 430 * Scheduling class tree data structure manipulation methods:
 431 */
 432
 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 434{
 435        s64 delta = (s64)(vruntime - max_vruntime);
 436        if (delta > 0)
 437                max_vruntime = vruntime;
 438
 439        return max_vruntime;
 440}
 441
 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 443{
 444        s64 delta = (s64)(vruntime - min_vruntime);
 445        if (delta < 0)
 446                min_vruntime = vruntime;
 447
 448        return min_vruntime;
 449}
 450
 451static inline int entity_before(struct sched_entity *a,
 452                                struct sched_entity *b)
 453{
 454        return (s64)(a->vruntime - b->vruntime) < 0;
 455}
 456
 457static void update_min_vruntime(struct cfs_rq *cfs_rq)
 458{
 459        u64 vruntime = cfs_rq->min_vruntime;
 460
 461        if (cfs_rq->curr)
 462                vruntime = cfs_rq->curr->vruntime;
 463
 464        if (cfs_rq->rb_leftmost) {
 465                struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
 466                                                   struct sched_entity,
 467                                                   run_node);
 468
 469                if (!cfs_rq->curr)
 470                        vruntime = se->vruntime;
 471                else
 472                        vruntime = min_vruntime(vruntime, se->vruntime);
 473        }
 474
 475        /* ensure we never gain time by being placed backwards. */
 476        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 477#ifndef CONFIG_64BIT
 478        smp_wmb();
 479        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 480#endif
 481}
 482
 483/*
 484 * Enqueue an entity into the rb-tree:
 485 */
 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 487{
 488        struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
 489        struct rb_node *parent = NULL;
 490        struct sched_entity *entry;
 491        int leftmost = 1;
 492
 493        /*
 494         * Find the right place in the rbtree:
 495         */
 496        while (*link) {
 497                parent = *link;
 498                entry = rb_entry(parent, struct sched_entity, run_node);
 499                /*
 500                 * We dont care about collisions. Nodes with
 501                 * the same key stay together.
 502                 */
 503                if (entity_before(se, entry)) {
 504                        link = &parent->rb_left;
 505                } else {
 506                        link = &parent->rb_right;
 507                        leftmost = 0;
 508                }
 509        }
 510
 511        /*
 512         * Maintain a cache of leftmost tree entries (it is frequently
 513         * used):
 514         */
 515        if (leftmost)
 516                cfs_rq->rb_leftmost = &se->run_node;
 517
 518        rb_link_node(&se->run_node, parent, link);
 519        rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
 520}
 521
 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 523{
 524        if (cfs_rq->rb_leftmost == &se->run_node) {
 525                struct rb_node *next_node;
 526
 527                next_node = rb_next(&se->run_node);
 528                cfs_rq->rb_leftmost = next_node;
 529        }
 530
 531        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 532}
 533
 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 535{
 536        struct rb_node *left = cfs_rq->rb_leftmost;
 537
 538        if (!left)
 539                return NULL;
 540
 541        return rb_entry(left, struct sched_entity, run_node);
 542}
 543
 544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 545{
 546        struct rb_node *next = rb_next(&se->run_node);
 547
 548        if (!next)
 549                return NULL;
 550
 551        return rb_entry(next, struct sched_entity, run_node);
 552}
 553
 554#ifdef CONFIG_SCHED_DEBUG
 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 556{
 557        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
 558
 559        if (!last)
 560                return NULL;
 561
 562        return rb_entry(last, struct sched_entity, run_node);
 563}
 564
 565/**************************************************************
 566 * Scheduling class statistics methods:
 567 */
 568
 569int sched_proc_update_handler(struct ctl_table *table, int write,
 570                void __user *buffer, size_t *lenp,
 571                loff_t *ppos)
 572{
 573        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 574        unsigned int factor = get_update_sysctl_factor();
 575
 576        if (ret || !write)
 577                return ret;
 578
 579        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 580                                        sysctl_sched_min_granularity);
 581
 582#define WRT_SYSCTL(name) \
 583        (normalized_sysctl_##name = sysctl_##name / (factor))
 584        WRT_SYSCTL(sched_min_granularity);
 585        WRT_SYSCTL(sched_latency);
 586        WRT_SYSCTL(sched_wakeup_granularity);
 587#undef WRT_SYSCTL
 588
 589        return 0;
 590}
 591#endif
 592
 593/*
 594 * delta /= w
 595 */
 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 597{
 598        if (unlikely(se->load.weight != NICE_0_LOAD))
 599                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 600
 601        return delta;
 602}
 603
 604/*
 605 * The idea is to set a period in which each task runs once.
 606 *
 607 * When there are too many tasks (sched_nr_latency) we have to stretch
 608 * this period because otherwise the slices get too small.
 609 *
 610 * p = (nr <= nl) ? l : l*nr/nl
 611 */
 612static u64 __sched_period(unsigned long nr_running)
 613{
 614        if (unlikely(nr_running > sched_nr_latency))
 615                return nr_running * sysctl_sched_min_granularity;
 616        else
 617                return sysctl_sched_latency;
 618}
 619
 620/*
 621 * We calculate the wall-time slice from the period by taking a part
 622 * proportional to the weight.
 623 *
 624 * s = p*P[w/rw]
 625 */
 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 627{
 628        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 629
 630        for_each_sched_entity(se) {
 631                struct load_weight *load;
 632                struct load_weight lw;
 633
 634                cfs_rq = cfs_rq_of(se);
 635                load = &cfs_rq->load;
 636
 637                if (unlikely(!se->on_rq)) {
 638                        lw = cfs_rq->load;
 639
 640                        update_load_add(&lw, se->load.weight);
 641                        load = &lw;
 642                }
 643                slice = __calc_delta(slice, se->load.weight, load);
 644        }
 645        return slice;
 646}
 647
 648/*
 649 * We calculate the vruntime slice of a to-be-inserted task.
 650 *
 651 * vs = s/w
 652 */
 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 654{
 655        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 656}
 657
 658#ifdef CONFIG_SMP
 659static int select_idle_sibling(struct task_struct *p, int cpu);
 660static unsigned long task_h_load(struct task_struct *p);
 661
 662/*
 663 * We choose a half-life close to 1 scheduling period.
 664 * Note: The tables below are dependent on this value.
 665 */
 666#define LOAD_AVG_PERIOD 32
 667#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
 668#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
 669
 670/* Give new sched_entity start runnable values to heavy its load in infant time */
 671void init_entity_runnable_average(struct sched_entity *se)
 672{
 673        struct sched_avg *sa = &se->avg;
 674
 675        sa->last_update_time = 0;
 676        /*
 677         * sched_avg's period_contrib should be strictly less then 1024, so
 678         * we give it 1023 to make sure it is almost a period (1024us), and
 679         * will definitely be update (after enqueue).
 680         */
 681        sa->period_contrib = 1023;
 682        sa->load_avg = scale_load_down(se->load.weight);
 683        sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
 684        sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
 685        sa->util_sum = LOAD_AVG_MAX;
 686        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 687}
 688
 689static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
 690static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
 691#else
 692void init_entity_runnable_average(struct sched_entity *se)
 693{
 694}
 695#endif
 696
 697/*
 698 * Update the current task's runtime statistics.
 699 */
 700static void update_curr(struct cfs_rq *cfs_rq)
 701{
 702        struct sched_entity *curr = cfs_rq->curr;
 703        u64 now = rq_clock_task(rq_of(cfs_rq));
 704        u64 delta_exec;
 705
 706        if (unlikely(!curr))
 707                return;
 708
 709        delta_exec = now - curr->exec_start;
 710        if (unlikely((s64)delta_exec <= 0))
 711                return;
 712
 713        curr->exec_start = now;
 714
 715        schedstat_set(curr->statistics.exec_max,
 716                      max(delta_exec, curr->statistics.exec_max));
 717
 718        curr->sum_exec_runtime += delta_exec;
 719        schedstat_add(cfs_rq, exec_clock, delta_exec);
 720
 721        curr->vruntime += calc_delta_fair(delta_exec, curr);
 722        update_min_vruntime(cfs_rq);
 723
 724        if (entity_is_task(curr)) {
 725                struct task_struct *curtask = task_of(curr);
 726
 727                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 728                cpuacct_charge(curtask, delta_exec);
 729                account_group_exec_runtime(curtask, delta_exec);
 730        }
 731
 732        account_cfs_rq_runtime(cfs_rq, delta_exec);
 733}
 734
 735static void update_curr_fair(struct rq *rq)
 736{
 737        update_curr(cfs_rq_of(&rq->curr->se));
 738}
 739
 740static inline void
 741update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 742{
 743        schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
 744}
 745
 746/*
 747 * Task is being enqueued - update stats:
 748 */
 749static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 750{
 751        /*
 752         * Are we enqueueing a waiting task? (for current tasks
 753         * a dequeue/enqueue event is a NOP)
 754         */
 755        if (se != cfs_rq->curr)
 756                update_stats_wait_start(cfs_rq, se);
 757}
 758
 759static void
 760update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 761{
 762        schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
 763                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
 764        schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
 765        schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
 766                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 767#ifdef CONFIG_SCHEDSTATS
 768        if (entity_is_task(se)) {
 769                trace_sched_stat_wait(task_of(se),
 770                        rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
 771        }
 772#endif
 773        schedstat_set(se->statistics.wait_start, 0);
 774}
 775
 776static inline void
 777update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
 778{
 779        /*
 780         * Mark the end of the wait period if dequeueing a
 781         * waiting task:
 782         */
 783        if (se != cfs_rq->curr)
 784                update_stats_wait_end(cfs_rq, se);
 785}
 786
 787/*
 788 * We are picking a new current task - update its stats:
 789 */
 790static inline void
 791update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 792{
 793        /*
 794         * We are starting a new run period:
 795         */
 796        se->exec_start = rq_clock_task(rq_of(cfs_rq));
 797}
 798
 799/**************************************************
 800 * Scheduling class queueing methods:
 801 */
 802
 803#ifdef CONFIG_NUMA_BALANCING
 804/*
 805 * Approximate time to scan a full NUMA task in ms. The task scan period is
 806 * calculated based on the tasks virtual memory size and
 807 * numa_balancing_scan_size.
 808 */
 809unsigned int sysctl_numa_balancing_scan_period_min = 1000;
 810unsigned int sysctl_numa_balancing_scan_period_max = 60000;
 811
 812/* Portion of address space to scan in MB */
 813unsigned int sysctl_numa_balancing_scan_size = 256;
 814
 815/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
 816unsigned int sysctl_numa_balancing_scan_delay = 1000;
 817
 818static unsigned int task_nr_scan_windows(struct task_struct *p)
 819{
 820        unsigned long rss = 0;
 821        unsigned long nr_scan_pages;
 822
 823        /*
 824         * Calculations based on RSS as non-present and empty pages are skipped
 825         * by the PTE scanner and NUMA hinting faults should be trapped based
 826         * on resident pages
 827         */
 828        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
 829        rss = get_mm_rss(p->mm);
 830        if (!rss)
 831                rss = nr_scan_pages;
 832
 833        rss = round_up(rss, nr_scan_pages);
 834        return rss / nr_scan_pages;
 835}
 836
 837/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
 838#define MAX_SCAN_WINDOW 2560
 839
 840static unsigned int task_scan_min(struct task_struct *p)
 841{
 842        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
 843        unsigned int scan, floor;
 844        unsigned int windows = 1;
 845
 846        if (scan_size < MAX_SCAN_WINDOW)
 847                windows = MAX_SCAN_WINDOW / scan_size;
 848        floor = 1000 / windows;
 849
 850        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
 851        return max_t(unsigned int, floor, scan);
 852}
 853
 854static unsigned int task_scan_max(struct task_struct *p)
 855{
 856        unsigned int smin = task_scan_min(p);
 857        unsigned int smax;
 858
 859        /* Watch for min being lower than max due to floor calculations */
 860        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
 861        return max(smin, smax);
 862}
 863
 864static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
 865{
 866        rq->nr_numa_running += (p->numa_preferred_nid != -1);
 867        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
 868}
 869
 870static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
 871{
 872        rq->nr_numa_running -= (p->numa_preferred_nid != -1);
 873        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
 874}
 875
 876struct numa_group {
 877        atomic_t refcount;
 878
 879        spinlock_t lock; /* nr_tasks, tasks */
 880        int nr_tasks;
 881        pid_t gid;
 882
 883        struct rcu_head rcu;
 884        nodemask_t active_nodes;
 885        unsigned long total_faults;
 886        /*
 887         * Faults_cpu is used to decide whether memory should move
 888         * towards the CPU. As a consequence, these stats are weighted
 889         * more by CPU use than by memory faults.
 890         */
 891        unsigned long *faults_cpu;
 892        unsigned long faults[0];
 893};
 894
 895/* Shared or private faults. */
 896#define NR_NUMA_HINT_FAULT_TYPES 2
 897
 898/* Memory and CPU locality */
 899#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
 900
 901/* Averaged statistics, and temporary buffers. */
 902#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
 903
 904pid_t task_numa_group_id(struct task_struct *p)
 905{
 906        return p->numa_group ? p->numa_group->gid : 0;
 907}
 908
 909/*
 910 * The averaged statistics, shared & private, memory & cpu,
 911 * occupy the first half of the array. The second half of the
 912 * array is for current counters, which are averaged into the
 913 * first set by task_numa_placement.
 914 */
 915static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
 916{
 917        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
 918}
 919
 920static inline unsigned long task_faults(struct task_struct *p, int nid)
 921{
 922        if (!p->numa_faults)
 923                return 0;
 924
 925        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 926                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
 927}
 928
 929static inline unsigned long group_faults(struct task_struct *p, int nid)
 930{
 931        if (!p->numa_group)
 932                return 0;
 933
 934        return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
 935                p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
 936}
 937
 938static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
 939{
 940        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
 941                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
 942}
 943
 944/* Handle placement on systems where not all nodes are directly connected. */
 945static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
 946                                        int maxdist, bool task)
 947{
 948        unsigned long score = 0;
 949        int node;
 950
 951        /*
 952         * All nodes are directly connected, and the same distance
 953         * from each other. No need for fancy placement algorithms.
 954         */
 955        if (sched_numa_topology_type == NUMA_DIRECT)
 956                return 0;
 957
 958        /*
 959         * This code is called for each node, introducing N^2 complexity,
 960         * which should be ok given the number of nodes rarely exceeds 8.
 961         */
 962        for_each_online_node(node) {
 963                unsigned long faults;
 964                int dist = node_distance(nid, node);
 965
 966                /*
 967                 * The furthest away nodes in the system are not interesting
 968                 * for placement; nid was already counted.
 969                 */
 970                if (dist == sched_max_numa_distance || node == nid)
 971                        continue;
 972
 973                /*
 974                 * On systems with a backplane NUMA topology, compare groups
 975                 * of nodes, and move tasks towards the group with the most
 976                 * memory accesses. When comparing two nodes at distance
 977                 * "hoplimit", only nodes closer by than "hoplimit" are part
 978                 * of each group. Skip other nodes.
 979                 */
 980                if (sched_numa_topology_type == NUMA_BACKPLANE &&
 981                                        dist > maxdist)
 982                        continue;
 983
 984                /* Add up the faults from nearby nodes. */
 985                if (task)
 986                        faults = task_faults(p, node);
 987                else
 988                        faults = group_faults(p, node);
 989
 990                /*
 991                 * On systems with a glueless mesh NUMA topology, there are
 992                 * no fixed "groups of nodes". Instead, nodes that are not
 993                 * directly connected bounce traffic through intermediate
 994                 * nodes; a numa_group can occupy any set of nodes.
 995                 * The further away a node is, the less the faults count.
 996                 * This seems to result in good task placement.
 997                 */
 998                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
 999                        faults *= (sched_max_numa_distance - dist);
1000                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1001                }
1002
1003                score += faults;
1004        }
1005
1006        return score;
1007}
1008
1009/*
1010 * These return the fraction of accesses done by a particular task, or
1011 * task group, on a particular numa node.  The group weight is given a
1012 * larger multiplier, in order to group tasks together that are almost
1013 * evenly spread out between numa nodes.
1014 */
1015static inline unsigned long task_weight(struct task_struct *p, int nid,
1016                                        int dist)
1017{
1018        unsigned long faults, total_faults;
1019
1020        if (!p->numa_faults)
1021                return 0;
1022
1023        total_faults = p->total_numa_faults;
1024
1025        if (!total_faults)
1026                return 0;
1027
1028        faults = task_faults(p, nid);
1029        faults += score_nearby_nodes(p, nid, dist, true);
1030
1031        return 1000 * faults / total_faults;
1032}
1033
1034static inline unsigned long group_weight(struct task_struct *p, int nid,
1035                                         int dist)
1036{
1037        unsigned long faults, total_faults;
1038
1039        if (!p->numa_group)
1040                return 0;
1041
1042        total_faults = p->numa_group->total_faults;
1043
1044        if (!total_faults)
1045                return 0;
1046
1047        faults = group_faults(p, nid);
1048        faults += score_nearby_nodes(p, nid, dist, false);
1049
1050        return 1000 * faults / total_faults;
1051}
1052
1053bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1054                                int src_nid, int dst_cpu)
1055{
1056        struct numa_group *ng = p->numa_group;
1057        int dst_nid = cpu_to_node(dst_cpu);
1058        int last_cpupid, this_cpupid;
1059
1060        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1061
1062        /*
1063         * Multi-stage node selection is used in conjunction with a periodic
1064         * migration fault to build a temporal task<->page relation. By using
1065         * a two-stage filter we remove short/unlikely relations.
1066         *
1067         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1068         * a task's usage of a particular page (n_p) per total usage of this
1069         * page (n_t) (in a given time-span) to a probability.
1070         *
1071         * Our periodic faults will sample this probability and getting the
1072         * same result twice in a row, given these samples are fully
1073         * independent, is then given by P(n)^2, provided our sample period
1074         * is sufficiently short compared to the usage pattern.
1075         *
1076         * This quadric squishes small probabilities, making it less likely we
1077         * act on an unlikely task<->page relation.
1078         */
1079        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1080        if (!cpupid_pid_unset(last_cpupid) &&
1081                                cpupid_to_nid(last_cpupid) != dst_nid)
1082                return false;
1083
1084        /* Always allow migrate on private faults */
1085        if (cpupid_match_pid(p, last_cpupid))
1086                return true;
1087
1088        /* A shared fault, but p->numa_group has not been set up yet. */
1089        if (!ng)
1090                return true;
1091
1092        /*
1093         * Do not migrate if the destination is not a node that
1094         * is actively used by this numa group.
1095         */
1096        if (!node_isset(dst_nid, ng->active_nodes))
1097                return false;
1098
1099        /*
1100         * Source is a node that is not actively used by this
1101         * numa group, while the destination is. Migrate.
1102         */
1103        if (!node_isset(src_nid, ng->active_nodes))
1104                return true;
1105
1106        /*
1107         * Both source and destination are nodes in active
1108         * use by this numa group. Maximize memory bandwidth
1109         * by migrating from more heavily used groups, to less
1110         * heavily used ones, spreading the load around.
1111         * Use a 1/4 hysteresis to avoid spurious page movement.
1112         */
1113        return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1114}
1115
1116static unsigned long weighted_cpuload(const int cpu);
1117static unsigned long source_load(int cpu, int type);
1118static unsigned long target_load(int cpu, int type);
1119static unsigned long capacity_of(int cpu);
1120static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1121
1122/* Cached statistics for all CPUs within a node */
1123struct numa_stats {
1124        unsigned long nr_running;
1125        unsigned long load;
1126
1127        /* Total compute capacity of CPUs on a node */
1128        unsigned long compute_capacity;
1129
1130        /* Approximate capacity in terms of runnable tasks on a node */
1131        unsigned long task_capacity;
1132        int has_free_capacity;
1133};
1134
1135/*
1136 * XXX borrowed from update_sg_lb_stats
1137 */
1138static void update_numa_stats(struct numa_stats *ns, int nid)
1139{
1140        int smt, cpu, cpus = 0;
1141        unsigned long capacity;
1142
1143        memset(ns, 0, sizeof(*ns));
1144        for_each_cpu(cpu, cpumask_of_node(nid)) {
1145                struct rq *rq = cpu_rq(cpu);
1146
1147                ns->nr_running += rq->nr_running;
1148                ns->load += weighted_cpuload(cpu);
1149                ns->compute_capacity += capacity_of(cpu);
1150
1151                cpus++;
1152        }
1153
1154        /*
1155         * If we raced with hotplug and there are no CPUs left in our mask
1156         * the @ns structure is NULL'ed and task_numa_compare() will
1157         * not find this node attractive.
1158         *
1159         * We'll either bail at !has_free_capacity, or we'll detect a huge
1160         * imbalance and bail there.
1161         */
1162        if (!cpus)
1163                return;
1164
1165        /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1166        smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1167        capacity = cpus / smt; /* cores */
1168
1169        ns->task_capacity = min_t(unsigned, capacity,
1170                DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1171        ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1172}
1173
1174struct task_numa_env {
1175        struct task_struct *p;
1176
1177        int src_cpu, src_nid;
1178        int dst_cpu, dst_nid;
1179
1180        struct numa_stats src_stats, dst_stats;
1181
1182        int imbalance_pct;
1183        int dist;
1184
1185        struct task_struct *best_task;
1186        long best_imp;
1187        int best_cpu;
1188};
1189
1190static void task_numa_assign(struct task_numa_env *env,
1191                             struct task_struct *p, long imp)
1192{
1193        if (env->best_task)
1194                put_task_struct(env->best_task);
1195        if (p)
1196                get_task_struct(p);
1197
1198        env->best_task = p;
1199        env->best_imp = imp;
1200        env->best_cpu = env->dst_cpu;
1201}
1202
1203static bool load_too_imbalanced(long src_load, long dst_load,
1204                                struct task_numa_env *env)
1205{
1206        long imb, old_imb;
1207        long orig_src_load, orig_dst_load;
1208        long src_capacity, dst_capacity;
1209
1210        /*
1211         * The load is corrected for the CPU capacity available on each node.
1212         *
1213         * src_load        dst_load
1214         * ------------ vs ---------
1215         * src_capacity    dst_capacity
1216         */
1217        src_capacity = env->src_stats.compute_capacity;
1218        dst_capacity = env->dst_stats.compute_capacity;
1219
1220        /* We care about the slope of the imbalance, not the direction. */
1221        if (dst_load < src_load)
1222                swap(dst_load, src_load);
1223
1224        /* Is the difference below the threshold? */
1225        imb = dst_load * src_capacity * 100 -
1226              src_load * dst_capacity * env->imbalance_pct;
1227        if (imb <= 0)
1228                return false;
1229
1230        /*
1231         * The imbalance is above the allowed threshold.
1232         * Compare it with the old imbalance.
1233         */
1234        orig_src_load = env->src_stats.load;
1235        orig_dst_load = env->dst_stats.load;
1236
1237        if (orig_dst_load < orig_src_load)
1238                swap(orig_dst_load, orig_src_load);
1239
1240        old_imb = orig_dst_load * src_capacity * 100 -
1241                  orig_src_load * dst_capacity * env->imbalance_pct;
1242
1243        /* Would this change make things worse? */
1244        return (imb > old_imb);
1245}
1246
1247/*
1248 * This checks if the overall compute and NUMA accesses of the system would
1249 * be improved if the source tasks was migrated to the target dst_cpu taking
1250 * into account that it might be best if task running on the dst_cpu should
1251 * be exchanged with the source task
1252 */
1253static void task_numa_compare(struct task_numa_env *env,
1254                              long taskimp, long groupimp)
1255{
1256        struct rq *src_rq = cpu_rq(env->src_cpu);
1257        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1258        struct task_struct *cur;
1259        long src_load, dst_load;
1260        long load;
1261        long imp = env->p->numa_group ? groupimp : taskimp;
1262        long moveimp = imp;
1263        int dist = env->dist;
1264
1265        rcu_read_lock();
1266
1267        raw_spin_lock_irq(&dst_rq->lock);
1268        cur = dst_rq->curr;
1269        /*
1270         * No need to move the exiting task, and this ensures that ->curr
1271         * wasn't reaped and thus get_task_struct() in task_numa_assign()
1272         * is safe under RCU read lock.
1273         * Note that rcu_read_lock() itself can't protect from the final
1274         * put_task_struct() after the last schedule().
1275         */
1276        if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1277                cur = NULL;
1278        raw_spin_unlock_irq(&dst_rq->lock);
1279
1280        /*
1281         * Because we have preemption enabled we can get migrated around and
1282         * end try selecting ourselves (current == env->p) as a swap candidate.
1283         */
1284        if (cur == env->p)
1285                goto unlock;
1286
1287        /*
1288         * "imp" is the fault differential for the source task between the
1289         * source and destination node. Calculate the total differential for
1290         * the source task and potential destination task. The more negative
1291         * the value is, the more rmeote accesses that would be expected to
1292         * be incurred if the tasks were swapped.
1293         */
1294        if (cur) {
1295                /* Skip this swap candidate if cannot move to the source cpu */
1296                if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1297                        goto unlock;
1298
1299                /*
1300                 * If dst and source tasks are in the same NUMA group, or not
1301                 * in any group then look only at task weights.
1302                 */
1303                if (cur->numa_group == env->p->numa_group) {
1304                        imp = taskimp + task_weight(cur, env->src_nid, dist) -
1305                              task_weight(cur, env->dst_nid, dist);
1306                        /*
1307                         * Add some hysteresis to prevent swapping the
1308                         * tasks within a group over tiny differences.
1309                         */
1310                        if (cur->numa_group)
1311                                imp -= imp/16;
1312                } else {
1313                        /*
1314                         * Compare the group weights. If a task is all by
1315                         * itself (not part of a group), use the task weight
1316                         * instead.
1317                         */
1318                        if (cur->numa_group)
1319                                imp += group_weight(cur, env->src_nid, dist) -
1320                                       group_weight(cur, env->dst_nid, dist);
1321                        else
1322                                imp += task_weight(cur, env->src_nid, dist) -
1323                                       task_weight(cur, env->dst_nid, dist);
1324                }
1325        }
1326
1327        if (imp <= env->best_imp && moveimp <= env->best_imp)
1328                goto unlock;
1329
1330        if (!cur) {
1331                /* Is there capacity at our destination? */
1332                if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1333                    !env->dst_stats.has_free_capacity)
1334                        goto unlock;
1335
1336                goto balance;
1337        }
1338
1339        /* Balance doesn't matter much if we're running a task per cpu */
1340        if (imp > env->best_imp && src_rq->nr_running == 1 &&
1341                        dst_rq->nr_running == 1)
1342                goto assign;
1343
1344        /*
1345         * In the overloaded case, try and keep the load balanced.
1346         */
1347balance:
1348        load = task_h_load(env->p);
1349        dst_load = env->dst_stats.load + load;
1350        src_load = env->src_stats.load - load;
1351
1352        if (moveimp > imp && moveimp > env->best_imp) {
1353                /*
1354                 * If the improvement from just moving env->p direction is
1355                 * better than swapping tasks around, check if a move is
1356                 * possible. Store a slightly smaller score than moveimp,
1357                 * so an actually idle CPU will win.
1358                 */
1359                if (!load_too_imbalanced(src_load, dst_load, env)) {
1360                        imp = moveimp - 1;
1361                        cur = NULL;
1362                        goto assign;
1363                }
1364        }
1365
1366        if (imp <= env->best_imp)
1367                goto unlock;
1368
1369        if (cur) {
1370                load = task_h_load(cur);
1371                dst_load -= load;
1372                src_load += load;
1373        }
1374
1375        if (load_too_imbalanced(src_load, dst_load, env))
1376                goto unlock;
1377
1378        /*
1379         * One idle CPU per node is evaluated for a task numa move.
1380         * Call select_idle_sibling to maybe find a better one.
1381         */
1382        if (!cur)
1383                env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1384
1385assign:
1386        task_numa_assign(env, cur, imp);
1387unlock:
1388        rcu_read_unlock();
1389}
1390
1391static void task_numa_find_cpu(struct task_numa_env *env,
1392                                long taskimp, long groupimp)
1393{
1394        int cpu;
1395
1396        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1397                /* Skip this CPU if the source task cannot migrate */
1398                if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1399                        continue;
1400
1401                env->dst_cpu = cpu;
1402                task_numa_compare(env, taskimp, groupimp);
1403        }
1404}
1405
1406/* Only move tasks to a NUMA node less busy than the current node. */
1407static bool numa_has_capacity(struct task_numa_env *env)
1408{
1409        struct numa_stats *src = &env->src_stats;
1410        struct numa_stats *dst = &env->dst_stats;
1411
1412        if (src->has_free_capacity && !dst->has_free_capacity)
1413                return false;
1414
1415        /*
1416         * Only consider a task move if the source has a higher load
1417         * than the destination, corrected for CPU capacity on each node.
1418         *
1419         *      src->load                dst->load
1420         * --------------------- vs ---------------------
1421         * src->compute_capacity    dst->compute_capacity
1422         */
1423        if (src->load * dst->compute_capacity * env->imbalance_pct >
1424
1425            dst->load * src->compute_capacity * 100)
1426                return true;
1427
1428        return false;
1429}
1430
1431static int task_numa_migrate(struct task_struct *p)
1432{
1433        struct task_numa_env env = {
1434                .p = p,
1435
1436                .src_cpu = task_cpu(p),
1437                .src_nid = task_node(p),
1438
1439                .imbalance_pct = 112,
1440
1441                .best_task = NULL,
1442                .best_imp = 0,
1443                .best_cpu = -1
1444        };
1445        struct sched_domain *sd;
1446        unsigned long taskweight, groupweight;
1447        int nid, ret, dist;
1448        long taskimp, groupimp;
1449
1450        /*
1451         * Pick the lowest SD_NUMA domain, as that would have the smallest
1452         * imbalance and would be the first to start moving tasks about.
