linux/mm/bootmem.c
<<
>>
Prefs
   1/*
   2 *  bootmem - A boot-time physical memory allocator and configurator
   3 *
   4 *  Copyright (C) 1999 Ingo Molnar
   5 *                1999 Kanoj Sarcar, SGI
   6 *                2008 Johannes Weiner
   7 *
   8 * Access to this subsystem has to be serialized externally (which is true
   9 * for the boot process anyway).
  10 */
  11#include <linux/init.h>
  12#include <linux/pfn.h>
  13#include <linux/slab.h>
  14#include <linux/bootmem.h>
  15#include <linux/export.h>
  16#include <linux/kmemleak.h>
  17#include <linux/range.h>
  18#include <linux/memblock.h>
  19#include <linux/bug.h>
  20#include <linux/io.h>
  21
  22#include <asm/processor.h>
  23
  24#include "internal.h"
  25
  26#ifndef CONFIG_NEED_MULTIPLE_NODES
  27struct pglist_data __refdata contig_page_data = {
  28        .bdata = &bootmem_node_data[0]
  29};
  30EXPORT_SYMBOL(contig_page_data);
  31#endif
  32
  33unsigned long max_low_pfn;
  34unsigned long min_low_pfn;
  35unsigned long max_pfn;
  36
  37bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
  38
  39static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
  40
  41static int bootmem_debug;
  42
  43static int __init bootmem_debug_setup(char *buf)
  44{
  45        bootmem_debug = 1;
  46        return 0;
  47}
  48early_param("bootmem_debug", bootmem_debug_setup);
  49
  50#define bdebug(fmt, args...) ({                         \
  51        if (unlikely(bootmem_debug))                    \
  52                printk(KERN_INFO                        \
  53                        "bootmem::%s " fmt,             \
  54                        __func__, ## args);             \
  55})
  56
  57static unsigned long __init bootmap_bytes(unsigned long pages)
  58{
  59        unsigned long bytes = DIV_ROUND_UP(pages, 8);
  60
  61        return ALIGN(bytes, sizeof(long));
  62}
  63
  64/**
  65 * bootmem_bootmap_pages - calculate bitmap size in pages
  66 * @pages: number of pages the bitmap has to represent
  67 */
  68unsigned long __init bootmem_bootmap_pages(unsigned long pages)
  69{
  70        unsigned long bytes = bootmap_bytes(pages);
  71
  72        return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
  73}
  74
  75/*
  76 * link bdata in order
  77 */
  78static void __init link_bootmem(bootmem_data_t *bdata)
  79{
  80        bootmem_data_t *ent;
  81
  82        list_for_each_entry(ent, &bdata_list, list) {
  83                if (bdata->node_min_pfn < ent->node_min_pfn) {
  84                        list_add_tail(&bdata->list, &ent->list);
  85                        return;
  86                }
  87        }
  88
  89        list_add_tail(&bdata->list, &bdata_list);
  90}
  91
  92/*
  93 * Called once to set up the allocator itself.
  94 */
  95static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
  96        unsigned long mapstart, unsigned long start, unsigned long end)
  97{
  98        unsigned long mapsize;
  99
 100        mminit_validate_memmodel_limits(&start, &end);
 101        bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
 102        bdata->node_min_pfn = start;
 103        bdata->node_low_pfn = end;
 104        link_bootmem(bdata);
 105
 106        /*
 107         * Initially all pages are reserved - setup_arch() has to
 108         * register free RAM areas explicitly.
 109         */
 110        mapsize = bootmap_bytes(end - start);
 111        memset(bdata->node_bootmem_map, 0xff, mapsize);
 112
 113        bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
 114                bdata - bootmem_node_data, start, mapstart, end, mapsize);
 115
 116        return mapsize;
 117}
 118
 119/**
 120 * init_bootmem_node - register a node as boot memory
 121 * @pgdat: node to register
 122 * @freepfn: pfn where the bitmap for this node is to be placed
 123 * @startpfn: first pfn on the node
 124 * @endpfn: first pfn after the node
 125 *
 126 * Returns the number of bytes needed to hold the bitmap for this node.
 127 */
 128unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
 129                                unsigned long startpfn, unsigned long endpfn)
 130{
 131        return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
 132}
 133
 134/**
 135 * init_bootmem - register boot memory
 136 * @start: pfn where the bitmap is to be placed
 137 * @pages: number of available physical pages
 138 *
 139 * Returns the number of bytes needed to hold the bitmap.
