linux/kernel/signal.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *              Changes to use preallocated sigqueue structures
  10 *              to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"      /* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58        return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63        /* Is it explicitly or implicitly ignored? */
  64        return handler == SIG_IGN ||
  65                (handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70        void __user *handler;
  71
  72        handler = sig_handler(t, sig);
  73
  74        if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75                        handler == SIG_DFL && !force)
  76                return 1;
  77
  78        return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83        /*
  84         * Blocked signals are never ignored, since the
  85         * signal handler may change by the time it is
  86         * unblocked.
  87         */
  88        if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89                return 0;
  90
  91        if (!sig_task_ignored(t, sig, force))
  92                return 0;
  93
  94        /*
  95         * Tracers may want to know about even ignored signals.
  96         */
  97        return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106        unsigned long ready;
 107        long i;
 108
 109        switch (_NSIG_WORDS) {
 110        default:
 111                for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112                        ready |= signal->sig[i] &~ blocked->sig[i];
 113                break;
 114
 115        case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116                ready |= signal->sig[2] &~ blocked->sig[2];
 117                ready |= signal->sig[1] &~ blocked->sig[1];
 118                ready |= signal->sig[0] &~ blocked->sig[0];
 119                break;
 120
 121        case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122                ready |= signal->sig[0] &~ blocked->sig[0];
 123                break;
 124
 125        case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126        }
 127        return ready != 0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134        if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135            PENDING(&t->pending, &t->blocked) ||
 136            PENDING(&t->signal->shared_pending, &t->blocked)) {
 137                set_tsk_thread_flag(t, TIF_SIGPENDING);
 138                return 1;
 139        }
 140        /*
 141         * We must never clear the flag in another thread, or in current
 142         * when it's possible the current syscall is returning -ERESTART*.
 143         * So we don't clear it here, and only callers who know they should do.
 144         */
 145        return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154        if (recalc_sigpending_tsk(t))
 155                signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160        if (!recalc_sigpending_tsk(current) && !freezing(current))
 161                clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168        (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169         sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173        unsigned long i, *s, *m, x;
 174        int sig = 0;
 175
 176        s = pending->signal.sig;
 177        m = mask->sig;
 178
 179        /*
 180         * Handle the first word specially: it contains the
 181         * synchronous signals that need to be dequeued first.
 182         */
 183        x = *s &~ *m;
 184        if (x) {
 185                if (x & SYNCHRONOUS_MASK)
 186                        x &= SYNCHRONOUS_MASK;
 187                sig = ffz(~x) + 1;
 188                return sig;
 189        }
 190
 191        switch (_NSIG_WORDS) {
 192        default:
 193                for (i = 1; i < _NSIG_WORDS; ++i) {
 194                        x = *++s &~ *++m;
 195                        if (!x)
 196                                continue;
 197                        sig = ffz(~x) + i*_NSIG_BPW + 1;
 198                        break;
 199                }
 200                break;
 201
 202        case 2:
 203                x = s[1] &~ m[1];
 204                if (!x)
 205                        break;
 206                sig = ffz(~x) + _NSIG_BPW + 1;
 207                break;
 208
 209        case 1:
 210                /* Nothing to do */
 211                break;
 212        }
 213
 214        return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219        static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221        if (!print_fatal_signals)
 222                return;
 223
 224        if (!__ratelimit(&ratelimit_state))
 225                return;
 226
 227        printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228                                current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250        BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251                        JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252        BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254        if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255                return false;
 256
 257        if (mask & JOBCTL_STOP_SIGMASK)
 258                task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260        task->jobctl |= mask;
 261        return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278        if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279                task->jobctl &= ~JOBCTL_TRAPPING;
 280                smp_mb();       /* advised by wake_up_bit() */
 281                wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282        }
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302        BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304        if (mask & JOBCTL_STOP_PENDING)
 305                mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307        task->jobctl &= ~mask;
 308
 309        if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310                task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331        struct signal_struct *sig = task->signal;
 332        bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334        WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336        task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338        if (!consume)
 339                return false;
 340
 341        if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342                sig->group_stop_count--;
 343
 344        /*
 345         * Tell the caller to notify completion iff we are entering into a
 346         * fresh group stop.  Read comment in do_signal_stop() for details.
 347         */
 348        if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349                sig->flags = SIGNAL_STOP_STOPPED;
 350                return true;
 351        }
 352        return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363        struct sigqueue *q = NULL;
 364        struct user_struct *user;
 365
 366        /*
 367         * Protect access to @t credentials. This can go away when all
 368         * callers hold rcu read lock.
 369         */
 370        rcu_read_lock();
 371        user = get_uid(__task_cred(t)->user);
 372        atomic_inc(&user->sigpending);
 373        rcu_read_unlock();
 374
 375        if (override_rlimit ||
 376            atomic_read(&user->sigpending) <=
 377                        task_rlimit(t, RLIMIT_SIGPENDING)) {
 378                q = kmem_cache_alloc(sigqueue_cachep, flags);
 379        } else {
 380                print_dropped_signal(sig);
 381        }
 382
 383        if (unlikely(q == NULL)) {
 384                atomic_dec(&user->sigpending);
 385                free_uid(user);
 386        } else {
 387                INIT_LIST_HEAD(&q->list);
 388                q->flags = 0;
 389                q->user = user;
 390        }
 391
 392        return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397        if (q->flags & SIGQUEUE_PREALLOC)
 398                return;
 399        atomic_dec(&q->user->sigpending);
 400        free_uid(q->user);
 401        kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406        struct sigqueue *q;
 407
 408        sigemptyset(&queue->signal);
 409        while (!list_empty(&queue->list)) {
 410                q = list_entry(queue->list.next, struct sigqueue , list);
 411                list_del_init(&q->list);
 412                __sigqueue_free(q);
 413        }
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 419void flush_signals(struct task_struct *t)
 420{
 421        unsigned long flags;
 422
 423        spin_lock_irqsave(&t->sighand->siglock, flags);
 424        clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425        flush_sigqueue(&t->pending);
 426        flush_sigqueue(&t->signal->shared_pending);
 427        spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430static void __flush_itimer_signals(struct sigpending *pending)
 431{
 432        sigset_t signal, retain;
 433        struct sigqueue *q, *n;
 434
 435        signal = pending->signal;
 436        sigemptyset(&retain);
 437
 438        list_for_each_entry_safe(q, n, &pending->list, list) {
 439                int sig = q->info.si_signo;
 440
 441                if (likely(q->info.si_code != SI_TIMER)) {
 442                        sigaddset(&retain, sig);
 443                } else {
 444                        sigdelset(&signal, sig);
 445                        list_del_init(&q->list);
 446                        __sigqueue_free(q);
 447                }
 448        }
 449
 450        sigorsets(&pending->signal, &signal, &retain);
 451}
 452
 453void flush_itimer_signals(void)
 454{
 455        struct task_struct *tsk = current;
 456        unsigned long flags;
 457
 458        spin_lock_irqsave(&tsk->sighand->siglock, flags);
 459        __flush_itimer_signals(&tsk->pending);
 460        __flush_itimer_signals(&tsk->signal->shared_pending);
 461        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 462}
 463
 464void ignore_signals(struct task_struct *t)
 465{
 466        int i;
 467
 468        for (i = 0; i < _NSIG; ++i)
 469                t->sighand->action[i].sa.sa_handler = SIG_IGN;
 470
 471        flush_signals(t);
 472}
 473
 474/*
 475 * Flush all handlers for a task.
 476 */
 477
 478void
 479flush_signal_handlers(struct task_struct *t, int force_default)
 480{
 481        int i;
 482        struct k_sigaction *ka = &t->sighand->action[0];
 483        for (i = _NSIG ; i != 0 ; i--) {
 484                if (force_default || ka->sa.sa_handler != SIG_IGN)
 485                        ka->sa.sa_handler = SIG_DFL;
 486                ka->sa.sa_flags = 0;
 487#ifdef __ARCH_HAS_SA_RESTORER
 488                ka->sa.sa_restorer = NULL;
 489#endif
 490                sigemptyset(&ka->sa.sa_mask);
 491                ka++;
 492        }
 493}
 494
 495int unhandled_signal(struct task_struct *tsk, int sig)
 496{
 497        void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 498        if (is_global_init(tsk))
 499                return 1;
 500        if (handler != SIG_IGN && handler != SIG_DFL)
 501                return 0;
 502        /* if ptraced, let the tracer determine */
 503        return !tsk->ptrace;
 504}
 505
 506/*
 507 * Notify the system that a driver wants to block all signals for this
 508 * process, and wants to be notified if any signals at all were to be
 509 * sent/acted upon.  If the notifier routine returns non-zero, then the
 510 * signal will be acted upon after all.  If the notifier routine returns 0,
 511 * then then signal will be blocked.  Only one block per process is
 512 * allowed.  priv is a pointer to private data that the notifier routine
 513 * can use to determine if the signal should be blocked or not.
 514 */
 515void
 516block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 517{
 518        unsigned long flags;
 519
 520        spin_lock_irqsave(&current->sighand->siglock, flags);
 521        current->notifier_mask = mask;
 522        current->notifier_data = priv;
 523        current->notifier = notifier;
 524        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 525}
 526
 527/* Notify the system that blocking has ended. */
 528
 529void
 530unblock_all_signals(void)
 531{
 532        unsigned long flags;
 533
 534        spin_lock_irqsave(&current->sighand->siglock, flags);
 535        current->notifier = NULL;
 536        current->notifier_data = NULL;
 537        recalc_sigpending();
 538        spin_unlock_irqrestore(&current->sighand->siglock, flags);
 539}
 540
 541static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 542{
 543        struct sigqueue *q, *first = NULL;
 544
 545        /*
 546         * Collect the siginfo appropriate to this signal.  Check if
 547         * there is another siginfo for the same signal.
 548        */
 549        list_for_each_entry(q, &list->list, list) {
 550                if (q->info.si_signo == sig) {
 551                        if (first)
 552                                goto still_pending;
 553                        first = q;
 554                }
 555        }
 556
 557        sigdelset(&list->signal, sig);
 558
 559        if (first) {
 560still_pending:
 561                list_del_init(&first->list);
 562                copy_siginfo(info, &first->info);
 563                __sigqueue_free(first);
 564        } else {
 565                /*
 566                 * Ok, it wasn't in the queue.  This must be
 567                 * a fast-pathed signal or we must have been
 568                 * out of queue space.  So zero out the info.
 569                 */
 570                info->si_signo = sig;
 571                info->si_errno = 0;
 572                info->si_code = SI_USER;
 573                info->si_pid = 0;
 574                info->si_uid = 0;
 575        }
 576}
 577
 578static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 579                        siginfo_t *info)
 580{
 581        int sig = next_signal(pending, mask);
 582
 583        if (sig) {
 584                if (current->notifier) {
 585                        if (sigismember(current->notifier_mask, sig)) {
 586                                if (!(current->notifier)(current->notifier_data)) {
 587                                        clear_thread_flag(TIF_SIGPENDING);
 588                                        return 0;
 589                                }
 590                        }
 591                }
 592
 593                collect_signal(sig, pending, info);
 594        }
 595
 596        return sig;
 597}
 598
 599/*
 600 * Dequeue a signal and return the element to the caller, which is
 601 * expected to free it.
 602 *
 603 * All callers have to hold the siglock.
 604 */
 605int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 606{
 607        int signr;
 608
 609        /* We only dequeue private signals from ourselves, we don't let
 610         * signalfd steal them
 611         */
 612        signr = __dequeue_signal(&tsk->pending, mask, info);
 613        if (!signr) {
 614                signr = __dequeue_signal(&tsk->signal->shared_pending,
 615                                         mask, info);
 616                /*
 617                 * itimer signal ?
 618                 *
 619                 * itimers are process shared and we restart periodic
 620                 * itimers in the signal delivery path to prevent DoS
 621                 * attacks in the high resolution timer case. This is
 622                 * compliant with the old way of self-restarting
 623                 * itimers, as the SIGALRM is a legacy signal and only
 624                 * queued once. Changing the restart behaviour to
 625                 * restart the timer in the signal dequeue path is
 626                 * reducing the timer noise on heavy loaded !highres
 627                 * systems too.
 628                 */
 629                if (unlikely(signr == SIGALRM)) {
 630                        struct hrtimer *tmr = &tsk->signal->real_timer;
 631
 632                        if (!hrtimer_is_queued(tmr) &&
 633                            tsk->signal->it_real_incr.tv64 != 0) {
 634                                hrtimer_forward(tmr, tmr->base->get_time(),
 635                                                tsk->signal->it_real_incr);
 636                                hrtimer_restart(tmr);
 637                        }
 638                }
 639        }
 640
 641        recalc_sigpending();
 642        if (!signr)
 643                return 0;
 644
 645        if (unlikely(sig_kernel_stop(signr))) {
 646                /*
 647                 * Set a marker that we have dequeued a stop signal.  Our
 648                 * caller might release the siglock and then the pending
 649                 * stop signal it is about to process is no longer in the
 650                 * pending bitmasks, but must still be cleared by a SIGCONT
 651                 * (and overruled by a SIGKILL).  So those cases clear this
 652                 * shared flag after we've set it.  Note that this flag may
 653                 * remain set after the signal we return is ignored or
 654                 * handled.  That doesn't matter because its only purpose
 655                 * is to alert stop-signal processing code when another
 656                 * processor has come along and cleared the flag.