1453         *
1454         * And we want to avoid any moving of tasks about, as that would create
1455         * random movement of tasks -- counter the numa conditions we're trying
1456         * to satisfy here.
1457         */
1458        rcu_read_lock();
1459        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1460        if (sd)
1461                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1462        rcu_read_unlock();
1463
1464        /*
1465         * Cpusets can break the scheduler domain tree into smaller
1466         * balance domains, some of which do not cross NUMA boundaries.
1467         * Tasks that are "trapped" in such domains cannot be migrated
1468         * elsewhere, so there is no point in (re)trying.
1469         */
1470        if (unlikely(!sd)) {
1471                p->numa_preferred_nid = task_node(p);
1472                return -EINVAL;
1473        }
1474
1475        env.dst_nid = p->numa_preferred_nid;
1476        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1477        taskweight = task_weight(p, env.src_nid, dist);
1478        groupweight = group_weight(p, env.src_nid, dist);
1479        update_numa_stats(&env.src_stats, env.src_nid);
1480        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1481        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1482        update_numa_stats(&env.dst_stats, env.dst_nid);
1483
1484        /* Try to find a spot on the preferred nid. */
1485        if (numa_has_capacity(&env))
1486                task_numa_find_cpu(&env, taskimp, groupimp);
1487
1488        /*
1489         * Look at other nodes in these cases:
1490         * - there is no space available on the preferred_nid
1491         * - the task is part of a numa_group that is interleaved across
1492         *   multiple NUMA nodes; in order to better consolidate the group,
1493         *   we need to check other locations.
1494         */
1495        if (env.best_cpu == -1 || (p->numa_group &&
1496                        nodes_weight(p->numa_group->active_nodes) > 1)) {
1497                for_each_online_node(nid) {
1498                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
1499                                continue;
1500
1501                        dist = node_distance(env.src_nid, env.dst_nid);
1502                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
1503                                                dist != env.dist) {
1504                                taskweight = task_weight(p, env.src_nid, dist);
1505                                groupweight = group_weight(p, env.src_nid, dist);
1506                        }
1507
1508                        /* Only consider nodes where both task and groups benefit */
1509                        taskimp = task_weight(p, nid, dist) - taskweight;
1510                        groupimp = group_weight(p, nid, dist) - groupweight;
1511                        if (taskimp < 0 && groupimp < 0)
1512                                continue;
1513
1514                        env.dist = dist;
1515                        env.dst_nid = nid;
1516                        update_numa_stats(&env.dst_stats, env.dst_nid);
1517                        if (numa_has_capacity(&env))
1518                                task_numa_find_cpu(&env, taskimp, groupimp);
1519                }
1520        }
1521
1522        /*
1523         * If the task is part of a workload that spans multiple NUMA nodes,
1524         * and is migrating into one of the workload's active nodes, remember
1525         * this node as the task's preferred numa node, so the workload can
1526         * settle down.
1527         * A task that migrated to a second choice node will be better off
1528         * trying for a better one later. Do not set the preferred node here.
1529         */
1530        if (p->numa_group) {
1531                if (env.best_cpu == -1)
1532                        nid = env.src_nid;
1533                else
1534                        nid = env.dst_nid;
1535
1536                if (node_isset(nid, p->numa_group->active_nodes))
1537                        sched_setnuma(p, env.dst_nid);
1538        }
1539
1540        /* No better CPU than the current one was found. */
1541        if (env.best_cpu == -1)
1542                return -EAGAIN;
1543
1544        /*
1545         * Reset the scan period if the task is being rescheduled on an
1546         * alternative node to recheck if the tasks is now properly placed.
1547         */
1548        p->numa_scan_period = task_scan_min(p);
1549
1550        if (env.best_task == NULL) {
1551                ret = migrate_task_to(p, env.best_cpu);
1552                if (ret != 0)
1553                        trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1554                return ret;
1555        }
1556
1557        ret = migrate_swap(p, env.best_task);
1558        if (ret != 0)
1559                trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1560        put_task_struct(env.best_task);
1561        return ret;
1562}
1563
1564/* Attempt to migrate a task to a CPU on the preferred node. */
1565static void numa_migrate_preferred(struct task_struct *p)
1566{
1567        unsigned long interval = HZ;
1568
1569        /* This task has no NUMA fault statistics yet */
1570        if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1571                return;
1572
1573        /* Periodically retry migrating the task to the preferred node */
1574        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1575        p->numa_migrate_retry = jiffies + interval;
1576
1577        /* Success if task is already running on preferred CPU */
1578        if (task_node(p) == p->numa_preferred_nid)
1579                return;
1580
1581        /* Otherwise, try migrate to a CPU on the preferred node */
1582        task_numa_migrate(p);
1583}
1584
1585/*
1586 * Find the nodes on which the workload is actively running. We do this by
1587 * tracking the nodes from which NUMA hinting faults are triggered. This can
1588 * be different from the set of nodes where the workload's memory is currently
1589 * located.
1590 *
1591 * The bitmask is used to make smarter decisions on when to do NUMA page
1592 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1593 * are added when they cause over 6/16 of the maximum number of faults, but
1594 * only removed when they drop below 3/16.
1595 */
1596static void update_numa_active_node_mask(struct numa_group *numa_group)
1597{
1598        unsigned long faults, max_faults = 0;
1599        int nid;
1600
1601        for_each_online_node(nid) {
1602                faults = group_faults_cpu(numa_group, nid);
1603                if (faults > max_faults)
1604                        max_faults = faults;
1605        }
1606
1607        for_each_online_node(nid) {
1608                faults = group_faults_cpu(numa_group, nid);
1609                if (!node_isset(nid, numa_group->active_nodes)) {
1610                        if (faults > max_faults * 6 / 16)
1611                                node_set(nid, numa_group->active_nodes);
1612                } else if (faults < max_faults * 3 / 16)
1613                        node_clear(nid, numa_group->active_nodes);
1614        }
1615}
1616
1617/*
1618 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1619 * increments. The more local the fault statistics are, the higher the scan
1620 * period will be for the next scan window. If local/(local+remote) ratio is
1621 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1622 * the scan period will decrease. Aim for 70% local accesses.
1623 */
1624#define NUMA_PERIOD_SLOTS 10
1625#define NUMA_PERIOD_THRESHOLD 7
1626
1627/*
1628 * Increase the scan period (slow down scanning) if the majority of
1629 * our memory is already on our local node, or if the majority of
1630 * the page accesses are shared with other processes.
1631 * Otherwise, decrease the scan period.
1632 */
1633static void update_task_scan_period(struct task_struct *p,
1634                        unsigned long shared, unsigned long private)
1635{
1636        unsigned int period_slot;
1637        int ratio;
1638        int diff;
1639
1640        unsigned long remote = p->numa_faults_locality[0];
1641        unsigned long local = p->numa_faults_locality[1];
1642
1643        /*
1644         * If there were no record hinting faults then either the task is
1645         * completely idle or all activity is areas that are not of interest
1646         * to automatic numa balancing. Related to that, if there were failed
1647         * migration then it implies we are migrating too quickly or the local
1648         * node is overloaded. In either case, scan slower
1649         */
1650        if (local + shared == 0 || p->numa_faults_locality[2]) {
1651                p->numa_scan_period = min(p->numa_scan_period_max,
1652                        p->numa_scan_period << 1);
1653
1654                p->mm->numa_next_scan = jiffies +
1655                        msecs_to_jiffies(p->numa_scan_period);
1656
1657                return;
1658        }
1659
1660        /*
1661         * Prepare to scale scan period relative to the current period.
1662         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
1663         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1664         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1665         */
1666        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1667        ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1668        if (ratio >= NUMA_PERIOD_THRESHOLD) {
1669                int slot = ratio - NUMA_PERIOD_THRESHOLD;
1670                if (!slot)
1671                        slot = 1;
1672                diff = slot * period_slot;
1673        } else {
1674                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1675
1676                /*
1677                 * Scale scan rate increases based on sharing. There is an
1678                 * inverse relationship between the degree of sharing and
1679                 * the adjustment made to the scanning period. Broadly
1680                 * speaking the intent is that there is little point
1681                 * scanning faster if shared accesses dominate as it may
1682                 * simply bounce migrations uselessly
1683                 */
1684                ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1685                diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1686        }
1687
1688        p->numa_scan_period = clamp(p->numa_scan_period + diff,
1689                        task_scan_min(p), task_scan_max(p));
1690        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1691}
1692
1693/*
1694 * Get the fraction of time the task has been running since the last
1695 * NUMA placement cycle. The scheduler keeps similar statistics, but
1696 * decays those on a 32ms period, which is orders of magnitude off
1697 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1698 * stats only if the task is so new there are no NUMA statistics yet.
1699 */
1700static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1701{
1702        u64 runtime, delta, now;
1703        /* Use the start of this time slice to avoid calculations. */
1704        now = p->se.exec_start;
1705        runtime = p->se.sum_exec_runtime;
1706
1707        if (p->last_task_numa_placement) {
1708                delta = runtime - p->last_sum_exec_runtime;
1709                *period = now - p->last_task_numa_placement;
1710        } else {
1711                delta = p->se.avg.load_sum / p->se.load.weight;
1712                *period = LOAD_AVG_MAX;
1713        }
1714
1715        p->last_sum_exec_runtime = runtime;
1716        p->last_task_numa_placement = now;
1717
1718        return delta;
1719}
1720
1721/*
1722 * Determine the preferred nid for a task in a numa_group. This needs to
1723 * be done in a way that produces consistent results with group_weight,
1724 * otherwise workloads might not converge.
1725 */
1726static int preferred_group_nid(struct task_struct *p, int nid)
1727{
1728        nodemask_t nodes;
1729        int dist;
1730
1731        /* Direct connections between all NUMA nodes. */
1732        if (sched_numa_topology_type == NUMA_DIRECT)
1733                return nid;
1734
1735        /*
1736         * On a system with glueless mesh NUMA topology, group_weight
1737         * scores nodes according to the number of NUMA hinting faults on
1738         * both the node itself, and on nearby nodes.
1739         */
1740        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1741                unsigned long score, max_score = 0;
1742                int node, max_node = nid;
1743
1744                dist = sched_max_numa_distance;
1745
1746                for_each_online_node(node) {
1747                        score = group_weight(p, node, dist);
1748                        if (score > max_score) {
1749                                max_score = score;
1750                                max_node = node;
1751                        }
1752                }
1753                return max_node;
1754        }
1755
1756        /*
1757         * Finding the preferred nid in a system with NUMA backplane
1758         * interconnect topology is more involved. The goal is to locate
1759         * tasks from numa_groups near each other in the system, and
1760         * untangle workloads from different sides of the system. This requires
1761         * searching down the hierarchy of node groups, recursively searching
1762         * inside the highest scoring group of nodes. The nodemask tricks
1763         * keep the complexity of the search down.
1764         */
1765        nodes = node_online_map;
1766        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1767                unsigned long max_faults = 0;
1768                nodemask_t max_group = NODE_MASK_NONE;
1769                int a, b;
1770
1771                /* Are there nodes at this distance from each other? */
1772                if (!find_numa_distance(dist))
1773                        continue;
1774
1775                for_each_node_mask(a, nodes) {
1776                        unsigned long faults = 0;
1777                        nodemask_t this_group;
1778                        nodes_clear(this_group);
1779
1780                        /* Sum group's NUMA faults; includes a==b case. */
1781                        for_each_node_mask(b, nodes) {
1782                                if (node_distance(a, b) < dist) {
1783                                        faults += group_faults(p, b);
1784                                        node_set(b, this_group);
1785                                        node_clear(b, nodes);
1786                                }
1787                        }
1788
1789                        /* Remember the top group. */
1790                        if (faults > max_faults) {
1791                                max_faults = faults;
1792                                max_group = this_group;
1793                                /*
1794                                 * subtle: at the smallest distance there is
1795                                 * just one node left in each "group", the
1796                                 * winner is the preferred nid.
1797                                 */
1798                                nid = a;
1799                        }
1800                }
1801                /* Next round, evaluate the nodes within max_group. */
1802                if (!max_faults)
1803                        break;
1804                nodes = max_group;
1805        }
1806        return nid;
1807}
1808
1809static void task_numa_placement(struct task_struct *p)
1810{
1811        int seq, nid, max_nid = -1, max_group_nid = -1;
1812        unsigned long max_faults = 0, max_group_faults = 0;
1813        unsigned long fault_types[2] = { 0, 0 };
1814        unsigned long total_faults;
1815        u64 runtime, period;
1816        spinlock_t *group_lock = NULL;
1817
1818        /*
1819         * The p->mm->numa_scan_seq field gets updated without
1820         * exclusive access. Use READ_ONCE() here to ensure
1821         * that the field is read in a single access:
1822         */
1823        seq = READ_ONCE(p->mm->numa_scan_seq);
1824        if (p->numa_scan_seq == seq)
1825                return;
1826        p->numa_scan_seq = seq;
1827        p->numa_scan_period_max = task_scan_max(p);
1828
1829        total_faults = p->numa_faults_locality[0] +
1830                       p->numa_faults_locality[1];
1831        runtime = numa_get_avg_runtime(p, &period);
1832
1833        /* If the task is part of a group prevent parallel updates to group stats */
1834        if (p->numa_group) {
1835                group_lock = &p->numa_group->lock;
1836                spin_lock_irq(group_lock);
1837        }
1838
1839        /* Find the node with the highest number of faults */
1840        for_each_online_node(nid) {
1841                /* Keep track of the offsets in numa_faults array */
1842                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1843                unsigned long faults = 0, group_faults = 0;
1844                int priv;
1845
1846                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1847                        long diff, f_diff, f_weight;
1848
1849                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1850                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1851                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1852                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1853
1854                        /* Decay existing window, copy faults since last scan */
1855                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1856                        fault_types[priv] += p->numa_faults[membuf_idx];
1857                        p->numa_faults[membuf_idx] = 0;
1858
1859                        /*
1860                         * Normalize the faults_from, so all tasks in a group
1861                         * count according to CPU use, instead of by the raw
1862                         * number of faults. Tasks with little runtime have
1863                         * little over-all impact on throughput, and thus their
1864                         * faults are less important.
1865                         */
1866                        f_weight = div64_u64(runtime << 16, period + 1);
1867                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1868                                   (total_faults + 1);
1869                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1870                        p->numa_faults[cpubuf_idx] = 0;
1871
1872                        p->numa_faults[mem_idx] += diff;
1873                        p->numa_faults[cpu_idx] += f_diff;
1874                        faults += p->numa_faults[mem_idx];
1875                        p->total_numa_faults += diff;
1876                        if (p->numa_group) {
1877                                /*
1878                                 * safe because we can only change our own group
1879                                 *
1880                                 * mem_idx represents the offset for a given
1881                                 * nid and priv in a specific region because it
1882                                 * is at the beginning of the numa_faults array.
1883                                 */
1884                                p->numa_group->faults[mem_idx] += diff;
1885                                p->numa_group->faults_cpu[mem_idx] += f_diff;
1886                                p->numa_group->total_faults += diff;
1887                                group_faults += p->numa_group->faults[mem_idx];
1888                        }
1889                }
1890
1891                if (faults > max_faults) {
1892                        max_faults = faults;
1893                        max_nid = nid;
1894                }
1895
1896                if (group_faults > max_group_faults) {
1897                        max_group_faults = group_faults;
1898                        max_group_nid = nid;
1899                }
1900        }
1901
1902        update_task_scan_period(p, fault_types[0], fault_types[1]);
1903
1904        if (p->numa_group) {
1905                update_numa_active_node_mask(p->numa_group);
1906                spin_unlock_irq(group_lock);
1907                max_nid = preferred_group_nid(p, max_group_nid);
1908        }
1909
1910        if (max_faults) {
1911                /* Set the new preferred node */
1912                if (max_nid != p->numa_preferred_nid)
1913                        sched_setnuma(p, max_nid);
1914
1915                if (task_node(p) != p->numa_preferred_nid)
1916                        numa_migrate_preferred(p);
1917        }
1918}
1919
1920static inline int get_numa_group(struct numa_group *grp)
1921{
1922        return atomic_inc_not_zero(&grp->refcount);
1923}
1924
1925static inline void put_numa_group(struct numa_group *grp)
1926{
1927        if (atomic_dec_and_test(&grp->refcount))
1928                kfree_rcu(grp, rcu);
1929}
1930
1931static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1932                        int *priv)
1933{
1934        struct numa_group *grp, *my_grp;
1935        struct task_struct *tsk;
1936        bool join = false;
1937        int cpu = cpupid_to_cpu(cpupid);
1938        int i;
1939
1940        if (unlikely(!p->numa_group)) {
1941                unsigned int size = sizeof(struct numa_group) +
1942                                    4*nr_node_ids*sizeof(unsigned long);
1943
1944                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1945                if (!grp)
1946                        return;
1947
1948                atomic_set(&grp->refcount, 1);
1949                spin_lock_init(&grp->lock);
1950                grp->gid = p->pid;
1951                /* Second half of the array tracks nids where faults happen */
1952                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1953                                                nr_node_ids;
1954
1955                node_set(task_node(current), grp->active_nodes);
1956
1957                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1958                        grp->faults[i] = p->numa_faults[i];
1959
1960                grp->total_faults = p->total_numa_faults;
1961
1962                grp->nr_tasks++;
1963                rcu_assign_pointer(p->numa_group, grp);
1964        }
1965
1966        rcu_read_lock();
1967        tsk = READ_ONCE(cpu_rq(cpu)->curr);
1968
1969        if (!cpupid_match_pid(tsk, cpupid))
1970                goto no_join;
1971
1972        grp = rcu_dereference(tsk->numa_group);
1973        if (!grp)
1974                goto no_join;
1975
1976        my_grp = p->numa_group;
1977        if (grp == my_grp)
1978                goto no_join;
1979
1980        /*
1981         * Only join the other group if its bigger; if we're the bigger group,
1982         * the other task will join us.
1983         */
1984        if (my_grp->nr_tasks > grp->nr_tasks)
1985                goto no_join;
1986
1987        /*
1988         * Tie-break on the grp address.
1989         */
1990        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1991                goto no_join;
1992
1993        /* Always join threads in the same process. */
1994        if (tsk->mm == current->mm)
1995                join = true;
1996
1997        /* Simple filter to avoid false positives due to PID collisions */
1998        if (flags & TNF_SHARED)
1999                join = true;
2000
2001        /* Update priv based on whether false sharing was detected */
2002        *priv = !join;
2003
2004        if (join && !get_numa_group(grp))
2005                goto no_join;
2006
2007        rcu_read_unlock();
2008
2009        if (!join)
2010                return;
2011
2012        BUG_ON(irqs_disabled());
2013        double_lock_irq(&my_grp->lock, &grp->lock);
2014
2015        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2016                my_grp->faults[i] -= p->numa_faults[i];
2017                grp->faults[i] += p->numa_faults[i];
2018        }
2019        my_grp->total_faults -= p->total_numa_faults;
2020        grp->total_faults += p->total_numa_faults;
2021
2022        my_grp->nr_tasks--;
2023        grp->nr_tasks++;
2024
2025        spin_unlock(&my_grp->lock);
2026        spin_unlock_irq(&grp->lock);
2027
2028        rcu_assign_pointer(p->numa_group, grp);
2029
2030        put_numa_group(my_grp);
2031        return;
2032
2033no_join:
2034        rcu_read_unlock();
2035        return;
2036}
2037
2038void task_numa_free(struct task_struct *p)
2039{
2040        struct numa_group *grp = p->numa_group;
2041        void *numa_faults = p->numa_faults;
2042        unsigned long flags;
2043        int i;
2044
2045        if (grp) {
2046                spin_lock_irqsave(&grp->lock, flags);
2047                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2048                        grp->faults[i] -= p->numa_faults[i];
2049                grp->total_faults -= p->total_numa_faults;
2050
2051                grp->nr_tasks--;
2052                spin_unlock_irqrestore(&grp->lock, flags);
2053                RCU_INIT_POINTER(p->numa_group, NULL);
2054                put_numa_group(grp);
2055        }
2056
2057        p->numa_faults = NULL;
2058        kfree(numa_faults);
2059}
2060
2061/*
2062 * Got a PROT_NONE fault for a page on @node.
2063 */
2064void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2065{
2066        struct task_struct *p = current;
2067        bool migrated = flags & TNF_MIGRATED;
2068        int cpu_node = task_node(current);
2069        int local = !!(flags & TNF_FAULT_LOCAL);
2070        int priv;
2071
2072        if (!numabalancing_enabled)
2073                return;
2074
2075        /* for example, ksmd faulting in a user's mm */
2076        if (!p->mm)
2077                return;
2078
2079        /* Allocate buffer to track faults on a per-node basis */
2080        if (unlikely(!p->numa_faults)) {
2081                int size = sizeof(*p->numa_faults) *
2082                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2083
2084                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2085                if (!p->numa_faults)
2086                        return;
2087
2088                p->total_numa_faults = 0;
2089                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2090        }
2091
2092        /*
2093         * First accesses are treated as private, otherwise consider accesses
2094         * to be private if the accessing pid has not changed
2095         */
2096        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2097                priv = 1;
2098        } else {
2099                priv = cpupid_match_pid(p, last_cpupid);
2100                if (!priv && !(flags & TNF_NO_GROUP))
2101                        task_numa_group(p, last_cpupid, flags, &priv);
2102        }
2103
2104        /*
2105         * If a workload spans multiple NUMA nodes, a shared fault that
2106         * occurs wholly within the set of nodes that the workload is
2107         * actively using should be counted as local. This allows the
2108         * scan rate to slow down when a workload has settled down.
2109         */
2110        if (!priv && !local && p->numa_group &&
2111                        node_isset(cpu_node, p->numa_group->active_nodes) &&
2112                        node_isset(mem_node, p->numa_group->active_nodes))
2113                local = 1;
2114
2115        task_numa_placement(p);
2116
2117        /*
2118         * Retry task to preferred node migration periodically, in case it
2119         * case it previously failed, or the scheduler moved us.
2120         */
2121        if (time_after(jiffies, p->numa_migrate_retry))
2122                numa_migrate_preferred(p);
2123
2124        if (migrated)
2125                p->numa_pages_migrated += pages;
2126        if (flags & TNF_MIGRATE_FAIL)
2127                p->numa_faults_locality[2] += pages;
2128
2129        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2130        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2131        p->numa_faults_locality[local] += pages;
2132}
2133
2134static void reset_ptenuma_scan(struct task_struct *p)
2135{
2136        /*
2137         * We only did a read acquisition of the mmap sem, so
2138         * p->mm->numa_scan_seq is written to without exclusive access
2139         * and the update is not guaranteed to be atomic. That's not
2140         * much of an issue though, since this is just used for
2141         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2142         * expensive, to avoid any form of compiler optimizations:
2143         */
2144        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2145        p->mm->numa_scan_offset = 0;
2146}
2147
2148/*
2149 * The expensive part of numa migration is done from task_work context.
2150 * Triggered from task_tick_numa().
2151 */
2152void task_numa_work(struct callback_head *work)
2153{
2154        unsigned long migrate, next_scan, now = jiffies;
2155        struct task_struct *p = current;
2156        struct mm_struct *mm = p->mm;
2157        struct vm_area_struct *vma;
2158        unsigned long start, end;
2159        unsigned long nr_pte_updates = 0;
2160        long pages;
2161
2162        WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2163
2164        work->next = work; /* protect against double add */
2165        /*
2166         * Who cares about NUMA placement when they're dying.
2167         *
2168         * NOTE: make sure not to dereference p->mm before this check,
2169         * exit_task_work() happens _after_ exit_mm() so we could be called
2170         * without p->mm even though we still had it when we enqueued this
2171         * work.
2172         */
2173        if (p->flags & PF_EXITING)
2174                return;
2175
2176        if (!mm->numa_next_scan) {
2177                mm->numa_next_scan = now +
2178                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2179        }
2180
2181        /*
2182         * Enforce maximal scan/migration frequency..
2183         */
2184        migrate = mm->numa_next_scan;
2185        if (time_before(now, migrate))
2186                return;
2187
2188        if (p->numa_scan_period == 0) {
2189                p->numa_scan_period_max = task_scan_max(p);
2190                p->numa_scan_period = task_scan_min(p);
2191        }
2192
2193        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2194        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2195                return;
2196
2197        /*
2198         * Delay this task enough that another task of this mm will likely win
2199         * the next time around.
2200         */
2201        p->node_stamp += 2 * TICK_NSEC;
2202
2203        start = mm->numa_scan_offset;
2204        pages = sysctl_numa_balancing_scan_size;
2205        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2206        if (!pages)
2207                return;
2208
2209        down_read(&mm->mmap_sem);
2210        vma = find_vma(mm, start);
2211        if (!vma) {
2212                reset_ptenuma_scan(p);
2213                start = 0;
2214                vma = mm->mmap;
2215        }
2216        for (; vma; vma = vma->vm_next) {
2217                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2218                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2219                        continue;
2220                }
2221
2222                /*
2223                 * Shared library pages mapped by multiple processes are not
2224                 * migrated as it is expected they are cache replicated. Avoid
2225                 * hinting faults in read-only file-backed mappings or the vdso
2226                 * as migrating the pages will be of marginal benefit.
2227                 */
2228                if (!vma->vm_mm ||
2229                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2230                        continue;
2231
2232                /*
2233                 * Skip inaccessible VMAs to avoid any confusion between
2234                 * PROT_NONE and NUMA hinting ptes
2235                 */
2236                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2237                        continue;
2238
2239                do {
2240                        start = max(start, vma->vm_start);
2241                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2242                        end = min(end, vma->vm_end);
2243                        nr_pte_updates += change_prot_numa(vma, start, end);
2244
2245                        /*
2246                         * Scan sysctl_numa_balancing_scan_size but ensure that
2247                         * at least one PTE is updated so that unused virtual
2248                         * address space is quickly skipped.
2249                         */
2250                        if (nr_pte_updates)
2251                                pages -= (end - start) >> PAGE_SHIFT;
2252
2253                        start = end;
2254                        if (pages <= 0)
2255                                goto out;
2256
2257                        cond_resched();
2258                } while (end != vma->vm_end);
2259        }
2260
2261out:
2262        /*
2263         * It is possible to reach the end of the VMA list but the last few
2264         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2265         * would find the !migratable VMA on the next scan but not reset the
2266         * scanner to the start so check it now.
2267         */
2268        if (vma)
2269                mm->numa_scan_offset = start;
2270        else
2271                reset_ptenuma_scan(p);
2272        up_read(&mm->mmap_sem);
2273}
2274
2275/*
2276 * Drive the periodic memory faults..
2277 */
2278void task_tick_numa(struct rq *rq, struct task_struct *curr)
2279{
2280        struct callback_head *work = &curr->numa_work;
2281        u64 period, now;
2282
2283        /*
2284         * We don't care about NUMA placement if we don't have memory.
2285         */
2286        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2287                return;
2288
2289        /*
2290         * Using runtime rather than walltime has the dual advantage that
2291         * we (mostly) drive the selection from busy threads and that the
2292         * task needs to have done some actual work before we bother with
2293         * NUMA placement.
2294         */
2295        now = curr->se.sum_exec_runtime;
2296        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2297
2298        if (now - curr->node_stamp > period) {
2299                if (!curr->node_stamp)
2300                        curr->numa_scan_period = task_scan_min(curr);
2301                curr->node_stamp += period;
2302
2303                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2304                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2305                        task_work_add(curr, work, true);
2306                }
2307        }
2308}
2309#else
2310static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2311{
2312}
2313
2314static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2315{
2316}
2317
2318static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2319{
2320}
2321#endif /* CONFIG_NUMA_BALANCING */
2322
2323static void
2324account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2325{
2326        update_load_add(&cfs_rq->load, se->load.weight);
2327        if (!parent_entity(se))
2328                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2329#ifdef CONFIG_SMP
2330        if (entity_is_task(se)) {
2331                struct rq *rq = rq_of(cfs_rq);
2332
2333                account_numa_enqueue(rq, task_of(se));
2334                list_add(&se->group_node, &rq->cfs_tasks);
2335        }
2336#endif
2337        cfs_rq->nr_running++;
2338}
2339
2340static void
2341account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2342{
2343        update_load_sub(&cfs_rq->load, se->load.weight);
2344        if (!parent_entity(se))
2345                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2346        if (entity_is_task(se)) {
2347                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2348                list_del_init(&se->group_node);
2349        }
2350        cfs_rq->nr_running--;
2351}
2352
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354# ifdef CONFIG_SMP
2355static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2356{
2357        long tg_weight;
2358
2359        /*
2360         * Use this CPU's real-time load instead of the last load contribution
2361         * as the updating of the contribution is delayed, and we will use the
2362         * the real-time load to calc the share. See update_tg_load_avg().
