linux/kernel/sched/loadavg.c
<<
>>
Prefs
   1/*
   2 * kernel/sched/loadavg.c
   3 *
   4 * This file contains the magic bits required to compute the global loadavg
   5 * figure. Its a silly number but people think its important. We go through
   6 * great pains to make it work on big machines and tickless kernels.
   7 */
   8
   9#include <linux/export.h>
  10
  11#include "sched.h"
  12
  13/*
  14 * Global load-average calculations
  15 *
  16 * We take a distributed and async approach to calculating the global load-avg
  17 * in order to minimize overhead.
  18 *
  19 * The global load average is an exponentially decaying average of nr_running +
  20 * nr_uninterruptible.
  21 *
  22 * Once every LOAD_FREQ:
  23 *
  24 *   nr_active = 0;
  25 *   for_each_possible_cpu(cpu)
  26 *      nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  27 *
  28 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  29 *
  30 * Due to a number of reasons the above turns in the mess below:
  31 *
  32 *  - for_each_possible_cpu() is prohibitively expensive on machines with
  33 *    serious number of cpus, therefore we need to take a distributed approach
  34 *    to calculating nr_active.
  35 *
  36 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  37 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  38 *
  39 *    So assuming nr_active := 0 when we start out -- true per definition, we
  40 *    can simply take per-cpu deltas and fold those into a global accumulate
  41 *    to obtain the same result. See calc_load_fold_active().
  42 *
  43 *    Furthermore, in order to avoid synchronizing all per-cpu delta folding
  44 *    across the machine, we assume 10 ticks is sufficient time for every
  45 *    cpu to have completed this task.
  46 *
  47 *    This places an upper-bound on the IRQ-off latency of the machine. Then
  48 *    again, being late doesn't loose the delta, just wrecks the sample.
  49 *
  50 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  51 *    this would add another cross-cpu cacheline miss and atomic operation
  52 *    to the wakeup path. Instead we increment on whatever cpu the task ran
  53 *    when it went into uninterruptible state and decrement on whatever cpu
  54 *    did the wakeup. This means that only the sum of nr_uninterruptible over
  55 *    all cpus yields the correct result.
  56 *
  57 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  58 */
  59
  60/* Variables and functions for calc_load */
  61atomic_long_t calc_load_tasks;
  62unsigned long calc_load_update;
  63unsigned long avenrun[3];
  64EXPORT_SYMBOL(avenrun); /* should be removed */
  65
  66/**
  67 * get_avenrun - get the load average array
  68 * @loads:      pointer to dest load array
  69 * @offset:     offset to add
  70 * @shift:      shift count to shift the result left
  71 *
  72 * These values are estimates at best, so no need for locking.
  73 */
  74void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  75{
  76        loads[0] = (avenrun[0] + offset) << shift;
  77        loads[1] = (avenrun[1] + offset) << shift;
  78        loads[2] = (avenrun[2] + offset) << shift;
  79}
  80
  81long calc_load_fold_active(struct rq *this_rq)
  82{
  83        long nr_active, delta = 0;
  84
  85        nr_active = this_rq->nr_running;
  86        nr_active += (long)this_rq->nr_uninterruptible;
  87
  88        if (nr_active != this_rq->calc_load_active) {
  89                delta = nr_active - this_rq->calc_load_active;
  90                this_rq->calc_load_active = nr_active;
  91        }
  92
  93        return delta;
  94}
  95
  96/*
  97 * a1 = a0 * e + a * (1 - e)
  98 */
  99static unsigned long
 100calc_load(unsigned long load, unsigned long exp, unsigned long active)
 101{
 102        load *= exp;
 103        load += active * (FIXED_1 - exp);
 104        load += 1UL << (FSHIFT - 1);
 105        return load >> FSHIFT;
 106}
 107
 108#ifdef CONFIG_NO_HZ_COMMON
 109/*
 110 * Handle NO_HZ for the global load-average.
 111 *
 112 * Since the above described distributed algorithm to compute the global
 113 * load-average relies on per-cpu sampling from the tick, it is affected by
 114 * NO_HZ.
 115 *
 116 * The basic idea is to fold the nr_active delta into a global idle-delta upon
 117 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
 118 * when we read the global state.
 119 *
 120 * Obviously reality has to ruin such a delightfully simple scheme:
 121 *
 122 *  - When we go NO_HZ idle during the window, we can negate our sample
 123 *    contribution, causing under-accounting.