 657                 */
 658                current->jobctl |= JOBCTL_STOP_DEQUEUED;
 659        }
 660        if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 661                /*
 662                 * Release the siglock to ensure proper locking order
 663                 * of timer locks outside of siglocks.  Note, we leave
 664                 * irqs disabled here, since the posix-timers code is
 665                 * about to disable them again anyway.
 666                 */
 667                spin_unlock(&tsk->sighand->siglock);
 668                do_schedule_next_timer(info);
 669                spin_lock(&tsk->sighand->siglock);
 670        }
 671        return signr;
 672}
 673
 674/*
 675 * Tell a process that it has a new active signal..
 676 *
 677 * NOTE! we rely on the previous spin_lock to
 678 * lock interrupts for us! We can only be called with
 679 * "siglock" held, and the local interrupt must
 680 * have been disabled when that got acquired!
 681 *
 682 * No need to set need_resched since signal event passing
 683 * goes through ->blocked
 684 */
 685void signal_wake_up_state(struct task_struct *t, unsigned int state)
 686{
 687        set_tsk_thread_flag(t, TIF_SIGPENDING);
 688        /*
 689         * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 690         * case. We don't check t->state here because there is a race with it
 691         * executing another processor and just now entering stopped state.
 692         * By using wake_up_state, we ensure the process will wake up and
 693         * handle its death signal.
 694         */
 695        if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 696                kick_process(t);
 697}
 698
 699/*
 700 * Remove signals in mask from the pending set and queue.
 701 * Returns 1 if any signals were found.
 702 *
 703 * All callers must be holding the siglock.
 704 */
 705static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 706{
 707        struct sigqueue *q, *n;
 708        sigset_t m;
 709
 710        sigandsets(&m, mask, &s->signal);
 711        if (sigisemptyset(&m))
 712                return 0;
 713
 714        sigandnsets(&s->signal, &s->signal, mask);
 715        list_for_each_entry_safe(q, n, &s->list, list) {
 716                if (sigismember(mask, q->info.si_signo)) {
 717                        list_del_init(&q->list);
 718                        __sigqueue_free(q);
 719                }
 720        }
 721        return 1;
 722}
 723
 724static inline int is_si_special(const struct siginfo *info)
 725{
 726        return info <= SEND_SIG_FORCED;
 727}
 728
 729static inline bool si_fromuser(const struct siginfo *info)
 730{
 731        return info == SEND_SIG_NOINFO ||
 732                (!is_si_special(info) && SI_FROMUSER(info));
 733}
 734
 735/*
 736 * called with RCU read lock from check_kill_permission()
 737 */
 738static int kill_ok_by_cred(struct task_struct *t)
 739{
 740        const struct cred *cred = current_cred();
 741        const struct cred *tcred = __task_cred(t);
 742
 743        if (uid_eq(cred->euid, tcred->suid) ||
 744            uid_eq(cred->euid, tcred->uid)  ||
 745            uid_eq(cred->uid,  tcred->suid) ||
 746            uid_eq(cred->uid,  tcred->uid))
 747                return 1;
 748
 749        if (ns_capable(tcred->user_ns, CAP_KILL))
 750                return 1;
 751
 752        return 0;
 753}
 754
 755/*
 756 * Bad permissions for sending the signal
 757 * - the caller must hold the RCU read lock
 758 */
 759static int check_kill_permission(int sig, struct siginfo *info,
 760                                 struct task_struct *t)
 761{
 762        struct pid *sid;
 763        int error;
 764
 765        if (!valid_signal(sig))
 766                return -EINVAL;
 767
 768        if (!si_fromuser(info))
 769                return 0;
 770
 771        error = audit_signal_info(sig, t); /* Let audit system see the signal */
 772        if (error)
 773                return error;
 774
 775        if (!same_thread_group(current, t) &&
 776            !kill_ok_by_cred(t)) {
 777                switch (sig) {
 778                case SIGCONT:
 779                        sid = task_session(t);
 780                        /*
 781                         * We don't return the error if sid == NULL. The
 782                         * task was unhashed, the caller must notice this.
 783                         */
 784                        if (!sid || sid == task_session(current))
 785                                break;
 786                default:
 787                        return -EPERM;
 788                }
 789        }
 790
 791        return security_task_kill(t, info, sig, 0);
 792}
 793
 794/**
 795 * ptrace_trap_notify - schedule trap to notify ptracer
 796 * @t: tracee wanting to notify tracer
 797 *
 798 * This function schedules sticky ptrace trap which is cleared on the next
 799 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 800 * ptracer.
 801 *
 802 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 803 * ptracer is listening for events, tracee is woken up so that it can
 804 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 805 * eventually taken without returning to userland after the existing traps
 806 * are finished by PTRACE_CONT.
 807 *
 808 * CONTEXT:
 809 * Must be called with @task->sighand->siglock held.
 810 */
 811static void ptrace_trap_notify(struct task_struct *t)
 812{
 813        WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 814        assert_spin_locked(&t->sighand->siglock);
 815
 816        task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 817        ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 818}
 819
 820/*
 821 * Handle magic process-wide effects of stop/continue signals. Unlike
 822 * the signal actions, these happen immediately at signal-generation
 823 * time regardless of blocking, ignoring, or handling.  This does the
 824 * actual continuing for SIGCONT, but not the actual stopping for stop
 825 * signals. The process stop is done as a signal action for SIG_DFL.
 826 *
 827 * Returns true if the signal should be actually delivered, otherwise
 828 * it should be dropped.
 829 */
 830static bool prepare_signal(int sig, struct task_struct *p, bool force)
 831{
 832        struct signal_struct *signal = p->signal;
 833        struct task_struct *t;
 834        sigset_t flush;
 835
 836        if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 837                if (signal->flags & SIGNAL_GROUP_COREDUMP)
 838                        return sig == SIGKILL;
 839                /*
 840                 * The process is in the middle of dying, nothing to do.
 841                 */
 842        } else if (sig_kernel_stop(sig)) {
 843                /*
 844                 * This is a stop signal.  Remove SIGCONT from all queues.
 845                 */
 846                siginitset(&flush, sigmask(SIGCONT));
 847                flush_sigqueue_mask(&flush, &signal->shared_pending);
 848                for_each_thread(p, t)
 849                        flush_sigqueue_mask(&flush, &t->pending);
 850        } else if (sig == SIGCONT) {
 851                unsigned int why;
 852                /*
 853                 * Remove all stop signals from all queues, wake all threads.
 854                 */
 855                siginitset(&flush, SIG_KERNEL_STOP_MASK);
 856                flush_sigqueue_mask(&flush, &signal->shared_pending);
 857                for_each_thread(p, t) {
 858                        flush_sigqueue_mask(&flush, &t->pending);
 859                        task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 860                        if (likely(!(t->ptrace & PT_SEIZED)))
 861                                wake_up_state(t, __TASK_STOPPED);
 862                        else
 863                                ptrace_trap_notify(t);
 864                }
 865
 866                /*
 867                 * Notify the parent with CLD_CONTINUED if we were stopped.
 868                 *
 869                 * If we were in the middle of a group stop, we pretend it
 870                 * was already finished, and then continued. Since SIGCHLD
 871                 * doesn't queue we report only CLD_STOPPED, as if the next
 872                 * CLD_CONTINUED was dropped.
 873                 */
 874                why = 0;
 875                if (signal->flags & SIGNAL_STOP_STOPPED)
 876                        why |= SIGNAL_CLD_CONTINUED;
 877                else if (signal->group_stop_count)
 878                        why |= SIGNAL_CLD_STOPPED;
 879
 880                if (why) {
 881                        /*
 882                         * The first thread which returns from do_signal_stop()
 883                         * will take ->siglock, notice SIGNAL_CLD_MASK, and
 884                         * notify its parent. See get_signal_to_deliver().
 885                         */
 886                        signal->flags = why | SIGNAL_STOP_CONTINUED;
 887                        signal->group_stop_count = 0;
 888                        signal->group_exit_code = 0;
 889                }
 890        }
 891
 892        return !sig_ignored(p, sig, force);
 893}
 894
 895/*
 896 * Test if P wants to take SIG.  After we've checked all threads with this,
 897 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 898 * blocking SIG were ruled out because they are not running and already
 899 * have pending signals.  Such threads will dequeue from the shared queue
 900 * as soon as they're available, so putting the signal on the shared queue
 901 * will be equivalent to sending it to one such thread.
 902 */
 903static inline int wants_signal(int sig, struct task_struct *p)
 904{
 905        if (sigismember(&p->blocked, sig))
 906                return 0;
 907        if (p->flags & PF_EXITING)
 908                return 0;
 909        if (sig == SIGKILL)
 910                return 1;
 911        if (task_is_stopped_or_traced(p))
 912                return 0;
 913        return task_curr(p) || !signal_pending(p);
 914}
 915
 916static void complete_signal(int sig, struct task_struct *p, int group)
 917{
 918        struct signal_struct *signal = p->signal;
 919        struct task_struct *t;
 920
 921        /*
 922         * Now find a thread we can wake up to take the signal off the queue.
 923         *
 924         * If the main thread wants the signal, it gets first crack.
 925         * Probably the least surprising to the average bear.
 926         */
 927        if (wants_signal(sig, p))
 928                t = p;
 929        else if (!group || thread_group_empty(p))
 930                /*
 931                 * There is just one thread and it does not need to be woken.
 932                 * It will dequeue unblocked signals before it runs again.
 933                 */
 934                return;
 935        else {
 936                /*
 937                 * Otherwise try to find a suitable thread.
 938                 */
 939                t = signal->curr_target;
 940                while (!wants_signal(sig, t)) {
 941                        t = next_thread(t);
 942                        if (t == signal->curr_target)
 943                                /*
 944                                 * No thread needs to be woken.
 945                                 * Any eligible threads will see
 946                                 * the signal in the queue soon.
 947                                 */
 948                                return;
 949                }
 950                signal->curr_target = t;
 951        }
 952
 953        /*
 954         * Found a killable thread.  If the signal will be fatal,
 955         * then start taking the whole group down immediately.
 956         */
 957        if (sig_fatal(p, sig) &&
 958            !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 959            !sigismember(&t->real_blocked, sig) &&
 960            (sig == SIGKILL || !t->ptrace)) {
 961                /*
 962                 * This signal will be fatal to the whole group.
 963                 */
 964                if (!sig_kernel_coredump(sig)) {
 965                        /*
 966                         * Start a group exit and wake everybody up.
 967                         * This way we don't have other threads
 968                         * running and doing things after a slower
 969                         * thread has the fatal signal pending.
 970                         */
 971                        signal->flags = SIGNAL_GROUP_EXIT;
 972                        signal->group_exit_code = sig;
 973                        signal->group_stop_count = 0;
 974                        t = p;
 975                        do {
 976                                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 977                                sigaddset(&t->pending.signal, SIGKILL);
 978                                signal_wake_up(t, 1);
 979                        } while_each_thread(p, t);
 980                        return;
 981                }
 982        }
 983
 984        /*
 985         * The signal is already in the shared-pending queue.
 986         * Tell the chosen thread to wake up and dequeue it.
 987         */
 988        signal_wake_up(t, sig == SIGKILL);
 989        return;
 990}
 991
 992static inline int legacy_queue(struct sigpending *signals, int sig)
 993{
 994        return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 995}
 996
 997#ifdef CONFIG_USER_NS
 998static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 999{
1000        if (current_user_ns() == task_cred_xxx(t, user_ns))
1001                return;
1002
1003        if (SI_FROMKERNEL(info))
1004                return;
1005
1006        rcu_read_lock();
1007        info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1008                                        make_kuid(current_user_ns(), info->si_uid));
1009        rcu_read_unlock();
1010}
1011#else
1012static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1013{
1014        return;
1015}
1016#endif
1017
1018static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1019                        int group, int from_ancestor_ns)
1020{
1021        struct sigpending *pending;
1022        struct sigqueue *q;
1023        int override_rlimit;
1024        int ret = 0, result;
1025
1026        assert_spin_locked(&t->sighand->siglock);
1027
1028        result = TRACE_SIGNAL_IGNORED;
1029        if (!prepare_signal(sig, t,
1030                        from_ancestor_ns || (info == SEND_SIG_FORCED)))
1031                goto ret;
1032
1033        pending = group ? &t->signal->shared_pending : &t->pending;
1034        /*
1035         * Short-circuit ignored signals and support queuing
1036         * exactly one non-rt signal, so that we can get more
1037         * detailed information about the cause of the signal.
1038         */
1039        result = TRACE_SIGNAL_ALREADY_PENDING;
1040        if (legacy_queue(pending, sig))
1041                goto ret;
1042
1043        result = TRACE_SIGNAL_DELIVERED;
1044        /*
1045         * fast-pathed signals for kernel-internal things like SIGSTOP
1046         * or SIGKILL.
1047         */
1048        if (info == SEND_SIG_FORCED)
1049                goto out_set;
1050
1051        /*
1052         * Real-time signals must be queued if sent by sigqueue, or
1053         * some other real-time mechanism.  It is implementation
1054         * defined whether kill() does so.  We attempt to do so, on
1055         * the principle of least surprise, but since kill is not
1056         * allowed to fail with EAGAIN when low on memory we just
1057         * make sure at least one signal gets delivered and don't
1058         * pass on the info struct.