2363         */
2364        tg_weight = atomic_long_read(&tg->load_avg);
2365        tg_weight -= cfs_rq->tg_load_avg_contrib;
2366        tg_weight += cfs_rq->load.weight;
2367
2368        return tg_weight;
2369}
2370
2371static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2372{
2373        long tg_weight, load, shares;
2374
2375        tg_weight = calc_tg_weight(tg, cfs_rq);
2376        load = cfs_rq->load.weight;
2377
2378        shares = (tg->shares * load);
2379        if (tg_weight)
2380                shares /= tg_weight;
2381
2382        if (shares < MIN_SHARES)
2383                shares = MIN_SHARES;
2384        if (shares > tg->shares)
2385                shares = tg->shares;
2386
2387        return shares;
2388}
2389# else /* CONFIG_SMP */
2390static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2391{
2392        return tg->shares;
2393}
2394# endif /* CONFIG_SMP */
2395static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2396                            unsigned long weight)
2397{
2398        if (se->on_rq) {
2399                /* commit outstanding execution time */
2400                if (cfs_rq->curr == se)
2401                        update_curr(cfs_rq);
2402                account_entity_dequeue(cfs_rq, se);
2403        }
2404
2405        update_load_set(&se->load, weight);
2406
2407        if (se->on_rq)
2408                account_entity_enqueue(cfs_rq, se);
2409}
2410
2411static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2412
2413static void update_cfs_shares(struct cfs_rq *cfs_rq)
2414{
2415        struct task_group *tg;
2416        struct sched_entity *se;
2417        long shares;
2418
2419        tg = cfs_rq->tg;
2420        se = tg->se[cpu_of(rq_of(cfs_rq))];
2421        if (!se || throttled_hierarchy(cfs_rq))
2422                return;
2423#ifndef CONFIG_SMP
2424        if (likely(se->load.weight == tg->shares))
2425                return;
2426#endif
2427        shares = calc_cfs_shares(cfs_rq, tg);
2428
2429        reweight_entity(cfs_rq_of(se), se, shares);
2430}
2431#else /* CONFIG_FAIR_GROUP_SCHED */
2432static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2433{
2434}
2435#endif /* CONFIG_FAIR_GROUP_SCHED */
2436
2437#ifdef CONFIG_SMP
2438/* Precomputed fixed inverse multiplies for multiplication by y^n */
2439static const u32 runnable_avg_yN_inv[] = {
2440        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2441        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2442        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2443        0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2444        0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2445        0x85aac367, 0x82cd8698,
2446};
2447
2448/*
2449 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2450 * over-estimates when re-combining.
2451 */
2452static const u32 runnable_avg_yN_sum[] = {
2453            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2454         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2455        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2456};
2457
2458/*
2459 * Approximate:
2460 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2461 */
2462static __always_inline u64 decay_load(u64 val, u64 n)
2463{
2464        unsigned int local_n;
2465
2466        if (!n)
2467                return val;
2468        else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2469                return 0;
2470
2471        /* after bounds checking we can collapse to 32-bit */
2472        local_n = n;
2473
2474        /*
2475         * As y^PERIOD = 1/2, we can combine
2476         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2477         * With a look-up table which covers y^n (n<PERIOD)
2478         *
2479         * To achieve constant time decay_load.
2480         */
2481        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2482                val >>= local_n / LOAD_AVG_PERIOD;
2483                local_n %= LOAD_AVG_PERIOD;
2484        }
2485
2486        val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2487        return val;
2488}
2489
2490/*
2491 * For updates fully spanning n periods, the contribution to runnable
2492 * average will be: \Sum 1024*y^n
2493 *
2494 * We can compute this reasonably efficiently by combining:
2495 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2496 */
2497static u32 __compute_runnable_contrib(u64 n)
2498{
2499        u32 contrib = 0;
2500
2501        if (likely(n <= LOAD_AVG_PERIOD))
2502                return runnable_avg_yN_sum[n];
2503        else if (unlikely(n >= LOAD_AVG_MAX_N))
2504                return LOAD_AVG_MAX;
2505
2506        /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2507        do {
2508                contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2509                contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2510
2511                n -= LOAD_AVG_PERIOD;
2512        } while (n > LOAD_AVG_PERIOD);
2513
2514        contrib = decay_load(contrib, n);
2515        return contrib + runnable_avg_yN_sum[n];
2516}
2517
2518/*
2519 * We can represent the historical contribution to runnable average as the
2520 * coefficients of a geometric series.  To do this we sub-divide our runnable
2521 * history into segments of approximately 1ms (1024us); label the segment that
2522 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2523 *
2524 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2525 *      p0            p1           p2
2526 *     (now)       (~1ms ago)  (~2ms ago)
2527 *
2528 * Let u_i denote the fraction of p_i that the entity was runnable.
2529 *
2530 * We then designate the fractions u_i as our co-efficients, yielding the
2531 * following representation of historical load:
2532 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2533 *
2534 * We choose y based on the with of a reasonably scheduling period, fixing:
2535 *   y^32 = 0.5
2536 *
2537 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2538 * approximately half as much as the contribution to load within the last ms
2539 * (u_0).
2540 *
2541 * When a period "rolls over" and we have new u_0`, multiplying the previous
2542 * sum again by y is sufficient to update:
2543 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2544 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2545 */
2546static __always_inline int
2547__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2548                  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2549{
2550        u64 delta, periods;
2551        u32 contrib;
2552        int delta_w, decayed = 0;
2553        unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2554
2555        delta = now - sa->last_update_time;
2556        /*
2557         * This should only happen when time goes backwards, which it
2558         * unfortunately does during sched clock init when we swap over to TSC.
2559         */
2560        if ((s64)delta < 0) {
2561                sa->last_update_time = now;
2562                return 0;
2563        }
2564
2565        /*
2566         * Use 1024ns as the unit of measurement since it's a reasonable
2567         * approximation of 1us and fast to compute.
2568         */
2569        delta >>= 10;
2570        if (!delta)
2571                return 0;
2572        sa->last_update_time = now;
2573
2574        /* delta_w is the amount already accumulated against our next period */
2575        delta_w = sa->period_contrib;
2576        if (delta + delta_w >= 1024) {
2577                decayed = 1;
2578
2579                /* how much left for next period will start over, we don't know yet */
2580                sa->period_contrib = 0;
2581
2582                /*
2583                 * Now that we know we're crossing a period boundary, figure
2584                 * out how much from delta we need to complete the current
2585                 * period and accrue it.
2586                 */
2587                delta_w = 1024 - delta_w;
2588                if (weight) {
2589                        sa->load_sum += weight * delta_w;
2590                        if (cfs_rq)
2591                                cfs_rq->runnable_load_sum += weight * delta_w;
2592                }
2593                if (running)
2594                        sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
2595
2596                delta -= delta_w;
2597
2598                /* Figure out how many additional periods this update spans */
2599                periods = delta / 1024;
2600                delta %= 1024;
2601
2602                sa->load_sum = decay_load(sa->load_sum, periods + 1);
2603                if (cfs_rq) {
2604                        cfs_rq->runnable_load_sum =
2605                                decay_load(cfs_rq->runnable_load_sum, periods + 1);
2606                }
2607                sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2608
2609                /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2610                contrib = __compute_runnable_contrib(periods);
2611                if (weight) {
2612                        sa->load_sum += weight * contrib;
2613                        if (cfs_rq)
2614                                cfs_rq->runnable_load_sum += weight * contrib;
2615                }
2616                if (running)
2617                        sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
2618        }
2619
2620        /* Remainder of delta accrued against u_0` */
2621        if (weight) {
2622                sa->load_sum += weight * delta;
2623                if (cfs_rq)
2624                        cfs_rq->runnable_load_sum += weight * delta;
2625        }
2626        if (running)
2627                sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
2628
2629        sa->period_contrib += delta;
2630
2631        if (decayed) {
2632                sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2633                if (cfs_rq) {
2634                        cfs_rq->runnable_load_avg =
2635                                div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2636                }
2637                sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
2638        }
2639
2640        return decayed;
2641}
2642
2643#ifdef CONFIG_FAIR_GROUP_SCHED
2644/*
2645 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2646 * and effective_load (which is not done because it is too costly).
2647 */
2648static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2649{
2650        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2651
2652        if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2653                atomic_long_add(delta, &cfs_rq->tg->load_avg);
2654                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2655        }
2656}
2657
2658#else /* CONFIG_FAIR_GROUP_SCHED */
2659static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2660#endif /* CONFIG_FAIR_GROUP_SCHED */
2661
2662static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2663
2664/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2665static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2666{
2667        struct sched_avg *sa = &cfs_rq->avg;
2668        int decayed, removed = 0;
2669
2670        if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2671                long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2672                sa->load_avg = max_t(long, sa->load_avg - r, 0);
2673                sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2674                removed = 1;
2675        }
2676
2677        if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2678                long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2679                sa->util_avg = max_t(long, sa->util_avg - r, 0);
2680                sa->util_sum = max_t(s32, sa->util_sum -
2681                        ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
2682        }
2683
2684        decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2685                scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2686
2687#ifndef CONFIG_64BIT
2688        smp_wmb();
2689        cfs_rq->load_last_update_time_copy = sa->last_update_time;
2690#endif
2691
2692        return decayed || removed;
2693}
2694
2695/* Update task and its cfs_rq load average */
2696static inline void update_load_avg(struct sched_entity *se, int update_tg)
2697{
2698        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2699        int cpu = cpu_of(rq_of(cfs_rq));
2700        u64 now = cfs_rq_clock_task(cfs_rq);
2701
2702        /*
2703         * Track task load average for carrying it to new CPU after migrated, and
2704         * track group sched_entity load average for task_h_load calc in migration
2705         */
2706        __update_load_avg(now, cpu, &se->avg,
2707                se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
2708
2709        if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2710                update_tg_load_avg(cfs_rq, 0);
2711}
2712
2713/* Add the load generated by se into cfs_rq's load average */
2714static inline void
2715enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2716{
2717        struct sched_avg *sa = &se->avg;
2718        u64 now = cfs_rq_clock_task(cfs_rq);
2719        int migrated = 0, decayed;
2720
2721        if (sa->last_update_time == 0) {
2722                sa->last_update_time = now;
2723                migrated = 1;
2724        }
2725        else {
2726                __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2727                        se->on_rq * scale_load_down(se->load.weight),
2728                        cfs_rq->curr == se, NULL);
2729        }
2730
2731        decayed = update_cfs_rq_load_avg(now, cfs_rq);
2732
2733        cfs_rq->runnable_load_avg += sa->load_avg;
2734        cfs_rq->runnable_load_sum += sa->load_sum;
2735
2736        if (migrated) {
2737                cfs_rq->avg.load_avg += sa->load_avg;
2738                cfs_rq->avg.load_sum += sa->load_sum;
2739                cfs_rq->avg.util_avg += sa->util_avg;
2740                cfs_rq->avg.util_sum += sa->util_sum;
2741        }
2742
2743        if (decayed || migrated)
2744                update_tg_load_avg(cfs_rq, 0);
2745}
2746
2747/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2748static inline void
2749dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2750{
2751        update_load_avg(se, 1);
2752
2753        cfs_rq->runnable_load_avg =
2754                max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2755        cfs_rq->runnable_load_sum =
2756                max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2757}
2758
2759/*
2760 * Task first catches up with cfs_rq, and then subtract
2761 * itself from the cfs_rq (task must be off the queue now).
2762 */
2763void remove_entity_load_avg(struct sched_entity *se)
2764{
2765        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2766        u64 last_update_time;
2767
2768#ifndef CONFIG_64BIT
2769        u64 last_update_time_copy;
2770
2771        do {
2772                last_update_time_copy = cfs_rq->load_last_update_time_copy;
2773                smp_rmb();
2774                last_update_time = cfs_rq->avg.last_update_time;
2775        } while (last_update_time != last_update_time_copy);
2776#else
2777        last_update_time = cfs_rq->avg.last_update_time;
2778#endif
2779
2780        __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2781        atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2782        atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2783}
2784
2785/*
2786 * Update the rq's load with the elapsed running time before entering
2787 * idle. if the last scheduled task is not a CFS task, idle_enter will
2788 * be the only way to update the runnable statistic.
2789 */
2790void idle_enter_fair(struct rq *this_rq)
2791{
2792}
2793
2794/*
2795 * Update the rq's load with the elapsed idle time before a task is
2796 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2797 * be the only way to update the runnable statistic.
2798 */
2799void idle_exit_fair(struct rq *this_rq)
2800{
2801}
2802
2803static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2804{
2805        return cfs_rq->runnable_load_avg;
2806}
2807
2808static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2809{
2810        return cfs_rq->avg.load_avg;
2811}
2812
2813static int idle_balance(struct rq *this_rq);
2814
2815#else /* CONFIG_SMP */
2816
2817static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2818static inline void
2819enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2820static inline void
2821dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2822static inline void remove_entity_load_avg(struct sched_entity *se) {}
2823
2824static inline int idle_balance(struct rq *rq)
2825{
2826        return 0;
2827}
2828
2829#endif /* CONFIG_SMP */
2830
2831static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2832{
2833#ifdef CONFIG_SCHEDSTATS
2834        struct task_struct *tsk = NULL;
2835
2836        if (entity_is_task(se))
2837                tsk = task_of(se);
2838
2839        if (se->statistics.sleep_start) {
2840                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2841
2842                if ((s64)delta < 0)
2843                        delta = 0;
2844
2845                if (unlikely(delta > se->statistics.sleep_max))
2846                        se->statistics.sleep_max = delta;
2847
2848                se->statistics.sleep_start = 0;
2849                se->statistics.sum_sleep_runtime += delta;
2850
2851                if (tsk) {
2852                        account_scheduler_latency(tsk, delta >> 10, 1);
2853                        trace_sched_stat_sleep(tsk, delta);
2854                }
2855        }
2856        if (se->statistics.block_start) {
2857                u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2858
2859                if ((s64)delta < 0)
2860                        delta = 0;
2861
2862                if (unlikely(delta > se->statistics.block_max))
2863                        se->statistics.block_max = delta;
2864
2865                se->statistics.block_start = 0;
2866                se->statistics.sum_sleep_runtime += delta;
2867
2868                if (tsk) {
2869                        if (tsk->in_iowait) {
2870                                se->statistics.iowait_sum += delta;
2871                                se->statistics.iowait_count++;
2872                                trace_sched_stat_iowait(tsk, delta);
2873                        }
2874
2875                        trace_sched_stat_blocked(tsk, delta);
2876
2877                        /*
2878                         * Blocking time is in units of nanosecs, so shift by
2879                         * 20 to get a milliseconds-range estimation of the
2880                         * amount of time that the task spent sleeping:
2881                         */
2882                        if (unlikely(prof_on == SLEEP_PROFILING)) {
2883                                profile_hits(SLEEP_PROFILING,
2884                                                (void *)get_wchan(tsk),
2885                                                delta >> 20);
2886                        }
2887                        account_scheduler_latency(tsk, delta >> 10, 0);
2888                }
2889        }
2890#endif
2891}
2892
2893static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894{
2895#ifdef CONFIG_SCHED_DEBUG
2896        s64 d = se->vruntime - cfs_rq->min_vruntime;
2897
2898        if (d < 0)
2899                d = -d;
2900
2901        if (d > 3*sysctl_sched_latency)
2902                schedstat_inc(cfs_rq, nr_spread_over);
2903#endif
2904}
2905
2906static void
2907place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2908{
2909        u64 vruntime = cfs_rq->min_vruntime;
2910
2911        /*
2912         * The 'current' period is already promised to the current tasks,
2913         * however the extra weight of the new task will slow them down a
2914         * little, place the new task so that it fits in the slot that
2915         * stays open at the end.
2916         */
2917        if (initial && sched_feat(START_DEBIT))
2918                vruntime += sched_vslice(cfs_rq, se);
2919
2920        /* sleeps up to a single latency don't count. */
2921        if (!initial) {
2922                unsigned long thresh = sysctl_sched_latency;
2923
2924                /*
2925                 * Halve their sleep time's effect, to allow
2926                 * for a gentler effect of sleepers:
2927                 */
2928                if (sched_feat(GENTLE_FAIR_SLEEPERS))
2929                        thresh >>= 1;
2930
2931                vruntime -= thresh;
2932        }
2933
2934        /* ensure we never gain time by being placed backwards. */
2935        se->vruntime = max_vruntime(se->vruntime, vruntime);
2936}
2937
2938static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2939
2940static void
2941enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2942{
2943        /*
2944         * Update the normalized vruntime before updating min_vruntime
2945         * through calling update_curr().
2946         */
2947        if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2948                se->vruntime += cfs_rq->min_vruntime;
2949
2950        /*
2951         * Update run-time statistics of the 'current'.
2952         */
2953        update_curr(cfs_rq);
2954        enqueue_entity_load_avg(cfs_rq, se);
2955        account_entity_enqueue(cfs_rq, se);
2956        update_cfs_shares(cfs_rq);
2957
2958        if (flags & ENQUEUE_WAKEUP) {
2959                place_entity(cfs_rq, se, 0);
2960                enqueue_sleeper(cfs_rq, se);
2961        }
2962
2963        update_stats_enqueue(cfs_rq, se);
2964        check_spread(cfs_rq, se);
2965        if (se != cfs_rq->curr)
2966                __enqueue_entity(cfs_rq, se);
2967        se->on_rq = 1;
2968
2969        if (cfs_rq->nr_running == 1) {
2970                list_add_leaf_cfs_rq(cfs_rq);
2971                check_enqueue_throttle(cfs_rq);
2972        }
2973}
2974
2975static void __clear_buddies_last(struct sched_entity *se)
2976{
2977        for_each_sched_entity(se) {
2978                struct cfs_rq *cfs_rq = cfs_rq_of(se);
2979                if (cfs_rq->last != se)
2980                        break;
2981
2982                cfs_rq->last = NULL;
2983        }
2984}
2985
2986static void __clear_buddies_next(struct sched_entity *se)
2987{
2988        for_each_sched_entity(se) {
2989                struct cfs_rq *cfs_rq = cfs_rq_of(se);
2990                if (cfs_rq->next != se)
2991                        break;
2992
2993                cfs_rq->next = NULL;
2994        }
2995}
2996
2997static void __clear_buddies_skip(struct sched_entity *se)
2998{
2999        for_each_sched_entity(se) {
3000                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3001                if (cfs_rq->skip != se)
3002                        break;
3003
3004                cfs_rq->skip = NULL;
3005        }
3006}
3007
3008static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3009{
3010        if (cfs_rq->last == se)
3011                __clear_buddies_last(se);
3012
3013        if (cfs_rq->next == se)
3014                __clear_buddies_next(se);
3015
3016        if (cfs_rq->skip == se)
3017                __clear_buddies_skip(se);
3018}
3019
3020static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3021
3022static void
3023dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3024{
3025        /*
3026         * Update run-time statistics of the 'current'.
3027         */
3028        update_curr(cfs_rq);
3029        dequeue_entity_load_avg(cfs_rq, se);
3030
3031        update_stats_dequeue(cfs_rq, se);
3032        if (flags & DEQUEUE_SLEEP) {
3033#ifdef CONFIG_SCHEDSTATS
3034                if (entity_is_task(se)) {
3035                        struct task_struct *tsk = task_of(se);
3036
3037                        if (tsk->state & TASK_INTERRUPTIBLE)
3038                                se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3039                        if (tsk->state & TASK_UNINTERRUPTIBLE)
3040                                se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3041                }
3042#endif
3043        }
3044
3045        clear_buddies(cfs_rq, se);
3046
3047        if (se != cfs_rq->curr)
3048                __dequeue_entity(cfs_rq, se);
3049        se->on_rq = 0;
3050        account_entity_dequeue(cfs_rq, se);
3051
3052        /*
3053         * Normalize the entity after updating the min_vruntime because the
3054         * update can refer to the ->curr item and we need to reflect this
3055         * movement in our normalized position.
3056         */
3057        if (!(flags & DEQUEUE_SLEEP))
3058                se->vruntime -= cfs_rq->min_vruntime;
3059
3060        /* return excess runtime on last dequeue */
3061        return_cfs_rq_runtime(cfs_rq);
3062
3063        update_min_vruntime(cfs_rq);
3064        update_cfs_shares(cfs_rq);
3065}
3066
3067/*
3068 * Preempt the current task with a newly woken task if needed:
3069 */
3070static void
3071check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3072{
3073        unsigned long ideal_runtime, delta_exec;
3074        struct sched_entity *se;
3075        s64 delta;
3076
3077        ideal_runtime = sched_slice(cfs_rq, curr);
3078        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3079        if (delta_exec > ideal_runtime) {
3080                resched_curr(rq_of(cfs_rq));
3081                /*
3082                 * The current task ran long enough, ensure it doesn't get
3083                 * re-elected due to buddy favours.
3084                 */
3085                clear_buddies(cfs_rq, curr);
3086                return;
3087        }
3088
3089        /*
3090         * Ensure that a task that missed wakeup preemption by a
3091         * narrow margin doesn't have to wait for a full slice.
3092         * This also mitigates buddy induced latencies under load.
3093         */
3094        if (delta_exec < sysctl_sched_min_granularity)
3095                return;
3096
3097        se = __pick_first_entity(cfs_rq);
3098        delta = curr->vruntime - se->vruntime;
3099
3100        if (delta < 0)
3101                return;
3102
3103        if (delta > ideal_runtime)
3104                resched_curr(rq_of(cfs_rq));
3105}
3106
3107static void
3108set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3109{
3110        /* 'current' is not kept within the tree. */
3111        if (se->on_rq) {
3112                /*
3113                 * Any task has to be enqueued before it get to execute on
3114                 * a CPU. So account for the time it spent waiting on the
3115                 * runqueue.
3116                 */
3117                update_stats_wait_end(cfs_rq, se);
3118                __dequeue_entity(cfs_rq, se);
3119                update_load_avg(se, 1);
3120        }
3121
3122        update_stats_curr_start(cfs_rq, se);
3123        cfs_rq->curr = se;
3124#ifdef CONFIG_SCHEDSTATS
3125        /*
3126         * Track our maximum slice length, if the CPU's load is at
3127         * least twice that of our own weight (i.e. dont track it
3128         * when there are only lesser-weight tasks around):
3129         */
3130        if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3131                se->statistics.slice_max = max(se->statistics.slice_max,
3132                        se->sum_exec_runtime - se->prev_sum_exec_runtime);
3133        }
3134#endif
3135        se->prev_sum_exec_runtime = se->sum_exec_runtime;
3136}
3137
3138static int
3139wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3140
3141/*
3142 * Pick the next process, keeping these things in mind, in this order:
3143 * 1) keep things fair between processes/task groups
3144 * 2) pick the "next" process, since someone really wants that to run
3145 * 3) pick the "last" process, for cache locality
3146 * 4) do not run the "skip" process, if something else is available
3147 */
3148static struct sched_entity *
3149pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3150{
3151        struct sched_entity *left = __pick_first_entity(cfs_rq);
3152        struct sched_entity *se;
3153
3154        /*
3155         * If curr is set we have to see if its left of the leftmost entity
3156         * still in the tree, provided there was anything in the tree at all.
3157         */
3158        if (!left || (curr && entity_before(curr, left)))
3159                left = curr;
3160
3161        se = left; /* ideally we run the leftmost entity */
3162
3163        /*
3164         * Avoid running the skip buddy, if running something else can
3165         * be done without getting too unfair.
3166         */
3167        if (cfs_rq->skip == se) {
3168                struct sched_entity *second;
3169
3170                if (se == curr) {
3171                        second = __pick_first_entity(cfs_rq);
3172                } else {
3173                        second = __pick_next_entity(se);
3174                        if (!second || (curr && entity_before(curr, second)))
3175                                second = curr;
3176                }
3177
3178                if (second && wakeup_preempt_entity(second, left) < 1)
3179                        se = second;
3180        }
3181
3182        /*
3183         * Prefer last buddy, try to return the CPU to a preempted task.
3184         */
3185        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3186                se = cfs_rq->last;
3187
3188        /*
3189         * Someone really wants this to run. If it's not unfair, run it.
3190         */
3191        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3192                se = cfs_rq->next;
3193
3194        clear_buddies(cfs_rq, se);
3195
3196        return se;
3197}
3198
3199static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3200
3201static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3202{
3203        /*
3204         * If still on the runqueue then deactivate_task()
3205         * was not called and update_curr() has to be done:
3206         */
3207        if (prev->on_rq)
3208                update_curr(cfs_rq);
3209
3210        /* throttle cfs_rqs exceeding runtime */
3211        check_cfs_rq_runtime(cfs_rq);
3212
3213        check_spread(cfs_rq, prev);
3214        if (prev->on_rq) {
3215                update_stats_wait_start(cfs_rq, prev);
3216                /* Put 'current' back into the tree. */
3217                __enqueue_entity(cfs_rq, prev);
3218                /* in !on_rq case, update occurred at dequeue */
3219                update_load_avg(prev, 0);
3220        }
3221        cfs_rq->curr = NULL;
3222}
3223
3224static void
3225entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3226{
3227        /*
3228         * Update run-time statistics of the 'current'.
3229         */
3230        update_curr(cfs_rq);
3231
3232        /*
3233         * Ensure that runnable average is periodically updated.
3234         */
3235        update_load_avg(curr, 1);
3236        update_cfs_shares(cfs_rq);
3237
3238#ifdef CONFIG_SCHED_HRTICK
3239        /*
3240         * queued ticks are scheduled to match the slice, so don't bother
3241         * validating it and just reschedule.
3242         */
3243        if (queued) {
3244                resched_curr(rq_of(cfs_rq));
3245                return;
3246        }
3247        /*
3248         * don't let the period tick interfere with the hrtick preemption
3249         */
3250        if (!sched_feat(DOUBLE_TICK) &&
3251                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3252                return;
3253#endif
3254
3255        if (cfs_rq->nr_running > 1)
3256                check_preempt_tick(cfs_rq, curr);
3257}
3258
3259
3260/**************************************************
3261 * CFS bandwidth control machinery
3262 */
3263
3264#ifdef CONFIG_CFS_BANDWIDTH
3265
3266#ifdef HAVE_JUMP_LABEL
3267static struct static_key __cfs_bandwidth_used;
3268
3269static inline bool cfs_bandwidth_used(void)
3270{
3271        return static_key_false(&__cfs_bandwidth_used);
3272}
3273
3274void cfs_bandwidth_usage_inc(void)
3275{
3276        static_key_slow_inc(&__cfs_bandwidth_used);
3277}
3278
3279void cfs_bandwidth_usage_dec(void)
3280{
3281        static_key_slow_dec(&__cfs_bandwidth_used);
3282}
3283#else /* HAVE_JUMP_LABEL */
3284static bool cfs_bandwidth_used(void)
3285{
3286        return true;
3287}
3288
3289void cfs_bandwidth_usage_inc(void) {}
3290void cfs_bandwidth_usage_dec(void) {}
3291#endif /* HAVE_JUMP_LABEL */
3292
3293/*
3294 * default period for cfs group bandwidth.
3295 * default: 0.1s, units: nanoseconds
3296 */
3297static inline u64 default_cfs_period(void)
3298{
3299        return 100000000ULL;
3300}
3301
3302static inline u64 sched_cfs_bandwidth_slice(void)
3303{
3304        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3305}
3306
3307/*
3308 * Replenish runtime according to assigned quota and update expiration time.
3309 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3310 * additional synchronization around rq->lock.
3311 *
3312 * requires cfs_b->lock
3313 */
3314void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3315{
3316        u64 now;
3317
3318        if (cfs_b->quota == RUNTIME_INF)
3319                return;
3320
3321        now = sched_clock_cpu(smp_processor_id());
3322        cfs_b->runtime = cfs_b->quota;
3323        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3324}
3325
3326static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3327{
3328        return &tg->cfs_bandwidth;
3329}
3330
3331/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3332static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3333{
3334        if (unlikely(cfs_rq->throttle_count))
3335                return cfs_rq->throttled_clock_task;
3336
3337        return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3338}
3339
3340/* returns 0 on failure to allocate runtime */
3341static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3342{
3343        struct task_group *tg = cfs_rq->tg;
3344        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3345        u64 amount = 0, min_amount, expires;
3346
3347        /* note: this is a positive sum as runtime_remaining <= 0 */
3348        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3349
3350        raw_spin_lock(&cfs_b->lock);
3351        if (cfs_b->quota == RUNTIME_INF)
3352                amount = min_amount;
3353        else {
3354                start_cfs_bandwidth(cfs_b);
3355
3356                if (cfs_b->runtime > 0) {
3357                        amount = min(cfs_b->runtime, min_amount);
3358                        cfs_b->runtime -= amount;
3359                        cfs_b->idle = 0;
3360                }
3361        }
3362        expires = cfs_b->runtime_expires;
3363        raw_spin_unlock(&cfs_b->lock);
3364
3365        cfs_rq->runtime_remaining += amount;
3366        /*
3367         * we may have advanced our local expiration to account for allowed
3368         * spread between our sched_clock and the one on which runtime was
3369         * issued.
3370         */
3371        if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3372                cfs_rq->runtime_expires = expires;
3373
3374        return cfs_rq->runtime_remaining > 0;
3375}
3376
3377/*
3378 * Note: This depends on the synchronization provided by sched_clock and the
3379 * fact that rq->clock snapshots this value.
3380 */
3381static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3382{
3383        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384
3385        /* if the deadline is ahead of our clock, nothing to do */
3386        if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3387                return;
3388
3389        if (cfs_rq->runtime_remaining < 0)
3390                return;
3391
3392        /*
3393         * If the local deadline has passed we have to consider the
3394         * possibility that our sched_clock is 'fast' and the global deadline
3395         * has not truly expired.
3396         *
3397         * Fortunately we can check determine whether this the case by checking
3398         * whether the global deadline has advanced. It is valid to compare
3399         * cfs_b->runtime_expires without any locks since we only care about
3400         * exact equality, so a partial write will still work.
3401         */
3402
3403        if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3404                /* extend local deadline, drift is bounded above by 2 ticks */
3405                cfs_rq->runtime_expires += TICK_NSEC;
3406        } else {
3407                /* global deadline is ahead, expiration has passed */
3408                cfs_rq->runtime_remaining = 0;
3409        }
3410}
3411
3412static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3413{
3414        /* dock delta_exec before expiring quota (as it could span periods) */
3415        cfs_rq->runtime_remaining -= delta_exec;
3416        expire_cfs_rq_runtime(cfs_rq);
3417
3418        if (likely(cfs_rq->runtime_remaining > 0))
3419                return;
3420
3421        /*
3422         * if we're unable to extend our runtime we resched so that the active
3423         * hierarchy can be throttled
3424         */
3425        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3426                resched_curr(rq_of(cfs_rq));
3427}
3428
3429static __always_inline
3430void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3431{
3432        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3433                return;
3434
3435        __account_cfs_rq_runtime(cfs_rq, delta_exec);
3436}
3437
3438static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3439{
3440        return cfs_bandwidth_used() && cfs_rq->throttled;
3441}
3442
3443/* check whether cfs_rq, or any parent, is throttled */
3444static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3445{
3446        return cfs_bandwidth_used() && cfs_rq->throttle_count;
3447}
3448
3449/*
3450 * Ensure that neither of the group entities corresponding to src_cpu or
3451 * dest_cpu are members of a throttled hierarchy when performing group
3452 * load-balance operations.
