linux/kernel/sched/rt.c
<<
>>
Prefs
   1/*
   2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
   3 * policies)
   4 */
   5
   6#include "sched.h"
   7
   8#include <linux/slab.h>
   9#include <linux/irq_work.h>
  10
  11int sched_rr_timeslice = RR_TIMESLICE;
  12
  13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  14
  15struct rt_bandwidth def_rt_bandwidth;
  16
  17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  18{
  19        struct rt_bandwidth *rt_b =
  20                container_of(timer, struct rt_bandwidth, rt_period_timer);
  21        int idle = 0;
  22        int overrun;
  23
  24        raw_spin_lock(&rt_b->rt_runtime_lock);
  25        for (;;) {
  26                overrun = hrtimer_forward_now(timer, rt_b->rt_period);
  27                if (!overrun)
  28                        break;
  29
  30                raw_spin_unlock(&rt_b->rt_runtime_lock);
  31                idle = do_sched_rt_period_timer(rt_b, overrun);
  32                raw_spin_lock(&rt_b->rt_runtime_lock);
  33        }
  34        if (idle)
  35                rt_b->rt_period_active = 0;
  36        raw_spin_unlock(&rt_b->rt_runtime_lock);
  37
  38        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  39}
  40
  41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  42{
  43        rt_b->rt_period = ns_to_ktime(period);
  44        rt_b->rt_runtime = runtime;
  45
  46        raw_spin_lock_init(&rt_b->rt_runtime_lock);
  47
  48        hrtimer_init(&rt_b->rt_period_timer,
  49                        CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  50        rt_b->rt_period_timer.function = sched_rt_period_timer;
  51}
  52
  53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  54{
  55        if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  56                return;
  57
  58        raw_spin_lock(&rt_b->rt_runtime_lock);
  59        if (!rt_b->rt_period_active) {
  60                rt_b->rt_period_active = 1;
  61                hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
  62                hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
  63        }
  64        raw_spin_unlock(&rt_b->rt_runtime_lock);
  65}
  66
  67#ifdef CONFIG_SMP
  68static void push_irq_work_func(struct irq_work *work);
  69#endif
  70
  71void init_rt_rq(struct rt_rq *rt_rq)
  72{
  73        struct rt_prio_array *array;
  74        int i;
  75
  76        array = &rt_rq->active;
  77        for (i = 0; i < MAX_RT_PRIO; i++) {
  78                INIT_LIST_HEAD(array->queue + i);
  79                __clear_bit(i, array->bitmap);
  80        }
  81        /* delimiter for bitsearch: */
  82        __set_bit(MAX_RT_PRIO, array->bitmap);
  83
  84#if defined CONFIG_SMP
  85        rt_rq->highest_prio.curr = MAX_RT_PRIO;
  86        rt_rq->highest_prio.next = MAX_RT_PRIO;
  87        rt_rq->rt_nr_migratory = 0;
  88        rt_rq->overloaded = 0;
  89        plist_head_init(&rt_rq->pushable_tasks);
  90
  91#ifdef HAVE_RT_PUSH_IPI
  92        rt_rq->push_flags = 0;
  93        rt_rq->push_cpu = nr_cpu_ids;
  94        raw_spin_lock_init(&rt_rq->push_lock);
  95        init_irq_work(&rt_rq->push_work, push_irq_work_func);
  96#endif
  97#endif /* CONFIG_SMP */
  98        /* We start is dequeued state, because no RT tasks are queued */
  99        rt_rq->rt_queued = 0;
 100
 101        rt_rq->rt_time = 0;
 102        rt_rq->rt_throttled = 0;
 103        rt_rq->rt_runtime = 0;
 104        raw_spin_lock_init(&rt_rq->rt_runtime_lock);
 105}
 106
 107#ifdef CONFIG_RT_GROUP_SCHED
 108static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
 109{
 110        hrtimer_cancel(&rt_b->rt_period_timer);
 111}
 112
 113#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
 114
 115static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 116{
 117#ifdef CONFIG_SCHED_DEBUG
 118        WARN_ON_ONCE(!rt_entity_is_task(rt_se));
 119#endif
 120        return container_of(rt_se, struct task_struct, rt);
 121}
 122
 123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 124{
 125        return rt_rq->rq;
 126}
 127
 128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 129{
 130        return rt_se->rt_rq;
 131}
 132
 133static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 134{
 135        struct rt_rq *rt_rq = rt_se->rt_rq;
 136
 137        return rt_rq->rq;
 138}
 139
 140void free_rt_sched_group(struct task_group *tg)
 141{
 142        int i;
 143
 144        if (tg->rt_se)
 145                destroy_rt_bandwidth(&tg->rt_bandwidth);
 146
 147        for_each_possible_cpu(i) {
 148                if (tg->rt_rq)
 149                        kfree(tg->rt_rq[i]);
 150                if (tg->rt_se)
 151                        kfree(tg->rt_se[i]);
 152        }
 153
 154        kfree(tg->rt_rq);
 155        kfree(tg->rt_se);
 156}
 157
 158void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 159                struct sched_rt_entity *rt_se, int cpu,
 160                struct sched_rt_entity *parent)
 161{
 162        struct rq *rq = cpu_rq(cpu);
 163
 164        rt_rq->highest_prio.curr = MAX_RT_PRIO;
 165        rt_rq->rt_nr_boosted = 0;
 166        rt_rq->rq = rq;
 167        rt_rq->tg = tg;
 168
 169        tg->rt_rq[cpu] = rt_rq;
 170        tg->rt_se[cpu] = rt_se;
 171
 172        if (!rt_se)
 173                return;
 174
 175        if (!parent)
 176                rt_se->rt_rq = &rq->rt;
 177        else
 178                rt_se->rt_rq = parent->my_q;
 179
 180        rt_se->my_q = rt_rq;
 181        rt_se->parent = parent;
 182        INIT_LIST_HEAD(&rt_se->run_list);
 183}
 184
 185int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 186{
 187        struct rt_rq *rt_rq;
 188        struct sched_rt_entity *rt_se;
 189        int i;
 190
 191        tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
 192        if (!tg->rt_rq)
 193                goto err;
 194        tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
 195        if (!tg->rt_se)
 196                goto err;
 197
 198        init_rt_bandwidth(&tg->rt_bandwidth,
 199                        ktime_to_ns(def_rt_bandwidth.rt_period), 0);
 200
 201        for_each_possible_cpu(i) {
 202                rt_rq = kzalloc_node(sizeof(struct rt_rq),
 203                                     GFP_KERNEL, cpu_to_node(i));
 204                if (!rt_rq)
 205                        goto err;
 206
 207                rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
 208                                     GFP_KERNEL, cpu_to_node(i));
 209                if (!rt_se)
 210                        goto err_free_rq;
 211
 212                init_rt_rq(rt_rq);
 213                rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
 214                init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
 215        }
 216
 217        return 1;
 218
 219err_free_rq:
 220        kfree(rt_rq);
 221err:
 222        return 0;
 223}
 224
 225#else /* CONFIG_RT_GROUP_SCHED */
 226
 227#define rt_entity_is_task(rt_se) (1)
 228
 229static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
 230{
 231        return container_of(rt_se, struct task_struct, rt);
 232}
 233
 234static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
 235{
 236        return container_of(rt_rq, struct rq, rt);
 237}
 238
 239static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
 240{
 241        struct task_struct *p = rt_task_of(rt_se);
 242
 243        return task_rq(p);
 244}
 245
 246static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
 247{
 248        struct rq *rq = rq_of_rt_se(rt_se);
 249
 250        return &rq->rt;
 251}
 252
 253void free_rt_sched_group(struct task_group *tg) { }
 254
 255int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
 256{
 257        return 1;
 258}
 259#endif /* CONFIG_RT_GROUP_SCHED */
 260
 261#ifdef CONFIG_SMP
 262
 263static void pull_rt_task(struct rq *this_rq);
 264
 265static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 266{
 267        /* Try to pull RT tasks here if we lower this rq's prio */
 268        return rq->rt.highest_prio.curr > prev->prio;
 269}
 270
 271static inline int rt_overloaded(struct rq *rq)
 272{
 273        return atomic_read(&rq->rd->rto_count);
 274}
 275
 276static inline void rt_set_overload(struct rq *rq)
 277{
 278        if (!rq->online)
 279                return;
 280
 281        cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
 282        /*
 283         * Make sure the mask is visible before we set
 284         * the overload count. That is checked to determine
 285         * if we should look at the mask. It would be a shame
 286         * if we looked at the mask, but the mask was not
 287         * updated yet.
 288         *
 289         * Matched by the barrier in pull_rt_task().