1059         */
1060        if (sig < SIGRTMIN)
1061                override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062        else
1063                override_rlimit = 0;
1064
1065        q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066                override_rlimit);
1067        if (q) {
1068                list_add_tail(&q->list, &pending->list);
1069                switch ((unsigned long) info) {
1070                case (unsigned long) SEND_SIG_NOINFO:
1071                        q->info.si_signo = sig;
1072                        q->info.si_errno = 0;
1073                        q->info.si_code = SI_USER;
1074                        q->info.si_pid = task_tgid_nr_ns(current,
1075                                                        task_active_pid_ns(t));
1076                        q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1077                        break;
1078                case (unsigned long) SEND_SIG_PRIV:
1079                        q->info.si_signo = sig;
1080                        q->info.si_errno = 0;
1081                        q->info.si_code = SI_KERNEL;
1082                        q->info.si_pid = 0;
1083                        q->info.si_uid = 0;
1084                        break;
1085                default:
1086                        copy_siginfo(&q->info, info);
1087                        if (from_ancestor_ns)
1088                                q->info.si_pid = 0;
1089                        break;
1090                }
1091
1092                userns_fixup_signal_uid(&q->info, t);
1093
1094        } else if (!is_si_special(info)) {
1095                if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1096                        /*
1097                         * Queue overflow, abort.  We may abort if the
1098                         * signal was rt and sent by user using something
1099                         * other than kill().
1100                         */
1101                        result = TRACE_SIGNAL_OVERFLOW_FAIL;
1102                        ret = -EAGAIN;
1103                        goto ret;
1104                } else {
1105                        /*
1106                         * This is a silent loss of information.  We still
1107                         * send the signal, but the *info bits are lost.
1108                         */
1109                        result = TRACE_SIGNAL_LOSE_INFO;
1110                }
1111        }
1112
1113out_set:
1114        signalfd_notify(t, sig);
1115        sigaddset(&pending->signal, sig);
1116        complete_signal(sig, t, group);
1117ret:
1118        trace_signal_generate(sig, info, t, group, result);
1119        return ret;
1120}
1121
1122static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1123                        int group)
1124{
1125        int from_ancestor_ns = 0;
1126
1127#ifdef CONFIG_PID_NS
1128        from_ancestor_ns = si_fromuser(info) &&
1129                           !task_pid_nr_ns(current, task_active_pid_ns(t));
1130#endif
1131
1132        return __send_signal(sig, info, t, group, from_ancestor_ns);
1133}
1134
1135static void print_fatal_signal(int signr)
1136{
1137        struct pt_regs *regs = signal_pt_regs();
1138        printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1139
1140#if defined(__i386__) && !defined(__arch_um__)
1141        printk(KERN_INFO "code at %08lx: ", regs->ip);
1142        {
1143                int i;
1144                for (i = 0; i < 16; i++) {
1145                        unsigned char insn;
1146
1147                        if (get_user(insn, (unsigned char *)(regs->ip + i)))
1148                                break;
1149                        printk(KERN_CONT "%02x ", insn);
1150                }
1151        }
1152        printk(KERN_CONT "\n");
1153#endif
1154        preempt_disable();
1155        show_regs(regs);
1156        preempt_enable();
1157}
1158
1159static int __init setup_print_fatal_signals(char *str)
1160{
1161        get_option (&str, &print_fatal_signals);
1162
1163        return 1;
1164}
1165
1166__setup("print-fatal-signals=", setup_print_fatal_signals);
1167
1168int
1169__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1170{
1171        return send_signal(sig, info, p, 1);
1172}
1173
1174static int
1175specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1176{
1177        return send_signal(sig, info, t, 0);
1178}
1179
1180int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1181                        bool group)
1182{
1183        unsigned long flags;
1184        int ret = -ESRCH;
1185
1186        if (lock_task_sighand(p, &flags)) {
1187                ret = send_signal(sig, info, p, group);
1188                unlock_task_sighand(p, &flags);
1189        }
1190
1191        return ret;
1192}
1193
1194/*
1195 * Force a signal that the process can't ignore: if necessary
1196 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1197 *
1198 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1199 * since we do not want to have a signal handler that was blocked
1200 * be invoked when user space had explicitly blocked it.
1201 *
1202 * We don't want to have recursive SIGSEGV's etc, for example,
1203 * that is why we also clear SIGNAL_UNKILLABLE.
1204 */
1205int
1206force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1207{
1208        unsigned long int flags;
1209        int ret, blocked, ignored;
1210        struct k_sigaction *action;
1211
1212        spin_lock_irqsave(&t->sighand->siglock, flags);
1213        action = &t->sighand->action[sig-1];
1214        ignored = action->sa.sa_handler == SIG_IGN;
1215        blocked = sigismember(&t->blocked, sig);
1216        if (blocked || ignored) {
1217                action->sa.sa_handler = SIG_DFL;
1218                if (blocked) {
1219                        sigdelset(&t->blocked, sig);
1220                        recalc_sigpending_and_wake(t);
1221                }
1222        }
1223        if (action->sa.sa_handler == SIG_DFL)
1224                t->signal->flags &= ~SIGNAL_UNKILLABLE;
1225        ret = specific_send_sig_info(sig, info, t);
1226        spin_unlock_irqrestore(&t->sighand->siglock, flags);
1227
1228        return ret;
1229}
1230
1231/*
1232 * Nuke all other threads in the group.
1233 */
1234int zap_other_threads(struct task_struct *p)
1235{
1236        struct task_struct *t = p;
1237        int count = 0;
1238
1239        p->signal->group_stop_count = 0;
1240
1241        while_each_thread(p, t) {
1242                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1243                count++;
1244
1245                /* Don't bother with already dead threads */
1246                if (t->exit_state)
1247                        continue;
1248                sigaddset(&t->pending.signal, SIGKILL);
1249                signal_wake_up(t, 1);
1250        }
1251
1252        return count;
1253}
1254
1255struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1256                                           unsigned long *flags)
1257{
1258        struct sighand_struct *sighand;
1259
1260        for (;;) {
1261                /*
1262                 * Disable interrupts early to avoid deadlocks.
1263                 * See rcu_read_unlock() comment header for details.
1264                 */
1265                local_irq_save(*flags);
1266                rcu_read_lock();
1267                sighand = rcu_dereference(tsk->sighand);
1268                if (unlikely(sighand == NULL)) {
1269                        rcu_read_unlock();
1270                        local_irq_restore(*flags);
1271                        break;
1272                }
1273                /*
1274                 * This sighand can be already freed and even reused, but
1275                 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1276                 * initializes ->siglock: this slab can't go away, it has
1277                 * the same object type, ->siglock can't be reinitialized.
1278                 *
1279                 * We need to ensure that tsk->sighand is still the same
1280                 * after we take the lock, we can race with de_thread() or
1281                 * __exit_signal(). In the latter case the next iteration
1282                 * must see ->sighand == NULL.
1283                 */
1284                spin_lock(&sighand->siglock);
1285                if (likely(sighand == tsk->sighand)) {
1286                        rcu_read_unlock();
1287                        break;
1288                }
1289                spin_unlock(&sighand->siglock);
1290                rcu_read_unlock();
1291                local_irq_restore(*flags);
1292        }
1293
1294        return sighand;
1295}
1296
1297/*
1298 * send signal info to all the members of a group
1299 */
1300int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1301{
1302        int ret;
1303
1304        rcu_read_lock();
1305        ret = check_kill_permission(sig, info, p);
1306        rcu_read_unlock();
1307
1308        if (!ret && sig)
1309                ret = do_send_sig_info(sig, info, p, true);
1310
1311        return ret;
1312}
1313
1314/*
1315 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1316 * control characters do (^C, ^Z etc)
1317 * - the caller must hold at least a readlock on tasklist_lock
1318 */
1319int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1320{
1321        struct task_struct *p = NULL;
1322        int retval, success;
1323
1324        success = 0;
1325        retval = -ESRCH;
1326        do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1327                int err = group_send_sig_info(sig, info, p);
1328                success |= !err;
1329                retval = err;
1330        } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1331        return success ? 0 : retval;
1332}
1333
1334int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1335{
1336        int error = -ESRCH;
1337        struct task_struct *p;
1338
1339        for (;;) {
1340                rcu_read_lock();
1341                p = pid_task(pid, PIDTYPE_PID);
1342                if (p)
1343                        error = group_send_sig_info(sig, info, p);
1344                rcu_read_unlock();
1345                if (likely(!p || error != -ESRCH))
1346                        return error;
1347
1348                /*
1349                 * The task was unhashed in between, try again.  If it
1350                 * is dead, pid_task() will return NULL, if we race with
1351                 * de_thread() it will find the new leader.
1352                 */
1353        }
1354}
1355
1356int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1357{
1358        int error;
1359        rcu_read_lock();
1360        error = kill_pid_info(sig, info, find_vpid(pid));
1361        rcu_read_unlock();
1362        return error;
1363}
1364
1365static int kill_as_cred_perm(const struct cred *cred,
1366                             struct task_struct *target)
1367{
1368        const struct cred *pcred = __task_cred(target);
1369        if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1370            !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1371                return 0;
1372        return 1;
1373}
1374
1375/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1376int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1377                         const struct cred *cred, u32 secid)
1378{
1379        int ret = -EINVAL;
1380        struct task_struct *p;
1381        unsigned long flags;
1382
1383        if (!valid_signal(sig))
1384                return ret;
1385
1386        rcu_read_lock();
1387        p = pid_task(pid, PIDTYPE_PID);
1388        if (!p) {
1389                ret = -ESRCH;
1390                goto out_unlock;
1391        }
1392        if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1393                ret = -EPERM;
1394                goto out_unlock;
1395        }
1396        ret = security_task_kill(p, info, sig, secid);
1397        if (ret)
1398                goto out_unlock;
1399
1400        if (sig) {
1401                if (lock_task_sighand(p, &flags)) {
1402                        ret = __send_signal(sig, info, p, 1, 0);
1403                        unlock_task_sighand(p, &flags);
1404                } else
1405                        ret = -ESRCH;
1406        }
1407out_unlock:
1408        rcu_read_unlock();
1409        return ret;
1410}
1411EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1412
1413/*
1414 * kill_something_info() interprets pid in interesting ways just like kill(2).
1415 *
1416 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1417 * is probably wrong.  Should make it like BSD or SYSV.
1418 */
1419
1420static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1421{
1422        int ret;
1423
1424        if (pid > 0) {
1425                rcu_read_lock();
1426                ret = kill_pid_info(sig, info, find_vpid(pid));
1427                rcu_read_unlock();
1428                return ret;
1429        }
1430
1431        read_lock(&tasklist_lock);
1432        if (pid != -1) {
1433                ret = __kill_pgrp_info(sig, info,
1434                                pid ? find_vpid(-pid) : task_pgrp(current));
1435        } else {
1436                int retval = 0, count = 0;
1437                struct task_struct * p;
1438
1439                for_each_process(p) {
1440                        if (task_pid_vnr(p) > 1 &&
1441                                        !same_thread_group(p, current)) {
1442                                int err = group_send_sig_info(sig, info, p);
1443                                ++count;
1444                                if (err != -EPERM)
1445                                        retval = err;
1446                        }
1447                }
1448                ret = count ? retval : -ESRCH;
1449        }
1450        read_unlock(&tasklist_lock);
1451
1452        return ret;
1453}
1454
1455/*
1456 * These are for backward compatibility with the rest of the kernel source.
1457 */
1458
1459int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1460{
1461        /*
1462         * Make sure legacy kernel users don't send in bad values
1463         * (normal paths check this in check_kill_permission).
1464         */
1465        if (!valid_signal(sig))
1466                return -EINVAL;
1467
1468        return do_send_sig_info(sig, info, p, false);
1469}
1470
1471#define __si_special(priv) \
1472        ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1473
1474int
1475send_sig(int sig, struct task_struct *p, int priv)
1476{
1477        return send_sig_info(sig, __si_special(priv), p);
1478}
1479
1480void
1481force_sig(int sig, struct task_struct *p)
1482{
1483        force_sig_info(sig, SEND_SIG_PRIV, p);
1484}
1485
1486/*
1487 * When things go south during signal handling, we
1488 * will force a SIGSEGV. And if the signal that caused
1489 * the problem was already a SIGSEGV, we'll want to
1490 * make sure we don't even try to deliver the signal..
1491 */
1492int
1493force_sigsegv(int sig, struct task_struct *p)
1494{
1495        if (sig == SIGSEGV) {
1496                unsigned long flags;
1497                spin_lock_irqsave(&p->sighand->siglock, flags);
1498                p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1499                spin_unlock_irqrestore(&p->sighand->siglock, flags);
1500        }
1501        force_sig(SIGSEGV, p);
1502        return 0;
1503}
1504
1505int kill_pgrp(struct pid *pid, int sig, int priv)
1506{
1507        int ret;
1508
1509        read_lock(&tasklist_lock);
1510        ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1511        read_unlock(&tasklist_lock);
1512
1513        return ret;
1514}
1515EXPORT_SYMBOL(kill_pgrp);
1516
1517int kill_pid(struct pid *pid, int sig, int priv)
1518{
1519        return kill_pid_info(sig, __si_special(priv), pid);
1520}
1521EXPORT_SYMBOL(kill_pid);
1522
1523/*
1524 * These functions support sending signals using preallocated sigqueue
1525 * structures.  This is needed "because realtime applications cannot
1526 * afford to lose notifications of asynchronous events, like timer
1527 * expirations or I/O completions".  In the case of POSIX Timers
1528 * we allocate the sigqueue structure from the timer_create.  If this
1529 * allocation fails we are able to report the failure to the application
1530 * with an EAGAIN error.