3453 */
3454static inline int throttled_lb_pair(struct task_group *tg,
3455                                    int src_cpu, int dest_cpu)
3456{
3457        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3458
3459        src_cfs_rq = tg->cfs_rq[src_cpu];
3460        dest_cfs_rq = tg->cfs_rq[dest_cpu];
3461
3462        return throttled_hierarchy(src_cfs_rq) ||
3463               throttled_hierarchy(dest_cfs_rq);
3464}
3465
3466/* updated child weight may affect parent so we have to do this bottom up */
3467static int tg_unthrottle_up(struct task_group *tg, void *data)
3468{
3469        struct rq *rq = data;
3470        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3471
3472        cfs_rq->throttle_count--;
3473#ifdef CONFIG_SMP
3474        if (!cfs_rq->throttle_count) {
3475                /* adjust cfs_rq_clock_task() */
3476                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3477                                             cfs_rq->throttled_clock_task;
3478        }
3479#endif
3480
3481        return 0;
3482}
3483
3484static int tg_throttle_down(struct task_group *tg, void *data)
3485{
3486        struct rq *rq = data;
3487        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3488
3489        /* group is entering throttled state, stop time */
3490        if (!cfs_rq->throttle_count)
3491                cfs_rq->throttled_clock_task = rq_clock_task(rq);
3492        cfs_rq->throttle_count++;
3493
3494        return 0;
3495}
3496
3497static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3498{
3499        struct rq *rq = rq_of(cfs_rq);
3500        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3501        struct sched_entity *se;
3502        long task_delta, dequeue = 1;
3503        bool empty;
3504
3505        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3506
3507        /* freeze hierarchy runnable averages while throttled */
3508        rcu_read_lock();
3509        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3510        rcu_read_unlock();
3511
3512        task_delta = cfs_rq->h_nr_running;
3513        for_each_sched_entity(se) {
3514                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3515                /* throttled entity or throttle-on-deactivate */
3516                if (!se->on_rq)
3517                        break;
3518
3519                if (dequeue)
3520                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3521                qcfs_rq->h_nr_running -= task_delta;
3522
3523                if (qcfs_rq->load.weight)
3524                        dequeue = 0;
3525        }
3526
3527        if (!se)
3528                sub_nr_running(rq, task_delta);
3529
3530        cfs_rq->throttled = 1;
3531        cfs_rq->throttled_clock = rq_clock(rq);
3532        raw_spin_lock(&cfs_b->lock);
3533        empty = list_empty(&cfs_b->throttled_cfs_rq);
3534
3535        /*
3536         * Add to the _head_ of the list, so that an already-started
3537         * distribute_cfs_runtime will not see us
3538         */
3539        list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3540
3541        /*
3542         * If we're the first throttled task, make sure the bandwidth
3543         * timer is running.
3544         */
3545        if (empty)
3546                start_cfs_bandwidth(cfs_b);
3547
3548        raw_spin_unlock(&cfs_b->lock);
3549}
3550
3551void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3552{
3553        struct rq *rq = rq_of(cfs_rq);
3554        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3555        struct sched_entity *se;
3556        int enqueue = 1;
3557        long task_delta;
3558
3559        se = cfs_rq->tg->se[cpu_of(rq)];
3560
3561        cfs_rq->throttled = 0;
3562
3563        update_rq_clock(rq);
3564
3565        raw_spin_lock(&cfs_b->lock);
3566        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3567        list_del_rcu(&cfs_rq->throttled_list);
3568        raw_spin_unlock(&cfs_b->lock);
3569
3570        /* update hierarchical throttle state */
3571        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3572
3573        if (!cfs_rq->load.weight)
3574                return;
3575
3576        task_delta = cfs_rq->h_nr_running;
3577        for_each_sched_entity(se) {
3578                if (se->on_rq)
3579                        enqueue = 0;
3580
3581                cfs_rq = cfs_rq_of(se);
3582                if (enqueue)
3583                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3584                cfs_rq->h_nr_running += task_delta;
3585
3586                if (cfs_rq_throttled(cfs_rq))
3587                        break;
3588        }
3589
3590        if (!se)
3591                add_nr_running(rq, task_delta);
3592
3593        /* determine whether we need to wake up potentially idle cpu */
3594        if (rq->curr == rq->idle && rq->cfs.nr_running)
3595                resched_curr(rq);
3596}
3597
3598static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3599                u64 remaining, u64 expires)
3600{
3601        struct cfs_rq *cfs_rq;
3602        u64 runtime;
3603        u64 starting_runtime = remaining;
3604
3605        rcu_read_lock();
3606        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3607                                throttled_list) {
3608                struct rq *rq = rq_of(cfs_rq);
3609
3610                raw_spin_lock(&rq->lock);
3611                if (!cfs_rq_throttled(cfs_rq))
3612                        goto next;
3613
3614                runtime = -cfs_rq->runtime_remaining + 1;
3615                if (runtime > remaining)
3616                        runtime = remaining;
3617                remaining -= runtime;
3618
3619                cfs_rq->runtime_remaining += runtime;
3620                cfs_rq->runtime_expires = expires;
3621
3622                /* we check whether we're throttled above */
3623                if (cfs_rq->runtime_remaining > 0)
3624                        unthrottle_cfs_rq(cfs_rq);
3625
3626next:
3627                raw_spin_unlock(&rq->lock);
3628
3629                if (!remaining)
3630                        break;
3631        }
3632        rcu_read_unlock();
3633
3634        return starting_runtime - remaining;
3635}
3636
3637/*
3638 * Responsible for refilling a task_group's bandwidth and unthrottling its
3639 * cfs_rqs as appropriate. If there has been no activity within the last
3640 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3641 * used to track this state.
3642 */
3643static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3644{
3645        u64 runtime, runtime_expires;
3646        int throttled;
3647
3648        /* no need to continue the timer with no bandwidth constraint */
3649        if (cfs_b->quota == RUNTIME_INF)
3650                goto out_deactivate;
3651
3652        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3653        cfs_b->nr_periods += overrun;
3654
3655        /*
3656         * idle depends on !throttled (for the case of a large deficit), and if
3657         * we're going inactive then everything else can be deferred
3658         */
3659        if (cfs_b->idle && !throttled)
3660                goto out_deactivate;
3661
3662        __refill_cfs_bandwidth_runtime(cfs_b);
3663
3664        if (!throttled) {
3665                /* mark as potentially idle for the upcoming period */
3666                cfs_b->idle = 1;
3667                return 0;
3668        }
3669
3670        /* account preceding periods in which throttling occurred */
3671        cfs_b->nr_throttled += overrun;
3672
3673        runtime_expires = cfs_b->runtime_expires;
3674
3675        /*
3676         * This check is repeated as we are holding onto the new bandwidth while
3677         * we unthrottle. This can potentially race with an unthrottled group
3678         * trying to acquire new bandwidth from the global pool. This can result
3679         * in us over-using our runtime if it is all used during this loop, but
3680         * only by limited amounts in that extreme case.
3681         */
3682        while (throttled && cfs_b->runtime > 0) {
3683                runtime = cfs_b->runtime;
3684                raw_spin_unlock(&cfs_b->lock);
3685                /* we can't nest cfs_b->lock while distributing bandwidth */
3686                runtime = distribute_cfs_runtime(cfs_b, runtime,
3687                                                 runtime_expires);
3688                raw_spin_lock(&cfs_b->lock);
3689
3690                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3691
3692                cfs_b->runtime -= min(runtime, cfs_b->runtime);
3693        }
3694
3695        /*
3696         * While we are ensured activity in the period following an
3697         * unthrottle, this also covers the case in which the new bandwidth is
3698         * insufficient to cover the existing bandwidth deficit.  (Forcing the
3699         * timer to remain active while there are any throttled entities.)
3700         */
3701        cfs_b->idle = 0;
3702
3703        return 0;
3704
3705out_deactivate:
3706        return 1;
3707}
3708
3709/* a cfs_rq won't donate quota below this amount */
3710static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3711/* minimum remaining period time to redistribute slack quota */
3712static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3713/* how long we wait to gather additional slack before distributing */
3714static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3715
3716/*
3717 * Are we near the end of the current quota period?
3718 *
3719 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3720 * hrtimer base being cleared by hrtimer_start. In the case of
3721 * migrate_hrtimers, base is never cleared, so we are fine.
3722 */
3723static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3724{
3725        struct hrtimer *refresh_timer = &cfs_b->period_timer;
3726        u64 remaining;
3727
3728        /* if the call-back is running a quota refresh is already occurring */
3729        if (hrtimer_callback_running(refresh_timer))
3730                return 1;
3731
3732        /* is a quota refresh about to occur? */
3733        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3734        if (remaining < min_expire)
3735                return 1;
3736
3737        return 0;
3738}
3739
3740static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3741{
3742        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3743
3744        /* if there's a quota refresh soon don't bother with slack */
3745        if (runtime_refresh_within(cfs_b, min_left))
3746                return;
3747
3748        hrtimer_start(&cfs_b->slack_timer,
3749                        ns_to_ktime(cfs_bandwidth_slack_period),
3750                        HRTIMER_MODE_REL);
3751}
3752
3753/* we know any runtime found here is valid as update_curr() precedes return */
3754static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3755{
3756        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3757        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3758
3759        if (slack_runtime <= 0)
3760                return;
3761
3762        raw_spin_lock(&cfs_b->lock);
3763        if (cfs_b->quota != RUNTIME_INF &&
3764            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3765                cfs_b->runtime += slack_runtime;
3766
3767                /* we are under rq->lock, defer unthrottling using a timer */
3768                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3769                    !list_empty(&cfs_b->throttled_cfs_rq))
3770                        start_cfs_slack_bandwidth(cfs_b);
3771        }
3772        raw_spin_unlock(&cfs_b->lock);
3773
3774        /* even if it's not valid for return we don't want to try again */
3775        cfs_rq->runtime_remaining -= slack_runtime;
3776}
3777
3778static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3779{
3780        if (!cfs_bandwidth_used())
3781                return;
3782
3783        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3784                return;
3785
3786        __return_cfs_rq_runtime(cfs_rq);
3787}
3788
3789/*
3790 * This is done with a timer (instead of inline with bandwidth return) since
3791 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3792 */
3793static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3794{
3795        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3796        u64 expires;
3797
3798        /* confirm we're still not at a refresh boundary */
3799        raw_spin_lock(&cfs_b->lock);
3800        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3801                raw_spin_unlock(&cfs_b->lock);
3802                return;
3803        }
3804
3805        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3806                runtime = cfs_b->runtime;
3807
3808        expires = cfs_b->runtime_expires;
3809        raw_spin_unlock(&cfs_b->lock);
3810
3811        if (!runtime)
3812                return;
3813
3814        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3815
3816        raw_spin_lock(&cfs_b->lock);
3817        if (expires == cfs_b->runtime_expires)
3818                cfs_b->runtime -= min(runtime, cfs_b->runtime);
3819        raw_spin_unlock(&cfs_b->lock);
3820}
3821
3822/*
3823 * When a group wakes up we want to make sure that its quota is not already
3824 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3825 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3826 */
3827static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3828{
3829        if (!cfs_bandwidth_used())
3830                return;
3831
3832        /* an active group must be handled by the update_curr()->put() path */
3833        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3834                return;
3835
3836        /* ensure the group is not already throttled */
3837        if (cfs_rq_throttled(cfs_rq))
3838                return;
3839
3840        /* update runtime allocation */
3841        account_cfs_rq_runtime(cfs_rq, 0);
3842        if (cfs_rq->runtime_remaining <= 0)
3843                throttle_cfs_rq(cfs_rq);
3844}
3845
3846/* conditionally throttle active cfs_rq's from put_prev_entity() */
3847static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3848{
3849        if (!cfs_bandwidth_used())
3850                return false;
3851
3852        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3853                return false;
3854
3855        /*
3856         * it's possible for a throttled entity to be forced into a running
3857         * state (e.g. set_curr_task), in this case we're finished.
3858         */
3859        if (cfs_rq_throttled(cfs_rq))
3860                return true;
3861
3862        throttle_cfs_rq(cfs_rq);
3863        return true;
3864}
3865
3866static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3867{
3868        struct cfs_bandwidth *cfs_b =
3869                container_of(timer, struct cfs_bandwidth, slack_timer);
3870
3871        do_sched_cfs_slack_timer(cfs_b);
3872
3873        return HRTIMER_NORESTART;
3874}
3875
3876static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3877{
3878        struct cfs_bandwidth *cfs_b =
3879                container_of(timer, struct cfs_bandwidth, period_timer);
3880        int overrun;
3881        int idle = 0;
3882
3883        raw_spin_lock(&cfs_b->lock);
3884        for (;;) {
3885                overrun = hrtimer_forward_now(timer, cfs_b->period);
3886                if (!overrun)
3887                        break;
3888
3889                idle = do_sched_cfs_period_timer(cfs_b, overrun);
3890        }
3891        if (idle)
3892                cfs_b->period_active = 0;
3893        raw_spin_unlock(&cfs_b->lock);
3894
3895        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3896}
3897
3898void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3899{
3900        raw_spin_lock_init(&cfs_b->lock);
3901        cfs_b->runtime = 0;
3902        cfs_b->quota = RUNTIME_INF;
3903        cfs_b->period = ns_to_ktime(default_cfs_period());
3904
3905        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3906        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
3907        cfs_b->period_timer.function = sched_cfs_period_timer;
3908        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3909        cfs_b->slack_timer.function = sched_cfs_slack_timer;
3910}
3911
3912static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3913{
3914        cfs_rq->runtime_enabled = 0;
3915        INIT_LIST_HEAD(&cfs_rq->throttled_list);
3916}
3917
3918void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3919{
3920        lockdep_assert_held(&cfs_b->lock);
3921
3922        if (!cfs_b->period_active) {
3923                cfs_b->period_active = 1;
3924                hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3925                hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3926        }
3927}
3928
3929static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3930{
3931        /* init_cfs_bandwidth() was not called */
3932        if (!cfs_b->throttled_cfs_rq.next)
3933                return;
3934
3935        hrtimer_cancel(&cfs_b->period_timer);
3936        hrtimer_cancel(&cfs_b->slack_timer);
3937}
3938
3939static void __maybe_unused update_runtime_enabled(struct rq *rq)
3940{
3941        struct cfs_rq *cfs_rq;
3942
3943        for_each_leaf_cfs_rq(rq, cfs_rq) {
3944                struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3945
3946                raw_spin_lock(&cfs_b->lock);
3947                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3948                raw_spin_unlock(&cfs_b->lock);
3949        }
3950}
3951
3952static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3953{
3954        struct cfs_rq *cfs_rq;
3955
3956        for_each_leaf_cfs_rq(rq, cfs_rq) {
3957                if (!cfs_rq->runtime_enabled)
3958                        continue;
3959
3960                /*
3961                 * clock_task is not advancing so we just need to make sure
3962                 * there's some valid quota amount
3963                 */
3964                cfs_rq->runtime_remaining = 1;
3965                /*
3966                 * Offline rq is schedulable till cpu is completely disabled
3967                 * in take_cpu_down(), so we prevent new cfs throttling here.
3968                 */
3969                cfs_rq->runtime_enabled = 0;
3970
3971                if (cfs_rq_throttled(cfs_rq))
3972                        unthrottle_cfs_rq(cfs_rq);
3973        }
3974}
3975
3976#else /* CONFIG_CFS_BANDWIDTH */
3977static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3978{
3979        return rq_clock_task(rq_of(cfs_rq));
3980}
3981
3982static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3983static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3984static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3985static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3986
3987static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3988{
3989        return 0;
3990}
3991
3992static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3993{
3994        return 0;
3995}
3996
3997static inline int throttled_lb_pair(struct task_group *tg,
3998                                    int src_cpu, int dest_cpu)
3999{
4000        return 0;
4001}
4002
4003void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4004
4005#ifdef CONFIG_FAIR_GROUP_SCHED
4006static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4007#endif
4008
4009static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4010{
4011        return NULL;
4012}
4013static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4014static inline void update_runtime_enabled(struct rq *rq) {}
4015static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4016
4017#endif /* CONFIG_CFS_BANDWIDTH */
4018
4019/**************************************************
4020 * CFS operations on tasks:
4021 */
4022
4023#ifdef CONFIG_SCHED_HRTICK
4024static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4025{
4026        struct sched_entity *se = &p->se;
4027        struct cfs_rq *cfs_rq = cfs_rq_of(se);
4028
4029        WARN_ON(task_rq(p) != rq);
4030
4031        if (cfs_rq->nr_running > 1) {
4032                u64 slice = sched_slice(cfs_rq, se);
4033                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4034                s64 delta = slice - ran;
4035
4036                if (delta < 0) {
4037                        if (rq->curr == p)
4038                                resched_curr(rq);
4039                        return;
4040                }
4041                hrtick_start(rq, delta);
4042        }
4043}
4044
4045/*
4046 * called from enqueue/dequeue and updates the hrtick when the
4047 * current task is from our class and nr_running is low enough
4048 * to matter.
4049 */
4050static void hrtick_update(struct rq *rq)
4051{
4052        struct task_struct *curr = rq->curr;
4053
4054        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4055                return;
4056
4057        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4058                hrtick_start_fair(rq, curr);
4059}
4060#else /* !CONFIG_SCHED_HRTICK */
4061static inline void
4062hrtick_start_fair(struct rq *rq, struct task_struct *p)
4063{
4064}
4065
4066static inline void hrtick_update(struct rq *rq)
4067{
4068}
4069#endif
4070
4071/*
4072 * The enqueue_task method is called before nr_running is
4073 * increased. Here we update the fair scheduling stats and
4074 * then put the task into the rbtree:
4075 */
4076static void
4077enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4078{
4079        struct cfs_rq *cfs_rq;
4080        struct sched_entity *se = &p->se;
4081
4082        for_each_sched_entity(se) {
4083                if (se->on_rq)
4084                        break;
4085                cfs_rq = cfs_rq_of(se);
4086                enqueue_entity(cfs_rq, se, flags);
4087
4088                /*
4089                 * end evaluation on encountering a throttled cfs_rq
4090                 *
4091                 * note: in the case of encountering a throttled cfs_rq we will
4092                 * post the final h_nr_running increment below.
4093                */
4094                if (cfs_rq_throttled(cfs_rq))
4095                        break;
4096                cfs_rq->h_nr_running++;
4097
4098                flags = ENQUEUE_WAKEUP;
4099        }
4100
4101        for_each_sched_entity(se) {
4102                cfs_rq = cfs_rq_of(se);
4103                cfs_rq->h_nr_running++;
4104
4105                if (cfs_rq_throttled(cfs_rq))
4106                        break;
4107
4108                update_load_avg(se, 1);
4109                update_cfs_shares(cfs_rq);
4110        }
4111
4112        if (!se)
4113                add_nr_running(rq, 1);
4114
4115        hrtick_update(rq);
4116}
4117
4118static void set_next_buddy(struct sched_entity *se);
4119
4120/*
4121 * The dequeue_task method is called before nr_running is
4122 * decreased. We remove the task from the rbtree and
4123 * update the fair scheduling stats:
4124 */
4125static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4126{
4127        struct cfs_rq *cfs_rq;
4128        struct sched_entity *se = &p->se;
4129        int task_sleep = flags & DEQUEUE_SLEEP;
4130
4131        for_each_sched_entity(se) {
4132                cfs_rq = cfs_rq_of(se);
4133                dequeue_entity(cfs_rq, se, flags);
4134
4135                /*
4136                 * end evaluation on encountering a throttled cfs_rq
4137                 *
4138                 * note: in the case of encountering a throttled cfs_rq we will
4139                 * post the final h_nr_running decrement below.
4140                */
4141                if (cfs_rq_throttled(cfs_rq))
4142                        break;
4143                cfs_rq->h_nr_running--;
4144
4145                /* Don't dequeue parent if it has other entities besides us */
4146                if (cfs_rq->load.weight) {
4147                        /*
4148                         * Bias pick_next to pick a task from this cfs_rq, as
4149                         * p is sleeping when it is within its sched_slice.
4150                         */
4151                        if (task_sleep && parent_entity(se))
4152                                set_next_buddy(parent_entity(se));
4153
4154                        /* avoid re-evaluating load for this entity */
4155                        se = parent_entity(se);
4156                        break;
4157                }
4158                flags |= DEQUEUE_SLEEP;
4159        }
4160
4161        for_each_sched_entity(se) {
4162                cfs_rq = cfs_rq_of(se);
4163                cfs_rq->h_nr_running--;
4164
4165                if (cfs_rq_throttled(cfs_rq))
4166                        break;
4167
4168                update_load_avg(se, 1);
4169                update_cfs_shares(cfs_rq);
4170        }
4171
4172        if (!se)
4173                sub_nr_running(rq, 1);
4174
4175        hrtick_update(rq);
4176}
4177
4178#ifdef CONFIG_SMP
4179
4180/*
4181 * per rq 'load' arrray crap; XXX kill this.
4182 */
4183
4184/*
4185 * The exact cpuload at various idx values, calculated at every tick would be
4186 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4187 *
4188 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4189 * on nth tick when cpu may be busy, then we have:
4190 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4191 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4192 *
4193 * decay_load_missed() below does efficient calculation of
4194 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4195 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4196 *
4197 * The calculation is approximated on a 128 point scale.
4198 * degrade_zero_ticks is the number of ticks after which load at any
4199 * particular idx is approximated to be zero.
4200 * degrade_factor is a precomputed table, a row for each load idx.
4201 * Each column corresponds to degradation factor for a power of two ticks,
4202 * based on 128 point scale.
4203 * Example:
4204 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4205 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4206 *
4207 * With this power of 2 load factors, we can degrade the load n times
4208 * by looking at 1 bits in n and doing as many mult/shift instead of
4209 * n mult/shifts needed by the exact degradation.
4210 */
4211#define DEGRADE_SHIFT           7
4212static const unsigned char
4213                degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4214static const unsigned char
4215                degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4216                                        {0, 0, 0, 0, 0, 0, 0, 0},
4217                                        {64, 32, 8, 0, 0, 0, 0, 0},
4218                                        {96, 72, 40, 12, 1, 0, 0},
4219                                        {112, 98, 75, 43, 15, 1, 0},
4220                                        {120, 112, 98, 76, 45, 16, 2} };
4221
4222/*
4223 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4224 * would be when CPU is idle and so we just decay the old load without
4225 * adding any new load.
4226 */
4227static unsigned long
4228decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4229{
4230        int j = 0;
4231
4232        if (!missed_updates)
4233                return load;
4234
4235        if (missed_updates >= degrade_zero_ticks[idx])
4236                return 0;
4237
4238        if (idx == 1)
4239                return load >> missed_updates;
4240
4241        while (missed_updates) {
4242                if (missed_updates % 2)
4243                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4244
4245                missed_updates >>= 1;
4246                j++;
4247        }
4248        return load;
4249}
4250
4251/*
4252 * Update rq->cpu_load[] statistics. This function is usually called every
4253 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4254 * every tick. We fix it up based on jiffies.
4255 */
4256static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4257                              unsigned long pending_updates)
4258{
4259        int i, scale;
4260
4261        this_rq->nr_load_updates++;
4262
4263        /* Update our load: */
4264        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4265        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4266                unsigned long old_load, new_load;
4267
4268                /* scale is effectively 1 << i now, and >> i divides by scale */
4269
4270                old_load = this_rq->cpu_load[i];
4271                old_load = decay_load_missed(old_load, pending_updates - 1, i);
4272                new_load = this_load;
4273                /*
4274                 * Round up the averaging division if load is increasing. This
4275                 * prevents us from getting stuck on 9 if the load is 10, for
4276                 * example.
4277                 */
4278                if (new_load > old_load)
4279                        new_load += scale - 1;
4280
4281                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4282        }
4283
4284        sched_avg_update(this_rq);
4285}
4286
4287/* Used instead of source_load when we know the type == 0 */
4288static unsigned long weighted_cpuload(const int cpu)
4289{
4290        return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4291}
4292
4293#ifdef CONFIG_NO_HZ_COMMON
4294/*
4295 * There is no sane way to deal with nohz on smp when using jiffies because the
4296 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4297 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4298 *
4299 * Therefore we cannot use the delta approach from the regular tick since that
4300 * would seriously skew the load calculation. However we'll make do for those
4301 * updates happening while idle (nohz_idle_balance) or coming out of idle
4302 * (tick_nohz_idle_exit).
4303 *
4304 * This means we might still be one tick off for nohz periods.
4305 */
4306
4307/*
4308 * Called from nohz_idle_balance() to update the load ratings before doing the
4309 * idle balance.
4310 */
4311static void update_idle_cpu_load(struct rq *this_rq)
4312{
4313        unsigned long curr_jiffies = READ_ONCE(jiffies);
4314        unsigned long load = weighted_cpuload(cpu_of(this_rq));
4315        unsigned long pending_updates;
4316
4317        /*
4318         * bail if there's load or we're actually up-to-date.
4319         */
4320        if (load || curr_jiffies == this_rq->last_load_update_tick)
4321                return;
4322
4323        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4324        this_rq->last_load_update_tick = curr_jiffies;
4325
4326        __update_cpu_load(this_rq, load, pending_updates);
4327}
4328
4329/*
4330 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4331 */
4332void update_cpu_load_nohz(void)
4333{
4334        struct rq *this_rq = this_rq();
4335        unsigned long curr_jiffies = READ_ONCE(jiffies);
4336        unsigned long pending_updates;
4337
4338        if (curr_jiffies == this_rq->last_load_update_tick)
4339                return;
4340
4341        raw_spin_lock(&this_rq->lock);
4342        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4343        if (pending_updates) {
4344                this_rq->last_load_update_tick = curr_jiffies;
4345                /*
4346                 * We were idle, this means load 0, the current load might be
4347                 * !0 due to remote wakeups and the sort.
4348                 */
4349                __update_cpu_load(this_rq, 0, pending_updates);
4350        }
4351        raw_spin_unlock(&this_rq->lock);
4352}
4353#endif /* CONFIG_NO_HZ */
4354
4355/*
4356 * Called from scheduler_tick()
4357 */
4358void update_cpu_load_active(struct rq *this_rq)
4359{
4360        unsigned long load = weighted_cpuload(cpu_of(this_rq));
4361        /*
4362         * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4363         */
4364        this_rq->last_load_update_tick = jiffies;
4365        __update_cpu_load(this_rq, load, 1);
4366}
4367
4368/*
4369 * Return a low guess at the load of a migration-source cpu weighted
4370 * according to the scheduling class and "nice" value.
4371 *
4372 * We want to under-estimate the load of migration sources, to
4373 * balance conservatively.
4374 */
4375static unsigned long source_load(int cpu, int type)
4376{
4377        struct rq *rq = cpu_rq(cpu);
4378        unsigned long total = weighted_cpuload(cpu);
4379
4380        if (type == 0 || !sched_feat(LB_BIAS))
4381                return total;
4382
4383        return min(rq->cpu_load[type-1], total);
4384}
4385
4386/*
4387 * Return a high guess at the load of a migration-target cpu weighted
4388 * according to the scheduling class and "nice" value.
4389 */
4390static unsigned long target_load(int cpu, int type)
4391{
4392        struct rq *rq = cpu_rq(cpu);
4393        unsigned long total = weighted_cpuload(cpu);
4394
4395        if (type == 0 || !sched_feat(LB_BIAS))
4396                return total;
4397
4398        return max(rq->cpu_load[type-1], total);
4399}
4400
4401static unsigned long capacity_of(int cpu)
4402{
4403        return cpu_rq(cpu)->cpu_capacity;
4404}
4405
4406static unsigned long capacity_orig_of(int cpu)
4407{
4408        return cpu_rq(cpu)->cpu_capacity_orig;
4409}
4410
4411static unsigned long cpu_avg_load_per_task(int cpu)
4412{
4413        struct rq *rq = cpu_rq(cpu);
4414        unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4415        unsigned long load_avg = weighted_cpuload(cpu);
4416
4417        if (nr_running)
4418                return load_avg / nr_running;
4419
4420        return 0;
4421}
4422
4423static void record_wakee(struct task_struct *p)
4424{
4425        /*
4426         * Rough decay (wiping) for cost saving, don't worry
4427         * about the boundary, really active task won't care
4428         * about the loss.
4429         */
4430        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4431                current->wakee_flips >>= 1;
4432                current->wakee_flip_decay_ts = jiffies;
4433        }
4434
4435        if (current->last_wakee != p) {
4436                current->last_wakee = p;
4437                current->wakee_flips++;
4438        }
4439}
4440
4441static void task_waking_fair(struct task_struct *p)
4442{
4443        struct sched_entity *se = &p->se;
4444        struct cfs_rq *cfs_rq = cfs_rq_of(se);
4445        u64 min_vruntime;
4446
4447#ifndef CONFIG_64BIT
4448        u64 min_vruntime_copy;
4449
4450        do {
4451                min_vruntime_copy = cfs_rq->min_vruntime_copy;
4452                smp_rmb();
4453                min_vruntime = cfs_rq->min_vruntime;
4454        } while (min_vruntime != min_vruntime_copy);
4455#else
4456        min_vruntime = cfs_rq->min_vruntime;
4457#endif
4458
4459        se->vruntime -= min_vruntime;
4460        record_wakee(p);
4461}
4462
4463#ifdef CONFIG_FAIR_GROUP_SCHED
4464/*
4465 * effective_load() calculates the load change as seen from the root_task_group
4466 *
4467 * Adding load to a group doesn't make a group heavier, but can cause movement
4468 * of group shares between cpus. Assuming the shares were perfectly aligned one
4469 * can calculate the shift in shares.