 290         */
 291        smp_wmb();
 292        atomic_inc(&rq->rd->rto_count);
 293}
 294
 295static inline void rt_clear_overload(struct rq *rq)
 296{
 297        if (!rq->online)
 298                return;
 299
 300        /* the order here really doesn't matter */
 301        atomic_dec(&rq->rd->rto_count);
 302        cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
 303}
 304
 305static void update_rt_migration(struct rt_rq *rt_rq)
 306{
 307        if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
 308                if (!rt_rq->overloaded) {
 309                        rt_set_overload(rq_of_rt_rq(rt_rq));
 310                        rt_rq->overloaded = 1;
 311                }
 312        } else if (rt_rq->overloaded) {
 313                rt_clear_overload(rq_of_rt_rq(rt_rq));
 314                rt_rq->overloaded = 0;
 315        }
 316}
 317
 318static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 319{
 320        struct task_struct *p;
 321
 322        if (!rt_entity_is_task(rt_se))
 323                return;
 324
 325        p = rt_task_of(rt_se);
 326        rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 327
 328        rt_rq->rt_nr_total++;
 329        if (p->nr_cpus_allowed > 1)
 330                rt_rq->rt_nr_migratory++;
 331
 332        update_rt_migration(rt_rq);
 333}
 334
 335static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 336{
 337        struct task_struct *p;
 338
 339        if (!rt_entity_is_task(rt_se))
 340                return;
 341
 342        p = rt_task_of(rt_se);
 343        rt_rq = &rq_of_rt_rq(rt_rq)->rt;
 344
 345        rt_rq->rt_nr_total--;
 346        if (p->nr_cpus_allowed > 1)
 347                rt_rq->rt_nr_migratory--;
 348
 349        update_rt_migration(rt_rq);
 350}
 351
 352static inline int has_pushable_tasks(struct rq *rq)
 353{
 354        return !plist_head_empty(&rq->rt.pushable_tasks);
 355}
 356
 357static DEFINE_PER_CPU(struct callback_head, rt_push_head);
 358static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
 359
 360static void push_rt_tasks(struct rq *);
 361static void pull_rt_task(struct rq *);
 362
 363static inline void queue_push_tasks(struct rq *rq)
 364{
 365        if (!has_pushable_tasks(rq))
 366                return;
 367
 368        queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
 369}
 370
 371static inline void queue_pull_task(struct rq *rq)
 372{
 373        queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
 374}
 375
 376static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 377{
 378        plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 379        plist_node_init(&p->pushable_tasks, p->prio);
 380        plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
 381
 382        /* Update the highest prio pushable task */
 383        if (p->prio < rq->rt.highest_prio.next)
 384                rq->rt.highest_prio.next = p->prio;
 385}
 386
 387static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 388{
 389        plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
 390
 391        /* Update the new highest prio pushable task */
 392        if (has_pushable_tasks(rq)) {
 393                p = plist_first_entry(&rq->rt.pushable_tasks,
 394                                      struct task_struct, pushable_tasks);
 395                rq->rt.highest_prio.next = p->prio;
 396        } else
 397                rq->rt.highest_prio.next = MAX_RT_PRIO;
 398}
 399
 400#else
 401
 402static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
 403{
 404}
 405
 406static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
 407{
 408}
 409
 410static inline
 411void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 412{
 413}
 414
 415static inline
 416void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
 417{
 418}
 419
 420static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
 421{
 422        return false;
 423}
 424
 425static inline void pull_rt_task(struct rq *this_rq)
 426{
 427}
 428
 429static inline void queue_push_tasks(struct rq *rq)
 430{
 431}
 432#endif /* CONFIG_SMP */
 433
 434static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
 435static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
 436
 437static inline int on_rt_rq(struct sched_rt_entity *rt_se)
 438{
 439        return !list_empty(&rt_se->run_list);
 440}
 441
 442#ifdef CONFIG_RT_GROUP_SCHED
 443
 444static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 445{
 446        if (!rt_rq->tg)
 447                return RUNTIME_INF;
 448
 449        return rt_rq->rt_runtime;
 450}
 451
 452static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 453{
 454        return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
 455}
 456
 457typedef struct task_group *rt_rq_iter_t;
 458
 459static inline struct task_group *next_task_group(struct task_group *tg)
 460{
 461        do {
 462                tg = list_entry_rcu(tg->list.next,
 463                        typeof(struct task_group), list);
 464        } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
 465
 466        if (&tg->list == &task_groups)
 467                tg = NULL;
 468
 469        return tg;
 470}
 471
 472#define for_each_rt_rq(rt_rq, iter, rq)                                 \
 473        for (iter = container_of(&task_groups, typeof(*iter), list);    \
 474                (iter = next_task_group(iter)) &&                       \
 475                (rt_rq = iter->rt_rq[cpu_of(rq)]);)
 476
 477#define for_each_sched_rt_entity(rt_se) \
 478        for (; rt_se; rt_se = rt_se->parent)
 479
 480static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 481{
 482        return rt_se->my_q;
 483}
 484
 485static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
 486static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
 487
 488static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 489{
 490        struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
 491        struct rq *rq = rq_of_rt_rq(rt_rq);
 492        struct sched_rt_entity *rt_se;
 493
 494        int cpu = cpu_of(rq);
 495
 496        rt_se = rt_rq->tg->rt_se[cpu];
 497
 498        if (rt_rq->rt_nr_running) {
 499                if (!rt_se)
 500                        enqueue_top_rt_rq(rt_rq);
 501                else if (!on_rt_rq(rt_se))
 502                        enqueue_rt_entity(rt_se, false);
 503
 504                if (rt_rq->highest_prio.curr < curr->prio)
 505                        resched_curr(rq);
 506        }
 507}
 508
 509static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 510{
 511        struct sched_rt_entity *rt_se;
 512        int cpu = cpu_of(rq_of_rt_rq(rt_rq));
 513
 514        rt_se = rt_rq->tg->rt_se[cpu];
 515
 516        if (!rt_se)
 517                dequeue_top_rt_rq(rt_rq);
 518        else if (on_rt_rq(rt_se))
 519                dequeue_rt_entity(rt_se);
 520}
 521
 522static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 523{
 524        return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
 525}
 526
 527static int rt_se_boosted(struct sched_rt_entity *rt_se)
 528{
 529        struct rt_rq *rt_rq = group_rt_rq(rt_se);
 530        struct task_struct *p;
 531
 532        if (rt_rq)
 533                return !!rt_rq->rt_nr_boosted;
 534
 535        p = rt_task_of(rt_se);
 536        return p->prio != p->normal_prio;
 537}
 538
 539#ifdef CONFIG_SMP
 540static inline const struct cpumask *sched_rt_period_mask(void)
 541{
 542        return this_rq()->rd->span;
 543}
 544#else
 545static inline const struct cpumask *sched_rt_period_mask(void)
 546{
 547        return cpu_online_mask;
 548}
 549#endif
 550
 551static inline
 552struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 553{
 554        return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
 555}
 556
 557static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 558{
 559        return &rt_rq->tg->rt_bandwidth;
 560}
 561
 562#else /* !CONFIG_RT_GROUP_SCHED */
 563
 564static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
 565{
 566        return rt_rq->rt_runtime;
 567}
 568
 569static inline u64 sched_rt_period(struct rt_rq *rt_rq)
 570{
 571        return ktime_to_ns(def_rt_bandwidth.rt_period);
 572}
 573
 574typedef struct rt_rq *rt_rq_iter_t;
 575
 576#define for_each_rt_rq(rt_rq, iter, rq) \
 577        for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
 578
 579#define for_each_sched_rt_entity(rt_se) \
 580        for (; rt_se; rt_se = NULL)
 581
 582static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
 583{
 584        return NULL;
 585}
 586
 587static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
 588{
 589        struct rq *rq = rq_of_rt_rq(rt_rq);
 590
 591        if (!rt_rq->rt_nr_running)
 592                return;
 593
 594        enqueue_top_rt_rq(rt_rq);
 595        resched_curr(rq);
 596}
 597
 598static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
 599{
 600        dequeue_top_rt_rq(rt_rq);
 601}
 602
 603static inline int rt_rq_throttled(struct rt_rq *rt_rq)
 604{
 605        return rt_rq->rt_throttled;
 606}
 607
 608static inline const struct cpumask *sched_rt_period_mask(void)
 609{
 610        return cpu_online_mask;
 611}
 612
 613static inline
 614struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
 615{
 616        return &cpu_rq(cpu)->rt;
 617}
 618
 619static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
 620{
 621        return &def_rt_bandwidth;
 622}
 623
 624#endif /* CONFIG_RT_GROUP_SCHED */
 625
 626bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
 627{
 628        struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 629
 630        return (hrtimer_active(&rt_b->rt_period_timer) ||
 631                rt_rq->rt_time < rt_b->rt_runtime);
 632}
 633
 634#ifdef CONFIG_SMP
 635/*
 636 * We ran out of runtime, see if we can borrow some from our neighbours.