1531 */
1532struct sigqueue *sigqueue_alloc(void)
1533{
1534        struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1535
1536        if (q)
1537                q->flags |= SIGQUEUE_PREALLOC;
1538
1539        return q;
1540}
1541
1542void sigqueue_free(struct sigqueue *q)
1543{
1544        unsigned long flags;
1545        spinlock_t *lock = &current->sighand->siglock;
1546
1547        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1548        /*
1549         * We must hold ->siglock while testing q->list
1550         * to serialize with collect_signal() or with
1551         * __exit_signal()->flush_sigqueue().
1552         */
1553        spin_lock_irqsave(lock, flags);
1554        q->flags &= ~SIGQUEUE_PREALLOC;
1555        /*
1556         * If it is queued it will be freed when dequeued,
1557         * like the "regular" sigqueue.
1558         */
1559        if (!list_empty(&q->list))
1560                q = NULL;
1561        spin_unlock_irqrestore(lock, flags);
1562
1563        if (q)
1564                __sigqueue_free(q);
1565}
1566
1567int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1568{
1569        int sig = q->info.si_signo;
1570        struct sigpending *pending;
1571        unsigned long flags;
1572        int ret, result;
1573
1574        BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1575
1576        ret = -1;
1577        if (!likely(lock_task_sighand(t, &flags)))
1578                goto ret;
1579
1580        ret = 1; /* the signal is ignored */
1581        result = TRACE_SIGNAL_IGNORED;
1582        if (!prepare_signal(sig, t, false))
1583                goto out;
1584
1585        ret = 0;
1586        if (unlikely(!list_empty(&q->list))) {
1587                /*
1588                 * If an SI_TIMER entry is already queue just increment
1589                 * the overrun count.
1590                 */
1591                BUG_ON(q->info.si_code != SI_TIMER);
1592                q->info.si_overrun++;
1593                result = TRACE_SIGNAL_ALREADY_PENDING;
1594                goto out;
1595        }
1596        q->info.si_overrun = 0;
1597
1598        signalfd_notify(t, sig);
1599        pending = group ? &t->signal->shared_pending : &t->pending;
1600        list_add_tail(&q->list, &pending->list);
1601        sigaddset(&pending->signal, sig);
1602        complete_signal(sig, t, group);
1603        result = TRACE_SIGNAL_DELIVERED;
1604out:
1605        trace_signal_generate(sig, &q->info, t, group, result);
1606        unlock_task_sighand(t, &flags);
1607ret:
1608        return ret;
1609}
1610
1611/*
1612 * Let a parent know about the death of a child.
1613 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1614 *
1615 * Returns true if our parent ignored us and so we've switched to
1616 * self-reaping.
1617 */
1618bool do_notify_parent(struct task_struct *tsk, int sig)
1619{
1620        struct siginfo info;
1621        unsigned long flags;
1622        struct sighand_struct *psig;
1623        bool autoreap = false;
1624        cputime_t utime, stime;
1625
1626        BUG_ON(sig == -1);
1627
1628        /* do_notify_parent_cldstop should have been called instead.  */
1629        BUG_ON(task_is_stopped_or_traced(tsk));
1630
1631        BUG_ON(!tsk->ptrace &&
1632               (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1633
1634        if (sig != SIGCHLD) {
1635                /*
1636                 * This is only possible if parent == real_parent.
1637                 * Check if it has changed security domain.
1638                 */
1639                if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1640                        sig = SIGCHLD;
1641        }
1642
1643        info.si_signo = sig;
1644        info.si_errno = 0;
1645        /*
1646         * We are under tasklist_lock here so our parent is tied to
1647         * us and cannot change.
1648         *
1649         * task_active_pid_ns will always return the same pid namespace
1650         * until a task passes through release_task.
1651         *
1652         * write_lock() currently calls preempt_disable() which is the
1653         * same as rcu_read_lock(), but according to Oleg, this is not
1654         * correct to rely on this
1655         */
1656        rcu_read_lock();
1657        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1658        info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1659                                       task_uid(tsk));
1660        rcu_read_unlock();
1661
1662        task_cputime(tsk, &utime, &stime);
1663        info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1664        info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1665
1666        info.si_status = tsk->exit_code & 0x7f;
1667        if (tsk->exit_code & 0x80)
1668                info.si_code = CLD_DUMPED;
1669        else if (tsk->exit_code & 0x7f)
1670                info.si_code = CLD_KILLED;
1671        else {
1672                info.si_code = CLD_EXITED;
1673                info.si_status = tsk->exit_code >> 8;
1674        }
1675
1676        psig = tsk->parent->sighand;
1677        spin_lock_irqsave(&psig->siglock, flags);
1678        if (!tsk->ptrace && sig == SIGCHLD &&
1679            (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1680             (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1681                /*
1682                 * We are exiting and our parent doesn't care.  POSIX.1
1683                 * defines special semantics for setting SIGCHLD to SIG_IGN
1684                 * or setting the SA_NOCLDWAIT flag: we should be reaped
1685                 * automatically and not left for our parent's wait4 call.
1686                 * Rather than having the parent do it as a magic kind of
1687                 * signal handler, we just set this to tell do_exit that we
1688                 * can be cleaned up without becoming a zombie.  Note that
1689                 * we still call __wake_up_parent in this case, because a
1690                 * blocked sys_wait4 might now return -ECHILD.
1691                 *
1692                 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1693                 * is implementation-defined: we do (if you don't want
1694                 * it, just use SIG_IGN instead).
1695                 */
1696                autoreap = true;
1697                if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1698                        sig = 0;
1699        }
1700        if (valid_signal(sig) && sig)
1701                __group_send_sig_info(sig, &info, tsk->parent);
1702        __wake_up_parent(tsk, tsk->parent);
1703        spin_unlock_irqrestore(&psig->siglock, flags);
1704
1705        return autoreap;
1706}
1707
1708/**
1709 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1710 * @tsk: task reporting the state change
1711 * @for_ptracer: the notification is for ptracer
1712 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1713 *
1714 * Notify @tsk's parent that the stopped/continued state has changed.  If
1715 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1716 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1717 *
1718 * CONTEXT:
1719 * Must be called with tasklist_lock at least read locked.
1720 */
1721static void do_notify_parent_cldstop(struct task_struct *tsk,
1722                                     bool for_ptracer, int why)
1723{
1724        struct siginfo info;
1725        unsigned long flags;
1726        struct task_struct *parent;
1727        struct sighand_struct *sighand;
1728        cputime_t utime, stime;
1729
1730        if (for_ptracer) {
1731                parent = tsk->parent;
1732        } else {
1733                tsk = tsk->group_leader;
1734                parent = tsk->real_parent;
1735        }
1736
1737        info.si_signo = SIGCHLD;
1738        info.si_errno = 0;
1739        /*
1740         * see comment in do_notify_parent() about the following 4 lines
1741         */
1742        rcu_read_lock();
1743        info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1744        info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1745        rcu_read_unlock();
1746
1747        task_cputime(tsk, &utime, &stime);
1748        info.si_utime = cputime_to_clock_t(utime);
1749        info.si_stime = cputime_to_clock_t(stime);
1750
1751        info.si_code = why;
1752        switch (why) {
1753        case CLD_CONTINUED:
1754                info.si_status = SIGCONT;
1755                break;
1756        case CLD_STOPPED:
1757                info.si_status = tsk->signal->group_exit_code & 0x7f;
1758                break;
1759        case CLD_TRAPPED:
1760                info.si_status = tsk->exit_code & 0x7f;
1761                break;
1762        default:
1763                BUG();
1764        }
1765
1766        sighand = parent->sighand;
1767        spin_lock_irqsave(&sighand->siglock, flags);
1768        if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1769            !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1770                __group_send_sig_info(SIGCHLD, &info, parent);
1771        /*
1772         * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1773         */
1774        __wake_up_parent(tsk, parent);
1775        spin_unlock_irqrestore(&sighand->siglock, flags);
1776}
1777
1778static inline int may_ptrace_stop(void)
1779{
1780        if (!likely(current->ptrace))
1781                return 0;
1782        /*
1783         * Are we in the middle of do_coredump?
1784         * If so and our tracer is also part of the coredump stopping
1785         * is a deadlock situation, and pointless because our tracer
1786         * is dead so don't allow us to stop.
1787         * If SIGKILL was already sent before the caller unlocked
1788         * ->siglock we must see ->core_state != NULL. Otherwise it
1789         * is safe to enter schedule().
1790         *
1791         * This is almost outdated, a task with the pending SIGKILL can't
1792         * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1793         * after SIGKILL was already dequeued.
1794         */
1795        if (unlikely(current->mm->core_state) &&
1796            unlikely(current->mm == current->parent->mm))
1797                return 0;
1798
1799        return 1;
1800}
1801
1802/*
1803 * Return non-zero if there is a SIGKILL that should be waking us up.
1804 * Called with the siglock held.
1805 */
1806static int sigkill_pending(struct task_struct *tsk)
1807{
1808        return  sigismember(&tsk->pending.signal, SIGKILL) ||
1809                sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1810}
1811
1812/*
1813 * This must be called with current->sighand->siglock held.
1814 *
1815 * This should be the path for all ptrace stops.
1816 * We always set current->last_siginfo while stopped here.
1817 * That makes it a way to test a stopped process for
1818 * being ptrace-stopped vs being job-control-stopped.
1819 *
1820 * If we actually decide not to stop at all because the tracer
1821 * is gone, we keep current->exit_code unless clear_code.
1822 */
1823static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1824        __releases(&current->sighand->siglock)
1825        __acquires(&current->sighand->siglock)
1826{
1827        bool gstop_done = false;
1828
1829        if (arch_ptrace_stop_needed(exit_code, info)) {
1830                /*
1831                 * The arch code has something special to do before a
1832                 * ptrace stop.  This is allowed to block, e.g. for faults
1833                 * on user stack pages.  We can't keep the siglock while
1834                 * calling arch_ptrace_stop, so we must release it now.
1835                 * To preserve proper semantics, we must do this before
1836                 * any signal bookkeeping like checking group_stop_count.
1837                 * Meanwhile, a SIGKILL could come in before we retake the
1838                 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1839                 * So after regaining the lock, we must check for SIGKILL.
1840                 */
1841                spin_unlock_irq(&current->sighand->siglock);
1842                arch_ptrace_stop(exit_code, info);
1843                spin_lock_irq(&current->sighand->siglock);
1844                if (sigkill_pending(current))
1845                        return;
1846        }
1847
1848        /*
1849         * We're committing to trapping.  TRACED should be visible before
1850         * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1851         * Also, transition to TRACED and updates to ->jobctl should be
1852         * atomic with respect to siglock and should be done after the arch
1853         * hook as siglock is released and regrabbed across it.
1854         */
1855        set_current_state(TASK_TRACED);
1856
1857        current->last_siginfo = info;
1858        current->exit_code = exit_code;
1859
1860        /*
1861         * If @why is CLD_STOPPED, we're trapping to participate in a group
1862         * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1863         * across siglock relocks since INTERRUPT was scheduled, PENDING
1864         * could be clear now.  We act as if SIGCONT is received after
1865         * TASK_TRACED is entered - ignore it.
1866         */
1867        if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1868                gstop_done = task_participate_group_stop(current);
1869
1870        /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1871        task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1872        if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1873                task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1874
1875        /* entering a trap, clear TRAPPING */
1876        task_clear_jobctl_trapping(current);
1877
1878        spin_unlock_irq(&current->sighand->siglock);
1879        read_lock(&tasklist_lock);
1880        if (may_ptrace_stop()) {
1881                /*
1882                 * Notify parents of the stop.
1883                 *
1884                 * While ptraced, there are two parents - the ptracer and
1885                 * the real_parent of the group_leader.  The ptracer should
1886                 * know about every stop while the real parent is only
1887                 * interested in the completion of group stop.  The states
1888                 * for the two don't interact with each other.  Notify
1889                 * separately unless they're gonna be duplicates.
1890                 */
1891                do_notify_parent_cldstop(current, true, why);
1892                if (gstop_done && ptrace_reparented(current))
1893                        do_notify_parent_cldstop(current, false, why);
1894
1895                /*
1896                 * Don't want to allow preemption here, because
1897                 * sys_ptrace() needs this task to be inactive.
1898                 *
1899                 * XXX: implement read_unlock_no_resched().
1900                 */
1901                preempt_disable();
1902                read_unlock(&tasklist_lock);
1903                preempt_enable_no_resched();
1904                freezable_schedule();
1905        } else {
1906                /*
1907                 * By the time we got the lock, our tracer went away.
1908                 * Don't drop the lock yet, another tracer may come.
1909                 *
1910                 * If @gstop_done, the ptracer went away between group stop
1911                 * completion and here.  During detach, it would have set
1912                 * JOBCTL_STOP_PENDING on us and we'll re-enter
1913                 * TASK_STOPPED in do_signal_stop() on return, so notifying
1914                 * the real parent of the group stop completion is enough.
1915                 */
1916                if (gstop_done)
1917                        do_notify_parent_cldstop(current, false, why);
1918
1919                /* tasklist protects us from ptrace_freeze_traced() */
1920                __set_current_state(TASK_RUNNING);
1921                if (clear_code)
1922                        current->exit_code = 0;
1923                read_unlock(&tasklist_lock);
1924        }
1925
1926        /*
1927         * We are back.  Now reacquire the siglock before touching
1928         * last_siginfo, so that we are sure to have synchronized with
1929         * any signal-sending on another CPU that wants to examine it.
