linux/kernel/time/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57#include "tick-internal.h"
  58
  59/*
  60 * The timer bases:
  61 *
  62 * There are more clockids then hrtimer bases. Thus, we index
  63 * into the timer bases by the hrtimer_base_type enum. When trying
  64 * to reach a base using a clockid, hrtimer_clockid_to_base()
  65 * is used to convert from clockid to the proper hrtimer_base_type.
  66 */
  67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  68{
  69        .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  70        .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  71        .clock_base =
  72        {
  73                {
  74                        .index = HRTIMER_BASE_MONOTONIC,
  75                        .clockid = CLOCK_MONOTONIC,
  76                        .get_time = &ktime_get,
  77                },
  78                {
  79                        .index = HRTIMER_BASE_REALTIME,
  80                        .clockid = CLOCK_REALTIME,
  81                        .get_time = &ktime_get_real,
  82                },
  83                {
  84                        .index = HRTIMER_BASE_BOOTTIME,
  85                        .clockid = CLOCK_BOOTTIME,
  86                        .get_time = &ktime_get_boottime,
  87                },
  88                {
  89                        .index = HRTIMER_BASE_TAI,
  90                        .clockid = CLOCK_TAI,
  91                        .get_time = &ktime_get_clocktai,
  92                },
  93        }
  94};
  95
  96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  97        [CLOCK_REALTIME]        = HRTIMER_BASE_REALTIME,
  98        [CLOCK_MONOTONIC]       = HRTIMER_BASE_MONOTONIC,
  99        [CLOCK_BOOTTIME]        = HRTIMER_BASE_BOOTTIME,
 100        [CLOCK_TAI]             = HRTIMER_BASE_TAI,
 101};
 102
 103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 104{
 105        return hrtimer_clock_to_base_table[clock_id];
 106}
 107
 108/*
 109 * Functions and macros which are different for UP/SMP systems are kept in a
 110 * single place
 111 */
 112#ifdef CONFIG_SMP
 113
 114/*
 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 116 * such that hrtimer_callback_running() can unconditionally dereference
 117 * timer->base->cpu_base
 118 */
 119static struct hrtimer_cpu_base migration_cpu_base = {
 120        .seq = SEQCNT_ZERO(migration_cpu_base),
 121        .clock_base = { { .cpu_base = &migration_cpu_base, }, },
 122};
 123
 124#define migration_base  migration_cpu_base.clock_base[0]
 125
 126/*
 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 128 * means that all timers which are tied to this base via timer->base are
 129 * locked, and the base itself is locked too.
 130 *
 131 * So __run_timers/migrate_timers can safely modify all timers which could
 132 * be found on the lists/queues.
 133 *
 134 * When the timer's base is locked, and the timer removed from list, it is
 135 * possible to set timer->base = &migration_base and drop the lock: the timer
 136 * remains locked.
 137 */
 138static
 139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 140                                             unsigned long *flags)
 141{
 142        struct hrtimer_clock_base *base;
 143
 144        for (;;) {
 145                base = timer->base;
 146                if (likely(base != &migration_base)) {
 147                        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 148                        if (likely(base == timer->base))
 149                                return base;
 150                        /* The timer has migrated to another CPU: */
 151                        raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 152                }
 153                cpu_relax();
 154        }
 155}
 156
 157/*
 158 * With HIGHRES=y we do not migrate the timer when it is expiring
 159 * before the next event on the target cpu because we cannot reprogram
 160 * the target cpu hardware and we would cause it to fire late.
 161 *
 162 * Called with cpu_base->lock of target cpu held.
 163 */
 164static int
 165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 166{
 167#ifdef CONFIG_HIGH_RES_TIMERS
 168        ktime_t expires;
 169
 170        if (!new_base->cpu_base->hres_active)
 171                return 0;
 172
 173        expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 174        return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 175#else
 176        return 0;
 177#endif
 178}
 179
 180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 181static inline
 182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 183                                         int pinned)
 184{
 185        if (pinned || !base->migration_enabled)
 186                return base;
 187        return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 188}
 189#else
 190static inline
 191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 192                                         int pinned)
 193{
 194        return base;
 195}
 196#endif
 197
 198/*
 199 * We switch the timer base to a power-optimized selected CPU target,
 200 * if:
 201 *      - NO_HZ_COMMON is enabled
 202 *      - timer migration is enabled
 203 *      - the timer callback is not running
 204 *      - the timer is not the first expiring timer on the new target
 205 *
 206 * If one of the above requirements is not fulfilled we move the timer
 207 * to the current CPU or leave it on the previously assigned CPU if
 208 * the timer callback is currently running.
 209 */
 210static inline struct hrtimer_clock_base *
 211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 212                    int pinned)
 213{
 214        struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 215        struct hrtimer_clock_base *new_base;
 216        int basenum = base->index;
 217
 218        this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 219        new_cpu_base = get_target_base(this_cpu_base, pinned);
 220again:
 221        new_base = &new_cpu_base->clock_base[basenum];
 222
 223        if (base != new_base) {
 224                /*
 225                 * We are trying to move timer to new_base.
 226                 * However we can't change timer's base while it is running,
 227                 * so we keep it on the same CPU. No hassle vs. reprogramming
 228                 * the event source in the high resolution case. The softirq
 229                 * code will take care of this when the timer function has
 230                 * completed. There is no conflict as we hold the lock until
 231                 * the timer is enqueued.