 124 *
 125 *    We avoid this by keeping two idle-delta counters and flipping them
 126 *    when the window starts, thus separating old and new NO_HZ load.
 127 *
 128 *    The only trick is the slight shift in index flip for read vs write.
 129 *
 130 *        0s            5s            10s           15s
 131 *          +10           +10           +10           +10
 132 *        |-|-----------|-|-----------|-|-----------|-|
 133 *    r:0 0 1           1 0           0 1           1 0
 134 *    w:0 1 1           0 0           1 1           0 0
 135 *
 136 *    This ensures we'll fold the old idle contribution in this window while
 137 *    accumlating the new one.
 138 *
 139 *  - When we wake up from NO_HZ idle during the window, we push up our
 140 *    contribution, since we effectively move our sample point to a known
 141 *    busy state.
 142 *
 143 *    This is solved by pushing the window forward, and thus skipping the
 144 *    sample, for this cpu (effectively using the idle-delta for this cpu which
 145 *    was in effect at the time the window opened). This also solves the issue
 146 *    of having to deal with a cpu having been in NOHZ idle for multiple
 147 *    LOAD_FREQ intervals.
 148 *
 149 * When making the ILB scale, we should try to pull this in as well.
 150 */
 151static atomic_long_t calc_load_idle[2];
 152static int calc_load_idx;
 153
 154static inline int calc_load_write_idx(void)
 155{
 156        int idx = calc_load_idx;
 157
 158        /*
 159         * See calc_global_nohz(), if we observe the new index, we also
 160         * need to observe the new update time.
 161         */
 162        smp_rmb();
 163
 164        /*
 165         * If the folding window started, make sure we start writing in the
 166         * next idle-delta.
 167         */
 168        if (!time_before(jiffies, calc_load_update))
 169                idx++;
 170
 171        return idx & 1;
 172}
 173
 174static inline int calc_load_read_idx(void)
 175{
 176        return calc_load_idx & 1;
 177}
 178
 179void calc_load_enter_idle(void)
 180{
 181        struct rq *this_rq = this_rq();
 182        long delta;
 183
 184        /*
 185         * We're going into NOHZ mode, if there's any pending delta, fold it
 186         * into the pending idle delta.
 187         */
 188        delta = calc_load_fold_active(this_rq);
 189        if (delta) {
 190                int idx = calc_load_write_idx();
 191
 192                atomic_long_add(delta, &calc_load_idle[idx]);
 193        }
 194}
 195
 196void calc_load_exit_idle(void)
 197{
 198        struct rq *this_rq = this_rq();
 199
 200        /*
 201         * If we're still before the sample window, we're done.
 202         */
 203        if (time_before(jiffies, this_rq->calc_load_update))
 204                return;
 205
 206        /*
 207         * We woke inside or after the sample window, this means we're already
 208         * accounted through the nohz accounting, so skip the entire deal and
 209         * sync up for the next window.
 210         */
 211        this_rq->calc_load_update = calc_load_update;
 212        if (time_before(jiffies, this_rq->calc_load_update + 10))
 213                this_rq->calc_load_update += LOAD_FREQ;
 214}
 215
 216static long calc_load_fold_idle(void)
 217{
 218        int idx = calc_load_read_idx();
 219        long delta = 0;
 220
 221        if (atomic_long_read(&calc_load_idle[idx]))
 222                delta = atomic_long_xchg(&calc_load_idle[idx], 0);
 223
 224        return delta;
 225}
 226
 227/**
 228 * fixed_power_int - compute: x^n, in O(log n) time
 229 *
 230 * @x:         base of the power
 231 * @frac_bits: fractional bits of @x
 232 * @n:         power to raise @x to.
 233 *
 234 * By exploiting the relation between the definition of the natural power
 235 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 236 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 237 * (where: n_i \elem {0, 1}, the binary vector representing n),
 238 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 239 * of course trivially computable in O(log_2 n), the length of our binary
 240 * vector.