 637 */
 638static int do_balance_runtime(struct rt_rq *rt_rq)
 639{
 640        struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 641        struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
 642        int i, weight, more = 0;
 643        u64 rt_period;
 644
 645        weight = cpumask_weight(rd->span);
 646
 647        raw_spin_lock(&rt_b->rt_runtime_lock);
 648        rt_period = ktime_to_ns(rt_b->rt_period);
 649        for_each_cpu(i, rd->span) {
 650                struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 651                s64 diff;
 652
 653                if (iter == rt_rq)
 654                        continue;
 655
 656                raw_spin_lock(&iter->rt_runtime_lock);
 657                /*
 658                 * Either all rqs have inf runtime and there's nothing to steal
 659                 * or __disable_runtime() below sets a specific rq to inf to
 660                 * indicate its been disabled and disalow stealing.
 661                 */
 662                if (iter->rt_runtime == RUNTIME_INF)
 663                        goto next;
 664
 665                /*
 666                 * From runqueues with spare time, take 1/n part of their
 667                 * spare time, but no more than our period.
 668                 */
 669                diff = iter->rt_runtime - iter->rt_time;
 670                if (diff > 0) {
 671                        diff = div_u64((u64)diff, weight);
 672                        if (rt_rq->rt_runtime + diff > rt_period)
 673                                diff = rt_period - rt_rq->rt_runtime;
 674                        iter->rt_runtime -= diff;
 675                        rt_rq->rt_runtime += diff;
 676                        more = 1;
 677                        if (rt_rq->rt_runtime == rt_period) {
 678                                raw_spin_unlock(&iter->rt_runtime_lock);
 679                                break;
 680                        }
 681                }
 682next:
 683                raw_spin_unlock(&iter->rt_runtime_lock);
 684        }
 685        raw_spin_unlock(&rt_b->rt_runtime_lock);
 686
 687        return more;
 688}
 689
 690/*
 691 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 692 */
 693static void __disable_runtime(struct rq *rq)
 694{
 695        struct root_domain *rd = rq->rd;
 696        rt_rq_iter_t iter;
 697        struct rt_rq *rt_rq;
 698
 699        if (unlikely(!scheduler_running))
 700                return;
 701
 702        for_each_rt_rq(rt_rq, iter, rq) {
 703                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 704                s64 want;
 705                int i;
 706
 707                raw_spin_lock(&rt_b->rt_runtime_lock);
 708                raw_spin_lock(&rt_rq->rt_runtime_lock);
 709                /*
 710                 * Either we're all inf and nobody needs to borrow, or we're
 711                 * already disabled and thus have nothing to do, or we have
 712                 * exactly the right amount of runtime to take out.
 713                 */
 714                if (rt_rq->rt_runtime == RUNTIME_INF ||
 715                                rt_rq->rt_runtime == rt_b->rt_runtime)
 716                        goto balanced;
 717                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 718
 719                /*
 720                 * Calculate the difference between what we started out with
 721                 * and what we current have, that's the amount of runtime
 722                 * we lend and now have to reclaim.
 723                 */
 724                want = rt_b->rt_runtime - rt_rq->rt_runtime;
 725
 726                /*
 727                 * Greedy reclaim, take back as much as we can.
 728                 */
 729                for_each_cpu(i, rd->span) {
 730                        struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
 731                        s64 diff;
 732
 733                        /*
 734                         * Can't reclaim from ourselves or disabled runqueues.
 735                         */
 736                        if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
 737                                continue;
 738
 739                        raw_spin_lock(&iter->rt_runtime_lock);
 740                        if (want > 0) {
 741                                diff = min_t(s64, iter->rt_runtime, want);
 742                                iter->rt_runtime -= diff;
 743                                want -= diff;
 744                        } else {
 745                                iter->rt_runtime -= want;
 746                                want -= want;
 747                        }
 748                        raw_spin_unlock(&iter->rt_runtime_lock);
 749
 750                        if (!want)
 751                                break;
 752                }
 753
 754                raw_spin_lock(&rt_rq->rt_runtime_lock);
 755                /*
 756                 * We cannot be left wanting - that would mean some runtime
 757                 * leaked out of the system.
 758                 */
 759                BUG_ON(want);
 760balanced:
 761                /*
 762                 * Disable all the borrow logic by pretending we have inf
 763                 * runtime - in which case borrowing doesn't make sense.
 764                 */
 765                rt_rq->rt_runtime = RUNTIME_INF;
 766                rt_rq->rt_throttled = 0;
 767                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 768                raw_spin_unlock(&rt_b->rt_runtime_lock);
 769
 770                /* Make rt_rq available for pick_next_task() */
 771                sched_rt_rq_enqueue(rt_rq);
 772        }
 773}
 774
 775static void __enable_runtime(struct rq *rq)
 776{
 777        rt_rq_iter_t iter;
 778        struct rt_rq *rt_rq;
 779
 780        if (unlikely(!scheduler_running))
 781                return;
 782
 783        /*
 784         * Reset each runqueue's bandwidth settings
 785         */
 786        for_each_rt_rq(rt_rq, iter, rq) {
 787                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 788
 789                raw_spin_lock(&rt_b->rt_runtime_lock);
 790                raw_spin_lock(&rt_rq->rt_runtime_lock);
 791                rt_rq->rt_runtime = rt_b->rt_runtime;
 792                rt_rq->rt_time = 0;
 793                rt_rq->rt_throttled = 0;
 794                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 795                raw_spin_unlock(&rt_b->rt_runtime_lock);
 796        }
 797}
 798
 799static int balance_runtime(struct rt_rq *rt_rq)
 800{
 801        int more = 0;
 802
 803        if (!sched_feat(RT_RUNTIME_SHARE))
 804                return more;
 805
 806        if (rt_rq->rt_time > rt_rq->rt_runtime) {
 807                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 808                more = do_balance_runtime(rt_rq);
 809                raw_spin_lock(&rt_rq->rt_runtime_lock);
 810        }
 811
 812        return more;
 813}
 814#else /* !CONFIG_SMP */
 815static inline int balance_runtime(struct rt_rq *rt_rq)
 816{
 817        return 0;
 818}
 819#endif /* CONFIG_SMP */
 820
 821static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
 822{
 823        int i, idle = 1, throttled = 0;
 824        const struct cpumask *span;
 825
 826        span = sched_rt_period_mask();
 827#ifdef CONFIG_RT_GROUP_SCHED
 828        /*
 829         * FIXME: isolated CPUs should really leave the root task group,
 830         * whether they are isolcpus or were isolated via cpusets, lest
 831         * the timer run on a CPU which does not service all runqueues,
 832         * potentially leaving other CPUs indefinitely throttled.  If
 833         * isolation is really required, the user will turn the throttle
 834         * off to kill the perturbations it causes anyway.  Meanwhile,
 835         * this maintains functionality for boot and/or troubleshooting.
 836         */
 837        if (rt_b == &root_task_group.rt_bandwidth)
 838                span = cpu_online_mask;
 839#endif
 840        for_each_cpu(i, span) {
 841                int enqueue = 0;
 842                struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
 843                struct rq *rq = rq_of_rt_rq(rt_rq);
 844
 845                raw_spin_lock(&rq->lock);
 846                if (rt_rq->rt_time) {
 847                        u64 runtime;
 848
 849                        raw_spin_lock(&rt_rq->rt_runtime_lock);
 850                        if (rt_rq->rt_throttled)
 851                                balance_runtime(rt_rq);
 852                        runtime = rt_rq->rt_runtime;
 853                        rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
 854                        if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
 855                                rt_rq->rt_throttled = 0;
 856                                enqueue = 1;
 857
 858                                /*
 859                                 * When we're idle and a woken (rt) task is
 860                                 * throttled check_preempt_curr() will set
 861                                 * skip_update and the time between the wakeup
 862                                 * and this unthrottle will get accounted as
 863                                 * 'runtime'.