 232                 */
 233                if (unlikely(hrtimer_callback_running(timer)))
 234                        return base;
 235
 236                /* See the comment in lock_hrtimer_base() */
 237                timer->base = &migration_base;
 238                raw_spin_unlock(&base->cpu_base->lock);
 239                raw_spin_lock(&new_base->cpu_base->lock);
 240
 241                if (new_cpu_base != this_cpu_base &&
 242                    hrtimer_check_target(timer, new_base)) {
 243                        raw_spin_unlock(&new_base->cpu_base->lock);
 244                        raw_spin_lock(&base->cpu_base->lock);
 245                        new_cpu_base = this_cpu_base;
 246                        timer->base = base;
 247                        goto again;
 248                }
 249                timer->base = new_base;
 250        } else {
 251                if (new_cpu_base != this_cpu_base &&
 252                    hrtimer_check_target(timer, new_base)) {
 253                        new_cpu_base = this_cpu_base;
 254                        goto again;
 255                }
 256        }
 257        return new_base;
 258}
 259
 260#else /* CONFIG_SMP */
 261
 262static inline struct hrtimer_clock_base *
 263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 264{
 265        struct hrtimer_clock_base *base = timer->base;
 266
 267        raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 268
 269        return base;
 270}
 271
 272# define switch_hrtimer_base(t, b, p)   (b)
 273
 274#endif  /* !CONFIG_SMP */
 275
 276/*
 277 * Functions for the union type storage format of ktime_t which are
 278 * too large for inlining:
 279 */
 280#if BITS_PER_LONG < 64
 281/*
 282 * Divide a ktime value by a nanosecond value
 283 */
 284s64 __ktime_divns(const ktime_t kt, s64 div)
 285{
 286        int sft = 0;
 287        s64 dclc;
 288        u64 tmp;
 289
 290        dclc = ktime_to_ns(kt);
 291        tmp = dclc < 0 ? -dclc : dclc;
 292
 293        /* Make sure the divisor is less than 2^32: */
 294        while (div >> 32) {
 295                sft++;
 296                div >>= 1;
 297        }
 298        tmp >>= sft;
 299        do_div(tmp, (unsigned long) div);
 300        return dclc < 0 ? -tmp : tmp;
 301}
 302EXPORT_SYMBOL_GPL(__ktime_divns);
 303#endif /* BITS_PER_LONG >= 64 */
 304
 305/*
 306 * Add two ktime values and do a safety check for overflow:
 307 */
 308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 309{
 310        ktime_t res = ktime_add(lhs, rhs);
 311
 312        /*
 313         * We use KTIME_SEC_MAX here, the maximum timeout which we can
 314         * return to user space in a timespec:
 315         */
 316        if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 317                res = ktime_set(KTIME_SEC_MAX, 0);
 318
 319        return res;
 320}
 321
 322EXPORT_SYMBOL_GPL(ktime_add_safe);
 323
 324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 325
 326static struct debug_obj_descr hrtimer_debug_descr;
 327
 328static void *hrtimer_debug_hint(void *addr)
 329{
 330        return ((struct hrtimer *) addr)->function;
 331}
 332
 333/*
 334 * fixup_init is called when:
 335 * - an active object is initialized
 336 */
 337static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 338{
 339        struct hrtimer *timer = addr;
 340
 341        switch (state) {
 342        case ODEBUG_STATE_ACTIVE:
 343                hrtimer_cancel(timer);
 344                debug_object_init(timer, &hrtimer_debug_descr);
 345                return 1;
 346        default:
 347                return 0;
 348        }
 349}
 350
 351/*
 352 * fixup_activate is called when:
 353 * - an active object is activated
 354 * - an unknown object is activated (might be a statically initialized object)
 355 */
 356static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 357{
 358        switch (state) {
 359
 360        case ODEBUG_STATE_NOTAVAILABLE:
 361                WARN_ON_ONCE(1);
 362                return 0;
 363
 364        case ODEBUG_STATE_ACTIVE:
 365                WARN_ON(1);
 366
 367        default:
 368                return 0;
 369        }
 370}
 371
 372/*
 373 * fixup_free is called when:
 374 * - an active object is freed
 375 */
 376static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 377{
 378        struct hrtimer *timer = addr;
 379
 380        switch (state) {
 381        case ODEBUG_STATE_ACTIVE:
 382                hrtimer_cancel(timer);
 383                debug_object_free(timer, &hrtimer_debug_descr);
 384                return 1;
 385        default:
 386                return 0;
 387        }
 388}
 389
 390static struct debug_obj_descr hrtimer_debug_descr = {
 391        .name           = "hrtimer",
 392        .debug_hint     = hrtimer_debug_hint,
 393        .fixup_init     = hrtimer_fixup_init,
 394        .fixup_activate = hrtimer_fixup_activate,
 395        .fixup_free     = hrtimer_fixup_free,
 396};
 397
 398static inline void debug_hrtimer_init(struct hrtimer *timer)
 399{
 400        debug_object_init(timer, &hrtimer_debug_descr);
 401}
 402
 403static inline void debug_hrtimer_activate(struct hrtimer *timer)
 404{
 405        debug_object_activate(timer, &hrtimer_debug_descr);
 406}
 407
 408static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 409{
 410        debug_object_deactivate(timer, &hrtimer_debug_descr);
 411}
 412
 413static inline void debug_hrtimer_free(struct hrtimer *timer)
 414{
 415        debug_object_free(timer, &hrtimer_debug_descr);
 416}
 417
 418static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 419                           enum hrtimer_mode mode);
 420
 421void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 422                           enum hrtimer_mode mode)
 423{
 424        debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 425        __hrtimer_init(timer, clock_id, mode);
 426}
 427EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 428
 429void destroy_hrtimer_on_stack(struct hrtimer *timer)
 430{
 431        debug_object_free(timer, &hrtimer_debug_descr);
 432}
 433
 434#else
 435static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 436static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 437static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 438#endif
 439
 440static inline void
 441debug_init(struct hrtimer *timer, clockid_t clockid,
 442           enum hrtimer_mode mode)
 443{
 444        debug_hrtimer_init(timer);
 445        trace_hrtimer_init(timer, clockid, mode);
 446}
 447
 448static inline void debug_activate(struct hrtimer *timer)
 449{
 450        debug_hrtimer_activate(timer);
 451        trace_hrtimer_start(timer);
 452}
 453
 454static inline void debug_deactivate(struct hrtimer *timer)
 455{
 456        debug_hrtimer_deactivate(timer);
 457        trace_hrtimer_cancel(timer);
 458}
 459
 460#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 461static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
 462                                             struct hrtimer *timer)
 463{
 464#ifdef CONFIG_HIGH_RES_TIMERS
 465        cpu_base->next_timer = timer;
 466#endif
 467}
 468
 469static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
 470{
 471        struct hrtimer_clock_base *base = cpu_base->clock_base;
 472        ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
 473        unsigned int active = cpu_base->active_bases;
 474
 475        hrtimer_update_next_timer(cpu_base, NULL);
 476        for (; active; base++, active >>= 1) {
 477                struct timerqueue_node *next;
 478                struct hrtimer *timer;
 479
 480                if (!(active & 0x01))
 481                        continue;
 482
 483                next = timerqueue_getnext(&base->active);
 484                timer = container_of(next, struct hrtimer, node);
 485                expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 486                if (expires.tv64 < expires_next.tv64) {
 487                        expires_next = expires;
 488                        hrtimer_update_next_timer(cpu_base, timer);
 489                }
 490        }
 491        /*
 492         * clock_was_set() might have changed base->offset of any of
 493         * the clock bases so the result might be negative. Fix it up
 494         * to prevent a false positive in clockevents_program_event().
 495         */
 496        if (expires_next.tv64 < 0)
 497                expires_next.tv64 = 0;
 498        return expires_next;
 499}
 500#endif
 501
 502static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 503{
 504        ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 505        ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 506        ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 507
 508        return ktime_get_update_offsets_now(&base->clock_was_set_seq,
 509                                            offs_real, offs_boot, offs_tai);
 510}
 511
 512/* High resolution timer related functions */
 513#ifdef CONFIG_HIGH_RES_TIMERS
 514
 515/*
 516 * High resolution timer enabled ?