 241 */
 242static unsigned long
 243fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
 244{
 245        unsigned long result = 1UL << frac_bits;
 246
 247        if (n) {
 248                for (;;) {
 249                        if (n & 1) {
 250                                result *= x;
 251                                result += 1UL << (frac_bits - 1);
 252                                result >>= frac_bits;
 253                        }
 254                        n >>= 1;
 255                        if (!n)
 256                                break;
 257                        x *= x;
 258                        x += 1UL << (frac_bits - 1);
 259                        x >>= frac_bits;
 260                }
 261        }
 262
 263        return result;
 264}
 265
 266/*
 267 * a1 = a0 * e + a * (1 - e)
 268 *
 269 * a2 = a1 * e + a * (1 - e)
 270 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 271 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 272 *
 273 * a3 = a2 * e + a * (1 - e)
 274 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 275 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 276 *
 277 *  ...
 278 *
 279 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 280 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 281 *    = a0 * e^n + a * (1 - e^n)
 282 *
 283 * [1] application of the geometric series:
 284 *
 285 *              n         1 - x^(n+1)
 286 *     S_n := \Sum x^i = -------------
 287 *             i=0          1 - x
 288 */
 289static unsigned long
 290calc_load_n(unsigned long load, unsigned long exp,
 291            unsigned long active, unsigned int n)
 292{
 293        return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
 294}
 295
 296/*
 297 * NO_HZ can leave us missing all per-cpu ticks calling
 298 * calc_load_account_active(), but since an idle CPU folds its delta into
 299 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 300 * in the pending idle delta if our idle period crossed a load cycle boundary.
 301 *
 302 * Once we've updated the global active value, we need to apply the exponential
 303 * weights adjusted to the number of cycles missed.
 304 */
 305static void calc_global_nohz(void)
 306{
 307        long delta, active, n;
 308
 309        if (!time_before(jiffies, calc_load_update + 10)) {
 310                /*
 311                 * Catch-up, fold however many we are behind still
 312                 */
 313                delta = jiffies - calc_load_update - 10;
 314                n = 1 + (delta / LOAD_FREQ);
 315
 316                active = atomic_long_read(&calc_load_tasks);
 317                active = active > 0 ? active * FIXED_1 : 0;
 318
 319                avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
 320                avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
 321                avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
 322
 323                calc_load_update += n * LOAD_FREQ;
 324        }
 325
 326        /*
 327         * Flip the idle index...
 328         *
 329         * Make sure we first write the new time then flip the index, so that
 330         * calc_load_write_idx() will see the new time when it reads the new
 331         * index, this avoids a double flip messing things up.
 332         */
 333        smp_wmb();
 334        calc_load_idx++;
 335}
 336#else /* !CONFIG_NO_HZ_COMMON */
 337
 338static inline long calc_load_fold_idle(void) { return 0; }
 339static inline void calc_global_nohz(void) { }
 340
 341#endif /* CONFIG_NO_HZ_COMMON */
 342
 343/*
 344 * calc_load - update the avenrun load estimates 10 ticks after the
 345 * CPUs have updated calc_load_tasks.
 346 *
 347 * Called from the global timer code.
 348 */
 349void calc_global_load(unsigned long ticks)
 350{
 351        long active, delta;
 352
 353        if (time_before(jiffies, calc_load_update + 10))
 354                return;
 355
 356        /*
 357         * Fold the 'old' idle-delta to include all NO_HZ cpus.
 358         */
 359        delta = calc_load_fold_idle();
 360        if (delta)
 361                atomic_long_add(delta, &calc_load_tasks);
 362
 363        active = atomic_long_read(&calc_load_tasks);
 364        active = active > 0 ? active * FIXED_1 : 0;
 365
 366        avenrun[0] = calc_load(avenrun[0], EXP_1, active);
 367        avenrun[1] = calc_load(avenrun[1], EXP_5, active);
 368        avenrun[2] = calc_load(avenrun[2], EXP_15, active);
 369
 370        calc_load_update += LOAD_FREQ;
 371
 372        /*
 373         * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
 374         */
 375        calc_global_nohz();
 376}
 377
 378/*
 379 * Called from scheduler_tick() to periodically update this CPU's
 380 * active count.
 381 */
 382void calc_global_load_tick(struct rq *this_rq)
 383{
 384        long delta;
 385
 386        if (time_before(jiffies, this_rq->calc_load_update))
 387                return;
 388
 389        delta  = calc_load_fold_active(this_rq);
 390        if (delta)
 391                atomic_long_add(delta, &calc_load_tasks);
 392
 393        this_rq->calc_load_update += LOAD_FREQ;
 394}
 395