 140 */
 141unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
 142{
 143        max_low_pfn = pages;
 144        min_low_pfn = start;
 145        return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
 146}
 147
 148/*
 149 * free_bootmem_late - free bootmem pages directly to page allocator
 150 * @addr: starting physical address of the range
 151 * @size: size of the range in bytes
 152 *
 153 * This is only useful when the bootmem allocator has already been torn
 154 * down, but we are still initializing the system.  Pages are given directly
 155 * to the page allocator, no bootmem metadata is updated because it is gone.
 156 */
 157void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
 158{
 159        unsigned long cursor, end;
 160
 161        kmemleak_free_part(__va(physaddr), size);
 162
 163        cursor = PFN_UP(physaddr);
 164        end = PFN_DOWN(physaddr + size);
 165
 166        for (; cursor < end; cursor++) {
 167                __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
 168                totalram_pages++;
 169        }
 170}
 171
 172static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
 173{
 174        struct page *page;
 175        unsigned long *map, start, end, pages, cur, count = 0;
 176
 177        if (!bdata->node_bootmem_map)
 178                return 0;
 179
 180        map = bdata->node_bootmem_map;
 181        start = bdata->node_min_pfn;
 182        end = bdata->node_low_pfn;
 183
 184        bdebug("nid=%td start=%lx end=%lx\n",
 185                bdata - bootmem_node_data, start, end);
 186
 187        while (start < end) {
 188                unsigned long idx, vec;
 189                unsigned shift;
 190
 191                idx = start - bdata->node_min_pfn;
 192                shift = idx & (BITS_PER_LONG - 1);
 193                /*
 194                 * vec holds at most BITS_PER_LONG map bits,
 195                 * bit 0 corresponds to start.
 196                 */
 197                vec = ~map[idx / BITS_PER_LONG];
 198
 199                if (shift) {
 200                        vec >>= shift;
 201                        if (end - start >= BITS_PER_LONG)
 202                                vec |= ~map[idx / BITS_PER_LONG + 1] <<
 203                                        (BITS_PER_LONG - shift);
 204                }
 205                /*
 206                 * If we have a properly aligned and fully unreserved
 207                 * BITS_PER_LONG block of pages in front of us, free
 208                 * it in one go.
 209                 */
 210                if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
 211                        int order = ilog2(BITS_PER_LONG);
 212
 213                        __free_pages_bootmem(pfn_to_page(start), start, order);
 214                        count += BITS_PER_LONG;
 215                        start += BITS_PER_LONG;
 216                } else {
 217                        cur = start;
 218
 219                        start = ALIGN(start + 1, BITS_PER_LONG);
 220                        while (vec && cur != start) {
 221                                if (vec & 1) {
 222                                        page = pfn_to_page(cur);
 223                                        __free_pages_bootmem(page, cur, 0);
 224                                        count++;
 225                                }
 226                                vec >>= 1;
 227                                ++cur;
 228                        }
 229                }
 230        }
 231
 232        cur = bdata->node_min_pfn;
 233        page = virt_to_page(bdata->node_bootmem_map);
 234        pages = bdata->node_low_pfn - bdata->node_min_pfn;
 235        pages = bootmem_bootmap_pages(pages);
 236        count += pages;
 237        while (pages--)
 238                __free_pages_bootmem(page++, cur++, 0);
 239        bdata->node_bootmem_map = NULL;
 240
 241        bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
 242
 243        return count;
 244}
 245
 246static int reset_managed_pages_done __initdata;
 247
 248void reset_node_managed_pages(pg_data_t *pgdat)
 249{
 250        struct zone *z;
 251
 252        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 253                z->managed_pages = 0;
 254}
 255
 256void __init reset_all_zones_managed_pages(void)
 257{
 258        struct pglist_data *pgdat;
 259
 260        if (reset_managed_pages_done)
 261                return;
 262
 263        for_each_online_pgdat(pgdat)
 264                reset_node_managed_pages(pgdat);
 265
 266        reset_managed_pages_done = 1;
 267}
 268
 269/**
 270 * free_all_bootmem - release free pages to the buddy allocator
 271 *
 272 * Returns the number of pages actually released.