 517 */
 518static int hrtimer_hres_enabled __read_mostly  = 1;
 519unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 520EXPORT_SYMBOL_GPL(hrtimer_resolution);
 521
 522/*
 523 * Enable / Disable high resolution mode
 524 */
 525static int __init setup_hrtimer_hres(char *str)
 526{
 527        if (!strcmp(str, "off"))
 528                hrtimer_hres_enabled = 0;
 529        else if (!strcmp(str, "on"))
 530                hrtimer_hres_enabled = 1;
 531        else
 532                return 0;
 533        return 1;
 534}
 535
 536__setup("highres=", setup_hrtimer_hres);
 537
 538/*
 539 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 540 */
 541static inline int hrtimer_is_hres_enabled(void)
 542{
 543        return hrtimer_hres_enabled;
 544}
 545
 546/*
 547 * Is the high resolution mode active ?
 548 */
 549static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 550{
 551        return cpu_base->hres_active;
 552}
 553
 554static inline int hrtimer_hres_active(void)
 555{
 556        return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 557}
 558
 559/*
 560 * Reprogram the event source with checking both queues for the
 561 * next event
 562 * Called with interrupts disabled and base->lock held
 563 */
 564static void
 565hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 566{
 567        ktime_t expires_next;
 568
 569        if (!cpu_base->hres_active)
 570                return;
 571
 572        expires_next = __hrtimer_get_next_event(cpu_base);
 573
 574        if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 575                return;
 576
 577        cpu_base->expires_next.tv64 = expires_next.tv64;
 578
 579        /*
 580         * If a hang was detected in the last timer interrupt then we
 581         * leave the hang delay active in the hardware. We want the
 582         * system to make progress. That also prevents the following
 583         * scenario:
 584         * T1 expires 50ms from now
 585         * T2 expires 5s from now
 586         *
 587         * T1 is removed, so this code is called and would reprogram
 588         * the hardware to 5s from now. Any hrtimer_start after that
 589         * will not reprogram the hardware due to hang_detected being
 590         * set. So we'd effectivly block all timers until the T2 event
 591         * fires.
 592         */
 593        if (cpu_base->hang_detected)
 594                return;
 595
 596        tick_program_event(cpu_base->expires_next, 1);
 597}
 598
 599/*
 600 * When a timer is enqueued and expires earlier than the already enqueued
 601 * timers, we have to check, whether it expires earlier than the timer for
 602 * which the clock event device was armed.
 603 *
 604 * Called with interrupts disabled and base->cpu_base.lock held
 605 */
 606static void hrtimer_reprogram(struct hrtimer *timer,
 607                              struct hrtimer_clock_base *base)
 608{
 609        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 610        ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 611
 612        WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 613
 614        /*
 615         * If the timer is not on the current cpu, we cannot reprogram
 616         * the other cpus clock event device.
 617         */
 618        if (base->cpu_base != cpu_base)
 619                return;
 620
 621        /*
 622         * If the hrtimer interrupt is running, then it will
 623         * reevaluate the clock bases and reprogram the clock event
 624         * device. The callbacks are always executed in hard interrupt
 625         * context so we don't need an extra check for a running
 626         * callback.
 627         */
 628        if (cpu_base->in_hrtirq)
 629                return;
 630
 631        /*
 632         * CLOCK_REALTIME timer might be requested with an absolute
 633         * expiry time which is less than base->offset. Set it to 0.
 634         */
 635        if (expires.tv64 < 0)
 636                expires.tv64 = 0;
 637
 638        if (expires.tv64 >= cpu_base->expires_next.tv64)
 639                return;
 640
 641        /* Update the pointer to the next expiring timer */
 642        cpu_base->next_timer = timer;
 643
 644        /*
 645         * If a hang was detected in the last timer interrupt then we
 646         * do not schedule a timer which is earlier than the expiry
 647         * which we enforced in the hang detection. We want the system
 648         * to make progress.
 649         */
 650        if (cpu_base->hang_detected)
 651                return;
 652
 653        /*
 654         * Program the timer hardware. We enforce the expiry for
 655         * events which are already in the past.
 656         */
 657        cpu_base->expires_next = expires;
 658        tick_program_event(expires, 1);
 659}
 660
 661/*
 662 * Initialize the high resolution related parts of cpu_base
 663 */
 664static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 665{
 666        base->expires_next.tv64 = KTIME_MAX;
 667        base->hres_active = 0;
 668}
 669
 670/*
 671 * Retrigger next event is called after clock was set
 672 *
 673 * Called with interrupts disabled via on_each_cpu()
 674 */
 675static void retrigger_next_event(void *arg)
 676{
 677        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 678
 679        if (!base->hres_active)
 680                return;
 681
 682        raw_spin_lock(&base->lock);
 683        hrtimer_update_base(base);
 684        hrtimer_force_reprogram(base, 0);
 685        raw_spin_unlock(&base->lock);
 686}
 687
 688/*
 689 * Switch to high resolution mode
 690 */
 691static void hrtimer_switch_to_hres(void)
 692{
 693        struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 694
 695        if (tick_init_highres()) {
 696                printk(KERN_WARNING "Could not switch to high resolution "
 697                                    "mode on CPU %d\n", base->cpu);
 698                return;
 699        }
 700        base->hres_active = 1;
 701        hrtimer_resolution = HIGH_RES_NSEC;
 702
 703        tick_setup_sched_timer();
 704        /* "Retrigger" the interrupt to get things going */
 705        retrigger_next_event(NULL);
 706}
 707
 708static void clock_was_set_work(struct work_struct *work)
 709{
 710        clock_was_set();
 711}
 712
 713static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 714
 715/*
 716 * Called from timekeeping and resume code to reprogramm the hrtimer
 717 * interrupt device on all cpus.
 718 */
 719void clock_was_set_delayed(void)
 720{
 721        schedule_work(&hrtimer_work);
 722}
 723
 724#else
 725
 726static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
 727static inline int hrtimer_hres_active(void) { return 0; }
 728static inline int hrtimer_is_hres_enabled(void) { return 0; }
 729static inline void hrtimer_switch_to_hres(void) { }
 730static inline void
 731hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 732static inline int hrtimer_reprogram(struct hrtimer *timer,
 733                                    struct hrtimer_clock_base *base)
 734{
 735        return 0;
 736}
 737static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 738static inline void retrigger_next_event(void *arg) { }
 739
 740#endif /* CONFIG_HIGH_RES_TIMERS */
 741
 742/*
 743 * Clock realtime was set
 744 *
 745 * Change the offset of the realtime clock vs. the monotonic
 746 * clock.