 864                                 */
 865                                if (rt_rq->rt_nr_running && rq->curr == rq->idle)
 866                                        rq_clock_skip_update(rq, false);
 867                        }
 868                        if (rt_rq->rt_time || rt_rq->rt_nr_running)
 869                                idle = 0;
 870                        raw_spin_unlock(&rt_rq->rt_runtime_lock);
 871                } else if (rt_rq->rt_nr_running) {
 872                        idle = 0;
 873                        if (!rt_rq_throttled(rt_rq))
 874                                enqueue = 1;
 875                }
 876                if (rt_rq->rt_throttled)
 877                        throttled = 1;
 878
 879                if (enqueue)
 880                        sched_rt_rq_enqueue(rt_rq);
 881                raw_spin_unlock(&rq->lock);
 882        }
 883
 884        if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
 885                return 1;
 886
 887        return idle;
 888}
 889
 890static inline int rt_se_prio(struct sched_rt_entity *rt_se)
 891{
 892#ifdef CONFIG_RT_GROUP_SCHED
 893        struct rt_rq *rt_rq = group_rt_rq(rt_se);
 894
 895        if (rt_rq)
 896                return rt_rq->highest_prio.curr;
 897#endif
 898
 899        return rt_task_of(rt_se)->prio;
 900}
 901
 902static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
 903{
 904        u64 runtime = sched_rt_runtime(rt_rq);
 905
 906        if (rt_rq->rt_throttled)
 907                return rt_rq_throttled(rt_rq);
 908
 909        if (runtime >= sched_rt_period(rt_rq))
 910                return 0;
 911
 912        balance_runtime(rt_rq);
 913        runtime = sched_rt_runtime(rt_rq);
 914        if (runtime == RUNTIME_INF)
 915                return 0;
 916
 917        if (rt_rq->rt_time > runtime) {
 918                struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
 919
 920                /*
 921                 * Don't actually throttle groups that have no runtime assigned
 922                 * but accrue some time due to boosting.
 923                 */
 924                if (likely(rt_b->rt_runtime)) {
 925                        rt_rq->rt_throttled = 1;
 926                        printk_deferred_once("sched: RT throttling activated\n");
 927                } else {
 928                        /*
 929                         * In case we did anyway, make it go away,
 930                         * replenishment is a joke, since it will replenish us
 931                         * with exactly 0 ns.
 932                         */
 933                        rt_rq->rt_time = 0;
 934                }
 935
 936                if (rt_rq_throttled(rt_rq)) {
 937                        sched_rt_rq_dequeue(rt_rq);
 938                        return 1;
 939                }
 940        }
 941
 942        return 0;
 943}
 944
 945/*
 946 * Update the current task's runtime statistics. Skip current tasks that
 947 * are not in our scheduling class.
 948 */
 949static void update_curr_rt(struct rq *rq)
 950{
 951        struct task_struct *curr = rq->curr;
 952        struct sched_rt_entity *rt_se = &curr->rt;
 953        u64 delta_exec;
 954
 955        if (curr->sched_class != &rt_sched_class)
 956                return;
 957
 958        delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 959        if (unlikely((s64)delta_exec <= 0))
 960                return;
 961
 962        schedstat_set(curr->se.statistics.exec_max,
 963                      max(curr->se.statistics.exec_max, delta_exec));
 964
 965        curr->se.sum_exec_runtime += delta_exec;
 966        account_group_exec_runtime(curr, delta_exec);
 967
 968        curr->se.exec_start = rq_clock_task(rq);
 969        cpuacct_charge(curr, delta_exec);
 970
 971        sched_rt_avg_update(rq, delta_exec);
 972
 973        if (!rt_bandwidth_enabled())
 974                return;
 975
 976        for_each_sched_rt_entity(rt_se) {
 977                struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
 978
 979                if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
 980                        raw_spin_lock(&rt_rq->rt_runtime_lock);
 981                        rt_rq->rt_time += delta_exec;
 982                        if (sched_rt_runtime_exceeded(rt_rq))
 983                                resched_curr(rq);
 984                        raw_spin_unlock(&rt_rq->rt_runtime_lock);
 985                }
 986        }
 987}
 988
 989static void
 990dequeue_top_rt_rq(struct rt_rq *rt_rq)
 991{
 992        struct rq *rq = rq_of_rt_rq(rt_rq);
 993
 994        BUG_ON(&rq->rt != rt_rq);
 995
 996        if (!rt_rq->rt_queued)
 997                return;
 998
 999        BUG_ON(!rq->nr_running);
1000
1001        sub_nr_running(rq, rt_rq->rt_nr_running);
1002        rt_rq->rt_queued = 0;
1003}
1004
1005static void
1006enqueue_top_rt_rq(struct rt_rq *rt_rq)
1007{
1008        struct rq *rq = rq_of_rt_rq(rt_rq);
1009
1010        BUG_ON(&rq->rt != rt_rq);
1011
1012        if (rt_rq->rt_queued)
1013                return;
1014        if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1015                return;
1016
1017        add_nr_running(rq, rt_rq->rt_nr_running);
1018        rt_rq->rt_queued = 1;
1019}
1020
1021#if defined CONFIG_SMP
1022
1023static void
1024inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1025{
1026        struct rq *rq = rq_of_rt_rq(rt_rq);
1027
1028#ifdef CONFIG_RT_GROUP_SCHED
1029        /*
1030         * Change rq's cpupri only if rt_rq is the top queue.
1031         */
1032        if (&rq->rt != rt_rq)
1033                return;
1034#endif
1035        if (rq->online && prio < prev_prio)
1036                cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1037}
1038
1039static void
1040dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1041{
1042        struct rq *rq = rq_of_rt_rq(rt_rq);
1043
1044#ifdef CONFIG_RT_GROUP_SCHED
1045        /*
1046         * Change rq's cpupri only if rt_rq is the top queue.
1047         */
1048        if (&rq->rt != rt_rq)
1049                return;
1050#endif
1051        if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1052                cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1053}
1054
1055#else /* CONFIG_SMP */
1056
1057static inline
1058void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1059static inline
1060void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061
1062#endif /* CONFIG_SMP */
1063
1064#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1065static void
1066inc_rt_prio(struct rt_rq *rt_rq, int prio)
1067{
1068        int prev_prio = rt_rq->highest_prio.curr;
1069
1070        if (prio < prev_prio)
1071                rt_rq->highest_prio.curr = prio;
1072
1073        inc_rt_prio_smp(rt_rq, prio, prev_prio);
1074}
1075
1076static void
1077dec_rt_prio(struct rt_rq *rt_rq, int prio)
1078{
1079        int prev_prio = rt_rq->highest_prio.curr;
1080
1081        if (rt_rq->rt_nr_running) {
1082
1083                WARN_ON(prio < prev_prio);
1084
1085                /*
1086                 * This may have been our highest task, and therefore
1087                 * we may have some recomputation to do
1088                 */
1089                if (prio == prev_prio) {
1090                        struct rt_prio_array *array = &rt_rq->active;
1091
1092                        rt_rq->highest_prio.curr =
1093                                sched_find_first_bit(array->bitmap);
1094                }
1095
1096        } else
1097                rt_rq->highest_prio.curr = MAX_RT_PRIO;
1098
1099        dec_rt_prio_smp(rt_rq, prio, prev_prio);
1100}
1101
1102#else
1103
1104static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1105static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1106
1107#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1108
1109#ifdef CONFIG_RT_GROUP_SCHED
1110
1111static void
1112inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1113{
1114        if (rt_se_boosted(rt_se))
1115                rt_rq->rt_nr_boosted++;
1116
1117        if (rt_rq->tg)
1118                start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1119}
1120
1121static void
1122dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1123{
1124        if (rt_se_boosted(rt_se))
1125                rt_rq->rt_nr_boosted--;
1126
1127        WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1128}
1129
1130#else /* CONFIG_RT_GROUP_SCHED */
1131
1132static void
1133inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1134{
1135        start_rt_bandwidth(&def_rt_bandwidth);
1136}
1137
1138static inline
1139void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1140
1141#endif /* CONFIG_RT_GROUP_SCHED */
1142
1143static inline
1144unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1145{
1146        struct rt_rq *group_rq = group_rt_rq(rt_se);
1147
1148        if (group_rq)
1149                return group_rq->rt_nr_running;
1150        else
1151                return 1;
1152}
1153
1154static inline
1155void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156{
1157        int prio = rt_se_prio(rt_se);
1158
1159        WARN_ON(!rt_prio(prio));
1160        rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1161
1162        inc_rt_prio(rt_rq, prio);
1163        inc_rt_migration(rt_se, rt_rq);
1164        inc_rt_group(rt_se, rt_rq);
1165}
1166
1167static inline
1168void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1169{
1170        WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1171        WARN_ON(!rt_rq->rt_nr_running);
1172        rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1173
1174        dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1175        dec_rt_migration(rt_se, rt_rq);
1176        dec_rt_group(rt_se, rt_rq);
1177}
1178
1179static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1180{
1181        struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1182        struct rt_prio_array *array = &rt_rq->active;
1183        struct rt_rq *group_rq = group_rt_rq(rt_se);
1184        struct list_head *queue = array->queue + rt_se_prio(rt_se);
1185
1186        /*
1187         * Don't enqueue the group if its throttled, or when empty.