4470 *
4471 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4472 * on this @cpu and results in a total addition (subtraction) of @wg to the
4473 * total group weight.
4474 *
4475 * Given a runqueue weight distribution (rw_i) we can compute a shares
4476 * distribution (s_i) using:
4477 *
4478 *   s_i = rw_i / \Sum rw_j                                             (1)
4479 *
4480 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4481 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4482 * shares distribution (s_i):
4483 *
4484 *   rw_i = {   2,   4,   1,   0 }
4485 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4486 *
4487 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4488 * task used to run on and the CPU the waker is running on), we need to
4489 * compute the effect of waking a task on either CPU and, in case of a sync
4490 * wakeup, compute the effect of the current task going to sleep.
4491 *
4492 * So for a change of @wl to the local @cpu with an overall group weight change
4493 * of @wl we can compute the new shares distribution (s'_i) using:
4494 *
4495 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)                            (2)
4496 *
4497 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4498 * differences in waking a task to CPU 0. The additional task changes the
4499 * weight and shares distributions like:
4500 *
4501 *   rw'_i = {   3,   4,   1,   0 }
4502 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4503 *
4504 * We can then compute the difference in effective weight by using:
4505 *
4506 *   dw_i = S * (s'_i - s_i)                                            (3)
4507 *
4508 * Where 'S' is the group weight as seen by its parent.
4509 *
4510 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4511 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4512 * 4/7) times the weight of the group.
4513 */
4514static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4515{
4516        struct sched_entity *se = tg->se[cpu];
4517
4518        if (!tg->parent)        /* the trivial, non-cgroup case */
4519                return wl;
4520
4521        for_each_sched_entity(se) {
4522                long w, W;
4523
4524                tg = se->my_q->tg;
4525
4526                /*
4527                 * W = @wg + \Sum rw_j
4528                 */
4529                W = wg + calc_tg_weight(tg, se->my_q);
4530
4531                /*
4532                 * w = rw_i + @wl
4533                 */
4534                w = cfs_rq_load_avg(se->my_q) + wl;
4535
4536                /*
4537                 * wl = S * s'_i; see (2)
4538                 */
4539                if (W > 0 && w < W)
4540                        wl = (w * (long)tg->shares) / W;
4541                else
4542                        wl = tg->shares;
4543
4544                /*
4545                 * Per the above, wl is the new se->load.weight value; since
4546                 * those are clipped to [MIN_SHARES, ...) do so now. See
4547                 * calc_cfs_shares().
4548                 */
4549                if (wl < MIN_SHARES)
4550                        wl = MIN_SHARES;
4551
4552                /*
4553                 * wl = dw_i = S * (s'_i - s_i); see (3)
4554                 */
4555                wl -= se->avg.load_avg;
4556
4557                /*
4558                 * Recursively apply this logic to all parent groups to compute
4559                 * the final effective load change on the root group. Since
4560                 * only the @tg group gets extra weight, all parent groups can
4561                 * only redistribute existing shares. @wl is the shift in shares
4562                 * resulting from this level per the above.
4563                 */
4564                wg = 0;
4565        }
4566
4567        return wl;
4568}
4569#else
4570
4571static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4572{
4573        return wl;
4574}
4575
4576#endif
4577
4578/*
4579 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4580 * A waker of many should wake a different task than the one last awakened
4581 * at a frequency roughly N times higher than one of its wakees.  In order
4582 * to determine whether we should let the load spread vs consolodating to
4583 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4584 * partner, and a factor of lls_size higher frequency in the other.  With
4585 * both conditions met, we can be relatively sure that the relationship is
4586 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
4587 * being client/server, worker/dispatcher, interrupt source or whatever is
4588 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4589 */
4590static int wake_wide(struct task_struct *p)
4591{
4592        unsigned int master = current->wakee_flips;
4593        unsigned int slave = p->wakee_flips;
4594        int factor = this_cpu_read(sd_llc_size);
4595
4596        if (master < slave)
4597                swap(master, slave);
4598        if (slave < factor || master < slave * factor)
4599                return 0;
4600        return 1;
4601}
4602
4603static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4604{
4605        s64 this_load, load;
4606        s64 this_eff_load, prev_eff_load;
4607        int idx, this_cpu, prev_cpu;
4608        struct task_group *tg;
4609        unsigned long weight;
4610        int balanced;
4611
4612        idx       = sd->wake_idx;
4613        this_cpu  = smp_processor_id();
4614        prev_cpu  = task_cpu(p);
4615        load      = source_load(prev_cpu, idx);
4616        this_load = target_load(this_cpu, idx);
4617
4618        /*
4619         * If sync wakeup then subtract the (maximum possible)
4620         * effect of the currently running task from the load
4621         * of the current CPU:
4622         */
4623        if (sync) {
4624                tg = task_group(current);
4625                weight = current->se.avg.load_avg;
4626
4627                this_load += effective_load(tg, this_cpu, -weight, -weight);
4628                load += effective_load(tg, prev_cpu, 0, -weight);
4629        }
4630
4631        tg = task_group(p);
4632        weight = p->se.avg.load_avg;
4633
4634        /*
4635         * In low-load situations, where prev_cpu is idle and this_cpu is idle
4636         * due to the sync cause above having dropped this_load to 0, we'll
4637         * always have an imbalance, but there's really nothing you can do
4638         * about that, so that's good too.
4639         *
4640         * Otherwise check if either cpus are near enough in load to allow this
4641         * task to be woken on this_cpu.
4642         */
4643        this_eff_load = 100;
4644        this_eff_load *= capacity_of(prev_cpu);
4645
4646        prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4647        prev_eff_load *= capacity_of(this_cpu);
4648
4649        if (this_load > 0) {
4650                this_eff_load *= this_load +
4651                        effective_load(tg, this_cpu, weight, weight);
4652
4653                prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4654        }
4655
4656        balanced = this_eff_load <= prev_eff_load;
4657
4658        schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4659
4660        if (!balanced)
4661                return 0;
4662
4663        schedstat_inc(sd, ttwu_move_affine);
4664        schedstat_inc(p, se.statistics.nr_wakeups_affine);
4665
4666        return 1;
4667}
4668
4669/*
4670 * find_idlest_group finds and returns the least busy CPU group within the
4671 * domain.
4672 */
4673static struct sched_group *
4674find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4675                  int this_cpu, int sd_flag)
4676{
4677        struct sched_group *idlest = NULL, *group = sd->groups;
4678        unsigned long min_load = ULONG_MAX, this_load = 0;
4679        int load_idx = sd->forkexec_idx;
4680        int imbalance = 100 + (sd->imbalance_pct-100)/2;
4681
4682        if (sd_flag & SD_BALANCE_WAKE)
4683                load_idx = sd->wake_idx;
4684
4685        do {
4686                unsigned long load, avg_load;
4687                int local_group;
4688                int i;
4689
4690                /* Skip over this group if it has no CPUs allowed */
4691                if (!cpumask_intersects(sched_group_cpus(group),
4692                                        tsk_cpus_allowed(p)))
4693                        continue;
4694
4695                local_group = cpumask_test_cpu(this_cpu,
4696                                               sched_group_cpus(group));
4697
4698                /* Tally up the load of all CPUs in the group */
4699                avg_load = 0;
4700
4701                for_each_cpu(i, sched_group_cpus(group)) {
4702                        /* Bias balancing toward cpus of our domain */
4703                        if (local_group)
4704                                load = source_load(i, load_idx);
4705                        else
4706                                load = target_load(i, load_idx);
4707
4708                        avg_load += load;
4709                }
4710
4711                /* Adjust by relative CPU capacity of the group */
4712                avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4713
4714                if (local_group) {
4715                        this_load = avg_load;
4716                } else if (avg_load < min_load) {
4717                        min_load = avg_load;
4718                        idlest = group;
4719                }
4720        } while (group = group->next, group != sd->groups);
4721
4722        if (!idlest || 100*this_load < imbalance*min_load)
4723                return NULL;
4724        return idlest;
4725}
4726
4727/*
4728 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4729 */
4730static int
4731find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4732{
4733        unsigned long load, min_load = ULONG_MAX;
4734        unsigned int min_exit_latency = UINT_MAX;
4735        u64 latest_idle_timestamp = 0;
4736        int least_loaded_cpu = this_cpu;
4737        int shallowest_idle_cpu = -1;
4738        int i;
4739
4740        /* Traverse only the allowed CPUs */
4741        for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4742                if (idle_cpu(i)) {
4743                        struct rq *rq = cpu_rq(i);
4744                        struct cpuidle_state *idle = idle_get_state(rq);
4745                        if (idle && idle->exit_latency < min_exit_latency) {
4746                                /*
4747                                 * We give priority to a CPU whose idle state
4748                                 * has the smallest exit latency irrespective
4749                                 * of any idle timestamp.
4750                                 */
4751                                min_exit_latency = idle->exit_latency;
4752                                latest_idle_timestamp = rq->idle_stamp;
4753                                shallowest_idle_cpu = i;
4754                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4755                                   rq->idle_stamp > latest_idle_timestamp) {
4756                                /*
4757                                 * If equal or no active idle state, then
4758                                 * the most recently idled CPU might have
4759                                 * a warmer cache.
4760                                 */
4761                                latest_idle_timestamp = rq->idle_stamp;
4762                                shallowest_idle_cpu = i;
4763                        }
4764                } else if (shallowest_idle_cpu == -1) {
4765                        load = weighted_cpuload(i);
4766                        if (load < min_load || (load == min_load && i == this_cpu)) {
4767                                min_load = load;
4768                                least_loaded_cpu = i;
4769                        }
4770                }
4771        }
4772
4773        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4774}
4775
4776/*
4777 * Try and locate an idle CPU in the sched_domain.
4778 */
4779static int select_idle_sibling(struct task_struct *p, int target)
4780{
4781        struct sched_domain *sd;
4782        struct sched_group *sg;
4783        int i = task_cpu(p);
4784
4785        if (idle_cpu(target))
4786                return target;
4787
4788        /*
4789         * If the prevous cpu is cache affine and idle, don't be stupid.
4790         */
4791        if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4792                return i;
4793
4794        /*
4795         * Otherwise, iterate the domains and find an elegible idle cpu.
4796         */
4797        sd = rcu_dereference(per_cpu(sd_llc, target));
4798        for_each_lower_domain(sd) {
4799                sg = sd->groups;
4800                do {
4801                        if (!cpumask_intersects(sched_group_cpus(sg),
4802                                                tsk_cpus_allowed(p)))
4803                                goto next;
4804
4805                        for_each_cpu(i, sched_group_cpus(sg)) {
4806                                if (i == target || !idle_cpu(i))
4807                                        goto next;
4808                        }
4809
4810                        target = cpumask_first_and(sched_group_cpus(sg),
4811                                        tsk_cpus_allowed(p));
4812                        goto done;
4813next:
4814                        sg = sg->next;
4815                } while (sg != sd->groups);
4816        }
4817done:
4818        return target;
4819}
4820/*
4821 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4822 * tasks. The unit of the return value must be the one of capacity so we can
4823 * compare the usage with the capacity of the CPU that is available for CFS
4824 * task (ie cpu_capacity).
4825 * cfs.avg.util_avg is the sum of running time of runnable tasks on a
4826 * CPU. It represents the amount of utilization of a CPU in the range
4827 * [0..SCHED_LOAD_SCALE].  The usage of a CPU can't be higher than the full
4828 * capacity of the CPU because it's about the running time on this CPU.
4829 * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
4830 * because of unfortunate rounding in util_avg or just
4831 * after migrating tasks until the average stabilizes with the new running
4832 * time. So we need to check that the usage stays into the range
4833 * [0..cpu_capacity_orig] and cap if necessary.
4834 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4835 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4836 */
4837static int get_cpu_usage(int cpu)
4838{
4839        unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
4840        unsigned long capacity = capacity_orig_of(cpu);
4841
4842        if (usage >= SCHED_LOAD_SCALE)
4843                return capacity;
4844
4845        return (usage * capacity) >> SCHED_LOAD_SHIFT;
4846}
4847
4848/*
4849 * select_task_rq_fair: Select target runqueue for the waking task in domains
4850 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4851 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4852 *
4853 * Balances load by selecting the idlest cpu in the idlest group, or under
4854 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4855 *
4856 * Returns the target cpu number.
4857 *
4858 * preempt must be disabled.
4859 */
4860static int
4861select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4862{
4863        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4864        int cpu = smp_processor_id();
4865        int new_cpu = prev_cpu;
4866        int want_affine = 0;
4867        int sync = wake_flags & WF_SYNC;
4868
4869        if (sd_flag & SD_BALANCE_WAKE)
4870                want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4871
4872        rcu_read_lock();
4873        for_each_domain(cpu, tmp) {
4874                if (!(tmp->flags & SD_LOAD_BALANCE))
4875                        break;
4876
4877                /*
4878                 * If both cpu and prev_cpu are part of this domain,
4879                 * cpu is a valid SD_WAKE_AFFINE target.
4880                 */
4881                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4882                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4883                        affine_sd = tmp;
4884                        break;
4885                }
4886
4887                if (tmp->flags & sd_flag)
4888                        sd = tmp;
4889                else if (!want_affine)
4890                        break;
4891        }
4892
4893        if (affine_sd) {
4894                sd = NULL; /* Prefer wake_affine over balance flags */
4895                if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4896                        new_cpu = cpu;
4897        }
4898
4899        if (!sd) {
4900                if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4901                        new_cpu = select_idle_sibling(p, new_cpu);
4902
4903        } else while (sd) {
4904                struct sched_group *group;
4905                int weight;
4906
4907                if (!(sd->flags & sd_flag)) {
4908                        sd = sd->child;
4909                        continue;
4910                }
4911
4912                group = find_idlest_group(sd, p, cpu, sd_flag);
4913                if (!group) {
4914                        sd = sd->child;
4915                        continue;
4916                }
4917
4918                new_cpu = find_idlest_cpu(group, p, cpu);
4919                if (new_cpu == -1 || new_cpu == cpu) {
4920                        /* Now try balancing at a lower domain level of cpu */
4921                        sd = sd->child;
4922                        continue;
4923                }
4924
4925                /* Now try balancing at a lower domain level of new_cpu */
4926                cpu = new_cpu;
4927                weight = sd->span_weight;
4928                sd = NULL;
4929                for_each_domain(cpu, tmp) {
4930                        if (weight <= tmp->span_weight)
4931                                break;
4932                        if (tmp->flags & sd_flag)
4933                                sd = tmp;
4934                }
4935                /* while loop will break here if sd == NULL */
4936        }
4937        rcu_read_unlock();
4938
4939        return new_cpu;
4940}
4941
4942/*
4943 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4944 * cfs_rq_of(p) references at time of call are still valid and identify the
4945 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4946 * other assumptions, including the state of rq->lock, should be made.
4947 */
4948static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4949{
4950        /*
4951         * We are supposed to update the task to "current" time, then its up to date
4952         * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
4953         * what current time is, so simply throw away the out-of-date time. This
4954         * will result in the wakee task is less decayed, but giving the wakee more
4955         * load sounds not bad.
4956         */
4957        remove_entity_load_avg(&p->se);
4958
4959        /* Tell new CPU we are migrated */
4960        p->se.avg.last_update_time = 0;
4961
4962        /* We have migrated, no longer consider this task hot */
4963        p->se.exec_start = 0;
4964}
4965
4966static void task_dead_fair(struct task_struct *p)
4967{
4968        remove_entity_load_avg(&p->se);
4969}
4970#endif /* CONFIG_SMP */
4971
4972static unsigned long
4973wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4974{
4975        unsigned long gran = sysctl_sched_wakeup_granularity;
4976
4977        /*
4978         * Since its curr running now, convert the gran from real-time
4979         * to virtual-time in his units.
4980         *
4981         * By using 'se' instead of 'curr' we penalize light tasks, so
4982         * they get preempted easier. That is, if 'se' < 'curr' then
4983         * the resulting gran will be larger, therefore penalizing the
4984         * lighter, if otoh 'se' > 'curr' then the resulting gran will
4985         * be smaller, again penalizing the lighter task.
4986         *
4987         * This is especially important for buddies when the leftmost
4988         * task is higher priority than the buddy.
4989         */
4990        return calc_delta_fair(gran, se);
4991}
4992
4993/*
4994 * Should 'se' preempt 'curr'.
4995 *
4996 *             |s1
4997 *        |s2
4998 *   |s3
4999 *         g
5000 *      |<--->|c
5001 *
5002 *  w(c, s1) = -1
5003 *  w(c, s2) =  0
5004 *  w(c, s3) =  1
5005 *
5006 */
5007static int
5008wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5009{
5010        s64 gran, vdiff = curr->vruntime - se->vruntime;
5011
5012        if (vdiff <= 0)
5013                return -1;
5014
5015        gran = wakeup_gran(curr, se);
5016        if (vdiff > gran)
5017                return 1;
5018
5019        return 0;
5020}
5021
5022static void set_last_buddy(struct sched_entity *se)
5023{
5024        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5025                return;
5026
5027        for_each_sched_entity(se)
5028                cfs_rq_of(se)->last = se;
5029}
5030
5031static void set_next_buddy(struct sched_entity *se)
5032{
5033        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5034                return;
5035
5036        for_each_sched_entity(se)
5037                cfs_rq_of(se)->next = se;
5038}
5039
5040static void set_skip_buddy(struct sched_entity *se)
5041{
5042        for_each_sched_entity(se)
5043                cfs_rq_of(se)->skip = se;
5044}
5045
5046/*
5047 * Preempt the current task with a newly woken task if needed:
5048 */
5049static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5050{
5051        struct task_struct *curr = rq->curr;
5052        struct sched_entity *se = &curr->se, *pse = &p->se;
5053        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5054        int scale = cfs_rq->nr_running >= sched_nr_latency;
5055        int next_buddy_marked = 0;
5056
5057        if (unlikely(se == pse))
5058                return;
5059
5060        /*
5061         * This is possible from callers such as attach_tasks(), in which we
5062         * unconditionally check_prempt_curr() after an enqueue (which may have
5063         * lead to a throttle).  This both saves work and prevents false
5064         * next-buddy nomination below.
5065         */
5066        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5067                return;
5068
5069        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5070                set_next_buddy(pse);
5071                next_buddy_marked = 1;
5072        }
5073
5074        /*
5075         * We can come here with TIF_NEED_RESCHED already set from new task
5076         * wake up path.
5077         *
5078         * Note: this also catches the edge-case of curr being in a throttled
5079         * group (e.g. via set_curr_task), since update_curr() (in the
5080         * enqueue of curr) will have resulted in resched being set.  This
5081         * prevents us from potentially nominating it as a false LAST_BUDDY
5082         * below.
5083         */
5084        if (test_tsk_need_resched(curr))
5085                return;
5086
5087        /* Idle tasks are by definition preempted by non-idle tasks. */
5088        if (unlikely(curr->policy == SCHED_IDLE) &&
5089            likely(p->policy != SCHED_IDLE))
5090                goto preempt;
5091
5092        /*
5093         * Batch and idle tasks do not preempt non-idle tasks (their preemption
5094         * is driven by the tick):
5095         */
5096        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5097                return;
5098
5099        find_matching_se(&se, &pse);
5100        update_curr(cfs_rq_of(se));
5101        BUG_ON(!pse);
5102        if (wakeup_preempt_entity(se, pse) == 1) {
5103                /*
5104                 * Bias pick_next to pick the sched entity that is
5105                 * triggering this preemption.
5106                 */
5107                if (!next_buddy_marked)
5108                        set_next_buddy(pse);
5109                goto preempt;
5110        }
5111
5112        return;
5113
5114preempt:
5115        resched_curr(rq);
5116        /*
5117         * Only set the backward buddy when the current task is still
5118         * on the rq. This can happen when a wakeup gets interleaved
5119         * with schedule on the ->pre_schedule() or idle_balance()
5120         * point, either of which can * drop the rq lock.
5121         *
5122         * Also, during early boot the idle thread is in the fair class,
5123         * for obvious reasons its a bad idea to schedule back to it.
5124         */
5125        if (unlikely(!se->on_rq || curr == rq->idle))
5126                return;
5127
5128        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5129                set_last_buddy(se);
5130}
5131
5132static struct task_struct *
5133pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5134{
5135        struct cfs_rq *cfs_rq = &rq->cfs;
5136        struct sched_entity *se;
5137        struct task_struct *p;
5138        int new_tasks;
5139
5140again:
5141#ifdef CONFIG_FAIR_GROUP_SCHED
5142        if (!cfs_rq->nr_running)
5143                goto idle;
5144
5145        if (prev->sched_class != &fair_sched_class)
5146                goto simple;
5147
5148        /*
5149         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5150         * likely that a next task is from the same cgroup as the current.
5151         *
5152         * Therefore attempt to avoid putting and setting the entire cgroup
5153         * hierarchy, only change the part that actually changes.
5154         */
5155
5156        do {
5157                struct sched_entity *curr = cfs_rq->curr;
5158
5159                /*
5160                 * Since we got here without doing put_prev_entity() we also
5161                 * have to consider cfs_rq->curr. If it is still a runnable
5162                 * entity, update_curr() will update its vruntime, otherwise
5163                 * forget we've ever seen it.
5164                 */
5165                if (curr) {
5166                        if (curr->on_rq)
5167                                update_curr(cfs_rq);
5168                        else
5169                                curr = NULL;
5170
5171                        /*
5172                         * This call to check_cfs_rq_runtime() will do the
5173                         * throttle and dequeue its entity in the parent(s).
5174                         * Therefore the 'simple' nr_running test will indeed
5175                         * be correct.
5176                         */
5177                        if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5178                                goto simple;
5179                }
5180
5181                se = pick_next_entity(cfs_rq, curr);
5182                cfs_rq = group_cfs_rq(se);
5183        } while (cfs_rq);
5184
5185        p = task_of(se);
5186
5187        /*
5188         * Since we haven't yet done put_prev_entity and if the selected task
5189         * is a different task than we started out with, try and touch the
5190         * least amount of cfs_rqs.
5191         */
5192        if (prev != p) {
5193                struct sched_entity *pse = &prev->se;
5194
5195                while (!(cfs_rq = is_same_group(se, pse))) {
5196                        int se_depth = se->depth;
5197                        int pse_depth = pse->depth;
5198
5199                        if (se_depth <= pse_depth) {
5200                                put_prev_entity(cfs_rq_of(pse), pse);
5201                                pse = parent_entity(pse);
5202                        }
5203                        if (se_depth >= pse_depth) {
5204                                set_next_entity(cfs_rq_of(se), se);
5205                                se = parent_entity(se);
5206                        }
5207                }
5208
5209                put_prev_entity(cfs_rq, pse);
5210                set_next_entity(cfs_rq, se);
5211        }
5212
5213        if (hrtick_enabled(rq))
5214                hrtick_start_fair(rq, p);
5215
5216        return p;
5217simple:
5218        cfs_rq = &rq->cfs;
5219#endif
5220
5221        if (!cfs_rq->nr_running)
5222                goto idle;
5223
5224        put_prev_task(rq, prev);
5225
5226        do {
5227                se = pick_next_entity(cfs_rq, NULL);
5228                set_next_entity(cfs_rq, se);
5229                cfs_rq = group_cfs_rq(se);
5230        } while (cfs_rq);
5231
5232        p = task_of(se);
5233
5234        if (hrtick_enabled(rq))
5235                hrtick_start_fair(rq, p);
5236
5237        return p;
5238
5239idle:
5240        /*
5241         * This is OK, because current is on_cpu, which avoids it being picked
5242         * for load-balance and preemption/IRQs are still disabled avoiding
5243         * further scheduler activity on it and we're being very careful to
5244         * re-start the picking loop.
5245         */
5246        lockdep_unpin_lock(&rq->lock);
5247        new_tasks = idle_balance(rq);
5248        lockdep_pin_lock(&rq->lock);
5249        /*
5250         * Because idle_balance() releases (and re-acquires) rq->lock, it is
5251         * possible for any higher priority task to appear. In that case we
5252         * must re-start the pick_next_entity() loop.
5253         */
5254        if (new_tasks < 0)
5255                return RETRY_TASK;
5256
5257        if (new_tasks > 0)
5258                goto again;
5259
5260        return NULL;
5261}
5262
5263/*
5264 * Account for a descheduled task:
5265 */
5266static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5267{
5268        struct sched_entity *se = &prev->se;
5269        struct cfs_rq *cfs_rq;
5270
5271        for_each_sched_entity(se) {
5272                cfs_rq = cfs_rq_of(se);
5273                put_prev_entity(cfs_rq, se);
5274        }
5275}
5276
5277/*
5278 * sched_yield() is very simple
5279 *
5280 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5281 */
5282static void yield_task_fair(struct rq *rq)
5283{
5284        struct task_struct *curr = rq->curr;
5285        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5286        struct sched_entity *se = &curr->se;
5287
5288        /*
5289         * Are we the only task in the tree?
5290         */
5291        if (unlikely(rq->nr_running == 1))
5292                return;
5293
5294        clear_buddies(cfs_rq, se);
5295
5296        if (curr->policy != SCHED_BATCH) {
5297                update_rq_clock(rq);
5298                /*
5299                 * Update run-time statistics of the 'current'.
5300                 */
5301                update_curr(cfs_rq);
5302                /*
5303                 * Tell update_rq_clock() that we've just updated,
5304                 * so we don't do microscopic update in schedule()
5305                 * and double the fastpath cost.
5306                 */
5307                rq_clock_skip_update(rq, true);
5308        }
5309
5310        set_skip_buddy(se);
5311}
5312
5313static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5314{
5315        struct sched_entity *se = &p->se;
5316
5317        /* throttled hierarchies are not runnable */
5318        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5319                return false;
5320
5321        /* Tell the scheduler that we'd really like pse to run next. */
5322        set_next_buddy(se);
5323
5324        yield_task_fair(rq);
5325
5326        return true;
5327}
5328
5329#ifdef CONFIG_SMP
5330/**************************************************
5331 * Fair scheduling class load-balancing methods.
5332 *
5333 * BASICS
5334 *
5335 * The purpose of load-balancing is to achieve the same basic fairness the
5336 * per-cpu scheduler provides, namely provide a proportional amount of compute
5337 * time to each task. This is expressed in the following equation:
5338 *
5339 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5340 *
5341 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5342 * W_i,0 is defined as:
5343 *
5344 *   W_i,0 = \Sum_j w_i,j                                             (2)
5345 *
5346 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5347 * is derived from the nice value as per prio_to_weight[].
5348 *
5349 * The weight average is an exponential decay average of the instantaneous
5350 * weight:
5351 *
5352 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5353 *
5354 * C_i is the compute capacity of cpu i, typically it is the
5355 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5356 * can also include other factors [XXX].
5357 *
5358 * To achieve this balance we define a measure of imbalance which follows
5359 * directly from (1):
5360 *
5361 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5362 *
5363 * We them move tasks around to minimize the imbalance. In the continuous
5364 * function space it is obvious this converges, in the discrete case we get
5365 * a few fun cases generally called infeasible weight scenarios.
5366 *
5367 * [XXX expand on:
5368 *     - infeasible weights;
5369 *     - local vs global optima in the discrete case. ]
5370 *
5371 *
5372 * SCHED DOMAINS
5373 *
5374 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5375 * for all i,j solution, we create a tree of cpus that follows the hardware
5376 * topology where each level pairs two lower groups (or better). This results
5377 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5378 * tree to only the first of the previous level and we decrease the frequency
5379 * of load-balance at each level inv. proportional to the number of cpus in
5380 * the groups.
5381 *
5382 * This yields:
5383 *
5384 *     log_2 n     1     n
5385 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5386 *     i = 0      2^i   2^i
5387 *                               `- size of each group
5388 *         |         |     `- number of cpus doing load-balance
5389 *         |         `- freq
5390 *         `- sum over all levels
5391 *
5392 * Coupled with a limit on how many tasks we can migrate every balance pass,
5393 * this makes (5) the runtime complexity of the balancer.
5394 *
5395 * An important property here is that each CPU is still (indirectly) connected
5396 * to every other cpu in at most O(log n) steps:
5397 *
5398 * The adjacency matrix of the resulting graph is given by:
5399 *
5400 *             log_2 n     
5401 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5402 *             k = 0
5403 *
5404 * And you'll find that:
5405 *
5406 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5407 *
5408 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5409 * The task movement gives a factor of O(m), giving a convergence complexity
5410 * of:
5411 *
5412 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5413 *
5414 *
5415 * WORK CONSERVING
5416 *
5417 * In order to avoid CPUs going idle while there's still work to do, new idle
5418 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5419 * tree itself instead of relying on other CPUs to bring it work.
5420 *
5421 * This adds some complexity to both (5) and (8) but it reduces the total idle
5422 * time.
5423 *
5424 * [XXX more?]
5425 *
5426 *
5427 * CGROUPS
5428 *
5429 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5430 *
5431 *                                s_k,i
5432 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5433 *                                 S_k
5434 *
5435 * Where
5436 *
5437 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5438 *
5439 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5440 *
5441 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5442 * property.
5443 *
5444 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5445 *      rewrite all of this once again.]