 747 *
 748 * We might have to reprogram the high resolution timer interrupt. On
 749 * SMP we call the architecture specific code to retrigger _all_ high
 750 * resolution timer interrupts. On UP we just disable interrupts and
 751 * call the high resolution interrupt code.
 752 */
 753void clock_was_set(void)
 754{
 755#ifdef CONFIG_HIGH_RES_TIMERS
 756        /* Retrigger the CPU local events everywhere */
 757        on_each_cpu(retrigger_next_event, NULL, 1);
 758#endif
 759        timerfd_clock_was_set();
 760}
 761
 762/*
 763 * During resume we might have to reprogram the high resolution timer
 764 * interrupt on all online CPUs.  However, all other CPUs will be
 765 * stopped with IRQs interrupts disabled so the clock_was_set() call
 766 * must be deferred.
 767 */
 768void hrtimers_resume(void)
 769{
 770        WARN_ONCE(!irqs_disabled(),
 771                  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 772
 773        /* Retrigger on the local CPU */
 774        retrigger_next_event(NULL);
 775        /* And schedule a retrigger for all others */
 776        clock_was_set_delayed();
 777}
 778
 779static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 780{
 781#ifdef CONFIG_TIMER_STATS
 782        if (timer->start_site)
 783                return;
 784        timer->start_site = __builtin_return_address(0);
 785        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 786        timer->start_pid = current->pid;
 787#endif
 788}
 789
 790static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 791{
 792#ifdef CONFIG_TIMER_STATS
 793        timer->start_site = NULL;
 794#endif
 795}
 796
 797static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 798{
 799#ifdef CONFIG_TIMER_STATS
 800        if (likely(!timer_stats_active))
 801                return;
 802        timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 803                                 timer->function, timer->start_comm, 0);
 804#endif
 805}
 806
 807/*
 808 * Counterpart to lock_hrtimer_base above:
 809 */
 810static inline
 811void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 812{
 813        raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 814}
 815
 816/**
 817 * hrtimer_forward - forward the timer expiry
 818 * @timer:      hrtimer to forward
 819 * @now:        forward past this time
 820 * @interval:   the interval to forward
 821 *
 822 * Forward the timer expiry so it will expire in the future.
 823 * Returns the number of overruns.
 824 *
 825 * Can be safely called from the callback function of @timer. If
 826 * called from other contexts @timer must neither be enqueued nor
 827 * running the callback and the caller needs to take care of
 828 * serialization.
 829 *
 830 * Note: This only updates the timer expiry value and does not requeue
 831 * the timer.
 832 */
 833u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 834{
 835        u64 orun = 1;
 836        ktime_t delta;
 837
 838        delta = ktime_sub(now, hrtimer_get_expires(timer));
 839
 840        if (delta.tv64 < 0)
 841                return 0;
 842
 843        if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 844                return 0;
 845
 846        if (interval.tv64 < hrtimer_resolution)
 847                interval.tv64 = hrtimer_resolution;
 848
 849        if (unlikely(delta.tv64 >= interval.tv64)) {
 850                s64 incr = ktime_to_ns(interval);
 851
 852                orun = ktime_divns(delta, incr);
 853                hrtimer_add_expires_ns(timer, incr * orun);
 854                if (hrtimer_get_expires_tv64(timer) > now.tv64)
 855                        return orun;
 856                /*
 857                 * This (and the ktime_add() below) is the
 858                 * correction for exact:
 859                 */
 860                orun++;
 861        }
 862        hrtimer_add_expires(timer, interval);
 863
 864        return orun;
 865}
 866EXPORT_SYMBOL_GPL(hrtimer_forward);
 867
 868/*
 869 * enqueue_hrtimer - internal function to (re)start a timer
 870 *
 871 * The timer is inserted in expiry order. Insertion into the
 872 * red black tree is O(log(n)). Must hold the base lock.
 873 *
 874 * Returns 1 when the new timer is the leftmost timer in the tree.
 875 */
 876static int enqueue_hrtimer(struct hrtimer *timer,
 877                           struct hrtimer_clock_base *base)
 878{
 879        debug_activate(timer);
 880
 881        base->cpu_base->active_bases |= 1 << base->index;
 882
 883        timer->state = HRTIMER_STATE_ENQUEUED;
 884
 885        return timerqueue_add(&base->active, &timer->node);
 886}
 887
 888/*
 889 * __remove_hrtimer - internal function to remove a timer
 890 *
 891 * Caller must hold the base lock.
 892 *
 893 * High resolution timer mode reprograms the clock event device when the
 894 * timer is the one which expires next. The caller can disable this by setting
 895 * reprogram to zero. This is useful, when the context does a reprogramming
 896 * anyway (e.g. timer interrupt)
 897 */
 898static void __remove_hrtimer(struct hrtimer *timer,
 899                             struct hrtimer_clock_base *base,
 900                             unsigned long newstate, int reprogram)
 901{
 902        struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 903        unsigned int state = timer->state;
 904
 905        timer->state = newstate;
 906        if (!(state & HRTIMER_STATE_ENQUEUED))
 907                return;
 908
 909        if (!timerqueue_del(&base->active, &timer->node))
 910                cpu_base->active_bases &= ~(1 << base->index);
 911
 912#ifdef CONFIG_HIGH_RES_TIMERS
 913        /*
 914         * Note: If reprogram is false we do not update
 915         * cpu_base->next_timer. This happens when we remove the first
 916         * timer on a remote cpu. No harm as we never dereference
 917         * cpu_base->next_timer. So the worst thing what can happen is
 918         * an superflous call to hrtimer_force_reprogram() on the
 919         * remote cpu later on if the same timer gets enqueued again.
 920         */
 921        if (reprogram && timer == cpu_base->next_timer)
 922                hrtimer_force_reprogram(cpu_base, 1);
 923#endif
 924}
 925
 926/*
 927 * remove hrtimer, called with base lock held
 928 */
 929static inline int
 930remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
 931{
 932        if (hrtimer_is_queued(timer)) {
 933                unsigned long state = timer->state;
 934                int reprogram;
 935
 936                /*
 937                 * Remove the timer and force reprogramming when high
 938                 * resolution mode is active and the timer is on the current
 939                 * CPU. If we remove a timer on another CPU, reprogramming is
 940                 * skipped. The interrupt event on this CPU is fired and
 941                 * reprogramming happens in the interrupt handler. This is a
 942                 * rare case and less expensive than a smp call.