 273 */
 274unsigned long __init free_all_bootmem(void)
 275{
 276        unsigned long total_pages = 0;
 277        bootmem_data_t *bdata;
 278
 279        reset_all_zones_managed_pages();
 280
 281        list_for_each_entry(bdata, &bdata_list, list)
 282                total_pages += free_all_bootmem_core(bdata);
 283
 284        totalram_pages += total_pages;
 285
 286        return total_pages;
 287}
 288
 289static void __init __free(bootmem_data_t *bdata,
 290                        unsigned long sidx, unsigned long eidx)
 291{
 292        unsigned long idx;
 293
 294        bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
 295                sidx + bdata->node_min_pfn,
 296                eidx + bdata->node_min_pfn);
 297
 298        if (WARN_ON(bdata->node_bootmem_map == NULL))
 299                return;
 300
 301        if (bdata->hint_idx > sidx)
 302                bdata->hint_idx = sidx;
 303
 304        for (idx = sidx; idx < eidx; idx++)
 305                if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
 306                        BUG();
 307}
 308
 309static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
 310                        unsigned long eidx, int flags)
 311{
 312        unsigned long idx;
 313        int exclusive = flags & BOOTMEM_EXCLUSIVE;
 314
 315        bdebug("nid=%td start=%lx end=%lx flags=%x\n",
 316                bdata - bootmem_node_data,
 317                sidx + bdata->node_min_pfn,
 318                eidx + bdata->node_min_pfn,
 319                flags);
 320
 321        if (WARN_ON(bdata->node_bootmem_map == NULL))
 322                return 0;
 323
 324        for (idx = sidx; idx < eidx; idx++)
 325                if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
 326                        if (exclusive) {
 327                                __free(bdata, sidx, idx);
 328                                return -EBUSY;
 329                        }
 330                        bdebug("silent double reserve of PFN %lx\n",
 331                                idx + bdata->node_min_pfn);
 332                }
 333        return 0;
 334}
 335
 336static int __init mark_bootmem_node(bootmem_data_t *bdata,
 337                                unsigned long start, unsigned long end,
 338                                int reserve, int flags)
 339{
 340        unsigned long sidx, eidx;
 341
 342        bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
 343                bdata - bootmem_node_data, start, end, reserve, flags);
 344
 345        BUG_ON(start < bdata->node_min_pfn);
 346        BUG_ON(end > bdata->node_low_pfn);
 347
 348        sidx = start - bdata->node_min_pfn;
 349        eidx = end - bdata->node_min_pfn;
 350
 351        if (reserve)
 352                return __reserve(bdata, sidx, eidx, flags);
 353        else
 354                __free(bdata, sidx, eidx);
 355        return 0;
 356}
 357
 358static int __init mark_bootmem(unsigned long start, unsigned long end,
 359                                int reserve, int flags)
 360{
 361        unsigned long pos;
 362        bootmem_data_t *bdata;
 363
 364        pos = start;
 365        list_for_each_entry(bdata, &bdata_list, list) {
 366                int err;
 367                unsigned long max;
 368
 369                if (pos < bdata->node_min_pfn ||
 370                    pos >= bdata->node_low_pfn) {
 371                        BUG_ON(pos != start);
 372                        continue;
 373                }
 374
 375                max = min(bdata->node_low_pfn, end);
 376
 377                err = mark_bootmem_node(bdata, pos, max, reserve, flags);
 378                if (reserve && err) {
 379                        mark_bootmem(start, pos, 0, 0);
 380                        return err;
 381                }
 382
 383                if (max == end)
 384                        return 0;
 385                pos = bdata->node_low_pfn;
 386        }
 387        BUG();
 388}
 389
 390/**
 391 * free_bootmem_node - mark a page range as usable
 392 * @pgdat: node the range resides on
 393 * @physaddr: starting address of the range
 394 * @size: size of the range in bytes
 395 *
 396 * Partial pages will be considered reserved and left as they are.
 397 *
 398 * The range must reside completely on the specified node.
 399 */
 400void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 401                              unsigned long size)
 402{
 403        unsigned long start, end;
 404
 405        kmemleak_free_part(__va(physaddr), size);
 406
 407        start = PFN_UP(physaddr);
 408        end = PFN_DOWN(physaddr + size);
 409
 410        mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
 411}
 412
 413/**
 414 * free_bootmem - mark a page range as usable
 415 * @addr: starting physical address of the range
 416 * @size: size of the range in bytes
 417 *
 418 * Partial pages will be considered reserved and left as they are.