5446 */ 
5447
5448static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5449
5450enum fbq_type { regular, remote, all };
5451
5452#define LBF_ALL_PINNED  0x01
5453#define LBF_NEED_BREAK  0x02
5454#define LBF_DST_PINNED  0x04
5455#define LBF_SOME_PINNED 0x08
5456
5457struct lb_env {
5458        struct sched_domain     *sd;
5459
5460        struct rq               *src_rq;
5461        int                     src_cpu;
5462
5463        int                     dst_cpu;
5464        struct rq               *dst_rq;
5465
5466        struct cpumask          *dst_grpmask;
5467        int                     new_dst_cpu;
5468        enum cpu_idle_type      idle;
5469        long                    imbalance;
5470        /* The set of CPUs under consideration for load-balancing */
5471        struct cpumask          *cpus;
5472
5473        unsigned int            flags;
5474
5475        unsigned int            loop;
5476        unsigned int            loop_break;
5477        unsigned int            loop_max;
5478
5479        enum fbq_type           fbq_type;
5480        struct list_head        tasks;
5481};
5482
5483/*
5484 * Is this task likely cache-hot:
5485 */
5486static int task_hot(struct task_struct *p, struct lb_env *env)
5487{
5488        s64 delta;
5489
5490        lockdep_assert_held(&env->src_rq->lock);
5491
5492        if (p->sched_class != &fair_sched_class)
5493                return 0;
5494
5495        if (unlikely(p->policy == SCHED_IDLE))
5496                return 0;
5497
5498        /*
5499         * Buddy candidates are cache hot:
5500         */
5501        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5502                        (&p->se == cfs_rq_of(&p->se)->next ||
5503                         &p->se == cfs_rq_of(&p->se)->last))
5504                return 1;
5505
5506        if (sysctl_sched_migration_cost == -1)
5507                return 1;
5508        if (sysctl_sched_migration_cost == 0)
5509                return 0;
5510
5511        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5512
5513        return delta < (s64)sysctl_sched_migration_cost;
5514}
5515
5516#ifdef CONFIG_NUMA_BALANCING
5517/*
5518 * Returns 1, if task migration degrades locality
5519 * Returns 0, if task migration improves locality i.e migration preferred.
5520 * Returns -1, if task migration is not affected by locality.
5521 */
5522static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5523{
5524        struct numa_group *numa_group = rcu_dereference(p->numa_group);
5525        unsigned long src_faults, dst_faults;
5526        int src_nid, dst_nid;
5527
5528        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5529                return -1;
5530
5531        if (!sched_feat(NUMA))
5532                return -1;
5533
5534        src_nid = cpu_to_node(env->src_cpu);
5535        dst_nid = cpu_to_node(env->dst_cpu);
5536
5537        if (src_nid == dst_nid)
5538                return -1;
5539
5540        /* Migrating away from the preferred node is always bad. */
5541        if (src_nid == p->numa_preferred_nid) {
5542                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5543                        return 1;
5544                else
5545                        return -1;
5546        }
5547
5548        /* Encourage migration to the preferred node. */
5549        if (dst_nid == p->numa_preferred_nid)
5550                return 0;
5551
5552        if (numa_group) {
5553                src_faults = group_faults(p, src_nid);
5554                dst_faults = group_faults(p, dst_nid);
5555        } else {
5556                src_faults = task_faults(p, src_nid);
5557                dst_faults = task_faults(p, dst_nid);
5558        }
5559
5560        return dst_faults < src_faults;
5561}
5562
5563#else
5564static inline int migrate_degrades_locality(struct task_struct *p,
5565                                             struct lb_env *env)
5566{
5567        return -1;
5568}
5569#endif
5570
5571/*
5572 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5573 */
5574static
5575int can_migrate_task(struct task_struct *p, struct lb_env *env)
5576{
5577        int tsk_cache_hot;
5578
5579        lockdep_assert_held(&env->src_rq->lock);
5580
5581        /*
5582         * We do not migrate tasks that are:
5583         * 1) throttled_lb_pair, or
5584         * 2) cannot be migrated to this CPU due to cpus_allowed, or
5585         * 3) running (obviously), or
5586         * 4) are cache-hot on their current CPU.
5587         */
5588        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5589                return 0;
5590
5591        if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5592                int cpu;
5593
5594                schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5595
5596                env->flags |= LBF_SOME_PINNED;
5597
5598                /*
5599                 * Remember if this task can be migrated to any other cpu in
5600                 * our sched_group. We may want to revisit it if we couldn't
5601                 * meet load balance goals by pulling other tasks on src_cpu.
5602                 *
5603                 * Also avoid computing new_dst_cpu if we have already computed
5604                 * one in current iteration.
5605                 */
5606                if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5607                        return 0;
5608
5609                /* Prevent to re-select dst_cpu via env's cpus */
5610                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5611                        if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5612                                env->flags |= LBF_DST_PINNED;
5613                                env->new_dst_cpu = cpu;
5614                                break;
5615                        }
5616                }
5617
5618                return 0;
5619        }
5620
5621        /* Record that we found atleast one task that could run on dst_cpu */
5622        env->flags &= ~LBF_ALL_PINNED;
5623
5624        if (task_running(env->src_rq, p)) {
5625                schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5626                return 0;
5627        }
5628
5629        /*
5630         * Aggressive migration if:
5631         * 1) destination numa is preferred
5632         * 2) task is cache cold, or
5633         * 3) too many balance attempts have failed.
5634         */
5635        tsk_cache_hot = migrate_degrades_locality(p, env);
5636        if (tsk_cache_hot == -1)
5637                tsk_cache_hot = task_hot(p, env);
5638
5639        if (tsk_cache_hot <= 0 ||
5640            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5641                if (tsk_cache_hot == 1) {
5642                        schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5643                        schedstat_inc(p, se.statistics.nr_forced_migrations);
5644                }
5645                return 1;
5646        }
5647
5648        schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5649        return 0;
5650}
5651
5652/*
5653 * detach_task() -- detach the task for the migration specified in env
5654 */
5655static void detach_task(struct task_struct *p, struct lb_env *env)
5656{
5657        lockdep_assert_held(&env->src_rq->lock);
5658
5659        deactivate_task(env->src_rq, p, 0);
5660        p->on_rq = TASK_ON_RQ_MIGRATING;
5661        set_task_cpu(p, env->dst_cpu);
5662}
5663
5664/*
5665 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5666 * part of active balancing operations within "domain".
5667 *
5668 * Returns a task if successful and NULL otherwise.
5669 */
5670static struct task_struct *detach_one_task(struct lb_env *env)
5671{
5672        struct task_struct *p, *n;
5673
5674        lockdep_assert_held(&env->src_rq->lock);
5675
5676        list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5677                if (!can_migrate_task(p, env))
5678                        continue;
5679
5680                detach_task(p, env);
5681
5682                /*
5683                 * Right now, this is only the second place where
5684                 * lb_gained[env->idle] is updated (other is detach_tasks)
5685                 * so we can safely collect stats here rather than
5686                 * inside detach_tasks().
5687                 */
5688                schedstat_inc(env->sd, lb_gained[env->idle]);
5689                return p;
5690        }
5691        return NULL;
5692}
5693
5694static const unsigned int sched_nr_migrate_break = 32;
5695
5696/*
5697 * detach_tasks() -- tries to detach up to imbalance weighted load from
5698 * busiest_rq, as part of a balancing operation within domain "sd".
5699 *
5700 * Returns number of detached tasks if successful and 0 otherwise.
5701 */
5702static int detach_tasks(struct lb_env *env)
5703{
5704        struct list_head *tasks = &env->src_rq->cfs_tasks;
5705        struct task_struct *p;
5706        unsigned long load;
5707        int detached = 0;
5708
5709        lockdep_assert_held(&env->src_rq->lock);
5710
5711        if (env->imbalance <= 0)
5712                return 0;
5713
5714        while (!list_empty(tasks)) {
5715                /*
5716                 * We don't want to steal all, otherwise we may be treated likewise,
5717                 * which could at worst lead to a livelock crash.
5718                 */
5719                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5720                        break;
5721
5722                p = list_first_entry(tasks, struct task_struct, se.group_node);
5723
5724                env->loop++;
5725                /* We've more or less seen every task there is, call it quits */
5726                if (env->loop > env->loop_max)
5727                        break;
5728
5729                /* take a breather every nr_migrate tasks */
5730                if (env->loop > env->loop_break) {
5731                        env->loop_break += sched_nr_migrate_break;
5732                        env->flags |= LBF_NEED_BREAK;
5733                        break;
5734                }
5735
5736                if (!can_migrate_task(p, env))
5737                        goto next;
5738
5739                load = task_h_load(p);
5740
5741                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5742                        goto next;
5743
5744                if ((load / 2) > env->imbalance)
5745                        goto next;
5746
5747                detach_task(p, env);
5748                list_add(&p->se.group_node, &env->tasks);
5749
5750                detached++;
5751                env->imbalance -= load;
5752
5753#ifdef CONFIG_PREEMPT
5754                /*
5755                 * NEWIDLE balancing is a source of latency, so preemptible
5756                 * kernels will stop after the first task is detached to minimize
5757                 * the critical section.
5758                 */
5759                if (env->idle == CPU_NEWLY_IDLE)
5760                        break;
5761#endif
5762
5763                /*
5764                 * We only want to steal up to the prescribed amount of
5765                 * weighted load.
5766                 */
5767                if (env->imbalance <= 0)
5768                        break;
5769
5770                continue;
5771next:
5772                list_move_tail(&p->se.group_node, tasks);
5773        }
5774
5775        /*
5776         * Right now, this is one of only two places we collect this stat
5777         * so we can safely collect detach_one_task() stats here rather
5778         * than inside detach_one_task().
5779         */
5780        schedstat_add(env->sd, lb_gained[env->idle], detached);
5781
5782        return detached;
5783}
5784
5785/*
5786 * attach_task() -- attach the task detached by detach_task() to its new rq.
5787 */
5788static void attach_task(struct rq *rq, struct task_struct *p)
5789{
5790        lockdep_assert_held(&rq->lock);
5791
5792        BUG_ON(task_rq(p) != rq);
5793        p->on_rq = TASK_ON_RQ_QUEUED;
5794        activate_task(rq, p, 0);
5795        check_preempt_curr(rq, p, 0);
5796}
5797
5798/*
5799 * attach_one_task() -- attaches the task returned from detach_one_task() to
5800 * its new rq.
5801 */
5802static void attach_one_task(struct rq *rq, struct task_struct *p)
5803{
5804        raw_spin_lock(&rq->lock);
5805        attach_task(rq, p);
5806        raw_spin_unlock(&rq->lock);
5807}
5808
5809/*
5810 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5811 * new rq.
5812 */
5813static void attach_tasks(struct lb_env *env)
5814{
5815        struct list_head *tasks = &env->tasks;
5816        struct task_struct *p;
5817
5818        raw_spin_lock(&env->dst_rq->lock);
5819
5820        while (!list_empty(tasks)) {
5821                p = list_first_entry(tasks, struct task_struct, se.group_node);
5822                list_del_init(&p->se.group_node);
5823
5824                attach_task(env->dst_rq, p);
5825        }
5826
5827        raw_spin_unlock(&env->dst_rq->lock);
5828}
5829
5830#ifdef CONFIG_FAIR_GROUP_SCHED
5831static void update_blocked_averages(int cpu)
5832{
5833        struct rq *rq = cpu_rq(cpu);
5834        struct cfs_rq *cfs_rq;
5835        unsigned long flags;
5836
5837        raw_spin_lock_irqsave(&rq->lock, flags);
5838        update_rq_clock(rq);
5839
5840        /*
5841         * Iterates the task_group tree in a bottom up fashion, see
5842         * list_add_leaf_cfs_rq() for details.
5843         */
5844        for_each_leaf_cfs_rq(rq, cfs_rq) {
5845                /* throttled entities do not contribute to load */
5846                if (throttled_hierarchy(cfs_rq))
5847                        continue;
5848
5849                if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5850                        update_tg_load_avg(cfs_rq, 0);
5851        }
5852        raw_spin_unlock_irqrestore(&rq->lock, flags);
5853}
5854
5855/*
5856 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5857 * This needs to be done in a top-down fashion because the load of a child
5858 * group is a fraction of its parents load.
5859 */
5860static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5861{
5862        struct rq *rq = rq_of(cfs_rq);
5863        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5864        unsigned long now = jiffies;
5865        unsigned long load;
5866
5867        if (cfs_rq->last_h_load_update == now)
5868                return;
5869
5870        cfs_rq->h_load_next = NULL;
5871        for_each_sched_entity(se) {
5872                cfs_rq = cfs_rq_of(se);
5873                cfs_rq->h_load_next = se;
5874                if (cfs_rq->last_h_load_update == now)
5875                        break;
5876        }
5877
5878        if (!se) {
5879                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
5880                cfs_rq->last_h_load_update = now;
5881        }
5882
5883        while ((se = cfs_rq->h_load_next) != NULL) {
5884                load = cfs_rq->h_load;
5885                load = div64_ul(load * se->avg.load_avg,
5886                        cfs_rq_load_avg(cfs_rq) + 1);
5887                cfs_rq = group_cfs_rq(se);
5888                cfs_rq->h_load = load;
5889                cfs_rq->last_h_load_update = now;
5890        }
5891}
5892
5893static unsigned long task_h_load(struct task_struct *p)
5894{
5895        struct cfs_rq *cfs_rq = task_cfs_rq(p);
5896
5897        update_cfs_rq_h_load(cfs_rq);
5898        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
5899                        cfs_rq_load_avg(cfs_rq) + 1);
5900}
5901#else
5902static inline void update_blocked_averages(int cpu)
5903{
5904        struct rq *rq = cpu_rq(cpu);
5905        struct cfs_rq *cfs_rq = &rq->cfs;
5906        unsigned long flags;
5907
5908        raw_spin_lock_irqsave(&rq->lock, flags);
5909        update_rq_clock(rq);
5910        update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5911        raw_spin_unlock_irqrestore(&rq->lock, flags);
5912}
5913
5914static unsigned long task_h_load(struct task_struct *p)
5915{
5916        return p->se.avg.load_avg;
5917}
5918#endif
5919
5920/********** Helpers for find_busiest_group ************************/
5921
5922enum group_type {
5923        group_other = 0,
5924        group_imbalanced,
5925        group_overloaded,
5926};
5927
5928/*
5929 * sg_lb_stats - stats of a sched_group required for load_balancing
5930 */
5931struct sg_lb_stats {
5932        unsigned long avg_load; /*Avg load across the CPUs of the group */
5933        unsigned long group_load; /* Total load over the CPUs of the group */
5934        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5935        unsigned long load_per_task;
5936        unsigned long group_capacity;
5937        unsigned long group_usage; /* Total usage of the group */
5938        unsigned int sum_nr_running; /* Nr tasks running in the group */
5939        unsigned int idle_cpus;
5940        unsigned int group_weight;
5941        enum group_type group_type;
5942        int group_no_capacity;
5943#ifdef CONFIG_NUMA_BALANCING
5944        unsigned int nr_numa_running;
5945        unsigned int nr_preferred_running;
5946#endif
5947};
5948
5949/*
5950 * sd_lb_stats - Structure to store the statistics of a sched_domain
5951 *               during load balancing.
5952 */
5953struct sd_lb_stats {
5954        struct sched_group *busiest;    /* Busiest group in this sd */
5955        struct sched_group *local;      /* Local group in this sd */
5956        unsigned long total_load;       /* Total load of all groups in sd */
5957        unsigned long total_capacity;   /* Total capacity of all groups in sd */
5958        unsigned long avg_load; /* Average load across all groups in sd */
5959
5960        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5961        struct sg_lb_stats local_stat;  /* Statistics of the local group */
5962};
5963
5964static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5965{
5966        /*
5967         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5968         * local_stat because update_sg_lb_stats() does a full clear/assignment.
5969         * We must however clear busiest_stat::avg_load because
5970         * update_sd_pick_busiest() reads this before assignment.
5971         */
5972        *sds = (struct sd_lb_stats){
5973                .busiest = NULL,
5974                .local = NULL,
5975                .total_load = 0UL,
5976                .total_capacity = 0UL,
5977                .busiest_stat = {
5978                        .avg_load = 0UL,
5979                        .sum_nr_running = 0,
5980                        .group_type = group_other,
5981                },
5982        };
5983}
5984
5985/**
5986 * get_sd_load_idx - Obtain the load index for a given sched domain.
5987 * @sd: The sched_domain whose load_idx is to be obtained.
5988 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5989 *
5990 * Return: The load index.
5991 */
5992static inline int get_sd_load_idx(struct sched_domain *sd,
5993                                        enum cpu_idle_type idle)
5994{
5995        int load_idx;
5996
5997        switch (idle) {
5998        case CPU_NOT_IDLE:
5999                load_idx = sd->busy_idx;
6000                break;
6001
6002        case CPU_NEWLY_IDLE:
6003                load_idx = sd->newidle_idx;
6004                break;
6005        default:
6006                load_idx = sd->idle_idx;
6007                break;
6008        }
6009
6010        return load_idx;
6011}
6012
6013static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6014{
6015        if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6016                return sd->smt_gain / sd->span_weight;
6017
6018        return SCHED_CAPACITY_SCALE;
6019}
6020
6021unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6022{
6023        return default_scale_cpu_capacity(sd, cpu);
6024}
6025
6026static unsigned long scale_rt_capacity(int cpu)
6027{
6028        struct rq *rq = cpu_rq(cpu);
6029        u64 total, used, age_stamp, avg;
6030        s64 delta;
6031
6032        /*
6033         * Since we're reading these variables without serialization make sure
6034         * we read them once before doing sanity checks on them.
6035         */
6036        age_stamp = READ_ONCE(rq->age_stamp);
6037        avg = READ_ONCE(rq->rt_avg);
6038        delta = __rq_clock_broken(rq) - age_stamp;
6039
6040        if (unlikely(delta < 0))
6041                delta = 0;
6042
6043        total = sched_avg_period() + delta;
6044
6045        used = div_u64(avg, total);
6046
6047        if (likely(used < SCHED_CAPACITY_SCALE))
6048                return SCHED_CAPACITY_SCALE - used;
6049
6050        return 1;
6051}
6052
6053static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6054{
6055        unsigned long capacity = SCHED_CAPACITY_SCALE;
6056        struct sched_group *sdg = sd->groups;
6057
6058        if (sched_feat(ARCH_CAPACITY))
6059                capacity *= arch_scale_cpu_capacity(sd, cpu);
6060        else
6061                capacity *= default_scale_cpu_capacity(sd, cpu);
6062
6063        capacity >>= SCHED_CAPACITY_SHIFT;
6064
6065        cpu_rq(cpu)->cpu_capacity_orig = capacity;
6066
6067        capacity *= scale_rt_capacity(cpu);
6068        capacity >>= SCHED_CAPACITY_SHIFT;
6069
6070        if (!capacity)
6071                capacity = 1;
6072
6073        cpu_rq(cpu)->cpu_capacity = capacity;
6074        sdg->sgc->capacity = capacity;
6075}
6076
6077void update_group_capacity(struct sched_domain *sd, int cpu)
6078{
6079        struct sched_domain *child = sd->child;
6080        struct sched_group *group, *sdg = sd->groups;
6081        unsigned long capacity;
6082        unsigned long interval;
6083
6084        interval = msecs_to_jiffies(sd->balance_interval);
6085        interval = clamp(interval, 1UL, max_load_balance_interval);
6086        sdg->sgc->next_update = jiffies + interval;
6087
6088        if (!child) {
6089                update_cpu_capacity(sd, cpu);
6090                return;
6091        }
6092
6093        capacity = 0;
6094
6095        if (child->flags & SD_OVERLAP) {
6096                /*
6097                 * SD_OVERLAP domains cannot assume that child groups
6098                 * span the current group.
6099                 */
6100
6101                for_each_cpu(cpu, sched_group_cpus(sdg)) {
6102                        struct sched_group_capacity *sgc;
6103                        struct rq *rq = cpu_rq(cpu);
6104
6105                        /*
6106                         * build_sched_domains() -> init_sched_groups_capacity()
6107                         * gets here before we've attached the domains to the
6108                         * runqueues.
6109                         *
6110                         * Use capacity_of(), which is set irrespective of domains
6111                         * in update_cpu_capacity().
6112                         *
6113                         * This avoids capacity from being 0 and
6114                         * causing divide-by-zero issues on boot.
6115                         */
6116                        if (unlikely(!rq->sd)) {
6117                                capacity += capacity_of(cpu);
6118                                continue;
6119                        }
6120
6121                        sgc = rq->sd->groups->sgc;
6122                        capacity += sgc->capacity;
6123                }
6124        } else  {
6125                /*
6126                 * !SD_OVERLAP domains can assume that child groups
6127                 * span the current group.
6128                 */ 
6129
6130                group = child->groups;
6131                do {
6132                        capacity += group->sgc->capacity;
6133                        group = group->next;
6134                } while (group != child->groups);
6135        }
6136
6137        sdg->sgc->capacity = capacity;
6138}
6139
6140/*
6141 * Check whether the capacity of the rq has been noticeably reduced by side
6142 * activity. The imbalance_pct is used for the threshold.
6143 * Return true is the capacity is reduced
6144 */
6145static inline int
6146check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6147{
6148        return ((rq->cpu_capacity * sd->imbalance_pct) <
6149                                (rq->cpu_capacity_orig * 100));
6150}
6151
6152/*
6153 * Group imbalance indicates (and tries to solve) the problem where balancing
6154 * groups is inadequate due to tsk_cpus_allowed() constraints.
6155 *
6156 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6157 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6158 * Something like:
6159 *
6160 *      { 0 1 2 3 } { 4 5 6 7 }
6161 *              *     * * *
6162 *
6163 * If we were to balance group-wise we'd place two tasks in the first group and
6164 * two tasks in the second group. Clearly this is undesired as it will overload
6165 * cpu 3 and leave one of the cpus in the second group unused.
6166 *
6167 * The current solution to this issue is detecting the skew in the first group
6168 * by noticing the lower domain failed to reach balance and had difficulty
6169 * moving tasks due to affinity constraints.
6170 *
6171 * When this is so detected; this group becomes a candidate for busiest; see
6172 * update_sd_pick_busiest(). And calculate_imbalance() and
6173 * find_busiest_group() avoid some of the usual balance conditions to allow it
6174 * to create an effective group imbalance.
6175 *
6176 * This is a somewhat tricky proposition since the next run might not find the
6177 * group imbalance and decide the groups need to be balanced again. A most
6178 * subtle and fragile situation.
6179 */
6180
6181static inline int sg_imbalanced(struct sched_group *group)
6182{
6183        return group->sgc->imbalance;
6184}
6185
6186/*
6187 * group_has_capacity returns true if the group has spare capacity that could
6188 * be used by some tasks.
6189 * We consider that a group has spare capacity if the  * number of task is
6190 * smaller than the number of CPUs or if the usage is lower than the available
6191 * capacity for CFS tasks.
6192 * For the latter, we use a threshold to stabilize the state, to take into
6193 * account the variance of the tasks' load and to return true if the available
6194 * capacity in meaningful for the load balancer.
6195 * As an example, an available capacity of 1% can appear but it doesn't make
6196 * any benefit for the load balance.
6197 */
6198static inline bool
6199group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6200{
6201        if (sgs->sum_nr_running < sgs->group_weight)
6202                return true;
6203
6204        if ((sgs->group_capacity * 100) >
6205                        (sgs->group_usage * env->sd->imbalance_pct))
6206                return true;
6207
6208        return false;
6209}
6210
6211/*
6212 *  group_is_overloaded returns true if the group has more tasks than it can
6213 *  handle.
6214 *  group_is_overloaded is not equals to !group_has_capacity because a group
6215 *  with the exact right number of tasks, has no more spare capacity but is not
6216 *  overloaded so both group_has_capacity and group_is_overloaded return
6217 *  false.
6218 */
6219static inline bool
6220group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6221{
6222        if (sgs->sum_nr_running <= sgs->group_weight)
6223                return false;
6224
6225        if ((sgs->group_capacity * 100) <
6226                        (sgs->group_usage * env->sd->imbalance_pct))
6227                return true;
6228
6229        return false;
6230}
6231
6232static enum group_type group_classify(struct lb_env *env,
6233                struct sched_group *group,
6234                struct sg_lb_stats *sgs)
6235{
6236        if (sgs->group_no_capacity)
6237                return group_overloaded;
6238
6239        if (sg_imbalanced(group))
6240                return group_imbalanced;
6241
6242        return group_other;
6243}
6244
6245/**
6246 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6247 * @env: The load balancing environment.
6248 * @group: sched_group whose statistics are to be updated.
6249 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6250 * @local_group: Does group contain this_cpu.
6251 * @sgs: variable to hold the statistics for this group.
6252 * @overload: Indicate more than one runnable task for any CPU.
6253 */
6254static inline void update_sg_lb_stats(struct lb_env *env,
6255                        struct sched_group *group, int load_idx,
6256                        int local_group, struct sg_lb_stats *sgs,
6257                        bool *overload)
6258{
6259        unsigned long load;
6260        int i;
6261
6262        memset(sgs, 0, sizeof(*sgs));
6263
6264        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6265                struct rq *rq = cpu_rq(i);
6266
6267                /* Bias balancing toward cpus of our domain */
6268                if (local_group)
6269                        load = target_load(i, load_idx);
6270                else
6271                        load = source_load(i, load_idx);
6272
6273                sgs->group_load += load;
6274                sgs->group_usage += get_cpu_usage(i);
6275                sgs->sum_nr_running += rq->cfs.h_nr_running;
6276
6277                if (rq->nr_running > 1)
6278                        *overload = true;
6279
6280#ifdef CONFIG_NUMA_BALANCING
6281                sgs->nr_numa_running += rq->nr_numa_running;
6282                sgs->nr_preferred_running += rq->nr_preferred_running;
6283#endif
6284                sgs->sum_weighted_load += weighted_cpuload(i);
6285                if (idle_cpu(i))
6286                        sgs->idle_cpus++;
6287        }
6288
6289        /* Adjust by relative CPU capacity of the group */
6290        sgs->group_capacity = group->sgc->capacity;
6291        sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6292
6293        if (sgs->sum_nr_running)
6294                sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6295
6296        sgs->group_weight = group->group_weight;
6297
6298        sgs->group_no_capacity = group_is_overloaded(env, sgs);
6299        sgs->group_type = group_classify(env, group, sgs);
6300}
6301
6302/**
6303 * update_sd_pick_busiest - return 1 on busiest group
6304 * @env: The load balancing environment.
6305 * @sds: sched_domain statistics
6306 * @sg: sched_group candidate to be checked for being the busiest
6307 * @sgs: sched_group statistics
6308 *
6309 * Determine if @sg is a busier group than the previously selected
6310 * busiest group.
6311 *
6312 * Return: %true if @sg is a busier group than the previously selected
6313 * busiest group. %false otherwise.
6314 */
6315static bool update_sd_pick_busiest(struct lb_env *env,
6316                                   struct sd_lb_stats *sds,
6317                                   struct sched_group *sg,
6318                                   struct sg_lb_stats *sgs)
6319{
6320        struct sg_lb_stats *busiest = &sds->busiest_stat;
6321
6322        if (sgs->group_type > busiest->group_type)
6323                return true;
6324
6325        if (sgs->group_type < busiest->group_type)
6326                return false;
6327
6328        if (sgs->avg_load <= busiest->avg_load)
6329                return false;
6330
6331        /* This is the busiest node in its class. */
6332        if (!(env->sd->flags & SD_ASYM_PACKING))
6333                return true;
6334
6335        /*
6336         * ASYM_PACKING needs to move all the work to the lowest
6337         * numbered CPUs in the group, therefore mark all groups
6338         * higher than ourself as busy.
6339         */
6340        if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6341                if (!sds->busiest)
6342                        return true;
6343
6344                if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6345                        return true;
6346        }
6347
6348        return false;
6349}
6350
6351#ifdef CONFIG_NUMA_BALANCING
6352static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6353{
6354        if (sgs->sum_nr_running > sgs->nr_numa_running)
6355                return regular;
6356        if (sgs->sum_nr_running > sgs->nr_preferred_running)
6357                return remote;
6358        return all;
6359}
6360
6361static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6362{
6363        if (rq->nr_running > rq->nr_numa_running)
6364                return regular;
6365        if (rq->nr_running > rq->nr_preferred_running)
6366                return remote;
6367        return all;
6368}
6369#else
6370static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6371{
6372        return all;
6373}
6374
6375static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6376{
6377        return regular;
6378}
6379#endif /* CONFIG_NUMA_BALANCING */
6380
6381/**
6382 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6383 * @env: The load balancing environment.
6384 * @sds: variable to hold the statistics for this sched_domain.
6385 */
6386static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6387{
6388        struct sched_domain *child = env->sd->child;
6389        struct sched_group *sg = env->sd->groups;
6390        struct sg_lb_stats tmp_sgs;
6391        int load_idx, prefer_sibling = 0;
6392        bool overload = false;
6393
6394        if (child && child->flags & SD_PREFER_SIBLING)
6395                prefer_sibling = 1;
6396
6397        load_idx = get_sd_load_idx(env->sd, env->idle);
6398
6399        do {
6400                struct sg_lb_stats *sgs = &tmp_sgs;
6401                int local_group;
6402
6403                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6404                if (local_group) {
6405                        sds->local = sg;
6406                        sgs = &sds->local_stat;
6407
6408                        if (env->idle != CPU_NEWLY_IDLE ||
6409                            time_after_eq(jiffies, sg->sgc->next_update))
6410                                update_group_capacity(env->sd, env->dst_cpu);
6411                }
6412
6413                update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6414                                                &overload);
6415
6416                if (local_group)
6417                        goto next_group;
6418
6419                /*
6420                 * In case the child domain prefers tasks go to siblings
6421                 * first, lower the sg capacity so that we'll try
6422                 * and move all the excess tasks away. We lower the capacity
6423                 * of a group only if the local group has the capacity to fit
6424                 * these excess tasks. The extra check prevents the case where
6425                 * you always pull from the heaviest group when it is already
6426                 * under-utilized (possible with a large weight task outweighs
6427                 * the tasks on the system).