1188         * The latter is a consequence of the former when a child group
1189         * get throttled and the current group doesn't have any other
1190         * active members.
1191         */
1192        if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1193                return;
1194
1195        if (head)
1196                list_add(&rt_se->run_list, queue);
1197        else
1198                list_add_tail(&rt_se->run_list, queue);
1199        __set_bit(rt_se_prio(rt_se), array->bitmap);
1200
1201        inc_rt_tasks(rt_se, rt_rq);
1202}
1203
1204static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1205{
1206        struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1207        struct rt_prio_array *array = &rt_rq->active;
1208
1209        list_del_init(&rt_se->run_list);
1210        if (list_empty(array->queue + rt_se_prio(rt_se)))
1211                __clear_bit(rt_se_prio(rt_se), array->bitmap);
1212
1213        dec_rt_tasks(rt_se, rt_rq);
1214}
1215
1216/*
1217 * Because the prio of an upper entry depends on the lower
1218 * entries, we must remove entries top - down.
1219 */
1220static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1221{
1222        struct sched_rt_entity *back = NULL;
1223
1224        for_each_sched_rt_entity(rt_se) {
1225                rt_se->back = back;
1226                back = rt_se;
1227        }
1228
1229        dequeue_top_rt_rq(rt_rq_of_se(back));
1230
1231        for (rt_se = back; rt_se; rt_se = rt_se->back) {
1232                if (on_rt_rq(rt_se))
1233                        __dequeue_rt_entity(rt_se);
1234        }
1235}
1236
1237static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1238{
1239        struct rq *rq = rq_of_rt_se(rt_se);
1240
1241        dequeue_rt_stack(rt_se);
1242        for_each_sched_rt_entity(rt_se)
1243                __enqueue_rt_entity(rt_se, head);
1244        enqueue_top_rt_rq(&rq->rt);
1245}
1246
1247static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1248{
1249        struct rq *rq = rq_of_rt_se(rt_se);
1250
1251        dequeue_rt_stack(rt_se);
1252
1253        for_each_sched_rt_entity(rt_se) {
1254                struct rt_rq *rt_rq = group_rt_rq(rt_se);
1255
1256                if (rt_rq && rt_rq->rt_nr_running)
1257                        __enqueue_rt_entity(rt_se, false);
1258        }
1259        enqueue_top_rt_rq(&rq->rt);
1260}
1261
1262/*
1263 * Adding/removing a task to/from a priority array:
1264 */
1265static void
1266enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1267{
1268        struct sched_rt_entity *rt_se = &p->rt;
1269
1270        if (flags & ENQUEUE_WAKEUP)
1271                rt_se->timeout = 0;
1272
1273        enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1274
1275        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1276                enqueue_pushable_task(rq, p);
1277}
1278
1279static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1280{
1281        struct sched_rt_entity *rt_se = &p->rt;
1282
1283        update_curr_rt(rq);
1284        dequeue_rt_entity(rt_se);
1285
1286        dequeue_pushable_task(rq, p);
1287}
1288
1289/*
1290 * Put task to the head or the end of the run list without the overhead of
1291 * dequeue followed by enqueue.
1292 */
1293static void
1294requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1295{
1296        if (on_rt_rq(rt_se)) {
1297                struct rt_prio_array *array = &rt_rq->active;
1298                struct list_head *queue = array->queue + rt_se_prio(rt_se);
1299
1300                if (head)
1301                        list_move(&rt_se->run_list, queue);
1302                else
1303                        list_move_tail(&rt_se->run_list, queue);
1304        }
1305}
1306
1307static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1308{
1309        struct sched_rt_entity *rt_se = &p->rt;
1310        struct rt_rq *rt_rq;
1311
1312        for_each_sched_rt_entity(rt_se) {
1313                rt_rq = rt_rq_of_se(rt_se);
1314                requeue_rt_entity(rt_rq, rt_se, head);
1315        }
1316}
1317
1318static void yield_task_rt(struct rq *rq)
1319{
1320        requeue_task_rt(rq, rq->curr, 0);
1321}
1322
1323#ifdef CONFIG_SMP
1324static int find_lowest_rq(struct task_struct *task);
1325
1326static int
1327select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1328{
1329        struct task_struct *curr;
1330        struct rq *rq;
1331
1332        /* For anything but wake ups, just return the task_cpu */
1333        if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1334                goto out;
1335
1336        rq = cpu_rq(cpu);
1337
1338        rcu_read_lock();
1339        curr = READ_ONCE(rq->curr); /* unlocked access */
1340
1341        /*
1342         * If the current task on @p's runqueue is an RT task, then
1343         * try to see if we can wake this RT task up on another
1344         * runqueue. Otherwise simply start this RT task
1345         * on its current runqueue.
1346         *
1347         * We want to avoid overloading runqueues. If the woken
1348         * task is a higher priority, then it will stay on this CPU
1349         * and the lower prio task should be moved to another CPU.
1350         * Even though this will probably make the lower prio task
1351         * lose its cache, we do not want to bounce a higher task
1352         * around just because it gave up its CPU, perhaps for a
1353         * lock?
1354         *
1355         * For equal prio tasks, we just let the scheduler sort it out.
1356         *
1357         * Otherwise, just let it ride on the affined RQ and the
1358         * post-schedule router will push the preempted task away
1359         *
1360         * This test is optimistic, if we get it wrong the load-balancer
1361         * will have to sort it out.
1362         */
1363        if (curr && unlikely(rt_task(curr)) &&
1364            (curr->nr_cpus_allowed < 2 ||
1365             curr->prio <= p->prio)) {
1366                int target = find_lowest_rq(p);
1367
1368                /*
1369                 * Don't bother moving it if the destination CPU is
1370                 * not running a lower priority task.
1371                 */
1372                if (target != -1 &&
1373                    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1374                        cpu = target;
1375        }
1376        rcu_read_unlock();
1377
1378out:
1379        return cpu;
1380}
1381
1382static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1383{
1384        /*
1385         * Current can't be migrated, useless to reschedule,
1386         * let's hope p can move out.
1387         */
1388        if (rq->curr->nr_cpus_allowed == 1 ||
1389            !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1390                return;
1391
1392        /*
1393         * p is migratable, so let's not schedule it and
1394         * see if it is pushed or pulled somewhere else.
1395         */
1396        if (p->nr_cpus_allowed != 1
1397            && cpupri_find(&rq->rd->cpupri, p, NULL))
1398                return;
1399
1400        /*
1401         * There appears to be other cpus that can accept
1402         * current and none to run 'p', so lets reschedule
1403         * to try and push current away:
1404         */
1405        requeue_task_rt(rq, p, 1);
1406        resched_curr(rq);
1407}
1408
1409#endif /* CONFIG_SMP */
1410
1411/*
1412 * Preempt the current task with a newly woken task if needed:
1413 */
1414static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1415{
1416        if (p->prio < rq->curr->prio) {
1417                resched_curr(rq);
1418                return;
1419        }
1420
1421#ifdef CONFIG_SMP
1422        /*
1423         * If:
1424         *
1425         * - the newly woken task is of equal priority to the current task
1426         * - the newly woken task is non-migratable while current is migratable
1427         * - current will be preempted on the next reschedule
1428         *
1429         * we should check to see if current can readily move to a different
1430         * cpu.  If so, we will reschedule to allow the push logic to try
1431         * to move current somewhere else, making room for our non-migratable
1432         * task.
1433         */
1434        if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1435                check_preempt_equal_prio(rq, p);
1436#endif
1437}
1438
1439static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1440                                                   struct rt_rq *rt_rq)
1441{
1442        struct rt_prio_array *array = &rt_rq->active;
1443        struct sched_rt_entity *next = NULL;
1444        struct list_head *queue;
1445        int idx;
1446
1447        idx = sched_find_first_bit(array->bitmap);
1448        BUG_ON(idx >= MAX_RT_PRIO);
1449
1450        queue = array->queue + idx;
1451        next = list_entry(queue->next, struct sched_rt_entity, run_list);
1452
1453        return next;
1454}
1455
1456static struct task_struct *_pick_next_task_rt(struct rq *rq)
1457{
1458        struct sched_rt_entity *rt_se;
1459        struct task_struct *p;
1460        struct rt_rq *rt_rq  = &rq->rt;
1461
1462        do {
1463                rt_se = pick_next_rt_entity(rq, rt_rq);
1464                BUG_ON(!rt_se);
1465                rt_rq = group_rt_rq(rt_se);
1466        } while (rt_rq);
1467
1468        p = rt_task_of(rt_se);
1469        p->se.exec_start = rq_clock_task(rq);
1470
1471        return p;
1472}
1473
1474static struct task_struct *
1475pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1476{
1477        struct task_struct *p;
1478        struct rt_rq *rt_rq = &rq->rt;
1479
1480        if (need_pull_rt_task(rq, prev)) {
1481                /*
1482                 * This is OK, because current is on_cpu, which avoids it being
1483                 * picked for load-balance and preemption/IRQs are still
1484                 * disabled avoiding further scheduler activity on it and we're
1485                 * being very careful to re-start the picking loop.