 419 *
 420 * The range must be contiguous but may span node boundaries.
 421 */
 422void __init free_bootmem(unsigned long physaddr, unsigned long size)
 423{
 424        unsigned long start, end;
 425
 426        kmemleak_free_part(__va(physaddr), size);
 427
 428        start = PFN_UP(physaddr);
 429        end = PFN_DOWN(physaddr + size);
 430
 431        mark_bootmem(start, end, 0, 0);
 432}
 433
 434/**
 435 * reserve_bootmem_node - mark a page range as reserved
 436 * @pgdat: node the range resides on
 437 * @physaddr: starting address of the range
 438 * @size: size of the range in bytes
 439 * @flags: reservation flags (see linux/bootmem.h)
 440 *
 441 * Partial pages will be reserved.
 442 *
 443 * The range must reside completely on the specified node.
 444 */
 445int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
 446                                 unsigned long size, int flags)
 447{
 448        unsigned long start, end;
 449
 450        start = PFN_DOWN(physaddr);
 451        end = PFN_UP(physaddr + size);
 452
 453        return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
 454}
 455
 456/**
 457 * reserve_bootmem - mark a page range as reserved
 458 * @addr: starting address of the range
 459 * @size: size of the range in bytes
 460 * @flags: reservation flags (see linux/bootmem.h)
 461 *
 462 * Partial pages will be reserved.
 463 *
 464 * The range must be contiguous but may span node boundaries.
 465 */
 466int __init reserve_bootmem(unsigned long addr, unsigned long size,
 467                            int flags)
 468{
 469        unsigned long start, end;
 470
 471        start = PFN_DOWN(addr);
 472        end = PFN_UP(addr + size);
 473
 474        return mark_bootmem(start, end, 1, flags);
 475}
 476
 477static unsigned long __init align_idx(struct bootmem_data *bdata,
 478                                      unsigned long idx, unsigned long step)
 479{
 480        unsigned long base = bdata->node_min_pfn;
 481
 482        /*
 483         * Align the index with respect to the node start so that the
 484         * combination of both satisfies the requested alignment.
 485         */
 486
 487        return ALIGN(base + idx, step) - base;
 488}
 489
 490static unsigned long __init align_off(struct bootmem_data *bdata,
 491                                      unsigned long off, unsigned long align)
 492{
 493        unsigned long base = PFN_PHYS(bdata->node_min_pfn);
 494
 495        /* Same as align_idx for byte offsets */
 496
 497        return ALIGN(base + off, align) - base;
 498}
 499
 500static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
 501                                        unsigned long size, unsigned long align,
 502                                        unsigned long goal, unsigned long limit)
 503{
 504        unsigned long fallback = 0;
 505        unsigned long min, max, start, sidx, midx, step;
 506
 507        bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
 508                bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
 509                align, goal, limit);
 510
 511        BUG_ON(!size);
 512        BUG_ON(align & (align - 1));
 513        BUG_ON(limit && goal + size > limit);
 514
 515        if (!bdata->node_bootmem_map)
 516                return NULL;
 517
 518        min = bdata->node_min_pfn;
 519        max = bdata->node_low_pfn;
 520
 521        goal >>= PAGE_SHIFT;
 522        limit >>= PAGE_SHIFT;
 523
 524        if (limit && max > limit)
 525                max = limit;
 526        if (max <= min)
 527                return NULL;
 528
 529        step = max(align >> PAGE_SHIFT, 1UL);
 530
 531        if (goal && min < goal && goal < max)
 532                start = ALIGN(goal, step);
 533        else
 534                start = ALIGN(min, step);
 535
 536        sidx = start - bdata->node_min_pfn;
 537        midx = max - bdata->node_min_pfn;
 538
 539        if (bdata->hint_idx > sidx) {
 540                /*
 541                 * Handle the valid case of sidx being zero and still
 542                 * catch the fallback below.