 943                 */
 944                debug_deactivate(timer);
 945                timer_stats_hrtimer_clear_start_info(timer);
 946                reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
 947
 948                if (!restart)
 949                        state = HRTIMER_STATE_INACTIVE;
 950
 951                __remove_hrtimer(timer, base, state, reprogram);
 952                return 1;
 953        }
 954        return 0;
 955}
 956
 957/**
 958 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 959 * @timer:      the timer to be added
 960 * @tim:        expiry time
 961 * @delta_ns:   "slack" range for the timer
 962 * @mode:       expiry mode: absolute (HRTIMER_MODE_ABS) or
 963 *              relative (HRTIMER_MODE_REL)
 964 */
 965void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 966                            unsigned long delta_ns, const enum hrtimer_mode mode)
 967{
 968        struct hrtimer_clock_base *base, *new_base;
 969        unsigned long flags;
 970        int leftmost;
 971
 972        base = lock_hrtimer_base(timer, &flags);
 973
 974        /* Remove an active timer from the queue: */
 975        remove_hrtimer(timer, base, true);
 976
 977        if (mode & HRTIMER_MODE_REL) {
 978                tim = ktime_add_safe(tim, base->get_time());
 979                /*
 980                 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 981                 * to signal that they simply return xtime in
 982                 * do_gettimeoffset(). In this case we want to round up by
 983                 * resolution when starting a relative timer, to avoid short
 984                 * timeouts. This will go away with the GTOD framework.
 985                 */
 986#ifdef CONFIG_TIME_LOW_RES
 987                tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
 988#endif
 989        }
 990
 991        hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 992
 993        /* Switch the timer base, if necessary: */
 994        new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 995
 996        timer_stats_hrtimer_set_start_info(timer);
 997
 998        leftmost = enqueue_hrtimer(timer, new_base);
 999        if (!leftmost)
1000                goto unlock;
1001
1002        if (!hrtimer_is_hres_active(timer)) {
1003                /*
1004                 * Kick to reschedule the next tick to handle the new timer
1005                 * on dynticks target.
1006                 */
1007                if (new_base->cpu_base->nohz_active)
1008                        wake_up_nohz_cpu(new_base->cpu_base->cpu);
1009        } else {
1010                hrtimer_reprogram(timer, new_base);
1011        }
1012unlock:
1013        unlock_hrtimer_base(timer, &flags);
1014}
1015EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1016
1017/**
1018 * hrtimer_try_to_cancel - try to deactivate a timer
1019 * @timer:      hrtimer to stop
1020 *
1021 * Returns:
1022 *  0 when the timer was not active
1023 *  1 when the timer was active
1024 * -1 when the timer is currently excuting the callback function and
1025 *    cannot be stopped
1026 */
1027int hrtimer_try_to_cancel(struct hrtimer *timer)
1028{
1029        struct hrtimer_clock_base *base;
1030        unsigned long flags;
1031        int ret = -1;
1032
1033        /*
1034         * Check lockless first. If the timer is not active (neither
1035         * enqueued nor running the callback, nothing to do here.  The
1036         * base lock does not serialize against a concurrent enqueue,
1037         * so we can avoid taking it.
1038         */
1039        if (!hrtimer_active(timer))
1040                return 0;
1041
1042        base = lock_hrtimer_base(timer, &flags);
1043
1044        if (!hrtimer_callback_running(timer))
1045                ret = remove_hrtimer(timer, base, false);
1046
1047        unlock_hrtimer_base(timer, &flags);
1048
1049        return ret;
1050
1051}
1052EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1053
1054/**
1055 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1056 * @timer:      the timer to be cancelled
1057 *
1058 * Returns:
1059 *  0 when the timer was not active
1060 *  1 when the timer was active
1061 */
1062int hrtimer_cancel(struct hrtimer *timer)
1063{
1064        for (;;) {
1065                int ret = hrtimer_try_to_cancel(timer);
1066
1067                if (ret >= 0)
1068                        return ret;
1069                cpu_relax();
1070        }
1071}
1072EXPORT_SYMBOL_GPL(hrtimer_cancel);
1073
1074/**
1075 * hrtimer_get_remaining - get remaining time for the timer
1076 * @timer:      the timer to read
1077 */
1078ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1079{
1080        unsigned long flags;
1081        ktime_t rem;
1082
1083        lock_hrtimer_base(timer, &flags);
1084        rem = hrtimer_expires_remaining(timer);
1085        unlock_hrtimer_base(timer, &flags);
1086
1087        return rem;
1088}
1089EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1090
1091#ifdef CONFIG_NO_HZ_COMMON
1092/**
1093 * hrtimer_get_next_event - get the time until next expiry event
1094 *
1095 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1096 */
1097u64 hrtimer_get_next_event(void)
1098{
1099        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1100        u64 expires = KTIME_MAX;
1101        unsigned long flags;
1102
1103        raw_spin_lock_irqsave(&cpu_base->lock, flags);
1104
1105        if (!__hrtimer_hres_active(cpu_base))
1106                expires = __hrtimer_get_next_event(cpu_base).tv64;
1107
1108        raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1109
1110        return expires;
1111}
1112#endif
1113
1114static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1115                           enum hrtimer_mode mode)
1116{
1117        struct hrtimer_cpu_base *cpu_base;
1118        int base;
1119
1120        memset(timer, 0, sizeof(struct hrtimer));
1121
1122        cpu_base = raw_cpu_ptr(&hrtimer_bases);
1123
1124        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1125                clock_id = CLOCK_MONOTONIC;
1126
1127        base = hrtimer_clockid_to_base(clock_id);
1128        timer->base = &cpu_base->clock_base[base];
1129        timerqueue_init(&timer->node);
1130
1131#ifdef CONFIG_TIMER_STATS
1132        timer->start_site = NULL;
1133        timer->start_pid = -1;
1134        memset(timer->start_comm, 0, TASK_COMM_LEN);
1135#endif
1136}
1137
1138/**
1139 * hrtimer_init - initialize a timer to the given clock
1140 * @timer:      the timer to be initialized
1141 * @clock_id:   the clock to be used
1142 * @mode:       timer mode abs/rel
1143 */
1144void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1145                  enum hrtimer_mode mode)
1146{
1147        debug_init(timer, clock_id, mode);
1148        __hrtimer_init(timer, clock_id, mode);
1149}
1150EXPORT_SYMBOL_GPL(hrtimer_init);
1151
1152/*
1153 * A timer is active, when it is enqueued into the rbtree or the
1154 * callback function is running or it's in the state of being migrated
1155 * to another cpu.
1156 *
1157 * It is important for this function to not return a false negative.
1158 */
1159bool hrtimer_active(const struct hrtimer *timer)
1160{
1161        struct hrtimer_cpu_base *cpu_base;
1162        unsigned int seq;
1163
1164        do {
1165                cpu_base = READ_ONCE(timer->base->cpu_base);
1166                seq = raw_read_seqcount_begin(&cpu_base->seq);
1167
1168                if (timer->state != HRTIMER_STATE_INACTIVE ||
1169                    cpu_base->running == timer)
1170                        return true;
1171
1172        } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1173                 cpu_base != READ_ONCE(timer->base->cpu_base));
1174
1175        return false;
1176}
1177EXPORT_SYMBOL_GPL(hrtimer_active);
1178
1179/*
1180 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1181 * distinct sections:
1182 *
1183 *  - queued:   the timer is queued
1184 *  - callback: the timer is being ran
1185 *  - post:     the timer is inactive or (re)queued
1186 *
1187 * On the read side we ensure we observe timer->state and cpu_base->running
1188 * from the same section, if anything changed while we looked at it, we retry.