1486                 */
1487                lockdep_unpin_lock(&rq->lock);
1488                pull_rt_task(rq);
1489                lockdep_pin_lock(&rq->lock);
1490                /*
1491                 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1492                 * means a dl or stop task can slip in, in which case we need
1493                 * to re-start task selection.
1494                 */
1495                if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1496                             rq->dl.dl_nr_running))
1497                        return RETRY_TASK;
1498        }
1499
1500        /*
1501         * We may dequeue prev's rt_rq in put_prev_task().
1502         * So, we update time before rt_nr_running check.
1503         */
1504        if (prev->sched_class == &rt_sched_class)
1505                update_curr_rt(rq);
1506
1507        if (!rt_rq->rt_queued)
1508                return NULL;
1509
1510        put_prev_task(rq, prev);
1511
1512        p = _pick_next_task_rt(rq);
1513
1514        /* The running task is never eligible for pushing */
1515        dequeue_pushable_task(rq, p);
1516
1517        queue_push_tasks(rq);
1518
1519        return p;
1520}
1521
1522static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1523{
1524        update_curr_rt(rq);
1525
1526        /*
1527         * The previous task needs to be made eligible for pushing
1528         * if it is still active
1529         */
1530        if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1531                enqueue_pushable_task(rq, p);
1532}
1533
1534#ifdef CONFIG_SMP
1535
1536/* Only try algorithms three times */
1537#define RT_MAX_TRIES 3
1538
1539static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1540{
1541        if (!task_running(rq, p) &&
1542            cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1543                return 1;
1544        return 0;
1545}
1546
1547/*
1548 * Return the highest pushable rq's task, which is suitable to be executed
1549 * on the cpu, NULL otherwise
1550 */
1551static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1552{
1553        struct plist_head *head = &rq->rt.pushable_tasks;
1554        struct task_struct *p;
1555
1556        if (!has_pushable_tasks(rq))
1557                return NULL;
1558
1559        plist_for_each_entry(p, head, pushable_tasks) {
1560                if (pick_rt_task(rq, p, cpu))
1561                        return p;
1562        }
1563
1564        return NULL;
1565}
1566
1567static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1568
1569static int find_lowest_rq(struct task_struct *task)
1570{
1571        struct sched_domain *sd;
1572        struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1573        int this_cpu = smp_processor_id();
1574        int cpu      = task_cpu(task);
1575
1576        /* Make sure the mask is initialized first */
1577        if (unlikely(!lowest_mask))
1578                return -1;
1579
1580        if (task->nr_cpus_allowed == 1)
1581                return -1; /* No other targets possible */
1582
1583        if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1584                return -1; /* No targets found */
1585
1586        /*
1587         * At this point we have built a mask of cpus representing the
1588         * lowest priority tasks in the system.  Now we want to elect
1589         * the best one based on our affinity and topology.
1590         *
1591         * We prioritize the last cpu that the task executed on since
1592         * it is most likely cache-hot in that location.
1593         */
1594        if (cpumask_test_cpu(cpu, lowest_mask))
1595                return cpu;
1596
1597        /*
1598         * Otherwise, we consult the sched_domains span maps to figure
1599         * out which cpu is logically closest to our hot cache data.
1600         */
1601        if (!cpumask_test_cpu(this_cpu, lowest_mask))
1602                this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1603
1604        rcu_read_lock();
1605        for_each_domain(cpu, sd) {
1606                if (sd->flags & SD_WAKE_AFFINE) {
1607                        int best_cpu;
1608
1609                        /*
1610                         * "this_cpu" is cheaper to preempt than a
1611                         * remote processor.
1612                         */
1613                        if (this_cpu != -1 &&
1614                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1615                                rcu_read_unlock();
1616                                return this_cpu;
1617                        }
1618
1619                        best_cpu = cpumask_first_and(lowest_mask,
1620                                                     sched_domain_span(sd));
1621                        if (best_cpu < nr_cpu_ids) {
1622                                rcu_read_unlock();
1623                                return best_cpu;
1624                        }
1625                }
1626        }
1627        rcu_read_unlock();
1628
1629        /*
1630         * And finally, if there were no matches within the domains
1631         * just give the caller *something* to work with from the compatible
1632         * locations.
1633         */
1634        if (this_cpu != -1)
1635                return this_cpu;
1636
1637        cpu = cpumask_any(lowest_mask);
1638        if (cpu < nr_cpu_ids)
1639                return cpu;
1640        return -1;
1641}
1642
1643/* Will lock the rq it finds */
1644static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1645{
1646        struct rq *lowest_rq = NULL;
1647        int tries;
1648        int cpu;
1649
1650        for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1651                cpu = find_lowest_rq(task);
1652
1653                if ((cpu == -1) || (cpu == rq->cpu))
1654                        break;
1655
1656                lowest_rq = cpu_rq(cpu);
1657
1658                if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1659                        /*
1660                         * Target rq has tasks of equal or higher priority,
1661                         * retrying does not release any lock and is unlikely
1662                         * to yield a different result.
1663                         */
1664                        lowest_rq = NULL;
1665                        break;
1666                }
1667
1668                /* if the prio of this runqueue changed, try again */
1669                if (double_lock_balance(rq, lowest_rq)) {
1670                        /*
1671                         * We had to unlock the run queue. In
1672                         * the mean time, task could have
1673                         * migrated already or had its affinity changed.
1674                         * Also make sure that it wasn't scheduled on its rq.
1675                         */
1676                        if (unlikely(task_rq(task) != rq ||
1677                                     !cpumask_test_cpu(lowest_rq->cpu,
1678                                                       tsk_cpus_allowed(task)) ||
1679                                     task_running(rq, task) ||
1680                                     !task_on_rq_queued(task))) {
1681
1682                                double_unlock_balance(rq, lowest_rq);
1683                                lowest_rq = NULL;
1684                                break;
1685                        }
1686                }
1687
1688                /* If this rq is still suitable use it. */
1689                if (lowest_rq->rt.highest_prio.curr > task->prio)
1690                        break;
1691
1692                /* try again */
1693                double_unlock_balance(rq, lowest_rq);
1694                lowest_rq = NULL;
1695        }
1696
1697        return lowest_rq;
1698}
1699
1700static struct task_struct *pick_next_pushable_task(struct rq *rq)
1701{
1702        struct task_struct *p;
1703
1704        if (!has_pushable_tasks(rq))
1705                return NULL;
1706
1707        p = plist_first_entry(&rq->rt.pushable_tasks,
1708                              struct task_struct, pushable_tasks);
1709
1710        BUG_ON(rq->cpu != task_cpu(p));
1711        BUG_ON(task_current(rq, p));
1712        BUG_ON(p->nr_cpus_allowed <= 1);
1713
1714        BUG_ON(!task_on_rq_queued(p));
1715        BUG_ON(!rt_task(p));
1716
1717        return p;
1718}
1719
1720/*
1721 * If the current CPU has more than one RT task, see if the non
1722 * running task can migrate over to a CPU that is running a task
1723 * of lesser priority.
1724 */
1725static int push_rt_task(struct rq *rq)
1726{
1727        struct task_struct *next_task;
1728        struct rq *lowest_rq;
1729        int ret = 0;
1730
1731        if (!rq->rt.overloaded)
1732                return 0;
1733
1734        next_task = pick_next_pushable_task(rq);
1735        if (!next_task)
1736                return 0;
1737
1738retry:
1739        if (unlikely(next_task == rq->curr)) {
1740                WARN_ON(1);
1741                return 0;
1742        }
1743
1744        /*
1745         * It's possible that the next_task slipped in of
1746         * higher priority than current. If that's the case
1747         * just reschedule current.
1748         */
1749        if (unlikely(next_task->prio < rq->curr->prio)) {
1750                resched_curr(rq);
1751                return 0;
1752        }
1753
1754        /* We might release rq lock */
1755        get_task_struct(next_task);
1756
1757        /* find_lock_lowest_rq locks the rq if found */
1758        lowest_rq = find_lock_lowest_rq(next_task, rq);
1759        if (!lowest_rq) {
1760                struct task_struct *task;
1761                /*
1762                 * find_lock_lowest_rq releases rq->lock
1763                 * so it is possible that next_task has migrated.