1930         */
1931        spin_lock_irq(&current->sighand->siglock);
1932        current->last_siginfo = NULL;
1933
1934        /* LISTENING can be set only during STOP traps, clear it */
1935        current->jobctl &= ~JOBCTL_LISTENING;
1936
1937        /*
1938         * Queued signals ignored us while we were stopped for tracing.
1939         * So check for any that we should take before resuming user mode.
1940         * This sets TIF_SIGPENDING, but never clears it.
1941         */
1942        recalc_sigpending_tsk(current);
1943}
1944
1945static void ptrace_do_notify(int signr, int exit_code, int why)
1946{
1947        siginfo_t info;
1948
1949        memset(&info, 0, sizeof info);
1950        info.si_signo = signr;
1951        info.si_code = exit_code;
1952        info.si_pid = task_pid_vnr(current);
1953        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1954
1955        /* Let the debugger run.  */
1956        ptrace_stop(exit_code, why, 1, &info);
1957}
1958
1959void ptrace_notify(int exit_code)
1960{
1961        BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1962        if (unlikely(current->task_works))
1963                task_work_run();
1964
1965        spin_lock_irq(&current->sighand->siglock);
1966        ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1967        spin_unlock_irq(&current->sighand->siglock);
1968}
1969
1970/**
1971 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1972 * @signr: signr causing group stop if initiating
1973 *
1974 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1975 * and participate in it.  If already set, participate in the existing
1976 * group stop.  If participated in a group stop (and thus slept), %true is
1977 * returned with siglock released.
1978 *
1979 * If ptraced, this function doesn't handle stop itself.  Instead,
1980 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1981 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1982 * places afterwards.
1983 *
1984 * CONTEXT:
1985 * Must be called with @current->sighand->siglock held, which is released
1986 * on %true return.
1987 *
1988 * RETURNS:
1989 * %false if group stop is already cancelled or ptrace trap is scheduled.
1990 * %true if participated in group stop.
1991 */
1992static bool do_signal_stop(int signr)
1993        __releases(&current->sighand->siglock)
1994{
1995        struct signal_struct *sig = current->signal;
1996
1997        if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1998                unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1999                struct task_struct *t;
2000
2001                /* signr will be recorded in task->jobctl for retries */
2002                WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2003
2004                if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2005                    unlikely(signal_group_exit(sig)))
2006                        return false;
2007                /*
2008                 * There is no group stop already in progress.  We must
2009                 * initiate one now.
2010                 *
2011                 * While ptraced, a task may be resumed while group stop is
2012                 * still in effect and then receive a stop signal and
2013                 * initiate another group stop.  This deviates from the
2014                 * usual behavior as two consecutive stop signals can't
2015                 * cause two group stops when !ptraced.  That is why we
2016                 * also check !task_is_stopped(t) below.
2017                 *
2018                 * The condition can be distinguished by testing whether
2019                 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2020                 * group_exit_code in such case.
2021                 *
2022                 * This is not necessary for SIGNAL_STOP_CONTINUED because
2023                 * an intervening stop signal is required to cause two
2024                 * continued events regardless of ptrace.
2025                 */
2026                if (!(sig->flags & SIGNAL_STOP_STOPPED))
2027                        sig->group_exit_code = signr;
2028
2029                sig->group_stop_count = 0;
2030
2031                if (task_set_jobctl_pending(current, signr | gstop))
2032                        sig->group_stop_count++;
2033
2034                t = current;
2035                while_each_thread(current, t) {
2036                        /*
2037                         * Setting state to TASK_STOPPED for a group
2038                         * stop is always done with the siglock held,
2039                         * so this check has no races.
2040                         */
2041                        if (!task_is_stopped(t) &&
2042                            task_set_jobctl_pending(t, signr | gstop)) {
2043                                sig->group_stop_count++;
2044                                if (likely(!(t->ptrace & PT_SEIZED)))
2045                                        signal_wake_up(t, 0);
2046                                else
2047                                        ptrace_trap_notify(t);
2048                        }
2049                }
2050        }
2051
2052        if (likely(!current->ptrace)) {
2053                int notify = 0;
2054
2055                /*
2056                 * If there are no other threads in the group, or if there
2057                 * is a group stop in progress and we are the last to stop,
2058                 * report to the parent.
2059                 */
2060                if (task_participate_group_stop(current))
2061                        notify = CLD_STOPPED;
2062
2063                __set_current_state(TASK_STOPPED);
2064                spin_unlock_irq(&current->sighand->siglock);
2065
2066                /*
2067                 * Notify the parent of the group stop completion.  Because
2068                 * we're not holding either the siglock or tasklist_lock
2069                 * here, ptracer may attach inbetween; however, this is for
2070                 * group stop and should always be delivered to the real
2071                 * parent of the group leader.  The new ptracer will get
2072                 * its notification when this task transitions into
2073                 * TASK_TRACED.
2074                 */
2075                if (notify) {
2076                        read_lock(&tasklist_lock);
2077                        do_notify_parent_cldstop(current, false, notify);
2078                        read_unlock(&tasklist_lock);
2079                }
2080
2081                /* Now we don't run again until woken by SIGCONT or SIGKILL */
2082                freezable_schedule();
2083                return true;
2084        } else {
2085                /*
2086                 * While ptraced, group stop is handled by STOP trap.
2087                 * Schedule it and let the caller deal with it.
2088                 */
2089                task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2090                return false;
2091        }
2092}
2093
2094/**
2095 * do_jobctl_trap - take care of ptrace jobctl traps
2096 *
2097 * When PT_SEIZED, it's used for both group stop and explicit
2098 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2099 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2100 * the stop signal; otherwise, %SIGTRAP.
2101 *
2102 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2103 * number as exit_code and no siginfo.
2104 *
2105 * CONTEXT:
2106 * Must be called with @current->sighand->siglock held, which may be
2107 * released and re-acquired before returning with intervening sleep.
2108 */
2109static void do_jobctl_trap(void)
2110{
2111        struct signal_struct *signal = current->signal;
2112        int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2113
2114        if (current->ptrace & PT_SEIZED) {
2115                if (!signal->group_stop_count &&
2116                    !(signal->flags & SIGNAL_STOP_STOPPED))
2117                        signr = SIGTRAP;
2118                WARN_ON_ONCE(!signr);
2119                ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2120                                 CLD_STOPPED);
2121        } else {
2122                WARN_ON_ONCE(!signr);
2123                ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2124                current->exit_code = 0;
2125        }
2126}
2127
2128static int ptrace_signal(int signr, siginfo_t *info)
2129{
2130        ptrace_signal_deliver();
2131        /*
2132         * We do not check sig_kernel_stop(signr) but set this marker
2133         * unconditionally because we do not know whether debugger will
2134         * change signr. This flag has no meaning unless we are going
2135         * to stop after return from ptrace_stop(). In this case it will
2136         * be checked in do_signal_stop(), we should only stop if it was
2137         * not cleared by SIGCONT while we were sleeping. See also the
2138         * comment in dequeue_signal().
2139         */
2140        current->jobctl |= JOBCTL_STOP_DEQUEUED;
2141        ptrace_stop(signr, CLD_TRAPPED, 0, info);
2142
2143        /* We're back.  Did the debugger cancel the sig?  */
2144        signr = current->exit_code;
2145        if (signr == 0)
2146                return signr;
2147
2148        current->exit_code = 0;
2149
2150        /*
2151         * Update the siginfo structure if the signal has
2152         * changed.  If the debugger wanted something
2153         * specific in the siginfo structure then it should
2154         * have updated *info via PTRACE_SETSIGINFO.
2155         */
2156        if (signr != info->si_signo) {
2157                info->si_signo = signr;
2158                info->si_errno = 0;
2159                info->si_code = SI_USER;
2160                rcu_read_lock();
2161                info->si_pid = task_pid_vnr(current->parent);
2162                info->si_uid = from_kuid_munged(current_user_ns(),
2163                                                task_uid(current->parent));
2164                rcu_read_unlock();
2165        }
2166
2167        /* If the (new) signal is now blocked, requeue it.  */
2168        if (sigismember(&current->blocked, signr)) {
2169                specific_send_sig_info(signr, info, current);
2170                signr = 0;
2171        }
2172
2173        return signr;
2174}
2175
2176int get_signal(struct ksignal *ksig)
2177{
2178        struct sighand_struct *sighand = current->sighand;
2179        struct signal_struct *signal = current->signal;
2180        int signr;
2181
2182        if (unlikely(current->task_works))
2183                task_work_run();
2184
2185        if (unlikely(uprobe_deny_signal()))
2186                return 0;
2187
2188        /*
2189         * Do this once, we can't return to user-mode if freezing() == T.
2190         * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2191         * thus do not need another check after return.
2192         */
2193        try_to_freeze();
2194
2195relock:
2196        spin_lock_irq(&sighand->siglock);
2197        /*
2198         * Every stopped thread goes here after wakeup. Check to see if
2199         * we should notify the parent, prepare_signal(SIGCONT) encodes
2200         * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2201         */
2202        if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2203                int why;
2204
2205                if (signal->flags & SIGNAL_CLD_CONTINUED)
2206                        why = CLD_CONTINUED;
2207                else
2208                        why = CLD_STOPPED;
2209
2210                signal->flags &= ~SIGNAL_CLD_MASK;
2211
2212                spin_unlock_irq(&sighand->siglock);
2213
2214                /*
2215                 * Notify the parent that we're continuing.  This event is
2216                 * always per-process and doesn't make whole lot of sense
2217                 * for ptracers, who shouldn't consume the state via
2218                 * wait(2) either, but, for backward compatibility, notify
2219                 * the ptracer of the group leader too unless it's gonna be
2220                 * a duplicate.
2221                 */
2222                read_lock(&tasklist_lock);
2223                do_notify_parent_cldstop(current, false, why);
2224
2225                if (ptrace_reparented(current->group_leader))
2226                        do_notify_parent_cldstop(current->group_leader,
2227                                                true, why);
2228                read_unlock(&tasklist_lock);
2229
2230                goto relock;
2231        }
2232
2233        for (;;) {
2234                struct k_sigaction *ka;
2235
2236                if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2237                    do_signal_stop(0))
2238                        goto relock;
2239
2240                if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2241                        do_jobctl_trap();
2242                        spin_unlock_irq(&sighand->siglock);
2243                        goto relock;
2244                }
2245
2246                signr = dequeue_signal(current, &current->blocked, &ksig->info);
2247
2248                if (!signr)
2249                        break; /* will return 0 */
2250
2251                if (unlikely(current->ptrace) && signr != SIGKILL) {
2252                        signr = ptrace_signal(signr, &ksig->info);
2253                        if (!signr)
2254                                continue;
2255                }
2256
2257                ka = &sighand->action[signr-1];
2258
2259                /* Trace actually delivered signals. */
2260                trace_signal_deliver(signr, &ksig->info, ka);
2261
2262                if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2263                        continue;
2264                if (ka->sa.sa_handler != SIG_DFL) {
2265                        /* Run the handler.  */
2266                        ksig->ka = *ka;
2267
2268                        if (ka->sa.sa_flags & SA_ONESHOT)
2269                                ka->sa.sa_handler = SIG_DFL;
2270
2271                        break; /* will return non-zero "signr" value */
2272                }
2273
2274                /*
2275                 * Now we are doing the default action for this signal.
2276                 */
2277                if (sig_kernel_ignore(signr)) /* Default is nothing. */
2278                        continue;
2279
2280                /*
2281                 * Global init gets no signals it doesn't want.
2282                 * Container-init gets no signals it doesn't want from same
2283                 * container.
2284                 *
2285                 * Note that if global/container-init sees a sig_kernel_only()
2286                 * signal here, the signal must have been generated internally
2287                 * or must have come from an ancestor namespace. In either
2288                 * case, the signal cannot be dropped.
2289                 */
2290                if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2291                                !sig_kernel_only(signr))
2292                        continue;
2293
2294                if (sig_kernel_stop(signr)) {
2295                        /*
2296                         * The default action is to stop all threads in
2297                         * the thread group.  The job control signals
2298                         * do nothing in an orphaned pgrp, but SIGSTOP
2299                         * always works.  Note that siglock needs to be
2300                         * dropped during the call to is_orphaned_pgrp()
2301                         * because of lock ordering with tasklist_lock.
2302                         * This allows an intervening SIGCONT to be posted.
2303                         * We need to check for that and bail out if necessary.
2304                         */
2305                        if (signr != SIGSTOP) {
2306                                spin_unlock_irq(&sighand->siglock);
2307
2308                                /* signals can be posted during this window */
2309
2310                                if (is_current_pgrp_orphaned())
2311                                        goto relock;
2312
2313                                spin_lock_irq(&sighand->siglock);
2314                        }
2315
2316                        if (likely(do_signal_stop(ksig->info.si_signo))) {
2317                                /* It released the siglock.  */
2318                                goto relock;
2319                        }
2320
2321                        /*
2322                         * We didn't actually stop, due to a race
2323                         * with SIGCONT or something like that.
2324                         */
2325                        continue;
2326                }
2327
2328                spin_unlock_irq(&sighand->siglock);
2329
2330                /*
2331                 * Anything else is fatal, maybe with a core dump.