1189 * This includes timer->base changing because sequence numbers alone are
1190 * insufficient for that.
1191 *
1192 * The sequence numbers are required because otherwise we could still observe
1193 * a false negative if the read side got smeared over multiple consequtive
1194 * __run_hrtimer() invocations.
1195 */
1196
1197static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1198                          struct hrtimer_clock_base *base,
1199                          struct hrtimer *timer, ktime_t *now)
1200{
1201        enum hrtimer_restart (*fn)(struct hrtimer *);
1202        int restart;
1203
1204        lockdep_assert_held(&cpu_base->lock);
1205
1206        debug_deactivate(timer);
1207        cpu_base->running = timer;
1208
1209        /*
1210         * Separate the ->running assignment from the ->state assignment.
1211         *
1212         * As with a regular write barrier, this ensures the read side in
1213         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1214         * timer->state == INACTIVE.
1215         */
1216        raw_write_seqcount_barrier(&cpu_base->seq);
1217
1218        __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1219        timer_stats_account_hrtimer(timer);
1220        fn = timer->function;
1221
1222        /*
1223         * Because we run timers from hardirq context, there is no chance
1224         * they get migrated to another cpu, therefore its safe to unlock
1225         * the timer base.
1226         */
1227        raw_spin_unlock(&cpu_base->lock);
1228        trace_hrtimer_expire_entry(timer, now);
1229        restart = fn(timer);
1230        trace_hrtimer_expire_exit(timer);
1231        raw_spin_lock(&cpu_base->lock);
1232
1233        /*
1234         * Note: We clear the running state after enqueue_hrtimer and
1235         * we do not reprogramm the event hardware. Happens either in
1236         * hrtimer_start_range_ns() or in hrtimer_interrupt()
1237         *
1238         * Note: Because we dropped the cpu_base->lock above,
1239         * hrtimer_start_range_ns() can have popped in and enqueued the timer
1240         * for us already.
1241         */
1242        if (restart != HRTIMER_NORESTART &&
1243            !(timer->state & HRTIMER_STATE_ENQUEUED))
1244                enqueue_hrtimer(timer, base);
1245
1246        /*
1247         * Separate the ->running assignment from the ->state assignment.
1248         *
1249         * As with a regular write barrier, this ensures the read side in
1250         * hrtimer_active() cannot observe cpu_base->running == NULL &&
1251         * timer->state == INACTIVE.
1252         */
1253        raw_write_seqcount_barrier(&cpu_base->seq);
1254
1255        WARN_ON_ONCE(cpu_base->running != timer);
1256        cpu_base->running = NULL;
1257}
1258
1259static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1260{
1261        struct hrtimer_clock_base *base = cpu_base->clock_base;
1262        unsigned int active = cpu_base->active_bases;
1263
1264        for (; active; base++, active >>= 1) {
1265                struct timerqueue_node *node;
1266                ktime_t basenow;
1267
1268                if (!(active & 0x01))
1269                        continue;
1270
1271                basenow = ktime_add(now, base->offset);
1272
1273                while ((node = timerqueue_getnext(&base->active))) {
1274                        struct hrtimer *timer;
1275
1276                        timer = container_of(node, struct hrtimer, node);
1277
1278                        /*
1279                         * The immediate goal for using the softexpires is
1280                         * minimizing wakeups, not running timers at the
1281                         * earliest interrupt after their soft expiration.
1282                         * This allows us to avoid using a Priority Search
1283                         * Tree, which can answer a stabbing querry for
1284                         * overlapping intervals and instead use the simple
1285                         * BST we already have.
1286                         * We don't add extra wakeups by delaying timers that
1287                         * are right-of a not yet expired timer, because that
1288                         * timer will have to trigger a wakeup anyway.
1289                         */
1290                        if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1291                                break;
1292
1293                        __run_hrtimer(cpu_base, base, timer, &basenow);
1294                }
1295        }
1296}
1297
1298#ifdef CONFIG_HIGH_RES_TIMERS
1299
1300/*
1301 * High resolution timer interrupt
1302 * Called with interrupts disabled
1303 */
1304void hrtimer_interrupt(struct clock_event_device *dev)
1305{
1306        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1307        ktime_t expires_next, now, entry_time, delta;
1308        int retries = 0;
1309
1310        BUG_ON(!cpu_base->hres_active);
1311        cpu_base->nr_events++;
1312        dev->next_event.tv64 = KTIME_MAX;
1313
1314        raw_spin_lock(&cpu_base->lock);
1315        entry_time = now = hrtimer_update_base(cpu_base);
1316retry:
1317        cpu_base->in_hrtirq = 1;
1318        /*
1319         * We set expires_next to KTIME_MAX here with cpu_base->lock
1320         * held to prevent that a timer is enqueued in our queue via
1321         * the migration code. This does not affect enqueueing of
1322         * timers which run their callback and need to be requeued on
1323         * this CPU.
1324         */
1325        cpu_base->expires_next.tv64 = KTIME_MAX;
1326
1327        __hrtimer_run_queues(cpu_base, now);
1328
1329        /* Reevaluate the clock bases for the next expiry */
1330        expires_next = __hrtimer_get_next_event(cpu_base);
1331        /*
1332         * Store the new expiry value so the migration code can verify
1333         * against it.
1334         */
1335        cpu_base->expires_next = expires_next;
1336        cpu_base->in_hrtirq = 0;
1337        raw_spin_unlock(&cpu_base->lock);
1338
1339        /* Reprogramming necessary ? */
1340        if (!tick_program_event(expires_next, 0)) {
1341                cpu_base->hang_detected = 0;
1342                return;
1343        }
1344
1345        /*
1346         * The next timer was already expired due to:
1347         * - tracing
1348         * - long lasting callbacks
1349         * - being scheduled away when running in a VM
1350         *
1351         * We need to prevent that we loop forever in the hrtimer
1352         * interrupt routine. We give it 3 attempts to avoid
1353         * overreacting on some spurious event.
1354         *
1355         * Acquire base lock for updating the offsets and retrieving
1356         * the current time.
1357         */
1358        raw_spin_lock(&cpu_base->lock);
1359        now = hrtimer_update_base(cpu_base);
1360        cpu_base->nr_retries++;
1361        if (++retries < 3)
1362                goto retry;
1363        /*
1364         * Give the system a chance to do something else than looping
1365         * here. We stored the entry time, so we know exactly how long
1366         * we spent here. We schedule the next event this amount of
1367         * time away.