1764                 *
1765                 * We need to make sure that the task is still on the same
1766                 * run-queue and is also still the next task eligible for
1767                 * pushing.
1768                 */
1769                task = pick_next_pushable_task(rq);
1770                if (task_cpu(next_task) == rq->cpu && task == next_task) {
1771                        /*
1772                         * The task hasn't migrated, and is still the next
1773                         * eligible task, but we failed to find a run-queue
1774                         * to push it to.  Do not retry in this case, since
1775                         * other cpus will pull from us when ready.
1776                         */
1777                        goto out;
1778                }
1779
1780                if (!task)
1781                        /* No more tasks, just exit */
1782                        goto out;
1783
1784                /*
1785                 * Something has shifted, try again.
1786                 */
1787                put_task_struct(next_task);
1788                next_task = task;
1789                goto retry;
1790        }
1791
1792        deactivate_task(rq, next_task, 0);
1793        set_task_cpu(next_task, lowest_rq->cpu);
1794        activate_task(lowest_rq, next_task, 0);
1795        ret = 1;
1796
1797        resched_curr(lowest_rq);
1798
1799        double_unlock_balance(rq, lowest_rq);
1800
1801out:
1802        put_task_struct(next_task);
1803
1804        return ret;
1805}
1806
1807static void push_rt_tasks(struct rq *rq)
1808{
1809        /* push_rt_task will return true if it moved an RT */
1810        while (push_rt_task(rq))
1811                ;
1812}
1813
1814#ifdef HAVE_RT_PUSH_IPI
1815/*
1816 * The search for the next cpu always starts at rq->cpu and ends
1817 * when we reach rq->cpu again. It will never return rq->cpu.
1818 * This returns the next cpu to check, or nr_cpu_ids if the loop
1819 * is complete.
1820 *
1821 * rq->rt.push_cpu holds the last cpu returned by this function,
1822 * or if this is the first instance, it must hold rq->cpu.
1823 */
1824static int rto_next_cpu(struct rq *rq)
1825{
1826        int prev_cpu = rq->rt.push_cpu;
1827        int cpu;
1828
1829        cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1830
1831        /*
1832         * If the previous cpu is less than the rq's CPU, then it already
1833         * passed the end of the mask, and has started from the beginning.
1834         * We end if the next CPU is greater or equal to rq's CPU.
1835         */
1836        if (prev_cpu < rq->cpu) {
1837                if (cpu >= rq->cpu)
1838                        return nr_cpu_ids;
1839
1840        } else if (cpu >= nr_cpu_ids) {
1841                /*
1842                 * We passed the end of the mask, start at the beginning.
1843                 * If the result is greater or equal to the rq's CPU, then
1844                 * the loop is finished.
1845                 */
1846                cpu = cpumask_first(rq->rd->rto_mask);
1847                if (cpu >= rq->cpu)
1848                        return nr_cpu_ids;
1849        }
1850        rq->rt.push_cpu = cpu;
1851
1852        /* Return cpu to let the caller know if the loop is finished or not */
1853        return cpu;
1854}
1855
1856static int find_next_push_cpu(struct rq *rq)
1857{
1858        struct rq *next_rq;
1859        int cpu;
1860
1861        while (1) {
1862                cpu = rto_next_cpu(rq);
1863                if (cpu >= nr_cpu_ids)
1864                        break;
1865                next_rq = cpu_rq(cpu);
1866
1867                /* Make sure the next rq can push to this rq */
1868                if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1869                        break;
1870        }
1871
1872        return cpu;
1873}
1874
1875#define RT_PUSH_IPI_EXECUTING           1
1876#define RT_PUSH_IPI_RESTART             2
1877
1878static void tell_cpu_to_push(struct rq *rq)
1879{
1880        int cpu;
1881
1882        if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1883                raw_spin_lock(&rq->rt.push_lock);
1884                /* Make sure it's still executing */
1885                if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1886                        /*
1887                         * Tell the IPI to restart the loop as things have
1888                         * changed since it started.
1889                         */
1890                        rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1891                        raw_spin_unlock(&rq->rt.push_lock);
1892                        return;
1893                }
1894                raw_spin_unlock(&rq->rt.push_lock);
1895        }
1896
1897        /* When here, there's no IPI going around */
1898
1899        rq->rt.push_cpu = rq->cpu;
1900        cpu = find_next_push_cpu(rq);
1901        if (cpu >= nr_cpu_ids)
1902                return;
1903
1904        rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1905
1906        irq_work_queue_on(&rq->rt.push_work, cpu);
1907}
1908
1909/* Called from hardirq context */
1910static void try_to_push_tasks(void *arg)
1911{
1912        struct rt_rq *rt_rq = arg;
1913        struct rq *rq, *src_rq;
1914        int this_cpu;
1915        int cpu;
1916
1917        this_cpu = rt_rq->push_cpu;
1918
1919        /* Paranoid check */
1920        BUG_ON(this_cpu != smp_processor_id());
1921
1922        rq = cpu_rq(this_cpu);
1923        src_rq = rq_of_rt_rq(rt_rq);
1924
1925again:
1926        if (has_pushable_tasks(rq)) {
1927                raw_spin_lock(&rq->lock);
1928                push_rt_task(rq);
1929                raw_spin_unlock(&rq->lock);
1930        }
1931
1932        /* Pass the IPI to the next rt overloaded queue */
1933        raw_spin_lock(&rt_rq->push_lock);
1934        /*
1935         * If the source queue changed since the IPI went out,
1936         * we need to restart the search from that CPU again.
1937         */
1938        if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1939                rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1940                rt_rq->push_cpu = src_rq->cpu;
1941        }
1942
1943        cpu = find_next_push_cpu(src_rq);
1944
1945        if (cpu >= nr_cpu_ids)
1946                rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1947        raw_spin_unlock(&rt_rq->push_lock);
1948
1949        if (cpu >= nr_cpu_ids)
1950                return;
1951
1952        /*
1953         * It is possible that a restart caused this CPU to be
1954         * chosen again. Don't bother with an IPI, just see if we
1955         * have more to push.
1956         */
1957        if (unlikely(cpu == rq->cpu))
1958                goto again;
1959
1960        /* Try the next RT overloaded CPU */
1961        irq_work_queue_on(&rt_rq->push_work, cpu);
1962}
1963
1964static void push_irq_work_func(struct irq_work *work)
1965{
1966        struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1967
1968        try_to_push_tasks(rt_rq);
1969}
1970#endif /* HAVE_RT_PUSH_IPI */
1971
1972static void pull_rt_task(struct rq *this_rq)
1973{
1974        int this_cpu = this_rq->cpu, cpu;
1975        bool resched = false;
1976        struct task_struct *p;
1977        struct rq *src_rq;
1978
1979        if (likely(!rt_overloaded(this_rq)))
1980                return;
1981
1982        /*
1983         * Match the barrier from rt_set_overloaded; this guarantees that if we
1984         * see overloaded we must also see the rto_mask bit.
1985         */
1986        smp_rmb();
1987
1988#ifdef HAVE_RT_PUSH_IPI
1989        if (sched_feat(RT_PUSH_IPI)) {
1990                tell_cpu_to_push(this_rq);
1991                return;
1992        }
1993#endif
1994
1995        for_each_cpu(cpu, this_rq->rd->rto_mask) {
1996                if (this_cpu == cpu)
1997                        continue;
1998
1999                src_rq = cpu_rq(cpu);
2000
2001                /*
2002                 * Don't bother taking the src_rq->lock if the next highest
2003                 * task is known to be lower-priority than our current task.
2004                 * This may look racy, but if this value is about to go
2005                 * logically higher, the src_rq will push this task away.
2006                 * And if its going logically lower, we do not care
2007                 */
2008                if (src_rq->rt.highest_prio.next >=
2009                    this_rq->rt.highest_prio.curr)
2010                        continue;
2011
2012                /*
2013                 * We can potentially drop this_rq's lock in
2014                 * double_lock_balance, and another CPU could
2015                 * alter this_rq
2016                 */
2017                double_lock_balance(this_rq, src_rq);
2018
2019                /*
2020                 * We can pull only a task, which is pushable
2021                 * on its rq, and no others.
2022                 */
2023                p = pick_highest_pushable_task(src_rq, this_cpu);
2024
2025                /*
2026                 * Do we have an RT task that preempts
2027                 * the to-be-scheduled task?
2028                 */
2029                if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2030                        WARN_ON(p == src_rq->curr);
2031                        WARN_ON(!task_on_rq_queued(p));
2032
2033                        /*
2034                         * There's a chance that p is higher in priority
2035                         * than what's currently running on its cpu.