 543                 */
 544                fallback = sidx + 1;
 545                sidx = align_idx(bdata, bdata->hint_idx, step);
 546        }
 547
 548        while (1) {
 549                int merge;
 550                void *region;
 551                unsigned long eidx, i, start_off, end_off;
 552find_block:
 553                sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
 554                sidx = align_idx(bdata, sidx, step);
 555                eidx = sidx + PFN_UP(size);
 556
 557                if (sidx >= midx || eidx > midx)
 558                        break;
 559
 560                for (i = sidx; i < eidx; i++)
 561                        if (test_bit(i, bdata->node_bootmem_map)) {
 562                                sidx = align_idx(bdata, i, step);
 563                                if (sidx == i)
 564                                        sidx += step;
 565                                goto find_block;
 566                        }
 567
 568                if (bdata->last_end_off & (PAGE_SIZE - 1) &&
 569                                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
 570                        start_off = align_off(bdata, bdata->last_end_off, align);
 571                else
 572                        start_off = PFN_PHYS(sidx);
 573
 574                merge = PFN_DOWN(start_off) < sidx;
 575                end_off = start_off + size;
 576
 577                bdata->last_end_off = end_off;
 578                bdata->hint_idx = PFN_UP(end_off);
 579
 580                /*
 581                 * Reserve the area now:
 582                 */
 583                if (__reserve(bdata, PFN_DOWN(start_off) + merge,
 584                                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
 585                        BUG();
 586
 587                region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
 588                                start_off);
 589                memset(region, 0, size);
 590                /*
 591                 * The min_count is set to 0 so that bootmem allocated blocks
 592                 * are never reported as leaks.
 593                 */
 594                kmemleak_alloc(region, size, 0, 0);
 595                return region;
 596        }
 597
 598        if (fallback) {
 599                sidx = align_idx(bdata, fallback - 1, step);
 600                fallback = 0;
 601                goto find_block;
 602        }
 603
 604        return NULL;
 605}
 606
 607static void * __init alloc_bootmem_core(unsigned long size,
 608                                        unsigned long align,
 609                                        unsigned long goal,
 610                                        unsigned long limit)
 611{
 612        bootmem_data_t *bdata;
 613        void *region;
 614
 615        if (WARN_ON_ONCE(slab_is_available()))
 616                return kzalloc(size, GFP_NOWAIT);
 617
 618        list_for_each_entry(bdata, &bdata_list, list) {
 619                if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
 620                        continue;
 621                if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
 622                        break;
 623
 624                region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
 625                if (region)
 626                        return region;
 627        }
 628
 629        return NULL;
 630}
 631
 632static void * __init ___alloc_bootmem_nopanic(unsigned long size,
 633                                              unsigned long align,
 634                                              unsigned long goal,
 635                                              unsigned long limit)
 636{
 637        void *ptr;
 638
 639restart:
 640        ptr = alloc_bootmem_core(size, align, goal, limit);
 641        if (ptr)
 642                return ptr;
 643        if (goal) {
 644                goal = 0;
 645                goto restart;
 646        }
 647
 648        return NULL;
 649}
 650
 651/**
 652 * __alloc_bootmem_nopanic - allocate boot memory without panicking
 653 * @size: size of the request in bytes
 654 * @align: alignment of the region
 655 * @goal: preferred starting address of the region
 656 *
 657 * The goal is dropped if it can not be satisfied and the allocation will
 658 * fall back to memory below @goal.
 659 *
 660 * Allocation may happen on any node in the system.
 661 *
 662 * Returns NULL on failure.
 663 */
 664void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
 665                                        unsigned long goal)
 666{
 667        unsigned long limit = 0;
 668
 669        return ___alloc_bootmem_nopanic(size, align, goal, limit);
 670}
 671
 672static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
 673                                        unsigned long goal, unsigned long limit)
 674{
 675        void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
 676
 677        if (mem)
 678                return mem;
 679        /*
 680         * Whoops, we cannot satisfy the allocation request.
 681         */
 682        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 683        panic("Out of memory");
 684        return NULL;
 685}
 686
 687/**
 688 * __alloc_bootmem - allocate boot memory
 689 * @size: size of the request in bytes
 690 * @align: alignment of the region
 691 * @goal: preferred starting address of the region
 692 *
 693 * The goal is dropped if it can not be satisfied and the allocation will
 694 * fall back to memory below @goal.
 695 *
 696 * Allocation may happen on any node in the system.
 697 *
 698 * The function panics if the request can not be satisfied.