1368         */
1369        cpu_base->nr_hangs++;
1370        cpu_base->hang_detected = 1;
1371        raw_spin_unlock(&cpu_base->lock);
1372        delta = ktime_sub(now, entry_time);
1373        if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1374                cpu_base->max_hang_time = (unsigned int) delta.tv64;
1375        /*
1376         * Limit it to a sensible value as we enforce a longer
1377         * delay. Give the CPU at least 100ms to catch up.
1378         */
1379        if (delta.tv64 > 100 * NSEC_PER_MSEC)
1380                expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1381        else
1382                expires_next = ktime_add(now, delta);
1383        tick_program_event(expires_next, 1);
1384        printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1385                    ktime_to_ns(delta));
1386}
1387
1388/*
1389 * local version of hrtimer_peek_ahead_timers() called with interrupts
1390 * disabled.
1391 */
1392static inline void __hrtimer_peek_ahead_timers(void)
1393{
1394        struct tick_device *td;
1395
1396        if (!hrtimer_hres_active())
1397                return;
1398
1399        td = this_cpu_ptr(&tick_cpu_device);
1400        if (td && td->evtdev)
1401                hrtimer_interrupt(td->evtdev);
1402}
1403
1404#else /* CONFIG_HIGH_RES_TIMERS */
1405
1406static inline void __hrtimer_peek_ahead_timers(void) { }
1407
1408#endif  /* !CONFIG_HIGH_RES_TIMERS */
1409
1410/*
1411 * Called from run_local_timers in hardirq context every jiffy
1412 */
1413void hrtimer_run_queues(void)
1414{
1415        struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1416        ktime_t now;
1417
1418        if (__hrtimer_hres_active(cpu_base))
1419                return;
1420
1421        /*
1422         * This _is_ ugly: We have to check periodically, whether we
1423         * can switch to highres and / or nohz mode. The clocksource
1424         * switch happens with xtime_lock held. Notification from
1425         * there only sets the check bit in the tick_oneshot code,
1426         * otherwise we might deadlock vs. xtime_lock.
1427         */
1428        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1429                hrtimer_switch_to_hres();
1430                return;
1431        }
1432
1433        raw_spin_lock(&cpu_base->lock);
1434        now = hrtimer_update_base(cpu_base);
1435        __hrtimer_run_queues(cpu_base, now);
1436        raw_spin_unlock(&cpu_base->lock);
1437}
1438
1439/*
1440 * Sleep related functions:
1441 */
1442static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443{
1444        struct hrtimer_sleeper *t =
1445                container_of(timer, struct hrtimer_sleeper, timer);
1446        struct task_struct *task = t->task;
1447
1448        t->task = NULL;
1449        if (task)
1450                wake_up_process(task);
1451
1452        return HRTIMER_NORESTART;
1453}
1454
1455void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456{
1457        sl->timer.function = hrtimer_wakeup;
1458        sl->task = task;
1459}
1460EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1461
1462static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463{
1464        hrtimer_init_sleeper(t, current);
1465
1466        do {
1467                set_current_state(TASK_INTERRUPTIBLE);
1468                hrtimer_start_expires(&t->timer, mode);
1469
1470                if (likely(t->task))
1471                        freezable_schedule();
1472
1473                hrtimer_cancel(&t->timer);
1474                mode = HRTIMER_MODE_ABS;
1475
1476        } while (t->task && !signal_pending(current));
1477
1478        __set_current_state(TASK_RUNNING);
1479
1480        return t->task == NULL;
1481}
1482
1483static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1484{
1485        struct timespec rmt;
1486        ktime_t rem;
1487
1488        rem = hrtimer_expires_remaining(timer);
1489        if (rem.tv64 <= 0)
1490                return 0;
1491        rmt = ktime_to_timespec(rem);
1492
1493        if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1494                return -EFAULT;
1495
1496        return 1;
1497}
1498
1499long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1500{
1501        struct hrtimer_sleeper t;
1502        struct timespec __user  *rmtp;
1503        int ret = 0;
1504
1505        hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1506                                HRTIMER_MODE_ABS);
1507        hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1508
1509        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1510                goto out;
1511
1512        rmtp = restart->nanosleep.rmtp;
1513        if (rmtp) {
1514                ret = update_rmtp(&t.timer, rmtp);
1515                if (ret <= 0)
1516                        goto out;
1517        }
1518
1519        /* The other values in restart are already filled in */
1520        ret = -ERESTART_RESTARTBLOCK;
1521out:
1522        destroy_hrtimer_on_stack(&t.timer);
1523        return ret;
1524}
1525
1526long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1527                       const enum hrtimer_mode mode, const clockid_t clockid)
1528{
1529        struct restart_block *restart;
1530        struct hrtimer_sleeper t;
1531        int ret = 0;
1532        unsigned long slack;
1533
1534        slack = current->timer_slack_ns;
1535        if (dl_task(current) || rt_task(current))
1536                slack = 0;
1537
1538        hrtimer_init_on_stack(&t.timer, clockid, mode);
1539        hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1540        if (do_nanosleep(&t, mode))
1541                goto out;
1542
1543        /* Absolute timers do not update the rmtp value and restart: */
1544        if (mode == HRTIMER_MODE_ABS) {
1545                ret = -ERESTARTNOHAND;
1546                goto out;
1547        }
1548
1549        if (rmtp) {
1550                ret = update_rmtp(&t.timer, rmtp);
1551                if (ret <= 0)
1552                        goto out;
1553        }
1554
1555        restart = &current->restart_block;
1556        restart->fn = hrtimer_nanosleep_restart;
1557        restart->nanosleep.clockid = t.timer.base->clockid;
1558        restart->nanosleep.rmtp = rmtp;
1559        restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1560
1561        ret = -ERESTART_RESTARTBLOCK;
1562out:
1563        destroy_hrtimer_on_stack(&t.timer);
1564        return ret;
1565}
1566
1567SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1568                struct timespec __user *, rmtp)
1569{
1570        struct timespec tu;
1571
1572        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1573                return -EFAULT;
1574
1575        if (!timespec_valid(&tu))
1576                return -EINVAL;
1577
1578        return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1579}
1580
1581/*
1582 * Functions related to boot-time initialization:
1583 */
1584static void init_hrtimers_cpu(int cpu)
1585{
1586        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1587        int i;
1588
1589        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1590                cpu_base->clock_base[i].cpu_base = cpu_base;
1591                timerqueue_init_head(&cpu_base->clock_base[i].active);
1592        }
1593
1594        cpu_base->cpu = cpu;
1595        hrtimer_init_hres(cpu_base);
1596}
1597
1598#ifdef CONFIG_HOTPLUG_CPU
1599
1600static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1601                                struct hrtimer_clock_base *new_base)
1602{
1603        struct hrtimer *timer;
1604        struct timerqueue_node *node;
1605
1606        while ((node = timerqueue_getnext(&old_base->active))) {
1607                timer = container_of(node, struct hrtimer, node);
1608                BUG_ON(hrtimer_callback_running(timer));
1609                debug_deactivate(timer);
1610
1611                /*
1612                 * Mark it as ENQUEUED not INACTIVE otherwise the
1613                 * timer could be seen as !active and just vanish away
1614                 * under us on another CPU
1615                 */
1616                __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1617                timer->base = new_base;
1618                /*
1619                 * Enqueue the timers on the new cpu. This does not
1620                 * reprogram the event device in case the timer
1621                 * expires before the earliest on this CPU, but we run
1622                 * hrtimer_interrupt after we migrated everything to
1623                 * sort out already expired timers and reprogram the
1624                 * event device.