2332                 */
2333                current->flags |= PF_SIGNALED;
2334
2335                if (sig_kernel_coredump(signr)) {
2336                        if (print_fatal_signals)
2337                                print_fatal_signal(ksig->info.si_signo);
2338                        proc_coredump_connector(current);
2339                        /*
2340                         * If it was able to dump core, this kills all
2341                         * other threads in the group and synchronizes with
2342                         * their demise.  If we lost the race with another
2343                         * thread getting here, it set group_exit_code
2344                         * first and our do_group_exit call below will use
2345                         * that value and ignore the one we pass it.
2346                         */
2347                        do_coredump(&ksig->info);
2348                }
2349
2350                /*
2351                 * Death signals, no core dump.
2352                 */
2353                do_group_exit(ksig->info.si_signo);
2354                /* NOTREACHED */
2355        }
2356        spin_unlock_irq(&sighand->siglock);
2357
2358        ksig->sig = signr;
2359        return ksig->sig > 0;
2360}
2361
2362/**
2363 * signal_delivered - 
2364 * @ksig:               kernel signal struct
2365 * @stepping:           nonzero if debugger single-step or block-step in use
2366 *
2367 * This function should be called when a signal has successfully been
2368 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2369 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2370 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2371 */
2372static void signal_delivered(struct ksignal *ksig, int stepping)
2373{
2374        sigset_t blocked;
2375
2376        /* A signal was successfully delivered, and the
2377           saved sigmask was stored on the signal frame,
2378           and will be restored by sigreturn.  So we can
2379           simply clear the restore sigmask flag.  */
2380        clear_restore_sigmask();
2381
2382        sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2383        if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2384                sigaddset(&blocked, ksig->sig);
2385        set_current_blocked(&blocked);
2386        tracehook_signal_handler(stepping);
2387}
2388
2389void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2390{
2391        if (failed)
2392                force_sigsegv(ksig->sig, current);
2393        else
2394                signal_delivered(ksig, stepping);
2395}
2396
2397/*
2398 * It could be that complete_signal() picked us to notify about the
2399 * group-wide signal. Other threads should be notified now to take
2400 * the shared signals in @which since we will not.
2401 */
2402static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2403{
2404        sigset_t retarget;
2405        struct task_struct *t;
2406
2407        sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2408        if (sigisemptyset(&retarget))
2409                return;
2410
2411        t = tsk;
2412        while_each_thread(tsk, t) {
2413                if (t->flags & PF_EXITING)
2414                        continue;
2415
2416                if (!has_pending_signals(&retarget, &t->blocked))
2417                        continue;
2418                /* Remove the signals this thread can handle. */
2419                sigandsets(&retarget, &retarget, &t->blocked);
2420
2421                if (!signal_pending(t))
2422                        signal_wake_up(t, 0);
2423
2424                if (sigisemptyset(&retarget))
2425                        break;
2426        }
2427}
2428
2429void exit_signals(struct task_struct *tsk)
2430{
2431        int group_stop = 0;
2432        sigset_t unblocked;
2433
2434        /*
2435         * @tsk is about to have PF_EXITING set - lock out users which
2436         * expect stable threadgroup.
2437         */
2438        threadgroup_change_begin(tsk);
2439
2440        if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2441                tsk->flags |= PF_EXITING;
2442                threadgroup_change_end(tsk);
2443                return;
2444        }
2445
2446        spin_lock_irq(&tsk->sighand->siglock);
2447        /*
2448         * From now this task is not visible for group-wide signals,
2449         * see wants_signal(), do_signal_stop().
2450         */
2451        tsk->flags |= PF_EXITING;
2452
2453        threadgroup_change_end(tsk);
2454
2455        if (!signal_pending(tsk))
2456                goto out;
2457
2458        unblocked = tsk->blocked;
2459        signotset(&unblocked);
2460        retarget_shared_pending(tsk, &unblocked);
2461
2462        if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2463            task_participate_group_stop(tsk))
2464                group_stop = CLD_STOPPED;
2465out:
2466        spin_unlock_irq(&tsk->sighand->siglock);
2467
2468        /*
2469         * If group stop has completed, deliver the notification.  This
2470         * should always go to the real parent of the group leader.
2471         */
2472        if (unlikely(group_stop)) {
2473                read_lock(&tasklist_lock);
2474                do_notify_parent_cldstop(tsk, false, group_stop);
2475                read_unlock(&tasklist_lock);
2476        }
2477}
2478
2479EXPORT_SYMBOL(recalc_sigpending);
2480EXPORT_SYMBOL_GPL(dequeue_signal);
2481EXPORT_SYMBOL(flush_signals);
2482EXPORT_SYMBOL(force_sig);
2483EXPORT_SYMBOL(send_sig);
2484EXPORT_SYMBOL(send_sig_info);
2485EXPORT_SYMBOL(sigprocmask);
2486EXPORT_SYMBOL(block_all_signals);
2487EXPORT_SYMBOL(unblock_all_signals);
2488
2489
2490/*
2491 * System call entry points.
2492 */
2493
2494/**
2495 *  sys_restart_syscall - restart a system call
2496 */
2497SYSCALL_DEFINE0(restart_syscall)
2498{
2499        struct restart_block *restart = &current->restart_block;
2500        return restart->fn(restart);
2501}
2502
2503long do_no_restart_syscall(struct restart_block *param)
2504{
2505        return -EINTR;
2506}
2507
2508static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2509{
2510        if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2511                sigset_t newblocked;
2512                /* A set of now blocked but previously unblocked signals. */
2513                sigandnsets(&newblocked, newset, &current->blocked);
2514                retarget_shared_pending(tsk, &newblocked);
2515        }
2516        tsk->blocked = *newset;
2517        recalc_sigpending();
2518}
2519
2520/**
2521 * set_current_blocked - change current->blocked mask
2522 * @newset: new mask
2523 *
2524 * It is wrong to change ->blocked directly, this helper should be used
2525 * to ensure the process can't miss a shared signal we are going to block.
2526 */
2527void set_current_blocked(sigset_t *newset)
2528{
2529        sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2530        __set_current_blocked(newset);
2531}
2532
2533void __set_current_blocked(const sigset_t *newset)
2534{
2535        struct task_struct *tsk = current;
2536
2537        spin_lock_irq(&tsk->sighand->siglock);
2538        __set_task_blocked(tsk, newset);
2539        spin_unlock_irq(&tsk->sighand->siglock);
2540}
2541
2542/*
2543 * This is also useful for kernel threads that want to temporarily
2544 * (or permanently) block certain signals.
2545 *
2546 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2547 * interface happily blocks "unblockable" signals like SIGKILL
2548 * and friends.
2549 */
2550int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2551{
2552        struct task_struct *tsk = current;
2553        sigset_t newset;
2554
2555        /* Lockless, only current can change ->blocked, never from irq */
2556        if (oldset)
2557                *oldset = tsk->blocked;
2558
2559        switch (how) {
2560        case SIG_BLOCK:
2561                sigorsets(&newset, &tsk->blocked, set);
2562                break;
2563        case SIG_UNBLOCK:
2564                sigandnsets(&newset, &tsk->blocked, set);
2565                break;
2566        case SIG_SETMASK:
2567                newset = *set;
2568                break;
2569        default:
2570                return -EINVAL;
2571        }
2572
2573        __set_current_blocked(&newset);
2574        return 0;
2575}
2576
2577/**
2578 *  sys_rt_sigprocmask - change the list of currently blocked signals
2579 *  @how: whether to add, remove, or set signals
2580 *  @nset: stores pending signals
2581 *  @oset: previous value of signal mask if non-null
2582 *  @sigsetsize: size of sigset_t type
2583 */
2584SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2585                sigset_t __user *, oset, size_t, sigsetsize)
2586{
2587        sigset_t old_set, new_set;
2588        int error;
2589
2590        /* XXX: Don't preclude handling different sized sigset_t's.  */
2591        if (sigsetsize != sizeof(sigset_t))
2592                return -EINVAL;
2593
2594        old_set = current->blocked;
2595
2596        if (nset) {
2597                if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2598                        return -EFAULT;
2599                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2600
2601                error = sigprocmask(how, &new_set, NULL);
2602                if (error)
2603                        return error;
2604        }
2605
2606        if (oset) {
2607                if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2608                        return -EFAULT;
2609        }
2610
2611        return 0;
2612}
2613
2614#ifdef CONFIG_COMPAT
2615COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2616                compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2617{
2618#ifdef __BIG_ENDIAN
2619        sigset_t old_set = current->blocked;
2620
2621        /* XXX: Don't preclude handling different sized sigset_t's.  */
2622        if (sigsetsize != sizeof(sigset_t))
2623                return -EINVAL;
2624
2625        if (nset) {
2626                compat_sigset_t new32;
2627                sigset_t new_set;
2628                int error;
2629                if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2630                        return -EFAULT;
2631
2632                sigset_from_compat(&new_set, &new32);
2633                sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2634
2635                error = sigprocmask(how, &new_set, NULL);
2636                if (error)
2637                        return error;
2638        }
2639        if (oset) {
2640                compat_sigset_t old32;
2641                sigset_to_compat(&old32, &old_set);
2642                if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2643                        return -EFAULT;
2644        }
2645        return 0;
2646#else
2647        return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2648                                  (sigset_t __user *)oset, sigsetsize);
2649#endif
2650}
2651#endif
2652
2653static int do_sigpending(void *set, unsigned long sigsetsize)
2654{
2655        if (sigsetsize > sizeof(sigset_t))
2656                return -EINVAL;
2657
2658        spin_lock_irq(&current->sighand->siglock);
2659        sigorsets(set, &current->pending.signal,
2660                  &current->signal->shared_pending.signal);
2661        spin_unlock_irq(&current->sighand->siglock);
2662
2663        /* Outside the lock because only this thread touches it.  */
2664        sigandsets(set, &current->blocked, set);
2665        return 0;
2666}
2667
2668/**
2669 *  sys_rt_sigpending - examine a pending signal that has been raised
2670 *                      while blocked
2671 *  @uset: stores pending signals
2672 *  @sigsetsize: size of sigset_t type or larger
2673 */
2674SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2675{
2676        sigset_t set;
2677        int err = do_sigpending(&set, sigsetsize);
2678        if (!err && copy_to_user(uset, &set, sigsetsize))
2679                err = -EFAULT;
2680        return err;
2681}
2682
2683#ifdef CONFIG_COMPAT
2684COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2685                compat_size_t, sigsetsize)
2686{
2687#ifdef __BIG_ENDIAN
2688        sigset_t set;
2689        int err = do_sigpending(&set, sigsetsize);
2690        if (!err) {
2691                compat_sigset_t set32;
2692                sigset_to_compat(&set32, &set);
2693                /* we can get here only if sigsetsize <= sizeof(set) */
2694                if (copy_to_user(uset, &set32, sigsetsize))
2695                        err = -EFAULT;
2696        }
2697        return err;
2698#else
2699        return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2700#endif
2701}
2702#endif
2703
2704#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2705
2706int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2707{
2708        int err;
2709
2710        if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2711                return -EFAULT;
2712        if (from->si_code < 0)
2713                return __copy_to_user(to, from, sizeof(siginfo_t))
2714                        ? -EFAULT : 0;
2715        /*
2716         * If you change siginfo_t structure, please be sure
2717         * this code is fixed accordingly.
2718         * Please remember to update the signalfd_copyinfo() function
2719         * inside fs/signalfd.c too, in case siginfo_t changes.
2720         * It should never copy any pad contained in the structure
2721         * to avoid security leaks, but must copy the generic
2722         * 3 ints plus the relevant union member.
2723         */
2724        err = __put_user(from->si_signo, &to->si_signo);
2725        err |= __put_user(from->si_errno, &to->si_errno);
2726        err |= __put_user((short)from->si_code, &to->si_code);
2727        switch (from->si_code & __SI_MASK) {
2728        case __SI_KILL:
2729                err |= __put_user(from->si_pid, &to->si_pid);
2730                err |= __put_user(from->si_uid, &to->si_uid);
2731                break;
2732        case __SI_TIMER:
2733                 err |= __put_user(from->si_tid, &to->si_tid);
2734                 err |= __put_user(from->si_overrun, &to->si_overrun);
2735                 err |= __put_user(from->si_ptr, &to->si_ptr);
2736                break;
2737        case __SI_POLL:
2738                err |= __put_user(from->si_band, &to->si_band);
2739                err |= __put_user(from->si_fd, &to->si_fd);
2740                break;
2741        case __SI_FAULT:
2742                err |= __put_user(from->si_addr, &to->si_addr);
2743#ifdef __ARCH_SI_TRAPNO
2744                err |= __put_user(from->si_trapno, &to->si_trapno);
2745#endif
2746#ifdef BUS_MCEERR_AO
2747                /*
2748                 * Other callers might not initialize the si_lsb field,
2749                 * so check explicitly for the right codes here.