6428                 */
6429                if (prefer_sibling && sds->local &&
6430                    group_has_capacity(env, &sds->local_stat) &&
6431                    (sgs->sum_nr_running > 1)) {
6432                        sgs->group_no_capacity = 1;
6433                        sgs->group_type = group_overloaded;
6434                }
6435
6436                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6437                        sds->busiest = sg;
6438                        sds->busiest_stat = *sgs;
6439                }
6440
6441next_group:
6442                /* Now, start updating sd_lb_stats */
6443                sds->total_load += sgs->group_load;
6444                sds->total_capacity += sgs->group_capacity;
6445
6446                sg = sg->next;
6447        } while (sg != env->sd->groups);
6448
6449        if (env->sd->flags & SD_NUMA)
6450                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6451
6452        if (!env->sd->parent) {
6453                /* update overload indicator if we are at root domain */
6454                if (env->dst_rq->rd->overload != overload)
6455                        env->dst_rq->rd->overload = overload;
6456        }
6457
6458}
6459
6460/**
6461 * check_asym_packing - Check to see if the group is packed into the
6462 *                      sched doman.
6463 *
6464 * This is primarily intended to used at the sibling level.  Some
6465 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6466 * case of POWER7, it can move to lower SMT modes only when higher
6467 * threads are idle.  When in lower SMT modes, the threads will
6468 * perform better since they share less core resources.  Hence when we
6469 * have idle threads, we want them to be the higher ones.
6470 *
6471 * This packing function is run on idle threads.  It checks to see if
6472 * the busiest CPU in this domain (core in the P7 case) has a higher
6473 * CPU number than the packing function is being run on.  Here we are
6474 * assuming lower CPU number will be equivalent to lower a SMT thread
6475 * number.
6476 *
6477 * Return: 1 when packing is required and a task should be moved to
6478 * this CPU.  The amount of the imbalance is returned in *imbalance.
6479 *
6480 * @env: The load balancing environment.
6481 * @sds: Statistics of the sched_domain which is to be packed
6482 */
6483static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6484{
6485        int busiest_cpu;
6486
6487        if (!(env->sd->flags & SD_ASYM_PACKING))
6488                return 0;
6489
6490        if (!sds->busiest)
6491                return 0;
6492
6493        busiest_cpu = group_first_cpu(sds->busiest);
6494        if (env->dst_cpu > busiest_cpu)
6495                return 0;
6496
6497        env->imbalance = DIV_ROUND_CLOSEST(
6498                sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6499                SCHED_CAPACITY_SCALE);
6500
6501        return 1;
6502}
6503
6504/**
6505 * fix_small_imbalance - Calculate the minor imbalance that exists
6506 *                      amongst the groups of a sched_domain, during
6507 *                      load balancing.
6508 * @env: The load balancing environment.
6509 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6510 */
6511static inline
6512void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6513{
6514        unsigned long tmp, capa_now = 0, capa_move = 0;
6515        unsigned int imbn = 2;
6516        unsigned long scaled_busy_load_per_task;
6517        struct sg_lb_stats *local, *busiest;
6518
6519        local = &sds->local_stat;
6520        busiest = &sds->busiest_stat;
6521
6522        if (!local->sum_nr_running)
6523                local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6524        else if (busiest->load_per_task > local->load_per_task)
6525                imbn = 1;
6526
6527        scaled_busy_load_per_task =
6528                (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6529                busiest->group_capacity;
6530
6531        if (busiest->avg_load + scaled_busy_load_per_task >=
6532            local->avg_load + (scaled_busy_load_per_task * imbn)) {
6533                env->imbalance = busiest->load_per_task;
6534                return;
6535        }
6536
6537        /*
6538         * OK, we don't have enough imbalance to justify moving tasks,
6539         * however we may be able to increase total CPU capacity used by
6540         * moving them.
6541         */
6542
6543        capa_now += busiest->group_capacity *
6544                        min(busiest->load_per_task, busiest->avg_load);
6545        capa_now += local->group_capacity *
6546                        min(local->load_per_task, local->avg_load);
6547        capa_now /= SCHED_CAPACITY_SCALE;
6548
6549        /* Amount of load we'd subtract */
6550        if (busiest->avg_load > scaled_busy_load_per_task) {
6551                capa_move += busiest->group_capacity *
6552                            min(busiest->load_per_task,
6553                                busiest->avg_load - scaled_busy_load_per_task);
6554        }
6555
6556        /* Amount of load we'd add */
6557        if (busiest->avg_load * busiest->group_capacity <
6558            busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6559                tmp = (busiest->avg_load * busiest->group_capacity) /
6560                      local->group_capacity;
6561        } else {
6562                tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6563                      local->group_capacity;
6564        }
6565        capa_move += local->group_capacity *
6566                    min(local->load_per_task, local->avg_load + tmp);
6567        capa_move /= SCHED_CAPACITY_SCALE;
6568
6569        /* Move if we gain throughput */
6570        if (capa_move > capa_now)
6571                env->imbalance = busiest->load_per_task;
6572}
6573
6574/**
6575 * calculate_imbalance - Calculate the amount of imbalance present within the
6576 *                       groups of a given sched_domain during load balance.
6577 * @env: load balance environment
6578 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6579 */
6580static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6581{
6582        unsigned long max_pull, load_above_capacity = ~0UL;
6583        struct sg_lb_stats *local, *busiest;
6584
6585        local = &sds->local_stat;
6586        busiest = &sds->busiest_stat;
6587
6588        if (busiest->group_type == group_imbalanced) {
6589                /*
6590                 * In the group_imb case we cannot rely on group-wide averages
6591                 * to ensure cpu-load equilibrium, look at wider averages. XXX
6592                 */
6593                busiest->load_per_task =
6594                        min(busiest->load_per_task, sds->avg_load);
6595        }
6596
6597        /*
6598         * In the presence of smp nice balancing, certain scenarios can have
6599         * max load less than avg load(as we skip the groups at or below
6600         * its cpu_capacity, while calculating max_load..)
6601         */
6602        if (busiest->avg_load <= sds->avg_load ||
6603            local->avg_load >= sds->avg_load) {
6604                env->imbalance = 0;
6605                return fix_small_imbalance(env, sds);
6606        }
6607
6608        /*
6609         * If there aren't any idle cpus, avoid creating some.
6610         */
6611        if (busiest->group_type == group_overloaded &&
6612            local->group_type   == group_overloaded) {
6613                load_above_capacity = busiest->sum_nr_running *
6614                                        SCHED_LOAD_SCALE;
6615                if (load_above_capacity > busiest->group_capacity)
6616                        load_above_capacity -= busiest->group_capacity;
6617                else
6618                        load_above_capacity = ~0UL;
6619        }
6620
6621        /*
6622         * We're trying to get all the cpus to the average_load, so we don't
6623         * want to push ourselves above the average load, nor do we wish to
6624         * reduce the max loaded cpu below the average load. At the same time,
6625         * we also don't want to reduce the group load below the group capacity
6626         * (so that we can implement power-savings policies etc). Thus we look
6627         * for the minimum possible imbalance.
6628         */
6629        max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6630
6631        /* How much load to actually move to equalise the imbalance */
6632        env->imbalance = min(
6633                max_pull * busiest->group_capacity,
6634                (sds->avg_load - local->avg_load) * local->group_capacity
6635        ) / SCHED_CAPACITY_SCALE;
6636
6637        /*
6638         * if *imbalance is less than the average load per runnable task
6639         * there is no guarantee that any tasks will be moved so we'll have
6640         * a think about bumping its value to force at least one task to be
6641         * moved
6642         */
6643        if (env->imbalance < busiest->load_per_task)
6644                return fix_small_imbalance(env, sds);
6645}
6646
6647/******* find_busiest_group() helpers end here *********************/
6648
6649/**
6650 * find_busiest_group - Returns the busiest group within the sched_domain
6651 * if there is an imbalance. If there isn't an imbalance, and
6652 * the user has opted for power-savings, it returns a group whose
6653 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6654 * such a group exists.
6655 *
6656 * Also calculates the amount of weighted load which should be moved
6657 * to restore balance.
6658 *
6659 * @env: The load balancing environment.
6660 *
6661 * Return:      - The busiest group if imbalance exists.
6662 *              - If no imbalance and user has opted for power-savings balance,
6663 *                 return the least loaded group whose CPUs can be
6664 *                 put to idle by rebalancing its tasks onto our group.
6665 */
6666static struct sched_group *find_busiest_group(struct lb_env *env)
6667{
6668        struct sg_lb_stats *local, *busiest;
6669        struct sd_lb_stats sds;
6670
6671        init_sd_lb_stats(&sds);
6672
6673        /*
6674         * Compute the various statistics relavent for load balancing at
6675         * this level.
6676         */
6677        update_sd_lb_stats(env, &sds);
6678        local = &sds.local_stat;
6679        busiest = &sds.busiest_stat;
6680
6681        /* ASYM feature bypasses nice load balance check */
6682        if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6683            check_asym_packing(env, &sds))
6684                return sds.busiest;
6685
6686        /* There is no busy sibling group to pull tasks from */
6687        if (!sds.busiest || busiest->sum_nr_running == 0)
6688                goto out_balanced;
6689
6690        sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6691                                                / sds.total_capacity;
6692
6693        /*
6694         * If the busiest group is imbalanced the below checks don't
6695         * work because they assume all things are equal, which typically
6696         * isn't true due to cpus_allowed constraints and the like.
6697         */
6698        if (busiest->group_type == group_imbalanced)
6699                goto force_balance;
6700
6701        /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6702        if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6703            busiest->group_no_capacity)
6704                goto force_balance;
6705
6706        /*
6707         * If the local group is busier than the selected busiest group
6708         * don't try and pull any tasks.
6709         */
6710        if (local->avg_load >= busiest->avg_load)
6711                goto out_balanced;
6712
6713        /*
6714         * Don't pull any tasks if this group is already above the domain
6715         * average load.
6716         */
6717        if (local->avg_load >= sds.avg_load)
6718                goto out_balanced;
6719
6720        if (env->idle == CPU_IDLE) {
6721                /*
6722                 * This cpu is idle. If the busiest group is not overloaded
6723                 * and there is no imbalance between this and busiest group
6724                 * wrt idle cpus, it is balanced. The imbalance becomes
6725                 * significant if the diff is greater than 1 otherwise we
6726                 * might end up to just move the imbalance on another group
6727                 */
6728                if ((busiest->group_type != group_overloaded) &&
6729                                (local->idle_cpus <= (busiest->idle_cpus + 1)))
6730                        goto out_balanced;
6731        } else {
6732                /*
6733                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6734                 * imbalance_pct to be conservative.
6735                 */
6736                if (100 * busiest->avg_load <=
6737                                env->sd->imbalance_pct * local->avg_load)
6738                        goto out_balanced;
6739        }
6740
6741force_balance:
6742        /* Looks like there is an imbalance. Compute it */
6743        calculate_imbalance(env, &sds);
6744        return sds.busiest;
6745
6746out_balanced:
6747        env->imbalance = 0;
6748        return NULL;
6749}
6750
6751/*
6752 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6753 */
6754static struct rq *find_busiest_queue(struct lb_env *env,
6755                                     struct sched_group *group)
6756{
6757        struct rq *busiest = NULL, *rq;
6758        unsigned long busiest_load = 0, busiest_capacity = 1;
6759        int i;
6760
6761        for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6762                unsigned long capacity, wl;
6763                enum fbq_type rt;
6764
6765                rq = cpu_rq(i);
6766                rt = fbq_classify_rq(rq);
6767
6768                /*
6769                 * We classify groups/runqueues into three groups:
6770                 *  - regular: there are !numa tasks
6771                 *  - remote:  there are numa tasks that run on the 'wrong' node
6772                 *  - all:     there is no distinction
6773                 *
6774                 * In order to avoid migrating ideally placed numa tasks,
6775                 * ignore those when there's better options.
6776                 *
6777                 * If we ignore the actual busiest queue to migrate another
6778                 * task, the next balance pass can still reduce the busiest
6779                 * queue by moving tasks around inside the node.
6780                 *
6781                 * If we cannot move enough load due to this classification
6782                 * the next pass will adjust the group classification and
6783                 * allow migration of more tasks.
6784                 *
6785                 * Both cases only affect the total convergence complexity.
6786                 */
6787                if (rt > env->fbq_type)
6788                        continue;
6789
6790                capacity = capacity_of(i);
6791
6792                wl = weighted_cpuload(i);
6793
6794                /*
6795                 * When comparing with imbalance, use weighted_cpuload()
6796                 * which is not scaled with the cpu capacity.
6797                 */
6798
6799                if (rq->nr_running == 1 && wl > env->imbalance &&
6800                    !check_cpu_capacity(rq, env->sd))
6801                        continue;
6802
6803                /*
6804                 * For the load comparisons with the other cpu's, consider
6805                 * the weighted_cpuload() scaled with the cpu capacity, so
6806                 * that the load can be moved away from the cpu that is
6807                 * potentially running at a lower capacity.
6808                 *
6809                 * Thus we're looking for max(wl_i / capacity_i), crosswise
6810                 * multiplication to rid ourselves of the division works out
6811                 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6812                 * our previous maximum.
6813                 */
6814                if (wl * busiest_capacity > busiest_load * capacity) {
6815                        busiest_load = wl;
6816                        busiest_capacity = capacity;
6817                        busiest = rq;
6818                }
6819        }
6820
6821        return busiest;
6822}
6823
6824/*
6825 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6826 * so long as it is large enough.
6827 */
6828#define MAX_PINNED_INTERVAL     512
6829
6830/* Working cpumask for load_balance and load_balance_newidle. */
6831DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6832
6833static int need_active_balance(struct lb_env *env)
6834{
6835        struct sched_domain *sd = env->sd;
6836
6837        if (env->idle == CPU_NEWLY_IDLE) {
6838
6839                /*
6840                 * ASYM_PACKING needs to force migrate tasks from busy but
6841                 * higher numbered CPUs in order to pack all tasks in the
6842                 * lowest numbered CPUs.
6843                 */
6844                if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6845                        return 1;
6846        }
6847
6848        /*
6849         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6850         * It's worth migrating the task if the src_cpu's capacity is reduced
6851         * because of other sched_class or IRQs if more capacity stays
6852         * available on dst_cpu.
6853         */
6854        if ((env->idle != CPU_NOT_IDLE) &&
6855            (env->src_rq->cfs.h_nr_running == 1)) {
6856                if ((check_cpu_capacity(env->src_rq, sd)) &&
6857                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6858                        return 1;
6859        }
6860
6861        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6862}
6863
6864static int active_load_balance_cpu_stop(void *data);
6865
6866static int should_we_balance(struct lb_env *env)
6867{
6868        struct sched_group *sg = env->sd->groups;
6869        struct cpumask *sg_cpus, *sg_mask;
6870        int cpu, balance_cpu = -1;
6871
6872        /*
6873         * In the newly idle case, we will allow all the cpu's
6874         * to do the newly idle load balance.
6875         */
6876        if (env->idle == CPU_NEWLY_IDLE)
6877                return 1;
6878
6879        sg_cpus = sched_group_cpus(sg);
6880        sg_mask = sched_group_mask(sg);
6881        /* Try to find first idle cpu */
6882        for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6883                if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6884                        continue;
6885
6886                balance_cpu = cpu;
6887                break;
6888        }
6889
6890        if (balance_cpu == -1)
6891                balance_cpu = group_balance_cpu(sg);
6892
6893        /*
6894         * First idle cpu or the first cpu(busiest) in this sched group
6895         * is eligible for doing load balancing at this and above domains.
6896         */
6897        return balance_cpu == env->dst_cpu;
6898}
6899
6900/*
6901 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6902 * tasks if there is an imbalance.
6903 */
6904static int load_balance(int this_cpu, struct rq *this_rq,
6905                        struct sched_domain *sd, enum cpu_idle_type idle,
6906                        int *continue_balancing)
6907{
6908        int ld_moved, cur_ld_moved, active_balance = 0;
6909        struct sched_domain *sd_parent = sd->parent;
6910        struct sched_group *group;
6911        struct rq *busiest;
6912        unsigned long flags;
6913        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6914
6915        struct lb_env env = {
6916                .sd             = sd,
6917                .dst_cpu        = this_cpu,
6918                .dst_rq         = this_rq,
6919                .dst_grpmask    = sched_group_cpus(sd->groups),
6920                .idle           = idle,
6921                .loop_break     = sched_nr_migrate_break,
6922                .cpus           = cpus,
6923                .fbq_type       = all,
6924                .tasks          = LIST_HEAD_INIT(env.tasks),
6925        };
6926
6927        /*
6928         * For NEWLY_IDLE load_balancing, we don't need to consider
6929         * other cpus in our group
6930         */
6931        if (idle == CPU_NEWLY_IDLE)
6932                env.dst_grpmask = NULL;
6933
6934        cpumask_copy(cpus, cpu_active_mask);
6935
6936        schedstat_inc(sd, lb_count[idle]);
6937
6938redo:
6939        if (!should_we_balance(&env)) {
6940                *continue_balancing = 0;
6941                goto out_balanced;
6942        }
6943
6944        group = find_busiest_group(&env);
6945        if (!group) {
6946                schedstat_inc(sd, lb_nobusyg[idle]);
6947                goto out_balanced;
6948        }
6949
6950        busiest = find_busiest_queue(&env, group);
6951        if (!busiest) {
6952                schedstat_inc(sd, lb_nobusyq[idle]);
6953                goto out_balanced;
6954        }
6955
6956        BUG_ON(busiest == env.dst_rq);
6957
6958        schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6959
6960        env.src_cpu = busiest->cpu;
6961        env.src_rq = busiest;
6962
6963        ld_moved = 0;
6964        if (busiest->nr_running > 1) {
6965                /*
6966                 * Attempt to move tasks. If find_busiest_group has found
6967                 * an imbalance but busiest->nr_running <= 1, the group is
6968                 * still unbalanced. ld_moved simply stays zero, so it is
6969                 * correctly treated as an imbalance.
6970                 */
6971                env.flags |= LBF_ALL_PINNED;
6972                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6973
6974more_balance:
6975                raw_spin_lock_irqsave(&busiest->lock, flags);
6976
6977                /*
6978                 * cur_ld_moved - load moved in current iteration
6979                 * ld_moved     - cumulative load moved across iterations
6980                 */
6981                cur_ld_moved = detach_tasks(&env);
6982
6983                /*
6984                 * We've detached some tasks from busiest_rq. Every
6985                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6986                 * unlock busiest->lock, and we are able to be sure
6987                 * that nobody can manipulate the tasks in parallel.
6988                 * See task_rq_lock() family for the details.
6989                 */
6990
6991                raw_spin_unlock(&busiest->lock);
6992
6993                if (cur_ld_moved) {
6994                        attach_tasks(&env);
6995                        ld_moved += cur_ld_moved;
6996                }
6997
6998                local_irq_restore(flags);
6999
7000                if (env.flags & LBF_NEED_BREAK) {
7001                        env.flags &= ~LBF_NEED_BREAK;
7002                        goto more_balance;
7003                }
7004
7005                /*
7006                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7007                 * us and move them to an alternate dst_cpu in our sched_group
7008                 * where they can run. The upper limit on how many times we
7009                 * iterate on same src_cpu is dependent on number of cpus in our
7010                 * sched_group.
7011                 *
7012                 * This changes load balance semantics a bit on who can move
7013                 * load to a given_cpu. In addition to the given_cpu itself
7014                 * (or a ilb_cpu acting on its behalf where given_cpu is
7015                 * nohz-idle), we now have balance_cpu in a position to move
7016                 * load to given_cpu. In rare situations, this may cause
7017                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7018                 * _independently_ and at _same_ time to move some load to
7019                 * given_cpu) causing exceess load to be moved to given_cpu.
7020                 * This however should not happen so much in practice and
7021                 * moreover subsequent load balance cycles should correct the
7022                 * excess load moved.
7023                 */
7024                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7025
7026                        /* Prevent to re-select dst_cpu via env's cpus */
7027                        cpumask_clear_cpu(env.dst_cpu, env.cpus);
7028
7029                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
7030                        env.dst_cpu      = env.new_dst_cpu;
7031                        env.flags       &= ~LBF_DST_PINNED;
7032                        env.loop         = 0;
7033                        env.loop_break   = sched_nr_migrate_break;
7034
7035                        /*
7036                         * Go back to "more_balance" rather than "redo" since we
7037                         * need to continue with same src_cpu.
7038                         */
7039                        goto more_balance;
7040                }
7041
7042                /*
7043                 * We failed to reach balance because of affinity.
7044                 */
7045                if (sd_parent) {
7046                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7047
7048                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7049                                *group_imbalance = 1;
7050                }
7051
7052                /* All tasks on this runqueue were pinned by CPU affinity */
7053                if (unlikely(env.flags & LBF_ALL_PINNED)) {
7054                        cpumask_clear_cpu(cpu_of(busiest), cpus);
7055                        if (!cpumask_empty(cpus)) {
7056                                env.loop = 0;
7057                                env.loop_break = sched_nr_migrate_break;
7058                                goto redo;
7059                        }
7060                        goto out_all_pinned;
7061                }
7062        }
7063
7064        if (!ld_moved) {
7065                schedstat_inc(sd, lb_failed[idle]);
7066                /*
7067                 * Increment the failure counter only on periodic balance.
7068                 * We do not want newidle balance, which can be very
7069                 * frequent, pollute the failure counter causing
7070                 * excessive cache_hot migrations and active balances.
7071                 */
7072                if (idle != CPU_NEWLY_IDLE)
7073                        sd->nr_balance_failed++;
7074
7075                if (need_active_balance(&env)) {
7076                        raw_spin_lock_irqsave(&busiest->lock, flags);
7077
7078                        /* don't kick the active_load_balance_cpu_stop,
7079                         * if the curr task on busiest cpu can't be
7080                         * moved to this_cpu
7081                         */
7082                        if (!cpumask_test_cpu(this_cpu,
7083                                        tsk_cpus_allowed(busiest->curr))) {
7084                                raw_spin_unlock_irqrestore(&busiest->lock,
7085                                                            flags);
7086                                env.flags |= LBF_ALL_PINNED;
7087                                goto out_one_pinned;
7088                        }
7089
7090                        /*
7091                         * ->active_balance synchronizes accesses to
7092                         * ->active_balance_work.  Once set, it's cleared
7093                         * only after active load balance is finished.
7094                         */
7095                        if (!busiest->active_balance) {
7096                                busiest->active_balance = 1;
7097                                busiest->push_cpu = this_cpu;
7098                                active_balance = 1;
7099                        }
7100                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
7101
7102                        if (active_balance) {
7103                                stop_one_cpu_nowait(cpu_of(busiest),
7104                                        active_load_balance_cpu_stop, busiest,
7105                                        &busiest->active_balance_work);
7106                        }
7107
7108                        /*
7109                         * We've kicked active balancing, reset the failure
7110                         * counter.
7111                         */
7112                        sd->nr_balance_failed = sd->cache_nice_tries+1;
7113                }
7114        } else
7115                sd->nr_balance_failed = 0;
7116
7117        if (likely(!active_balance)) {
7118                /* We were unbalanced, so reset the balancing interval */
7119                sd->balance_interval = sd->min_interval;
7120        } else {
7121                /*
7122                 * If we've begun active balancing, start to back off. This
7123                 * case may not be covered by the all_pinned logic if there
7124                 * is only 1 task on the busy runqueue (because we don't call
7125                 * detach_tasks).
7126                 */
7127                if (sd->balance_interval < sd->max_interval)
7128                        sd->balance_interval *= 2;
7129        }
7130
7131        goto out;
7132
7133out_balanced:
7134        /*
7135         * We reach balance although we may have faced some affinity
7136         * constraints. Clear the imbalance flag if it was set.
7137         */
7138        if (sd_parent) {
7139                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7140
7141                if (*group_imbalance)
7142                        *group_imbalance = 0;
7143        }
7144
7145out_all_pinned:
7146        /*
7147         * We reach balance because all tasks are pinned at this level so
7148         * we can't migrate them. Let the imbalance flag set so parent level
7149         * can try to migrate them.
7150         */
7151        schedstat_inc(sd, lb_balanced[idle]);
7152
7153        sd->nr_balance_failed = 0;
7154
7155out_one_pinned:
7156        /* tune up the balancing interval */
7157        if (((env.flags & LBF_ALL_PINNED) &&
7158                        sd->balance_interval < MAX_PINNED_INTERVAL) ||
7159                        (sd->balance_interval < sd->max_interval))
7160                sd->balance_interval *= 2;
7161
7162        ld_moved = 0;
7163out:
7164        return ld_moved;
7165}
7166
7167static inline unsigned long
7168get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7169{
7170        unsigned long interval = sd->balance_interval;
7171
7172        if (cpu_busy)
7173                interval *= sd->busy_factor;
7174
7175        /* scale ms to jiffies */
7176        interval = msecs_to_jiffies(interval);
7177        interval = clamp(interval, 1UL, max_load_balance_interval);
7178
7179        return interval;
7180}
7181
7182static inline void
7183update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7184{
7185        unsigned long interval, next;
7186
7187        interval = get_sd_balance_interval(sd, cpu_busy);
7188        next = sd->last_balance + interval;
7189
7190        if (time_after(*next_balance, next))
7191                *next_balance = next;
7192}
7193
7194/*
7195 * idle_balance is called by schedule() if this_cpu is about to become
7196 * idle. Attempts to pull tasks from other CPUs.
7197 */
7198static int idle_balance(struct rq *this_rq)
7199{
7200        unsigned long next_balance = jiffies + HZ;
7201        int this_cpu = this_rq->cpu;
7202        struct sched_domain *sd;
7203        int pulled_task = 0;
7204        u64 curr_cost = 0;
7205
7206        idle_enter_fair(this_rq);
7207
7208        /*
7209         * We must set idle_stamp _before_ calling idle_balance(), such that we
7210         * measure the duration of idle_balance() as idle time.
7211         */
7212        this_rq->idle_stamp = rq_clock(this_rq);
7213
7214        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7215            !this_rq->rd->overload) {
7216                rcu_read_lock();
7217                sd = rcu_dereference_check_sched_domain(this_rq->sd);
7218                if (sd)
7219                        update_next_balance(sd, 0, &next_balance);
7220                rcu_read_unlock();
7221
7222                goto out;
7223        }
7224
7225        raw_spin_unlock(&this_rq->lock);
7226
7227        update_blocked_averages(this_cpu);
7228        rcu_read_lock();
7229        for_each_domain(this_cpu, sd) {
7230                int continue_balancing = 1;
7231                u64 t0, domain_cost;
7232
7233                if (!(sd->flags & SD_LOAD_BALANCE))
7234                        continue;
7235
7236                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7237                        update_next_balance(sd, 0, &next_balance);
7238                        break;
7239                }
7240
7241                if (sd->flags & SD_BALANCE_NEWIDLE) {
7242                        t0 = sched_clock_cpu(this_cpu);
7243
7244                        pulled_task = load_balance(this_cpu, this_rq,
7245                                                   sd, CPU_NEWLY_IDLE,
7246                                                   &continue_balancing);
7247
7248                        domain_cost = sched_clock_cpu(this_cpu) - t0;
7249                        if (domain_cost > sd->max_newidle_lb_cost)
7250                                sd->max_newidle_lb_cost = domain_cost;
7251
7252                        curr_cost += domain_cost;
7253                }
7254
7255                update_next_balance(sd, 0, &next_balance);
7256
7257                /*
7258                 * Stop searching for tasks to pull if there are
7259                 * now runnable tasks on this rq.
7260                 */
7261                if (pulled_task || this_rq->nr_running > 0)
7262                        break;
7263        }
7264        rcu_read_unlock();
7265
7266        raw_spin_lock(&this_rq->lock);
7267
7268        if (curr_cost > this_rq->max_idle_balance_cost)
7269                this_rq->max_idle_balance_cost = curr_cost;
7270
7271        /*
7272         * While browsing the domains, we released the rq lock, a task could
7273         * have been enqueued in the meantime. Since we're not going idle,
7274         * pretend we pulled a task.
7275         */
7276        if (this_rq->cfs.h_nr_running && !pulled_task)
7277                pulled_task = 1;
7278
7279out:
7280        /* Move the next balance forward */
7281        if (time_after(this_rq->next_balance, next_balance))
7282                this_rq->next_balance = next_balance;
7283
7284        /* Is there a task of a high priority class? */
7285        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7286                pulled_task = -1;
7287
7288        if (pulled_task) {
7289                idle_exit_fair(this_rq);
7290                this_rq->idle_stamp = 0;
7291        }
7292
7293        return pulled_task;
7294}
7295
7296/*
7297 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7298 * running tasks off the busiest CPU onto idle CPUs. It requires at
7299 * least 1 task to be running on each physical CPU where possible, and
7300 * avoids physical / logical imbalances.
7301 */
7302static int active_load_balance_cpu_stop(void *data)
7303{
7304        struct rq *busiest_rq = data;
7305        int busiest_cpu = cpu_of(busiest_rq);
7306        int target_cpu = busiest_rq->push_cpu;
7307        struct rq *target_rq = cpu_rq(target_cpu);
7308        struct sched_domain *sd;
7309        struct task_struct *p = NULL;
7310
7311        raw_spin_lock_irq(&busiest_rq->lock);
7312
7313        /* make sure the requested cpu hasn't gone down in the meantime */
7314        if (unlikely(busiest_cpu != smp_processor_id() ||
7315                     !busiest_rq->active_balance))
7316                goto out_unlock;
7317
7318        /* Is there any task to move? */
7319        if (busiest_rq->nr_running <= 1)
7320                goto out_unlock;
7321
7322        /*
7323         * This condition is "impossible", if it occurs
7324         * we need to fix it. Originally reported by
7325         * Bjorn Helgaas on a 128-cpu setup.