1625                 */
1626                enqueue_hrtimer(timer, new_base);
1627        }
1628}
1629
1630static void migrate_hrtimers(int scpu)
1631{
1632        struct hrtimer_cpu_base *old_base, *new_base;
1633        int i;
1634
1635        BUG_ON(cpu_online(scpu));
1636        tick_cancel_sched_timer(scpu);
1637
1638        local_irq_disable();
1639        old_base = &per_cpu(hrtimer_bases, scpu);
1640        new_base = this_cpu_ptr(&hrtimer_bases);
1641        /*
1642         * The caller is globally serialized and nobody else
1643         * takes two locks at once, deadlock is not possible.
1644         */
1645        raw_spin_lock(&new_base->lock);
1646        raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1647
1648        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1649                migrate_hrtimer_list(&old_base->clock_base[i],
1650                                     &new_base->clock_base[i]);
1651        }
1652
1653        raw_spin_unlock(&old_base->lock);
1654        raw_spin_unlock(&new_base->lock);
1655
1656        /* Check, if we got expired work to do */
1657        __hrtimer_peek_ahead_timers();
1658        local_irq_enable();
1659}
1660
1661#endif /* CONFIG_HOTPLUG_CPU */
1662
1663static int hrtimer_cpu_notify(struct notifier_block *self,
1664                                        unsigned long action, void *hcpu)
1665{
1666        int scpu = (long)hcpu;
1667
1668        switch (action) {
1669
1670        case CPU_UP_PREPARE:
1671        case CPU_UP_PREPARE_FROZEN:
1672                init_hrtimers_cpu(scpu);
1673                break;
1674
1675#ifdef CONFIG_HOTPLUG_CPU
1676        case CPU_DEAD:
1677        case CPU_DEAD_FROZEN:
1678                migrate_hrtimers(scpu);
1679                break;
1680#endif
1681
1682        default:
1683                break;
1684        }
1685
1686        return NOTIFY_OK;
1687}
1688
1689static struct notifier_block hrtimers_nb = {
1690        .notifier_call = hrtimer_cpu_notify,
1691};
1692
1693void __init hrtimers_init(void)
1694{
1695        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1696                          (void *)(long)smp_processor_id());
1697        register_cpu_notifier(&hrtimers_nb);
1698}
1699
1700/**
1701 * schedule_hrtimeout_range_clock - sleep until timeout
1702 * @expires:    timeout value (ktime_t)
1703 * @delta:      slack in expires timeout (ktime_t)
1704 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705 * @clock:      timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1706 */
1707int __sched
1708schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1709                               const enum hrtimer_mode mode, int clock)
1710{
1711        struct hrtimer_sleeper t;
1712
1713        /*
1714         * Optimize when a zero timeout value is given. It does not
1715         * matter whether this is an absolute or a relative time.
1716         */
1717        if (expires && !expires->tv64) {
1718                __set_current_state(TASK_RUNNING);
1719                return 0;
1720        }
1721
1722        /*
1723         * A NULL parameter means "infinite"
1724         */
1725        if (!expires) {
1726                schedule();
1727                return -EINTR;
1728        }
1729
1730        hrtimer_init_on_stack(&t.timer, clock, mode);
1731        hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1732
1733        hrtimer_init_sleeper(&t, current);
1734
1735        hrtimer_start_expires(&t.timer, mode);
1736
1737        if (likely(t.task))
1738                schedule();
1739
1740        hrtimer_cancel(&t.timer);
1741        destroy_hrtimer_on_stack(&t.timer);
1742
1743        __set_current_state(TASK_RUNNING);
1744
1745        return !t.task ? 0 : -EINTR;
1746}
1747
1748/**
1749 * schedule_hrtimeout_range - sleep until timeout
1750 * @expires:    timeout value (ktime_t)
1751 * @delta:      slack in expires timeout (ktime_t)
1752 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1753 *
1754 * Make the current task sleep until the given expiry time has
1755 * elapsed. The routine will return immediately unless
1756 * the current task state has been set (see set_current_state()).
1757 *
1758 * The @delta argument gives the kernel the freedom to schedule the
1759 * actual wakeup to a time that is both power and performance friendly.
1760 * The kernel give the normal best effort behavior for "@expires+@delta",
1761 * but may decide to fire the timer earlier, but no earlier than @expires.
1762 *
1763 * You can set the task state as follows -
1764 *
1765 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1766 * pass before the routine returns.
1767 *
1768 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1769 * delivered to the current task.
1770 *
1771 * The current task state is guaranteed to be TASK_RUNNING when this
1772 * routine returns.
1773 *
1774 * Returns 0 when the timer has expired otherwise -EINTR
1775 */
1776int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1777                                     const enum hrtimer_mode mode)
1778{
1779        return schedule_hrtimeout_range_clock(expires, delta, mode,
1780                                              CLOCK_MONOTONIC);
1781}
1782EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1783
1784/**
1785 * schedule_hrtimeout - sleep until timeout
1786 * @expires:    timeout value (ktime_t)
1787 * @mode:       timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1788 *
1789 * Make the current task sleep until the given expiry time has
1790 * elapsed. The routine will return immediately unless
1791 * the current task state has been set (see set_current_state()).
1792 *
1793 * You can set the task state as follows -
1794 *
1795 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1796 * pass before the routine returns.
1797 *
1798 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1799 * delivered to the current task.
1800 *
1801 * The current task state is guaranteed to be TASK_RUNNING when this
1802 * routine returns.
1803 *
1804 * Returns 0 when the timer has expired otherwise -EINTR
1805 */
1806int __sched schedule_hrtimeout(ktime_t *expires,
1807                               const enum hrtimer_mode mode)
1808{
1809        return schedule_hrtimeout_range(expires, 0, mode);
1810}
1811EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1812