2750                 */
2751                if (from->si_signo == SIGBUS &&
2752                    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2753                        err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2754#endif
2755#ifdef SEGV_BNDERR
2756                if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2757                        err |= __put_user(from->si_lower, &to->si_lower);
2758                        err |= __put_user(from->si_upper, &to->si_upper);
2759                }
2760#endif
2761                break;
2762        case __SI_CHLD:
2763                err |= __put_user(from->si_pid, &to->si_pid);
2764                err |= __put_user(from->si_uid, &to->si_uid);
2765                err |= __put_user(from->si_status, &to->si_status);
2766                err |= __put_user(from->si_utime, &to->si_utime);
2767                err |= __put_user(from->si_stime, &to->si_stime);
2768                break;
2769        case __SI_RT: /* This is not generated by the kernel as of now. */
2770        case __SI_MESGQ: /* But this is */
2771                err |= __put_user(from->si_pid, &to->si_pid);
2772                err |= __put_user(from->si_uid, &to->si_uid);
2773                err |= __put_user(from->si_ptr, &to->si_ptr);
2774                break;
2775#ifdef __ARCH_SIGSYS
2776        case __SI_SYS:
2777                err |= __put_user(from->si_call_addr, &to->si_call_addr);
2778                err |= __put_user(from->si_syscall, &to->si_syscall);
2779                err |= __put_user(from->si_arch, &to->si_arch);
2780                break;
2781#endif
2782        default: /* this is just in case for now ... */
2783                err |= __put_user(from->si_pid, &to->si_pid);
2784                err |= __put_user(from->si_uid, &to->si_uid);
2785                break;
2786        }
2787        return err;
2788}
2789
2790#endif
2791
2792/**
2793 *  do_sigtimedwait - wait for queued signals specified in @which
2794 *  @which: queued signals to wait for
2795 *  @info: if non-null, the signal's siginfo is returned here
2796 *  @ts: upper bound on process time suspension
2797 */
2798int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2799                        const struct timespec *ts)
2800{
2801        struct task_struct *tsk = current;
2802        long timeout = MAX_SCHEDULE_TIMEOUT;
2803        sigset_t mask = *which;
2804        int sig;
2805
2806        if (ts) {
2807                if (!timespec_valid(ts))
2808                        return -EINVAL;
2809                timeout = timespec_to_jiffies(ts);
2810                /*
2811                 * We can be close to the next tick, add another one
2812                 * to ensure we will wait at least the time asked for.
2813                 */
2814                if (ts->tv_sec || ts->tv_nsec)
2815                        timeout++;
2816        }
2817
2818        /*
2819         * Invert the set of allowed signals to get those we want to block.
2820         */
2821        sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2822        signotset(&mask);
2823
2824        spin_lock_irq(&tsk->sighand->siglock);
2825        sig = dequeue_signal(tsk, &mask, info);
2826        if (!sig && timeout) {
2827                /*
2828                 * None ready, temporarily unblock those we're interested
2829                 * while we are sleeping in so that we'll be awakened when
2830                 * they arrive. Unblocking is always fine, we can avoid
2831                 * set_current_blocked().
2832                 */
2833                tsk->real_blocked = tsk->blocked;
2834                sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2835                recalc_sigpending();
2836                spin_unlock_irq(&tsk->sighand->siglock);
2837
2838                timeout = freezable_schedule_timeout_interruptible(timeout);
2839
2840                spin_lock_irq(&tsk->sighand->siglock);
2841                __set_task_blocked(tsk, &tsk->real_blocked);
2842                sigemptyset(&tsk->real_blocked);
2843                sig = dequeue_signal(tsk, &mask, info);
2844        }
2845        spin_unlock_irq(&tsk->sighand->siglock);
2846
2847        if (sig)
2848                return sig;
2849        return timeout ? -EINTR : -EAGAIN;
2850}
2851
2852/**
2853 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2854 *                      in @uthese
2855 *  @uthese: queued signals to wait for
2856 *  @uinfo: if non-null, the signal's siginfo is returned here
2857 *  @uts: upper bound on process time suspension
2858 *  @sigsetsize: size of sigset_t type
2859 */
2860SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2861                siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2862                size_t, sigsetsize)
2863{
2864        sigset_t these;
2865        struct timespec ts;
2866        siginfo_t info;
2867        int ret;
2868
2869        /* XXX: Don't preclude handling different sized sigset_t's.  */
2870        if (sigsetsize != sizeof(sigset_t))
2871                return -EINVAL;
2872
2873        if (copy_from_user(&these, uthese, sizeof(these)))
2874                return -EFAULT;
2875
2876        if (uts) {
2877                if (copy_from_user(&ts, uts, sizeof(ts)))
2878                        return -EFAULT;
2879        }
2880
2881        ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2882
2883        if (ret > 0 && uinfo) {
2884                if (copy_siginfo_to_user(uinfo, &info))
2885                        ret = -EFAULT;
2886        }
2887
2888        return ret;
2889}
2890
2891/**
2892 *  sys_kill - send a signal to a process
2893 *  @pid: the PID of the process
2894 *  @sig: signal to be sent
2895 */
2896SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2897{
2898        struct siginfo info;
2899
2900        info.si_signo = sig;
2901        info.si_errno = 0;
2902        info.si_code = SI_USER;
2903        info.si_pid = task_tgid_vnr(current);
2904        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2905
2906        return kill_something_info(sig, &info, pid);
2907}
2908
2909static int
2910do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2911{
2912        struct task_struct *p;
2913        int error = -ESRCH;
2914
2915        rcu_read_lock();
2916        p = find_task_by_vpid(pid);
2917        if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2918                error = check_kill_permission(sig, info, p);
2919                /*
2920                 * The null signal is a permissions and process existence
2921                 * probe.  No signal is actually delivered.
2922                 */
2923                if (!error && sig) {
2924                        error = do_send_sig_info(sig, info, p, false);
2925                        /*
2926                         * If lock_task_sighand() failed we pretend the task
2927                         * dies after receiving the signal. The window is tiny,
2928                         * and the signal is private anyway.
2929                         */
2930                        if (unlikely(error == -ESRCH))
2931                                error = 0;
2932                }
2933        }
2934        rcu_read_unlock();
2935
2936        return error;
2937}
2938
2939static int do_tkill(pid_t tgid, pid_t pid, int sig)
2940{
2941        struct siginfo info = {};
2942
2943        info.si_signo = sig;
2944        info.si_errno = 0;
2945        info.si_code = SI_TKILL;
2946        info.si_pid = task_tgid_vnr(current);
2947        info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2948
2949        return do_send_specific(tgid, pid, sig, &info);
2950}
2951
2952/**
2953 *  sys_tgkill - send signal to one specific thread
2954 *  @tgid: the thread group ID of the thread
2955 *  @pid: the PID of the thread
2956 *  @sig: signal to be sent
2957 *
2958 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2959 *  exists but it's not belonging to the target process anymore. This
2960 *  method solves the problem of threads exiting and PIDs getting reused.
2961 */
2962SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2963{
2964        /* This is only valid for single tasks */
2965        if (pid <= 0 || tgid <= 0)
2966                return -EINVAL;
2967
2968        return do_tkill(tgid, pid, sig);
2969}
2970
2971/**
2972 *  sys_tkill - send signal to one specific task
2973 *  @pid: the PID of the task
2974 *  @sig: signal to be sent
2975 *
2976 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2977 */
2978SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2979{
2980        /* This is only valid for single tasks */
2981        if (pid <= 0)
2982                return -EINVAL;
2983
2984        return do_tkill(0, pid, sig);
2985}
2986
2987static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2988{
2989        /* Not even root can pretend to send signals from the kernel.
2990         * Nor can they impersonate a kill()/tgkill(), which adds source info.
2991         */
2992        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2993            (task_pid_vnr(current) != pid))
2994                return -EPERM;
2995
2996        info->si_signo = sig;
2997
2998        /* POSIX.1b doesn't mention process groups.  */
2999        return kill_proc_info(sig, info, pid);
3000}
3001
3002/**
3003 *  sys_rt_sigqueueinfo - send signal information to a signal
3004 *  @pid: the PID of the thread
3005 *  @sig: signal to be sent
3006 *  @uinfo: signal info to be sent
3007 */
3008SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3009                siginfo_t __user *, uinfo)
3010{
3011        siginfo_t info;
3012        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3013                return -EFAULT;
3014        return do_rt_sigqueueinfo(pid, sig, &info);
3015}
3016
3017#ifdef CONFIG_COMPAT
3018COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3019                        compat_pid_t, pid,
3020                        int, sig,
3021                        struct compat_siginfo __user *, uinfo)
3022{
3023        siginfo_t info = {};
3024        int ret = copy_siginfo_from_user32(&info, uinfo);
3025        if (unlikely(ret))
3026                return ret;
3027        return do_rt_sigqueueinfo(pid, sig, &info);
3028}
3029#endif
3030
3031static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3032{
3033        /* This is only valid for single tasks */
3034        if (pid <= 0 || tgid <= 0)
3035                return -EINVAL;
3036
3037        /* Not even root can pretend to send signals from the kernel.
3038         * Nor can they impersonate a kill()/tgkill(), which adds source info.
3039         */
3040        if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3041            (task_pid_vnr(current) != pid))
3042                return -EPERM;
3043
3044        info->si_signo = sig;
3045
3046        return do_send_specific(tgid, pid, sig, info);
3047}
3048
3049SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3050                siginfo_t __user *, uinfo)
3051{
3052        siginfo_t info;
3053
3054        if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3055                return -EFAULT;
3056
3057        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3058}
3059
3060#ifdef CONFIG_COMPAT
3061COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3062                        compat_pid_t, tgid,
3063                        compat_pid_t, pid,
3064                        int, sig,
3065                        struct compat_siginfo __user *, uinfo)
3066{
3067        siginfo_t info = {};
3068
3069        if (copy_siginfo_from_user32(&info, uinfo))
3070                return -EFAULT;
3071        return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3072}
3073#endif
3074
3075/*
3076 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3077 */
3078void kernel_sigaction(int sig, __sighandler_t action)
3079{
3080        spin_lock_irq(&current->sighand->siglock);
3081        current->sighand->action[sig - 1].sa.sa_handler = action;
3082        if (action == SIG_IGN) {
3083                sigset_t mask;
3084
3085                sigemptyset(&mask);
3086                sigaddset(&mask, sig);
3087
3088                flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3089                flush_sigqueue_mask(&mask, &current->pending);
3090                recalc_sigpending();
3091        }
3092        spin_unlock_irq(&current->sighand->siglock);
3093}
3094EXPORT_SYMBOL(kernel_sigaction);
3095
3096int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3097{
3098        struct task_struct *p = current, *t;
3099        struct k_sigaction *k;
3100        sigset_t mask;
3101
3102        if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3103                return -EINVAL;
3104
3105        k = &p->sighand->action[sig-1];
3106
3107        spin_lock_irq(&p->sighand->siglock);
3108        if (oact)
3109                *oact = *k;
3110
3111        if (act) {
3112                sigdelsetmask(&act->sa.sa_mask,
3113                              sigmask(SIGKILL) | sigmask(SIGSTOP));
3114                *k = *act;
3115                /*
3116                 * POSIX 3.3.1.3:
3117                 *  "Setting a signal action to SIG_IGN for a signal that is
3118                 *   pending shall cause the pending signal to be discarded,
3119                 *   whether or not it is blocked."
3120                 *
3121                 *  "Setting a signal action to SIG_DFL for a signal that is
3122                 *   pending and whose default action is to ignore the signal
3123                 *   (for example, SIGCHLD), shall cause the pending signal to
3124                 *   be discarded, whether or not it is blocked"
3125                 */
3126                if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3127                        sigemptyset(&mask);
3128                        sigaddset(&mask, sig);
3129                        flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3130                        for_each_thread(p, t)
3131                                flush_sigqueue_mask(&mask, &t->pending);
3132                }
3133        }
3134
3135        spin_unlock_irq(&p->sighand->siglock);
3136        return 0;
3137}
3138
3139static int
3140do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3141{
3142        stack_t oss;
3143        int error;
3144
3145        oss.ss_sp = (void __user *) current->sas_ss_sp;
3146        oss.ss_size = current->sas_ss_size;
3147        oss.ss_flags = sas_ss_flags(sp);
3148
3149        if (uss) {
3150                void __user *ss_sp;
3151                size_t ss_size;
3152                int ss_flags;
3153
3154                error = -EFAULT;
3155                if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3156                        goto out;
3157                error = __get_user(ss_sp, &uss->ss_sp) |
3158                        __get_user(ss_flags, &uss->ss_flags) |
3159                        __get_user(ss_size, &uss->ss_size);
3160                if (error)
3161                        goto out;
3162
3163                error = -EPERM;
3164                if (on_sig_stack(sp))
3165                        goto out;
3166
3167                error = -EINVAL;
3168                /*
3169                 * Note - this code used to test ss_flags incorrectly:
3170                 *        old code may have been written using ss_flags==0
3171                 *        to mean ss_flags==SS_ONSTACK (as this was the only
3172                 *        way that worked) - this fix preserves that older
3173                 *        mechanism.