2036                         * This is just that p is wakeing up and hasn't
2037                         * had a chance to schedule. We only pull
2038                         * p if it is lower in priority than the
2039                         * current task on the run queue
2040                         */
2041                        if (p->prio < src_rq->curr->prio)
2042                                goto skip;
2043
2044                        resched = true;
2045
2046                        deactivate_task(src_rq, p, 0);
2047                        set_task_cpu(p, this_cpu);
2048                        activate_task(this_rq, p, 0);
2049                        /*
2050                         * We continue with the search, just in
2051                         * case there's an even higher prio task
2052                         * in another runqueue. (low likelihood
2053                         * but possible)
2054                         */
2055                }
2056skip:
2057                double_unlock_balance(this_rq, src_rq);
2058        }
2059
2060        if (resched)
2061                resched_curr(this_rq);
2062}
2063
2064/*
2065 * If we are not running and we are not going to reschedule soon, we should
2066 * try to push tasks away now
2067 */
2068static void task_woken_rt(struct rq *rq, struct task_struct *p)
2069{
2070        if (!task_running(rq, p) &&
2071            !test_tsk_need_resched(rq->curr) &&
2072            p->nr_cpus_allowed > 1 &&
2073            (dl_task(rq->curr) || rt_task(rq->curr)) &&
2074            (rq->curr->nr_cpus_allowed < 2 ||
2075             rq->curr->prio <= p->prio))
2076                push_rt_tasks(rq);
2077}
2078
2079/* Assumes rq->lock is held */
2080static void rq_online_rt(struct rq *rq)
2081{
2082        if (rq->rt.overloaded)
2083                rt_set_overload(rq);
2084
2085        __enable_runtime(rq);
2086
2087        cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2088}
2089
2090/* Assumes rq->lock is held */
2091static void rq_offline_rt(struct rq *rq)
2092{
2093        if (rq->rt.overloaded)
2094                rt_clear_overload(rq);
2095
2096        __disable_runtime(rq);
2097
2098        cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2099}
2100
2101/*
2102 * When switch from the rt queue, we bring ourselves to a position
2103 * that we might want to pull RT tasks from other runqueues.
2104 */
2105static void switched_from_rt(struct rq *rq, struct task_struct *p)
2106{
2107        /*
2108         * If there are other RT tasks then we will reschedule
2109         * and the scheduling of the other RT tasks will handle
2110         * the balancing. But if we are the last RT task
2111         * we may need to handle the pulling of RT tasks
2112         * now.
2113         */
2114        if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2115                return;
2116
2117        queue_pull_task(rq);
2118}
2119
2120void __init init_sched_rt_class(void)
2121{
2122        unsigned int i;
2123
2124        for_each_possible_cpu(i) {
2125                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2126                                        GFP_KERNEL, cpu_to_node(i));
2127        }
2128}
2129#endif /* CONFIG_SMP */
2130
2131/*
2132 * When switching a task to RT, we may overload the runqueue
2133 * with RT tasks. In this case we try to push them off to
2134 * other runqueues.
2135 */
2136static void switched_to_rt(struct rq *rq, struct task_struct *p)
2137{
2138        /*
2139         * If we are already running, then there's nothing
2140         * that needs to be done. But if we are not running
2141         * we may need to preempt the current running task.
2142         * If that current running task is also an RT task
2143         * then see if we can move to another run queue.
2144         */
2145        if (task_on_rq_queued(p) && rq->curr != p) {
2146#ifdef CONFIG_SMP
2147                if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2148                        queue_push_tasks(rq);
2149#else
2150                if (p->prio < rq->curr->prio)
2151                        resched_curr(rq);
2152#endif /* CONFIG_SMP */
2153        }
2154}
2155
2156/*
2157 * Priority of the task has changed. This may cause
2158 * us to initiate a push or pull.
2159 */
2160static void
2161prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2162{
2163        if (!task_on_rq_queued(p))
2164                return;
2165
2166        if (rq->curr == p) {
2167#ifdef CONFIG_SMP
2168                /*
2169                 * If our priority decreases while running, we
2170                 * may need to pull tasks to this runqueue.
2171                 */
2172                if (oldprio < p->prio)
2173                        queue_pull_task(rq);
2174
2175                /*
2176                 * If there's a higher priority task waiting to run
2177                 * then reschedule.
2178                 */
2179                if (p->prio > rq->rt.highest_prio.curr)
2180                        resched_curr(rq);
2181#else
2182                /* For UP simply resched on drop of prio */
2183                if (oldprio < p->prio)
2184                        resched_curr(rq);
2185#endif /* CONFIG_SMP */
2186        } else {
2187                /*
2188                 * This task is not running, but if it is
2189                 * greater than the current running task
2190                 * then reschedule.
2191                 */
2192                if (p->prio < rq->curr->prio)
2193                        resched_curr(rq);
2194        }
2195}
2196
2197static void watchdog(struct rq *rq, struct task_struct *p)
2198{
2199        unsigned long soft, hard;
2200
2201        /* max may change after cur was read, this will be fixed next tick */
2202        soft = task_rlimit(p, RLIMIT_RTTIME);
2203        hard = task_rlimit_max(p, RLIMIT_RTTIME);
2204
2205        if (soft != RLIM_INFINITY) {
2206                unsigned long next;
2207
2208                if (p->rt.watchdog_stamp != jiffies) {
2209                        p->rt.timeout++;
2210                        p->rt.watchdog_stamp = jiffies;
2211                }
2212
2213                next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2214                if (p->rt.timeout > next)
2215                        p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2216        }
2217}
2218
2219static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2220{
2221        struct sched_rt_entity *rt_se = &p->rt;
2222
2223        update_curr_rt(rq);
2224
2225        watchdog(rq, p);
2226
2227        /*
2228         * RR tasks need a special form of timeslice management.
2229         * FIFO tasks have no timeslices.
2230         */
2231        if (p->policy != SCHED_RR)
2232                return;
2233
2234        if (--p->rt.time_slice)
2235                return;
2236
2237        p->rt.time_slice = sched_rr_timeslice;
2238
2239        /*
2240         * Requeue to the end of queue if we (and all of our ancestors) are not
2241         * the only element on the queue
2242         */
2243        for_each_sched_rt_entity(rt_se) {
2244                if (rt_se->run_list.prev != rt_se->run_list.next) {
2245                        requeue_task_rt(rq, p, 0);
2246                        resched_curr(rq);
2247                        return;
2248                }
2249        }
2250}
2251
2252static void set_curr_task_rt(struct rq *rq)
2253{
2254        struct task_struct *p = rq->curr;
2255
2256        p->se.exec_start = rq_clock_task(rq);
2257
2258        /* The running task is never eligible for pushing */
2259        dequeue_pushable_task(rq, p);
2260}
2261
2262static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2263{
2264        /*
2265         * Time slice is 0 for SCHED_FIFO tasks
2266         */
2267        if (task->policy == SCHED_RR)
2268                return sched_rr_timeslice;
2269        else
2270                return 0;
2271}
2272
2273const struct sched_class rt_sched_class = {
2274        .next                   = &fair_sched_class,
2275        .enqueue_task           = enqueue_task_rt,
2276        .dequeue_task           = dequeue_task_rt,
2277        .yield_task             = yield_task_rt,
2278
2279        .check_preempt_curr     = check_preempt_curr_rt,
2280
2281        .pick_next_task         = pick_next_task_rt,
2282        .put_prev_task          = put_prev_task_rt,
2283
2284#ifdef CONFIG_SMP
2285        .select_task_rq         = select_task_rq_rt,
2286
2287        .set_cpus_allowed       = set_cpus_allowed_common,
2288        .rq_online              = rq_online_rt,
2289        .rq_offline             = rq_offline_rt,
2290        .task_woken             = task_woken_rt,
2291        .switched_from          = switched_from_rt,
2292#endif
2293
2294        .set_curr_task          = set_curr_task_rt,
2295        .task_tick              = task_tick_rt,
2296
2297        .get_rr_interval        = get_rr_interval_rt,
2298
2299        .prio_changed           = prio_changed_rt,
2300        .switched_to            = switched_to_rt,
2301
2302        .update_curr            = update_curr_rt,
2303};
2304
2305#ifdef CONFIG_SCHED_DEBUG
2306extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2307
2308void print_rt_stats(struct seq_file *m, int cpu)
2309{
2310        rt_rq_iter_t iter;
2311        struct rt_rq *rt_rq;
2312
2313        rcu_read_lock();
2314        for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2315                print_rt_rq(m, cpu, rt_rq);
2316        rcu_read_unlock();
2317}
2318#endif /* CONFIG_SCHED_DEBUG */
2319