 699 */
 700void * __init __alloc_bootmem(unsigned long size, unsigned long align,
 701                              unsigned long goal)
 702{
 703        unsigned long limit = 0;
 704
 705        return ___alloc_bootmem(size, align, goal, limit);
 706}
 707
 708void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
 709                                unsigned long size, unsigned long align,
 710                                unsigned long goal, unsigned long limit)
 711{
 712        void *ptr;
 713
 714        if (WARN_ON_ONCE(slab_is_available()))
 715                return kzalloc(size, GFP_NOWAIT);
 716again:
 717
 718        /* do not panic in alloc_bootmem_bdata() */
 719        if (limit && goal + size > limit)
 720                limit = 0;
 721
 722        ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
 723        if (ptr)
 724                return ptr;
 725
 726        ptr = alloc_bootmem_core(size, align, goal, limit);
 727        if (ptr)
 728                return ptr;
 729
 730        if (goal) {
 731                goal = 0;
 732                goto again;
 733        }
 734
 735        return NULL;
 736}
 737
 738void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
 739                                   unsigned long align, unsigned long goal)
 740{
 741        if (WARN_ON_ONCE(slab_is_available()))
 742                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 743
 744        return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 745}
 746
 747void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 748                                    unsigned long align, unsigned long goal,
 749                                    unsigned long limit)
 750{
 751        void *ptr;
 752
 753        ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
 754        if (ptr)
 755                return ptr;
 756
 757        printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
 758        panic("Out of memory");
 759        return NULL;
 760}
 761
 762/**
 763 * __alloc_bootmem_node - allocate boot memory from a specific node
 764 * @pgdat: node to allocate from
 765 * @size: size of the request in bytes
 766 * @align: alignment of the region
 767 * @goal: preferred starting address of the region
 768 *
 769 * The goal is dropped if it can not be satisfied and the allocation will
 770 * fall back to memory below @goal.
 771 *
 772 * Allocation may fall back to any node in the system if the specified node
 773 * can not hold the requested memory.
 774 *
 775 * The function panics if the request can not be satisfied.
 776 */
 777void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
 778                                   unsigned long align, unsigned long goal)
 779{
 780        if (WARN_ON_ONCE(slab_is_available()))
 781                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 782
 783        return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
 784}
 785
 786void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
 787                                   unsigned long align, unsigned long goal)
 788{
 789#ifdef MAX_DMA32_PFN
 790        unsigned long end_pfn;
 791
 792        if (WARN_ON_ONCE(slab_is_available()))
 793                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 794
 795        /* update goal according ...MAX_DMA32_PFN */
 796        end_pfn = pgdat_end_pfn(pgdat);
 797
 798        if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
 799            (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
 800                void *ptr;
 801                unsigned long new_goal;
 802
 803                new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
 804                ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
 805                                                 new_goal, 0);
 806                if (ptr)
 807                        return ptr;
 808        }
 809#endif
 810
 811        return __alloc_bootmem_node(pgdat, size, align, goal);
 812
 813}
 814
 815#ifndef ARCH_LOW_ADDRESS_LIMIT
 816#define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
 817#endif
 818
 819/**
 820 * __alloc_bootmem_low - allocate low boot memory
 821 * @size: size of the request in bytes
 822 * @align: alignment of the region
 823 * @goal: preferred starting address of the region
 824 *
 825 * The goal is dropped if it can not be satisfied and the allocation will
 826 * fall back to memory below @goal.
 827 *
 828 * Allocation may happen on any node in the system.
 829 *
 830 * The function panics if the request can not be satisfied.
 831 */
 832void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
 833                                  unsigned long goal)
 834{
 835        return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
 836}
 837
 838void * __init __alloc_bootmem_low_nopanic(unsigned long size,
 839                                          unsigned long align,
 840                                          unsigned long goal)
 841{
 842        return ___alloc_bootmem_nopanic(size, align, goal,
 843                                        ARCH_LOW_ADDRESS_LIMIT);
 844}
 845
 846/**
 847 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
 848 * @pgdat: node to allocate from
 849 * @size: size of the request in bytes
 850 * @align: alignment of the region
 851 * @goal: preferred starting address of the region
 852 *
 853 * The goal is dropped if it can not be satisfied and the allocation will
 854 * fall back to memory below @goal.
 855 *
 856 * Allocation may fall back to any node in the system if the specified node
 857 * can not hold the requested memory.
 858 *
 859 * The function panics if the request can not be satisfied.
 860 */
 861void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
 862                                       unsigned long align, unsigned long goal)
 863{
 864        if (WARN_ON_ONCE(slab_is_available()))
 865                return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
 866
 867        return ___alloc_bootmem_node(pgdat, size, align,
 868                                     goal, ARCH_LOW_ADDRESS_LIMIT);
 869}
 870