3174                 */
3175                if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3176                        goto out;
3177
3178                if (ss_flags == SS_DISABLE) {
3179                        ss_size = 0;
3180                        ss_sp = NULL;
3181                } else {
3182                        error = -ENOMEM;
3183                        if (ss_size < MINSIGSTKSZ)
3184                                goto out;
3185                }
3186
3187                current->sas_ss_sp = (unsigned long) ss_sp;
3188                current->sas_ss_size = ss_size;
3189        }
3190
3191        error = 0;
3192        if (uoss) {
3193                error = -EFAULT;
3194                if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3195                        goto out;
3196                error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3197                        __put_user(oss.ss_size, &uoss->ss_size) |
3198                        __put_user(oss.ss_flags, &uoss->ss_flags);
3199        }
3200
3201out:
3202        return error;
3203}
3204SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3205{
3206        return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3207}
3208
3209int restore_altstack(const stack_t __user *uss)
3210{
3211        int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3212        /* squash all but EFAULT for now */
3213        return err == -EFAULT ? err : 0;
3214}
3215
3216int __save_altstack(stack_t __user *uss, unsigned long sp)
3217{
3218        struct task_struct *t = current;
3219        return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3220                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3221                __put_user(t->sas_ss_size, &uss->ss_size);
3222}
3223
3224#ifdef CONFIG_COMPAT
3225COMPAT_SYSCALL_DEFINE2(sigaltstack,
3226                        const compat_stack_t __user *, uss_ptr,
3227                        compat_stack_t __user *, uoss_ptr)
3228{
3229        stack_t uss, uoss;
3230        int ret;
3231        mm_segment_t seg;
3232
3233        if (uss_ptr) {
3234                compat_stack_t uss32;
3235
3236                memset(&uss, 0, sizeof(stack_t));
3237                if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3238                        return -EFAULT;
3239                uss.ss_sp = compat_ptr(uss32.ss_sp);
3240                uss.ss_flags = uss32.ss_flags;
3241                uss.ss_size = uss32.ss_size;
3242        }
3243        seg = get_fs();
3244        set_fs(KERNEL_DS);
3245        ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3246                             (stack_t __force __user *) &uoss,
3247                             compat_user_stack_pointer());
3248        set_fs(seg);
3249        if (ret >= 0 && uoss_ptr)  {
3250                if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3251                    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3252                    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3253                    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3254                        ret = -EFAULT;
3255        }
3256        return ret;
3257}
3258
3259int compat_restore_altstack(const compat_stack_t __user *uss)
3260{
3261        int err = compat_sys_sigaltstack(uss, NULL);
3262        /* squash all but -EFAULT for now */
3263        return err == -EFAULT ? err : 0;
3264}
3265
3266int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3267{
3268        struct task_struct *t = current;
3269        return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3270                __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3271                __put_user(t->sas_ss_size, &uss->ss_size);
3272}
3273#endif
3274
3275#ifdef __ARCH_WANT_SYS_SIGPENDING
3276
3277/**
3278 *  sys_sigpending - examine pending signals
3279 *  @set: where mask of pending signal is returned
3280 */
3281SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3282{
3283        return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3284}
3285
3286#endif
3287
3288#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3289/**
3290 *  sys_sigprocmask - examine and change blocked signals
3291 *  @how: whether to add, remove, or set signals
3292 *  @nset: signals to add or remove (if non-null)
3293 *  @oset: previous value of signal mask if non-null
3294 *
3295 * Some platforms have their own version with special arguments;
3296 * others support only sys_rt_sigprocmask.
3297 */
3298
3299SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3300                old_sigset_t __user *, oset)
3301{
3302        old_sigset_t old_set, new_set;
3303        sigset_t new_blocked;
3304
3305        old_set = current->blocked.sig[0];
3306
3307        if (nset) {
3308                if (copy_from_user(&new_set, nset, sizeof(*nset)))
3309                        return -EFAULT;
3310
3311                new_blocked = current->blocked;
3312
3313                switch (how) {
3314                case SIG_BLOCK:
3315                        sigaddsetmask(&new_blocked, new_set);
3316                        break;
3317                case SIG_UNBLOCK:
3318                        sigdelsetmask(&new_blocked, new_set);
3319                        break;
3320                case SIG_SETMASK:
3321                        new_blocked.sig[0] = new_set;
3322                        break;
3323                default:
3324                        return -EINVAL;
3325                }
3326
3327                set_current_blocked(&new_blocked);
3328        }
3329
3330        if (oset) {
3331                if (copy_to_user(oset, &old_set, sizeof(*oset)))
3332                        return -EFAULT;
3333        }
3334
3335        return 0;
3336}
3337#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3338
3339#ifndef CONFIG_ODD_RT_SIGACTION
3340/**
3341 *  sys_rt_sigaction - alter an action taken by a process
3342 *  @sig: signal to be sent
3343 *  @act: new sigaction
3344 *  @oact: used to save the previous sigaction
3345 *  @sigsetsize: size of sigset_t type
3346 */
3347SYSCALL_DEFINE4(rt_sigaction, int, sig,
3348                const struct sigaction __user *, act,
3349                struct sigaction __user *, oact,
3350                size_t, sigsetsize)
3351{
3352        struct k_sigaction new_sa, old_sa;
3353        int ret = -EINVAL;
3354
3355        /* XXX: Don't preclude handling different sized sigset_t's.  */
3356        if (sigsetsize != sizeof(sigset_t))
3357                goto out;
3358
3359        if (act) {
3360                if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3361                        return -EFAULT;
3362        }
3363
3364        ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3365
3366        if (!ret && oact) {
3367                if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3368                        return -EFAULT;
3369        }
3370out:
3371        return ret;
3372}
3373#ifdef CONFIG_COMPAT
3374COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3375                const struct compat_sigaction __user *, act,
3376                struct compat_sigaction __user *, oact,
3377                compat_size_t, sigsetsize)
3378{
3379        struct k_sigaction new_ka, old_ka;
3380        compat_sigset_t mask;
3381#ifdef __ARCH_HAS_SA_RESTORER
3382        compat_uptr_t restorer;
3383#endif
3384        int ret;
3385
3386        /* XXX: Don't preclude handling different sized sigset_t's.  */
3387        if (sigsetsize != sizeof(compat_sigset_t))
3388                return -EINVAL;
3389
3390        if (act) {
3391                compat_uptr_t handler;
3392                ret = get_user(handler, &act->sa_handler);
3393                new_ka.sa.sa_handler = compat_ptr(handler);
3394#ifdef __ARCH_HAS_SA_RESTORER
3395                ret |= get_user(restorer, &act->sa_restorer);
3396                new_ka.sa.sa_restorer = compat_ptr(restorer);
3397#endif
3398                ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3399                ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3400                if (ret)
3401                        return -EFAULT;
3402                sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3403        }
3404
3405        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3406        if (!ret && oact) {
3407                sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3408                ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3409                               &oact->sa_handler);
3410                ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3411                ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3412#ifdef __ARCH_HAS_SA_RESTORER
3413                ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3414                                &oact->sa_restorer);
3415#endif
3416        }
3417        return ret;
3418}
3419#endif
3420#endif /* !CONFIG_ODD_RT_SIGACTION */
3421
3422#ifdef CONFIG_OLD_SIGACTION
3423SYSCALL_DEFINE3(sigaction, int, sig,
3424                const struct old_sigaction __user *, act,
3425                struct old_sigaction __user *, oact)
3426{
3427        struct k_sigaction new_ka, old_ka;
3428        int ret;
3429
3430        if (act) {
3431                old_sigset_t mask;
3432                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3433                    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3434                    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3435                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3436                    __get_user(mask, &act->sa_mask))
3437                        return -EFAULT;
3438#ifdef __ARCH_HAS_KA_RESTORER
3439                new_ka.ka_restorer = NULL;
3440#endif
3441                siginitset(&new_ka.sa.sa_mask, mask);
3442        }
3443
3444        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3445
3446        if (!ret && oact) {
3447                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3448                    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3449                    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3450                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3451                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3452                        return -EFAULT;
3453        }
3454
3455        return ret;
3456}
3457#endif
3458#ifdef CONFIG_COMPAT_OLD_SIGACTION
3459COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3460                const struct compat_old_sigaction __user *, act,
3461                struct compat_old_sigaction __user *, oact)
3462{
3463        struct k_sigaction new_ka, old_ka;
3464        int ret;
3465        compat_old_sigset_t mask;
3466        compat_uptr_t handler, restorer;
3467
3468        if (act) {
3469                if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3470                    __get_user(handler, &act->sa_handler) ||
3471                    __get_user(restorer, &act->sa_restorer) ||
3472                    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3473                    __get_user(mask, &act->sa_mask))
3474                        return -EFAULT;
3475
3476#ifdef __ARCH_HAS_KA_RESTORER
3477                new_ka.ka_restorer = NULL;
3478#endif
3479                new_ka.sa.sa_handler = compat_ptr(handler);
3480                new_ka.sa.sa_restorer = compat_ptr(restorer);
3481                siginitset(&new_ka.sa.sa_mask, mask);
3482        }
3483
3484        ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3485
3486        if (!ret && oact) {
3487                if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3488                    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3489                               &oact->sa_handler) ||
3490                    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3491                               &oact->sa_restorer) ||
3492                    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3493                    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3494                        return -EFAULT;
3495        }
3496        return ret;
3497}
3498#endif
3499
3500#ifdef CONFIG_SGETMASK_SYSCALL
3501
3502/*
3503 * For backwards compatibility.  Functionality superseded by sigprocmask.
3504 */
3505SYSCALL_DEFINE0(sgetmask)
3506{
3507        /* SMP safe */
3508        return current->blocked.sig[0];
3509}
3510
3511SYSCALL_DEFINE1(ssetmask, int, newmask)
3512{
3513        int old = current->blocked.sig[0];
3514        sigset_t newset;
3515
3516        siginitset(&newset, newmask);
3517        set_current_blocked(&newset);
3518
3519        return old;
3520}
3521#endif /* CONFIG_SGETMASK_SYSCALL */
3522
3523#ifdef __ARCH_WANT_SYS_SIGNAL
3524/*
3525 * For backwards compatibility.  Functionality superseded by sigaction.
3526 */
3527SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3528{
3529        struct k_sigaction new_sa, old_sa;
3530        int ret;
3531
3532        new_sa.sa.sa_handler = handler;
3533        new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3534        sigemptyset(&new_sa.sa.sa_mask);
3535
3536        ret = do_sigaction(sig, &new_sa, &old_sa);
3537
3538        return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3539}
3540#endif /* __ARCH_WANT_SYS_SIGNAL */
3541
3542#ifdef __ARCH_WANT_SYS_PAUSE
3543
3544SYSCALL_DEFINE0(pause)
3545{
3546        while (!signal_pending(current)) {
3547                __set_current_state(TASK_INTERRUPTIBLE);
3548                schedule();
3549        }
3550        return -ERESTARTNOHAND;
3551}
3552
3553#endif
3554
3555int sigsuspend(sigset_t *set)
3556{
3557        current->saved_sigmask = current->blocked;
3558        set_current_blocked(set);
3559
3560        __set_current_state(TASK_INTERRUPTIBLE);
3561        schedule();
3562        set_restore_sigmask();
3563        return -ERESTARTNOHAND;
3564}
3565
3566/**
3567 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3568 *      @unewset value until a signal is received
3569 *  @unewset: new signal mask value
3570 *  @sigsetsize: size of sigset_t type
3571 */
3572SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3573{
3574        sigset_t newset;
3575
3576        /* XXX: Don't preclude handling different sized sigset_t's.  */
3577        if (sigsetsize != sizeof(sigset_t))
3578                return -EINVAL;
3579
3580        if (copy_from_user(&newset, unewset, sizeof(newset)))
3581                return -EFAULT;
3582        return sigsuspend(&newset);
3583}
3584 
3585#ifdef CONFIG_COMPAT
3586COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3587{
3588#ifdef __BIG_ENDIAN
3589        sigset_t newset;
3590        compat_sigset_t newset32;
3591
3592        /* XXX: Don't preclude handling different sized sigset_t's.  */
3593        if (sigsetsize != sizeof(sigset_t))
3594                return -EINVAL;
3595
3596        if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3597                return -EFAULT;
3598        sigset_from_compat(&newset, &newset32);
3599        return sigsuspend(&newset);
3600#else
3601        /* on little-endian bitmaps don't care about granularity */
3602        return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3603#endif
3604}
3605#endif
3606
3607#ifdef CONFIG_OLD_SIGSUSPEND
3608SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3609{
3610        sigset_t blocked;
3611        siginitset(&blocked, mask);
3612        return sigsuspend(&blocked);
3613}
3614#endif
3615#ifdef CONFIG_OLD_SIGSUSPEND3
3616SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3617{
3618        sigset_t blocked;
3619        siginitset(&blocked, mask);
3620        return sigsuspend(&blocked);
3621}
3622#endif
3623
3624__weak const char *arch_vma_name(struct vm_area_struct *vma)
3625{
3626        return NULL;
3627}
3628
3629void __init signals_init(void)
3630{
3631        sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3632}
3633
3634#ifdef CONFIG_KGDB_KDB
3635#include <linux/kdb.h>
3636/*
3637 * kdb_send_sig_info - Allows kdb to send signals without exposing
3638 * signal internals.  This function checks if the required locks are
3639 * available before calling the main signal code, to avoid kdb
3640 * deadlocks.
3641 */
3642void
3643kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3644{
3645        static struct task_struct *kdb_prev_t;
3646        int sig, new_t;
3647        if (!spin_trylock(&t->sighand->siglock)) {
3648                kdb_printf("Can't do kill command now.\n"
3649                           "The sigmask lock is held somewhere else in "
3650                           "kernel, try again later\n");
3651                return;
3652        }
3653        spin_unlock(&t->sighand->siglock);
3654        new_t = kdb_prev_t != t;
3655        kdb_prev_t = t;
3656        if (t->state != TASK_RUNNING && new_t) {
3657                kdb_printf("Process is not RUNNING, sending a signal from "
3658                           "kdb risks deadlock\n"
3659                           "on the run queue locks. "
3660                           "The signal has _not_ been sent.\n"
3661                           "Reissue the kill command if you want to risk "
3662                           "the deadlock.\n");
3663                return;
3664        }
3665        sig = info->si_signo;
3666        if (send_sig_info(sig, info, t))
3667                kdb_printf("Fail to deliver Signal %d to process %d.\n",
3668                           sig, t->pid);
3669        else
3670                kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3671}
3672#endif  /* CONFIG_KGDB_KDB */
3673