7326         */
7327        BUG_ON(busiest_rq == target_rq);
7328
7329        /* Search for an sd spanning us and the target CPU. */
7330        rcu_read_lock();
7331        for_each_domain(target_cpu, sd) {
7332                if ((sd->flags & SD_LOAD_BALANCE) &&
7333                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7334                                break;
7335        }
7336
7337        if (likely(sd)) {
7338                struct lb_env env = {
7339                        .sd             = sd,
7340                        .dst_cpu        = target_cpu,
7341                        .dst_rq         = target_rq,
7342                        .src_cpu        = busiest_rq->cpu,
7343                        .src_rq         = busiest_rq,
7344                        .idle           = CPU_IDLE,
7345                };
7346
7347                schedstat_inc(sd, alb_count);
7348
7349                p = detach_one_task(&env);
7350                if (p)
7351                        schedstat_inc(sd, alb_pushed);
7352                else
7353                        schedstat_inc(sd, alb_failed);
7354        }
7355        rcu_read_unlock();
7356out_unlock:
7357        busiest_rq->active_balance = 0;
7358        raw_spin_unlock(&busiest_rq->lock);
7359
7360        if (p)
7361                attach_one_task(target_rq, p);
7362
7363        local_irq_enable();
7364
7365        return 0;
7366}
7367
7368static inline int on_null_domain(struct rq *rq)
7369{
7370        return unlikely(!rcu_dereference_sched(rq->sd));
7371}
7372
7373#ifdef CONFIG_NO_HZ_COMMON
7374/*
7375 * idle load balancing details
7376 * - When one of the busy CPUs notice that there may be an idle rebalancing
7377 *   needed, they will kick the idle load balancer, which then does idle
7378 *   load balancing for all the idle CPUs.
7379 */
7380static struct {
7381        cpumask_var_t idle_cpus_mask;
7382        atomic_t nr_cpus;
7383        unsigned long next_balance;     /* in jiffy units */
7384} nohz ____cacheline_aligned;
7385
7386static inline int find_new_ilb(void)
7387{
7388        int ilb = cpumask_first(nohz.idle_cpus_mask);
7389
7390        if (ilb < nr_cpu_ids && idle_cpu(ilb))
7391                return ilb;
7392
7393        return nr_cpu_ids;
7394}
7395
7396/*
7397 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7398 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7399 * CPU (if there is one).
7400 */
7401static void nohz_balancer_kick(void)
7402{
7403        int ilb_cpu;
7404
7405        nohz.next_balance++;
7406
7407        ilb_cpu = find_new_ilb();
7408
7409        if (ilb_cpu >= nr_cpu_ids)
7410                return;
7411
7412        if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7413                return;
7414        /*
7415         * Use smp_send_reschedule() instead of resched_cpu().
7416         * This way we generate a sched IPI on the target cpu which
7417         * is idle. And the softirq performing nohz idle load balance
7418         * will be run before returning from the IPI.
7419         */
7420        smp_send_reschedule(ilb_cpu);
7421        return;
7422}
7423
7424static inline void nohz_balance_exit_idle(int cpu)
7425{
7426        if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7427                /*
7428                 * Completely isolated CPUs don't ever set, so we must test.
7429                 */
7430                if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7431                        cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7432                        atomic_dec(&nohz.nr_cpus);
7433                }
7434                clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7435        }
7436}
7437
7438static inline void set_cpu_sd_state_busy(void)
7439{
7440        struct sched_domain *sd;
7441        int cpu = smp_processor_id();
7442
7443        rcu_read_lock();
7444        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7445
7446        if (!sd || !sd->nohz_idle)
7447                goto unlock;
7448        sd->nohz_idle = 0;
7449
7450        atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7451unlock:
7452        rcu_read_unlock();
7453}
7454
7455void set_cpu_sd_state_idle(void)
7456{
7457        struct sched_domain *sd;
7458        int cpu = smp_processor_id();
7459
7460        rcu_read_lock();
7461        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7462
7463        if (!sd || sd->nohz_idle)
7464                goto unlock;
7465        sd->nohz_idle = 1;
7466
7467        atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7468unlock:
7469        rcu_read_unlock();
7470}
7471
7472/*
7473 * This routine will record that the cpu is going idle with tick stopped.
7474 * This info will be used in performing idle load balancing in the future.
7475 */
7476void nohz_balance_enter_idle(int cpu)
7477{
7478        /*
7479         * If this cpu is going down, then nothing needs to be done.
7480         */
7481        if (!cpu_active(cpu))
7482                return;
7483
7484        if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7485                return;
7486
7487        /*
7488         * If we're a completely isolated CPU, we don't play.
7489         */
7490        if (on_null_domain(cpu_rq(cpu)))
7491                return;
7492
7493        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7494        atomic_inc(&nohz.nr_cpus);
7495        set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7496}
7497
7498static int sched_ilb_notifier(struct notifier_block *nfb,
7499                                        unsigned long action, void *hcpu)
7500{
7501        switch (action & ~CPU_TASKS_FROZEN) {
7502        case CPU_DYING:
7503                nohz_balance_exit_idle(smp_processor_id());
7504                return NOTIFY_OK;
7505        default:
7506                return NOTIFY_DONE;
7507        }
7508}
7509#endif
7510
7511static DEFINE_SPINLOCK(balancing);
7512
7513/*
7514 * Scale the max load_balance interval with the number of CPUs in the system.
7515 * This trades load-balance latency on larger machines for less cross talk.
7516 */
7517void update_max_interval(void)
7518{
7519        max_load_balance_interval = HZ*num_online_cpus()/10;
7520}
7521
7522/*
7523 * It checks each scheduling domain to see if it is due to be balanced,
7524 * and initiates a balancing operation if so.
7525 *
7526 * Balancing parameters are set up in init_sched_domains.
7527 */
7528static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7529{
7530        int continue_balancing = 1;
7531        int cpu = rq->cpu;
7532        unsigned long interval;
7533        struct sched_domain *sd;
7534        /* Earliest time when we have to do rebalance again */
7535        unsigned long next_balance = jiffies + 60*HZ;
7536        int update_next_balance = 0;
7537        int need_serialize, need_decay = 0;
7538        u64 max_cost = 0;
7539
7540        update_blocked_averages(cpu);
7541
7542        rcu_read_lock();
7543        for_each_domain(cpu, sd) {
7544                /*
7545                 * Decay the newidle max times here because this is a regular
7546                 * visit to all the domains. Decay ~1% per second.
7547                 */
7548                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7549                        sd->max_newidle_lb_cost =
7550                                (sd->max_newidle_lb_cost * 253) / 256;
7551                        sd->next_decay_max_lb_cost = jiffies + HZ;
7552                        need_decay = 1;
7553                }
7554                max_cost += sd->max_newidle_lb_cost;
7555
7556                if (!(sd->flags & SD_LOAD_BALANCE))
7557                        continue;
7558
7559                /*
7560                 * Stop the load balance at this level. There is another
7561                 * CPU in our sched group which is doing load balancing more
7562                 * actively.
7563                 */
7564                if (!continue_balancing) {
7565                        if (need_decay)
7566                                continue;
7567                        break;
7568                }
7569
7570                interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7571
7572                need_serialize = sd->flags & SD_SERIALIZE;
7573                if (need_serialize) {
7574                        if (!spin_trylock(&balancing))
7575                                goto out;
7576                }
7577
7578                if (time_after_eq(jiffies, sd->last_balance + interval)) {
7579                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7580                                /*
7581                                 * The LBF_DST_PINNED logic could have changed
7582                                 * env->dst_cpu, so we can't know our idle
7583                                 * state even if we migrated tasks. Update it.
7584                                 */
7585                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7586                        }
7587                        sd->last_balance = jiffies;
7588                        interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7589                }
7590                if (need_serialize)
7591                        spin_unlock(&balancing);
7592out:
7593                if (time_after(next_balance, sd->last_balance + interval)) {
7594                        next_balance = sd->last_balance + interval;
7595                        update_next_balance = 1;
7596                }
7597        }
7598        if (need_decay) {
7599                /*
7600                 * Ensure the rq-wide value also decays but keep it at a
7601                 * reasonable floor to avoid funnies with rq->avg_idle.
7602                 */
7603                rq->max_idle_balance_cost =
7604                        max((u64)sysctl_sched_migration_cost, max_cost);
7605        }
7606        rcu_read_unlock();
7607
7608        /*
7609         * next_balance will be updated only when there is a need.
7610         * When the cpu is attached to null domain for ex, it will not be
7611         * updated.
7612         */
7613        if (likely(update_next_balance))
7614                rq->next_balance = next_balance;
7615}
7616
7617#ifdef CONFIG_NO_HZ_COMMON
7618/*
7619 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7620 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7621 */
7622static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7623{
7624        int this_cpu = this_rq->cpu;
7625        struct rq *rq;
7626        int balance_cpu;
7627
7628        if (idle != CPU_IDLE ||
7629            !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7630                goto end;
7631
7632        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7633                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7634                        continue;
7635
7636                /*
7637                 * If this cpu gets work to do, stop the load balancing
7638                 * work being done for other cpus. Next load
7639                 * balancing owner will pick it up.
7640                 */
7641                if (need_resched())
7642                        break;
7643
7644                rq = cpu_rq(balance_cpu);
7645
7646                /*
7647                 * If time for next balance is due,
7648                 * do the balance.
7649                 */
7650                if (time_after_eq(jiffies, rq->next_balance)) {
7651                        raw_spin_lock_irq(&rq->lock);
7652                        update_rq_clock(rq);
7653                        update_idle_cpu_load(rq);
7654                        raw_spin_unlock_irq(&rq->lock);
7655                        rebalance_domains(rq, CPU_IDLE);
7656                }
7657
7658                if (time_after(this_rq->next_balance, rq->next_balance))
7659                        this_rq->next_balance = rq->next_balance;
7660        }
7661        nohz.next_balance = this_rq->next_balance;
7662end:
7663        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7664}
7665
7666/*
7667 * Current heuristic for kicking the idle load balancer in the presence
7668 * of an idle cpu in the system.
7669 *   - This rq has more than one task.
7670 *   - This rq has at least one CFS task and the capacity of the CPU is
7671 *     significantly reduced because of RT tasks or IRQs.
7672 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
7673 *     multiple busy cpu.
7674 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7675 *     domain span are idle.
7676 */
7677static inline bool nohz_kick_needed(struct rq *rq)
7678{
7679        unsigned long now = jiffies;
7680        struct sched_domain *sd;
7681        struct sched_group_capacity *sgc;
7682        int nr_busy, cpu = rq->cpu;
7683        bool kick = false;
7684
7685        if (unlikely(rq->idle_balance))
7686                return false;
7687
7688       /*
7689        * We may be recently in ticked or tickless idle mode. At the first
7690        * busy tick after returning from idle, we will update the busy stats.
7691        */
7692        set_cpu_sd_state_busy();
7693        nohz_balance_exit_idle(cpu);
7694
7695        /*
7696         * None are in tickless mode and hence no need for NOHZ idle load
7697         * balancing.
7698         */
7699        if (likely(!atomic_read(&nohz.nr_cpus)))
7700                return false;
7701
7702        if (time_before(now, nohz.next_balance))
7703                return false;
7704
7705        if (rq->nr_running >= 2)
7706                return true;
7707
7708        rcu_read_lock();
7709        sd = rcu_dereference(per_cpu(sd_busy, cpu));
7710        if (sd) {
7711                sgc = sd->groups->sgc;
7712                nr_busy = atomic_read(&sgc->nr_busy_cpus);
7713
7714                if (nr_busy > 1) {
7715                        kick = true;
7716                        goto unlock;
7717                }
7718
7719        }
7720
7721        sd = rcu_dereference(rq->sd);
7722        if (sd) {
7723                if ((rq->cfs.h_nr_running >= 1) &&
7724                                check_cpu_capacity(rq, sd)) {
7725                        kick = true;
7726                        goto unlock;
7727                }
7728        }
7729
7730        sd = rcu_dereference(per_cpu(sd_asym, cpu));
7731        if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7732                                  sched_domain_span(sd)) < cpu)) {
7733                kick = true;
7734                goto unlock;
7735        }
7736
7737unlock:
7738        rcu_read_unlock();
7739        return kick;
7740}
7741#else
7742static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7743#endif
7744
7745/*
7746 * run_rebalance_domains is triggered when needed from the scheduler tick.
7747 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7748 */
7749static void run_rebalance_domains(struct softirq_action *h)
7750{
7751        struct rq *this_rq = this_rq();
7752        enum cpu_idle_type idle = this_rq->idle_balance ?
7753                                                CPU_IDLE : CPU_NOT_IDLE;
7754
7755        /*
7756         * If this cpu has a pending nohz_balance_kick, then do the
7757         * balancing on behalf of the other idle cpus whose ticks are
7758         * stopped. Do nohz_idle_balance *before* rebalance_domains to
7759         * give the idle cpus a chance to load balance. Else we may
7760         * load balance only within the local sched_domain hierarchy
7761         * and abort nohz_idle_balance altogether if we pull some load.
7762         */
7763        nohz_idle_balance(this_rq, idle);
7764        rebalance_domains(this_rq, idle);
7765}
7766
7767/*
7768 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7769 */
7770void trigger_load_balance(struct rq *rq)
7771{
7772        /* Don't need to rebalance while attached to NULL domain */
7773        if (unlikely(on_null_domain(rq)))
7774                return;
7775
7776        if (time_after_eq(jiffies, rq->next_balance))
7777                raise_softirq(SCHED_SOFTIRQ);
7778#ifdef CONFIG_NO_HZ_COMMON
7779        if (nohz_kick_needed(rq))
7780                nohz_balancer_kick();
7781#endif
7782}
7783
7784static void rq_online_fair(struct rq *rq)
7785{
7786        update_sysctl();
7787
7788        update_runtime_enabled(rq);
7789}
7790
7791static void rq_offline_fair(struct rq *rq)
7792{
7793        update_sysctl();
7794
7795        /* Ensure any throttled groups are reachable by pick_next_task */
7796        unthrottle_offline_cfs_rqs(rq);
7797}
7798
7799#endif /* CONFIG_SMP */
7800
7801/*
7802 * scheduler tick hitting a task of our scheduling class:
7803 */
7804static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7805{
7806        struct cfs_rq *cfs_rq;
7807        struct sched_entity *se = &curr->se;
7808
7809        for_each_sched_entity(se) {
7810                cfs_rq = cfs_rq_of(se);
7811                entity_tick(cfs_rq, se, queued);
7812        }
7813
7814        if (numabalancing_enabled)
7815                task_tick_numa(rq, curr);
7816}
7817
7818/*
7819 * called on fork with the child task as argument from the parent's context
7820 *  - child not yet on the tasklist
7821 *  - preemption disabled
7822 */
7823static void task_fork_fair(struct task_struct *p)
7824{
7825        struct cfs_rq *cfs_rq;
7826        struct sched_entity *se = &p->se, *curr;
7827        int this_cpu = smp_processor_id();
7828        struct rq *rq = this_rq();
7829        unsigned long flags;
7830
7831        raw_spin_lock_irqsave(&rq->lock, flags);
7832
7833        update_rq_clock(rq);
7834
7835        cfs_rq = task_cfs_rq(current);
7836        curr = cfs_rq->curr;
7837
7838        /*
7839         * Not only the cpu but also the task_group of the parent might have
7840         * been changed after parent->se.parent,cfs_rq were copied to
7841         * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7842         * of child point to valid ones.
7843         */
7844        rcu_read_lock();
7845        __set_task_cpu(p, this_cpu);
7846        rcu_read_unlock();
7847
7848        update_curr(cfs_rq);
7849
7850        if (curr)
7851                se->vruntime = curr->vruntime;
7852        place_entity(cfs_rq, se, 1);
7853
7854        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7855                /*
7856                 * Upon rescheduling, sched_class::put_prev_task() will place
7857                 * 'current' within the tree based on its new key value.
7858                 */
7859                swap(curr->vruntime, se->vruntime);
7860                resched_curr(rq);
7861        }
7862
7863        se->vruntime -= cfs_rq->min_vruntime;
7864
7865        raw_spin_unlock_irqrestore(&rq->lock, flags);
7866}
7867
7868/*
7869 * Priority of the task has changed. Check to see if we preempt
7870 * the current task.
7871 */
7872static void
7873prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7874{
7875        if (!task_on_rq_queued(p))
7876                return;
7877
7878        /*
7879         * Reschedule if we are currently running on this runqueue and
7880         * our priority decreased, or if we are not currently running on
7881         * this runqueue and our priority is higher than the current's
7882         */
7883        if (rq->curr == p) {
7884                if (p->prio > oldprio)
7885                        resched_curr(rq);
7886        } else
7887                check_preempt_curr(rq, p, 0);
7888}
7889
7890static void switched_from_fair(struct rq *rq, struct task_struct *p)
7891{
7892        struct sched_entity *se = &p->se;
7893        struct cfs_rq *cfs_rq = cfs_rq_of(se);
7894
7895        /*
7896         * Ensure the task's vruntime is normalized, so that when it's
7897         * switched back to the fair class the enqueue_entity(.flags=0) will
7898         * do the right thing.
7899         *
7900         * If it's queued, then the dequeue_entity(.flags=0) will already
7901         * have normalized the vruntime, if it's !queued, then only when
7902         * the task is sleeping will it still have non-normalized vruntime.
7903         */
7904        if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7905                /*
7906                 * Fix up our vruntime so that the current sleep doesn't
7907                 * cause 'unlimited' sleep bonus.
7908                 */
7909                place_entity(cfs_rq, se, 0);
7910                se->vruntime -= cfs_rq->min_vruntime;
7911        }
7912
7913#ifdef CONFIG_SMP
7914        /* Catch up with the cfs_rq and remove our load when we leave */
7915        __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
7916                se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
7917
7918        cfs_rq->avg.load_avg =
7919                max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
7920        cfs_rq->avg.load_sum =
7921                max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
7922        cfs_rq->avg.util_avg =
7923                max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
7924        cfs_rq->avg.util_sum =
7925                max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
7926#endif
7927}
7928
7929/*
7930 * We switched to the sched_fair class.
7931 */
7932static void switched_to_fair(struct rq *rq, struct task_struct *p)
7933{
7934        struct sched_entity *se = &p->se;
7935
7936#ifdef CONFIG_FAIR_GROUP_SCHED
7937        /*
7938         * Since the real-depth could have been changed (only FAIR
7939         * class maintain depth value), reset depth properly.
7940         */
7941        se->depth = se->parent ? se->parent->depth + 1 : 0;
7942#endif
7943
7944        if (!task_on_rq_queued(p)) {
7945
7946                /*
7947                 * Ensure the task has a non-normalized vruntime when it is switched
7948                 * back to the fair class with !queued, so that enqueue_entity() at
7949                 * wake-up time will do the right thing.
7950                 *
7951                 * If it's queued, then the enqueue_entity(.flags=0) makes the task
7952                 * has non-normalized vruntime, if it's !queued, then it still has
7953                 * normalized vruntime.
7954                 */
7955                if (p->state != TASK_RUNNING)
7956                        se->vruntime += cfs_rq_of(se)->min_vruntime;
7957                return;
7958        }
7959
7960        /*
7961         * We were most likely switched from sched_rt, so
7962         * kick off the schedule if running, otherwise just see
7963         * if we can still preempt the current task.
7964         */
7965        if (rq->curr == p)
7966                resched_curr(rq);
7967        else
7968                check_preempt_curr(rq, p, 0);
7969}
7970
7971/* Account for a task changing its policy or group.
7972 *
7973 * This routine is mostly called to set cfs_rq->curr field when a task
7974 * migrates between groups/classes.
7975 */
7976static void set_curr_task_fair(struct rq *rq)
7977{
7978        struct sched_entity *se = &rq->curr->se;
7979
7980        for_each_sched_entity(se) {
7981                struct cfs_rq *cfs_rq = cfs_rq_of(se);
7982
7983                set_next_entity(cfs_rq, se);
7984                /* ensure bandwidth has been allocated on our new cfs_rq */
7985                account_cfs_rq_runtime(cfs_rq, 0);
7986        }
7987}
7988
7989void init_cfs_rq(struct cfs_rq *cfs_rq)
7990{
7991        cfs_rq->tasks_timeline = RB_ROOT;
7992        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7993#ifndef CONFIG_64BIT
7994        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7995#endif
7996#ifdef CONFIG_SMP
7997        atomic_long_set(&cfs_rq->removed_load_avg, 0);
7998        atomic_long_set(&cfs_rq->removed_util_avg, 0);
7999#endif
8000}
8001
8002#ifdef CONFIG_FAIR_GROUP_SCHED
8003static void task_move_group_fair(struct task_struct *p, int queued)
8004{
8005        struct sched_entity *se = &p->se;
8006        struct cfs_rq *cfs_rq;
8007
8008        /*
8009         * If the task was not on the rq at the time of this cgroup movement
8010         * it must have been asleep, sleeping tasks keep their ->vruntime
8011         * absolute on their old rq until wakeup (needed for the fair sleeper
8012         * bonus in place_entity()).
8013         *
8014         * If it was on the rq, we've just 'preempted' it, which does convert
8015         * ->vruntime to a relative base.
8016         *
8017         * Make sure both cases convert their relative position when migrating
8018         * to another cgroup's rq. This does somewhat interfere with the
8019         * fair sleeper stuff for the first placement, but who cares.
8020         */
8021        /*
8022         * When !queued, vruntime of the task has usually NOT been normalized.
8023         * But there are some cases where it has already been normalized:
8024         *
8025         * - Moving a forked child which is waiting for being woken up by
8026         *   wake_up_new_task().
8027         * - Moving a task which has been woken up by try_to_wake_up() and
8028         *   waiting for actually being woken up by sched_ttwu_pending().
8029         *
8030         * To prevent boost or penalty in the new cfs_rq caused by delta
8031         * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8032         */
8033        if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8034                queued = 1;
8035
8036        if (!queued)
8037                se->vruntime -= cfs_rq_of(se)->min_vruntime;
8038        set_task_rq(p, task_cpu(p));
8039        se->depth = se->parent ? se->parent->depth + 1 : 0;
8040        if (!queued) {
8041                cfs_rq = cfs_rq_of(se);
8042                se->vruntime += cfs_rq->min_vruntime;
8043
8044#ifdef CONFIG_SMP
8045                /* Virtually synchronize task with its new cfs_rq */
8046                p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
8047                cfs_rq->avg.load_avg += p->se.avg.load_avg;
8048                cfs_rq->avg.load_sum += p->se.avg.load_sum;
8049                cfs_rq->avg.util_avg += p->se.avg.util_avg;
8050                cfs_rq->avg.util_sum += p->se.avg.util_sum;
8051#endif
8052        }
8053}
8054
8055void free_fair_sched_group(struct task_group *tg)
8056{
8057        int i;
8058
8059        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8060
8061        for_each_possible_cpu(i) {
8062                if (tg->cfs_rq)
8063                        kfree(tg->cfs_rq[i]);
8064                if (tg->se) {
8065                        if (tg->se[i])
8066                                remove_entity_load_avg(tg->se[i]);
8067                        kfree(tg->se[i]);
8068                }
8069        }
8070
8071        kfree(tg->cfs_rq);
8072        kfree(tg->se);
8073}
8074
8075int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8076{
8077        struct cfs_rq *cfs_rq;
8078        struct sched_entity *se;
8079        int i;
8080
8081        tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8082        if (!tg->cfs_rq)
8083                goto err;
8084        tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8085        if (!tg->se)
8086                goto err;
8087
8088        tg->shares = NICE_0_LOAD;
8089
8090        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8091
8092        for_each_possible_cpu(i) {
8093                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8094                                      GFP_KERNEL, cpu_to_node(i));
8095                if (!cfs_rq)
8096                        goto err;
8097
8098                se = kzalloc_node(sizeof(struct sched_entity),
8099                                  GFP_KERNEL, cpu_to_node(i));
8100                if (!se)
8101                        goto err_free_rq;
8102
8103                init_cfs_rq(cfs_rq);
8104                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8105                init_entity_runnable_average(se);
8106        }
8107
8108        return 1;
8109
8110err_free_rq:
8111        kfree(cfs_rq);
8112err:
8113        return 0;
8114}
8115
8116void unregister_fair_sched_group(struct task_group *tg, int cpu)
8117{
8118        struct rq *rq = cpu_rq(cpu);
8119        unsigned long flags;
8120
8121        /*
8122        * Only empty task groups can be destroyed; so we can speculatively
8123        * check on_list without danger of it being re-added.
8124        */
8125        if (!tg->cfs_rq[cpu]->on_list)
8126                return;
8127
8128        raw_spin_lock_irqsave(&rq->lock, flags);
8129        list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8130        raw_spin_unlock_irqrestore(&rq->lock, flags);
8131}
8132
8133void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8134                        struct sched_entity *se, int cpu,
8135                        struct sched_entity *parent)
8136{
8137        struct rq *rq = cpu_rq(cpu);
8138
8139        cfs_rq->tg = tg;
8140        cfs_rq->rq = rq;
8141        init_cfs_rq_runtime(cfs_rq);
8142
8143        tg->cfs_rq[cpu] = cfs_rq;
8144        tg->se[cpu] = se;
8145
8146        /* se could be NULL for root_task_group */
8147        if (!se)
8148                return;
8149
8150        if (!parent) {
8151                se->cfs_rq = &rq->cfs;
8152                se->depth = 0;
8153        } else {
8154                se->cfs_rq = parent->my_q;
8155                se->depth = parent->depth + 1;
8156        }
8157
8158        se->my_q = cfs_rq;
8159        /* guarantee group entities always have weight */
8160        update_load_set(&se->load, NICE_0_LOAD);
8161        se->parent = parent;
8162}
8163
8164static DEFINE_MUTEX(shares_mutex);
8165
8166int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8167{
8168        int i;
8169        unsigned long flags;
8170
8171        /*
8172         * We can't change the weight of the root cgroup.
8173         */
8174        if (!tg->se[0])
8175                return -EINVAL;
8176
8177        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8178
8179        mutex_lock(&shares_mutex);
8180        if (tg->shares == shares)
8181                goto done;
8182
8183        tg->shares = shares;
8184        for_each_possible_cpu(i) {
8185                struct rq *rq = cpu_rq(i);
8186                struct sched_entity *se;
8187
8188                se = tg->se[i];
8189                /* Propagate contribution to hierarchy */
8190                raw_spin_lock_irqsave(&rq->lock, flags);
8191
8192                /* Possible calls to update_curr() need rq clock */
8193                update_rq_clock(rq);
8194                for_each_sched_entity(se)
8195                        update_cfs_shares(group_cfs_rq(se));
8196                raw_spin_unlock_irqrestore(&rq->lock, flags);
8197        }
8198
8199done:
8200        mutex_unlock(&shares_mutex);
8201        return 0;
8202}
8203#else /* CONFIG_FAIR_GROUP_SCHED */
8204
8205void free_fair_sched_group(struct task_group *tg) { }
8206
8207int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8208{
8209        return 1;
8210}
8211
8212void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8213
8214#endif /* CONFIG_FAIR_GROUP_SCHED */
8215
8216
8217static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8218{
8219        struct sched_entity *se = &task->se;
8220        unsigned int rr_interval = 0;
8221
8222        /*
8223         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8224         * idle runqueue:
8225         */
8226        if (rq->cfs.load.weight)
8227                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8228
8229        return rr_interval;
8230}
8231
8232/*
8233 * All the scheduling class methods:
8234 */
8235const struct sched_class fair_sched_class = {
8236        .next                   = &idle_sched_class,
8237        .enqueue_task           = enqueue_task_fair,
8238        .dequeue_task           = dequeue_task_fair,
8239        .yield_task             = yield_task_fair,
8240        .yield_to_task          = yield_to_task_fair,
8241
8242        .check_preempt_curr     = check_preempt_wakeup,
8243
8244        .pick_next_task         = pick_next_task_fair,
8245        .put_prev_task          = put_prev_task_fair,
8246
8247#ifdef CONFIG_SMP
8248        .select_task_rq         = select_task_rq_fair,
8249        .migrate_task_rq        = migrate_task_rq_fair,
8250
8251        .rq_online              = rq_online_fair,
8252        .rq_offline             = rq_offline_fair,
8253
8254        .task_waking            = task_waking_fair,
8255        .task_dead              = task_dead_fair,
8256        .set_cpus_allowed       = set_cpus_allowed_common,
8257#endif
8258
8259        .set_curr_task          = set_curr_task_fair,
8260        .task_tick              = task_tick_fair,
8261        .task_fork              = task_fork_fair,
8262
8263        .prio_changed           = prio_changed_fair,
8264        .switched_from          = switched_from_fair,
8265        .switched_to            = switched_to_fair,
8266
8267        .get_rr_interval        = get_rr_interval_fair,
8268
8269        .update_curr            = update_curr_fair,
8270
8271#ifdef CONFIG_FAIR_GROUP_SCHED
8272        .task_move_group        = task_move_group_fair,
8273#endif
8274};
8275
8276#ifdef CONFIG_SCHED_DEBUG
8277void print_cfs_stats(struct seq_file *m, int cpu)
8278{
8279        struct cfs_rq *cfs_rq;
8280
8281        rcu_read_lock();
8282        for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8283                print_cfs_rq(m, cpu, cfs_rq);
8284        rcu_read_unlock();
8285}
8286
8287#ifdef CONFIG_NUMA_BALANCING
8288void show_numa_stats(struct task_struct *p, struct seq_file *m)
8289{
8290        int node;
8291        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8292
8293        for_each_online_node(node) {
8294                if (p->numa_faults) {
8295                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8296                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8297                }
8298                if (p->numa_group) {
8299                        gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8300                        gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8301                }
8302                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8303        }
8304}
8305#endif /* CONFIG_NUMA_BALANCING */
8306#endif /* CONFIG_SCHED_DEBUG */
8307
8308__init void init_sched_fair_class(void)
8309{
8310#ifdef CONFIG_SMP
8311        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8312
8313#ifdef CONFIG_NO_HZ_COMMON
8314        nohz.next_balance = jiffies;
8315        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8316        cpu_notifier(sched_ilb_notifier, 0);
8317#endif
8318#endif /* SMP */
8319
8320}
8321